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Divisorenklassen
in algebraischen Funktionenkôrpern

Von B. L. van der Waerden, Laren, N.-Holland

H. Hasse hat eine arithmetische Théorie der Divisorenklassen eines

algebraischen Funktionenkôrpers einer Verànderlichen ûber einem belie-
bigen vollkommenen Konstantenkôrper Q entwickelt1). Bei einigen fui
die Théorie des Abelschen Funktionenkôrpers grundlegenden Sàtzen ist
Hasse jedoch nicht zur Durchfuhrung der Beweise gekommen, hat aber
die Erwartung ausgesprochen, daB dièse Beweise sich aus der von mir
gegebenen Begriindung der algebraischen Géométrie ergeben wurden. In
der Tat ist es mir gelungen, nicht nur die fraglichen Beweise mit meinen
Methoden zu erbringen, sondern dariiber hinaus noch ein weiteres Pro-
blem zu lôsen, das sich aus den Hasseschen Fragestellungen zwangslâufig
ergab, nâmlich die Konstruktion einer Klassenmannigfaltigkeit, deren
Punkte eineindeutig den Divisorenklassen nullten Grades des gegebenen
algebraischen Funktionenkôrpers entsprechen. Die Klassenmannigfaltigkeit

ist ein ausgezeichnetes projektives Modell des Abelschen Funktionenkôrpers;

ihre Punkte ûbernehmen die Rolle der Hasseschen ,,X-Punkte"
(Hasse § 7, 7). Die Hasseschen Sâtze § 6, 5 und § 8, 2 aber, deren Beweise
hier gegeben werden sollen, drûcken im wesentlichen aus, daB den
algebraischen Operationen, die man mit Divisorenklassen vornehmen kann, auch
algebraische Operationen auf der Klassenmannigfaltigkeit entsprechen. Dièse

Operationen sind : die Addition von Klassen X + Y — Z und die kom-
plexen Multiplikationen X fiY, die aus den algebraischen Korrespon-
denzen des Funktionenkôrpers entstehen.

Der Darstellung dieser Ergebnisse soll eine Ûbersicht uber die
grundlegenden Begriffe und Sàtze der algebraischen Géométrie vorangeschickt
werden. Ich habe mich dabei nicht auf das unbedingt notwendige Minimum

an Sâtzen beschrânkt, sondern ich habe mich bemûht, aus diesem
einleitenden Teil einen Rechenschaftsbericht ûber die Begriindung der

*) H. Hasse, Zur arithmetischen Théorie der algebraischen Funktionen-
kôrper, Jahresber. D. M. V. 52 (1942) S. 1—48.
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algebraischen Géométrie und eine Art Lehrgang der algebraischen
Géométrie fur Algebraiker zu machen. Die Definitionen sind vollstândig an-
gegeben, wahrend bei den Sàtzen jeweils angegeben ist, wo man ihre
Beweise finden kann.

Nach dieser Einfûhrung (§ 1 bis 10) folgt der Hauptteil (§ 11 bis 19).
Der Gedankengang des Hauptteils ist folgender. Wir gehen von einem
algebraischen Funktionenkôrper K vom Geschlechte g aus und legen als

,,projektives Modell" dièses Kôrpers eine singularitâtenfreie Kurve F zu-
grunde. Nach Erweiterung des Konstantenkôrpers Q zu einem algebraisch
abgeschlossenen Kôrper Q entsprechen die Punkte von F eineindeutig
den Stellen von K (§ 11). Die Gruppen von g Punkten auf F kônnen
durch Koordinaten dargestellt und so auf Punkte eines Bildraumes ab-

gebildet werden (§ 12). Die Gesamtheit dieser Bildpunkte ist eine glatte,
d. h. singularitâtenfreie algebraische Mannigfaltigkeit M (§ 13). Produkte
und Àquivalenzen von Punktgruppen auf F kônnen durch algebraische
Gleichungen zwischen ihren Koordinaten ausgedriiekt werden, geben
also zu algebraischen Korrespondenzen auf M AnlaB (§ 14). Setzt man
dièses Ergebnis zu dem Hasseschen Begrifï des 3£-Punktes in Beziehung,
so erhâlt man den Beweis des ersten Hasseschen Satzes (§ 15). Sodann
wird die erwâhnte Klassenmannigfaltigkeit konstruiert, deren Punkte
eineindeutig den Divisorenklassen vom Grade Null entsprechen (§ 16).
Die Multiplikatoren (komplexe Multiplikationen) von K ergeben eben-
falls algebraische Korrespondenzen auf M sowie auch auf der
Klassenmannigfaltigkeit (§ 17). Setzt man dièses Ergebnis wieder zum Hasseschen

Begrifï des 3E-Punktes in Beziehung, so ergeben sich Beweise der
weiteren Sàtze von Hasse (§ 18).

