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Areolar monogene
und polyanalytische Funktionen

Von Aporr KRiszTEN, Ziirich

1. In den letzten Jahren wurden mehrfach Klassen von Funktionen
untersucht, die in gewissem Sinn als Verallgemeinerungen der analyti-
schen Funktionen aufgefafit werden konnen. Die eine Moglichkeit, der-
artige Funktionen zu bilden, besteht darin, daBl man die Dimension des
betrachteten Raumes vergroflert ; dies fiihrt auf die sogenannten regu-
liren Funktionen einer Quaternionenvariablen oder noch allgemeiner
auf die reguliren hyperkomplexen Funktionen?!). Zweitens kann man in
der Ebene andere als die Cauchy-Riemannschen Differentialgleichungen
zugrunde legen. In dieser Weise lassen sich die sogenannten areolar mono-
genen (besser bianalytischen) Funktionen definieren?). Es ist das Ziel
dieser Arbeit die, den Cauchyschen Sdtzen entsprechenden Integralsitze
fiir diese Klasse von Funktionen herzuleiten. Trotz der einfachen Be-
weise sind diese Sétze meines Wissens neu. In einem zweiten Teil werden
wir die erhaltenen Resultate auf die hier definierten polyanalytischen
Funktionen verallgemeinern.
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2. Bekanntlich konnen die analytischen Funktionen f(z) = u(x,y)
+ 3v(x,y) durch die Differentialgleichung

of , .of

T ing =0 (1)
definiert werden. Dieser einen komplexen Differentialgleichung ent-
sprechen die zwei reellen Cauchy-Riemannschen Differentialgleichungen

ou ov

(/) (s
*é“x—"‘——a‘g—-o, —a-?—/—"l—'é;———o . (la)

Definition. Die Funktion f(z) = u -+ v heiflt in einem Gebiet H
areolar-monogen (a.-m.), wenn thre Komponenten u und v in H zweimal
stetig nach x und y differenzierbar sind, und wenn in H die Beziehungen
gelten :

2u 2u 02 v v v 2u
r®  oy? —2 ox 0y =0, ox? oyt 2550y oz oy

=0. (2a)

Um diese Gleichungen analog zu (1) bequem schreiben zu kénnen, defi-

nieren wir

d . 0 —
A=—§—x—+@—-‘—, A:

(1) nimmt die Form Af= 0 an, und (2a) koénnen wir komplex zu-
sammenfassen zu
o%f 62 f
=

% f
ox 0y

+ 24 = Af=0 . 2)

Satz 1. Die Komponenten u und v einer a.-m. Funktion f(z) = u + v
sind biharmonisch :
A4u = Adv = 0 .
Beweis. Es ist

A24% = AA, alsogilt AAf= Adw + i44v =0 .

Satz 2. Esser u(x,y) eine in etnem Rechteck R, dessen Seiten parallel
der z- resp. y-Aze sind, viermal stetig nach x und y differenzierbare, bi-
harmonische Funktion. Dann existiert in R eine Funktion v(x,y) derart,
daf f(z) =u + tv in R a.-m. ist.
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Beweis. Es sei (a,b) ein fester, (xz, y) ein variabler Punkt von R.
Aus der ersten der Gleichungen (2a) folgt

z vy
1 *( o2 , 02
o) =5 [ [ 55 0 — T |dedn + vie) + v)
a b

eingesetzt in die zweite Gleichung erhalten wir

}_f"gaauw,n)__aau(x,n>§dn__1ﬂa3u(s,y) Pu(,9)) g o
b

ox® ox On? 0&%0y oy?

o’ u(x,y)

ox oy =%

+ v (@) — vy () + 2

Um v,(x) zu bestimmen, differentieren wir nach x; unter Verwendung
der Gleichung AAu = 0 konnen wir schreiben

1 Pu(x,n) 3 Pu(z,n) M () —
2 oy !n=b 2 atop n=b+ =0 @

Die Variable y tritt nicht mehr auf, somit kann »,(x) aus (3) bestimmt
werden. Analog gehen wir zur Bestimmung von w,(y) vor. Durch ge-
eignete Wahl der Integrationskonstanten in v,(x) und wv,(y) konnen
wir erreichen, dafl die Funktion f(z) = u + ¢v die Gleichung (2) erfiillt.

Der Satz 2 148t sich auch fiir allgemeinere Bereiche als Rechtecke aus-
sprechen, doch gehen wir hierauf nicht ein.