Erster Teil

Grundlagen der algebraischen Géométrie

§ 1. Resultantensysteme. Relationstreue Spezialisierung. Prinzip der Er-
haltung der Anzahl.

1.1. Notwendig und hinreichend dafûr, daB ein System homogener
Gleichungen

/,(yo,--->y«) o a)

eine von der Nullôsung verschiedene Lôsung in einem geeigneten (algç-
braischen) Erweiterungskôrper des Konstantenkôrpers Q besitzt, ist daB

Verschwinden des Resultantensystems

2î,(a) 0
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Dabei sind die Ri ganzzahlige Polynôme in den Koeffizienten a der
Formen f€. Beweis : Moderne Algebra II, § 80 (2. Aufl.).

1.2. Zwei Nicht-Nullôsungen eines homogenen Gleichungssystems (1)
werden zur gleichen Lôsungsklasse gerechnet, wenn sie sieh nur um einen
Faktor X unterscheiden. Die Lôsungsklassen heiBen auch PunJcte des pro-
jektiven Raumes Sn. Die Gesamtheit aller Lôsungsklassen eines Systems
(1) heiBt, falls nicht leer, eine algebraische Mannigfaltigkeit in 8n.

1.3. Ein Punkt y1 heiBt eine relationstreue Spezialisierung eines von
unbestimmten Parametern tx,..., tr abhàngigen Punktes y fur die

Parameterspezialisierung t -> t', wenn aile in den y homogenen Glei-
chungen f(t,y) 0 bei der Spezialisierung t ->t\ y -> yr erhalten
bleiben. Ist von Parametern t nicht die Rede, so spricht man von einer
relationstreuen Spezialisierung y ->yr schlechthin.

1.4. Zu jeder Parameterspezialisierung t->tr gehôrt stets minde-
atens eine relationstreue Spezialisierung y -> y \ vorausgesetzt daB ti
und yk einem und demselben Erweiterungskôrper von Q angehôren.
Ebenso lâBt sich jede relationstreue Spezialisierung x -> xr stets zu
einer ebensolchen Spezialisierung (x,y) -> (xf,yr) fortsetzen, sofern die

x und y einem und demselben Erweiterungskôrper von Q angehôren.
Beweis: Math. Ann. 97, p. 761, oder Einfûhrung alg. Geom., p. 107.

1.5. Wenn ein Gleichungssystem

fi(t,x) O (2)

nur endlich viele Lôsungsklassen #(1),..., xiq) besitzt und wenn bei einer
Spezialisierung t -> %' der Unbestimmten t die Lôsungszahl endlich bleibt,
so gehôrt dazu eine bis auf die Reihenfolge der y eindeutige relationstreue
Spezialisierung x(1)-^î/(1),. ,x(9)->2/(a). Sie wird gefunden, indem man
mit Unbestimmten u0,..., un die Form

F(u) Â (uox^ + Ulx^+...+ unxW)
v l

bildet (oder im Fall eines Kôrpers von der Charakteristik p eine geeignete
pf-te Potenz dièses Produktes), sie durch Multiplikation mit einem von
den u unabhângigen Faktor ganzrational in den t und primitiv in den u
macht und dann in ihr t -> tr spezialisiert. Die Zahl, die angibt, wie oft
eine Lôsungsklasse y des spezialisierten Systems fi(t',y) 0 unter den

y(1>,.. .,y{q} vorkommt, heiBt die Multiplizitdt der Lôsung y fur die
Spezialisierung t -> t'.
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1.6. Prinzip der Erhaltung der Anzahl; Die Summe der Multiplizi-
tàten der Lôsungen des spezialisierten Gleichungssystems ist gleich der
Anzahl der Lôsungen des urspriinglichen Problems (2).