3. Der erste Integralsatz. Wir betrachten zwei, in einem Gebiet H
und auf dessen (geniigend regulirem) Rande s zweimal stetig nach « und
y differenzierbare, komplexe Funktionen g¢(2) und f(z). Es gilt in H

gA*f = A(@Af) — (Ag)(Af) = A(g4f) — A(fAg) + 4% ,
also
gA*f — fA*g = A(gAf — fAyg) . (4)
Aus der Identitit (4) erhalten wir eine Art Greensche Formel

[§a2f — f42q) dwdy = —i [(gAf — fAg)dz .
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Satz 3. (1. Integralsatz.) Es seien zwei, in einem Gebiet H und auf
seinem Rande s, a.-m. Funktionen ¢(z) und f(z) gegeben. Dann gilt

fgAf—fAdg)dz=0. (5)

Beweis. Unter den obigen Voraussetzungen ist g A*f — fA%2g = 0 in H.

Ist speziell g = 1, so erhalten wir

fAfdz=0, (5"
denn Af ist analytisch und (5’) ist der erste Integralsatz von Cauchy.

4. Der zweite Integralsatz. Wir betrachten wieder das einfach zu-
sammenhingende Gebiet H und seine Randkurve s; z sei ein fester,
tnnerer Punkt von H, { = & 4 47 ein variabler Punkt von H oder s.
f(z) sei eine beliebige in H und auf s a.-m. Funktion, als zweite Funktion
wihlen wir die Funktion von z und ¢

g(2,0) = ——————~2fc_f_zz) ;

als Funktion von ¢ ({ #£2) ist ¢(z,{) a.-m. Esgilt

1 . A® — _.‘..1, 9

A(;)g(z,C)= F—7 5 o

Wir schlieBen z durch einen kleinen Kreis k aus dem Gebiet H aus und
erhalten

/

— 2z

mﬁlf(é’) d

I

1
ﬂz(c AfQ — O 5= (& .

g(z, ¢) ist fir z = { zwar unstetig, bleibt aber endlich ; indem wir k
gegen z konvergieren lassen, ergibt sich
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Satz 4. (2. Integralsatz.) Essei f(z) eine, in einem einfach zusammen-
hingenden Gebret H und auf sevnem Rande s a.-m. Funktion. Dann kann der
Funktionswert f(z) in jedem innern Punkt z von H aus den Werten von
f(C) und Af(L) auf s berechnet werden als

__ 1 (1t© {—z

5. Polyanalytische Funktionen. Definition: Eine Funktion f(z) =
u + tv heift in einem Gebiete H polyanalytisch, wenn thre Komponenten u
und v in H n-mal stetig differenzierbar sind, und f(z) tn H der Differential-
gleichung
Arf(z) =0 (n feste, natitrliche Zahl)
geniigt.

Die a.-m. Funktionen sind identisch mit den bianalytischen Funk-
tionen (n = 2). Die Komponenten einer polyanalytischen Funktion ge-
niigen der Differentialgleichung

A" = A"v = 0 .
Es gilt die folgende Identitat :
gArf= A(gA"f) — AgArif =
= A[gArif — AgAv2f oo (= 1nrdn-igf] + (— 1 dngf

also

] + (—1p-tdrgf = 4| T (—1p kg At o =),
k=0

wobei g und f zwei n mal stetig partiell differenzierbare, komplexe Funk-
tionen bedeuten. Aus dieser Identitét folgt der

Satz 3*. s seien zwei in einem Gebiet H und auf seinem Rande s poly-
analytische Funktionen gegeben. Dann gilt

f ['E;l(... 1)k Akg An—-l—kf] dz =0 .
k=0

8
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Um den zweiten Integralsatz herzuleiten, verwenden wir als Hilfsfunk-
tion g die Funktion
_ E—2""
9.0 = g, T — )

g.(z, £) ist in z und ¢ polyanalytisch, und es gilt
Ag, =g, (Ableitungen nach ) .
Die Funktionen g, bleiben in z = { fiir » >1 endlich.

Satz 4*, Essei f(z) eine, in einem einfach zusammenhdingenden Gebiet
H und auf dessen Rand s polyanalytische Funktion. Dann kann der Funk-
tionswert f(z) in jedem immern Punkt z von H aus den Werten von f((),
Af(L),..., A™1f(C) auf s berechnet werden als :

— 1)1 n—1
f) = —(——)——f[ X (—1)¥*gny(z,0) A""l""f(C)] a ;

8

und es bedeutet
(C — z)k"‘l

(Eingegangen den 13. Mai 1947.)
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