1.7. Die Multiplizitât einer Lôsung y des spezialisierten Gleichungssystems

ist positiv, wenn dièse Lôsung y durch eine relationstreue Spe-
zialisierung fur t -> tr aus einer Lôsung x des Systems (2) hervorgeht.

Beweise zu 1.5 bis 1.7 : Math. Ann. 97, p. 762—766, oder Einf. alg.
Geom. § 38.

1.8. Kriterium fUr Multiplizitât Eins : Wenn die spezialisierten Glei-
chungen

fAt',y) o (3)

eine Lôsung y besitzen, derart, daB die ,,Tangentialebenen" der Hyper-
flàchen (3) im Punkt y, die durch die Gleichungen

*o ^o fi(*', V) + *i 9i /, (*', V) + • • • + xn dn /, (t\ y) 0 Ja. -^-j (4)

definiert werden, nur den Punkt y miteinander gemeinsam haben, so hat
die Lôsung y hôchstens die Multiplizitât Eins. Beweis : ZAG 5, Math.
Ann. 110, oder Einf. alg. Geom. § 39.

1.9. Die Behauptungen 1.5 bis 1.7 gelten auch in dem allgemeineren
Fall, daB t nicht ein System von Unbestimmten, sondern ein allgemeiner
Punkt einer irreduziblen Mannigfaltigkeit M (vgl. 2.2) und t' ein ein-
facher Punkt von M (vgl. 4.6) ist. Beweis : ZAG 6, Math. Ann. 110, § 3.

§ 2. Âlgebraische Mannigfaltigkeiten

Beweise : Math. Ann. 96, p. 183 oder Mod. Alg. II, § 93 oder Einf. alg.
Geom. §28.

2.1. Jede âlgebraische Mannigfaltigkeit ist eindeutig darstellbar als
unverkûrzbare Vereinigung von irreduziblen, d. h. nicht weiter zerleg-
baren Mannigfaltigkeiten.

2.2. Jede irreduzible Mannigfaltigkeit M besitzt einen allgemeinen
Punkt, d. h. einen solchen Punkt f von M, aus dem aile Punkte von M
durch relationstreue Spezialisierung hervorgehen. Er ist bis auf Kôrper-
isomorphie eindeutig bestimmt. Wenn eine Mannigfaltigkeit einen
allgemeinen Punkt besitzt, so ist sie irreduzibel. Jeder Punkt f, dessen

Koordinaten einem beliebigen Erweiterungskôrper des Konstantenkôr-
pers angehôren, ist allgemeiner Punkt einer irreduziblen Mannigfaltigkeit.
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2.3. Die Dimension einer irreduziblen Mannigfaltigkeit M ist der
Transzendenzgrad der Koordinatenverhâltnisse eiiies allgemeinen Punk-
tes von M.

2.4. Eine nulldimensionale irreduzible Mannigfaltigkeit ist ein System
konjugierter Punkte.

2.5. Eine rein r-dimensionale Mannigfaltigkeit ist eine solche, deren
irreduzible Bestandteile aile dieselbe Dimension r haben. Dièse Bestand-
teile kônnen mit willkiirliclien positiven Vielfachheiten versehen werden.

2.6. Eine rein (n — l)-dimensionale Mannigfaltigkeit in Sn ist eine
Hyperflâche, d. h. sie wird durch eine einzige homogène Gleichung / 0
gegeben. Umgekehrt ist jede Hyperflâche rein (n — l)-dimensional. Ihre
irreduziblen Bestandteile entsprechen den irreduziblen Faktoren der
Form / und werden mit denselben Vielfachheiten versehen wie dièse.

2.7. Wenn eine Mannigfaltigkeit M nicht ganz in der uneigentlichen
Hyperebene yQ—0 liegt, so kann man durch die Normierung yQ 1

fur die eigentlichen Punkte von M inhomogene Koordinaten yx,..., yn
einfiihren. Das zugehôrige Idéal von M im Polynombereich Q [zl9...,xn]
ist dann die Gesamtheit aller Polynôme /, die Null werden in allen Punk-
ten von M.

2.8. Das zugehôrige Idéal einer irreduziblen Mannigfaltigkeit ist
prim. Jedes Primideal in o Q [x1,.. xn] mit Ausnahme des Einheits-
ideals o ist zugehôriges Idéal einer einzigen irreduziblen Mannigfaltigkeit.

2.9. Bei Erweiterung des Grundkôrpers Q kann eine irreduzible
Mannigfaltigkeit nur in irreduzible Bestandteile von derselben Dimension
zerfallen, die dann in bezug auf Q konjugiert sind.

§ 3. Âlgebraische Korrespondenzen

Beweise : ZAG 6, Math. Ann. 110, S. 142, oder Einf. alg. Geom. § 33.

3.1. Eine âlgebraische Korrespondenz ist eine âlgebraische
Mannigfaltigkeit von Punktepaaren (x, y), x in Sm, y in Sn, gegeben durch ein
System von homogenen Gleichungen

/„(*,») 0 • (1)

3.2. Die Punkte x bilden eine âlgebraische Mannigfaltigkeit M, die
Urmannigfaltigkeit der Korrespondenz, deren Gleichungen durch
Elimination der y aus (1) gefunden werden. Die Punkte y bilden ebenso die
Bildmannigfaltigkeit N der Korrespondenz. Man spricht von einer
respondenz zwischen M und N.
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3.3. In einer irreduziblen Korrespondenz sind M und N beide irre-
duzibel. Einem allgemeinen Punkt f von M entspricht eine relativ zum

Kôrper Q I -£-,..., -~ irreduzible Teilmannigfaltigkeit Nç von N, ebenso

einem allgemeinen Punkt rj von N eine irreduzible Teilmannigfaltigkeit
Mn von M.

3.4. Prinzip der Konstantenzàhlung: Ist q die Dimension einer
irreduziblen Korrespondenz, a die von M, 6 die von JV^, c die von JV und d
die von M so gilt

3.5. Einem jeden Punkt x von M entspricht in einer irreduziblen
Korrespondenz eine Teilmannigfaltigkeit Nx von N, die keine Bestand-
teile von kleinerer Dimension als b enthàlt.

3.6. Ist die Urmannigfaltigkeit M einer Korrespondenz irreduzibel
und entspricht jedem Punkt von M eine irreduzible Teilmannigkeit von
N, die immer dieselbe Dimension b hat, so ist die Korrespondenz irreduzibel.

§ 4. Schnitt von Mannigfaltigkeiten mit linearen Teilrâumen und Hy-
perflâchen

Beweise : ZAG 13, Math. Ann. 115, p. 3595 oder Einf. alg. Geom. § 34
und § 40—41.

4.0. Ein linearer Teilraum 8n_k des Raumes Sn wird durch Je unab-
hângige lineare Gleichungen definiert. Sind die Koeffizienten lauter un-
abhângige Unbestimmte, so heiBt der Teilraum allgemein. Ein linearer
Teilraum Sm ist durch (m -f- 1) linear unabhangige Punkte bestimmt.

4.1. Der Durchschnitt einer irreduziblen a-dimensionalen Mannig-
faltigkeit M mit einem allgemeinen 8n_k ist im Fall k>a leer, im Fall
k a ein System von endlich vielen konjugierten Punkten, im Fall
k<a eine irreduzible (a — &)~dimensionale Mannigfaltigkeit. Die Anzahl
der Schnittpunkte im Fall k a heiBt der reduzierte Grad von M.

4.2. Der Durchschnitt einer irreduziblen a-dimensionalen
Mannigfaltigkeit vom reduzierten Grad g mit k allgemeinen Hyperflâchen von
den Graden yx,..., yK ist im Fall k >a leer, im Fall k a ein System
von g yly..., yK konjugierten Punkten und im Fall k<a eine irreduzible

(a — &)-dimensionale Mannigfaltigkeit vom reduzierten Grad
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4.3. Der Durchschnitt einer irreduziblen a-dimensionalen Mannig-
faltigkeit vom reduzierten Grad g mit einer Hyperflàehe vom Grade y,
die sie nicht ganz enthâlt, ist rein (a — l)-dimensional und ihre irreduziblen

Bestandteile kônnen mit solehen positiven Vielfachheiten versehen
werden, daB die Summe ihrer Gradzahlen gl3.. .,gr multipliziert mit
diesen Vielfachheiten, gleich gy ist :

Vl9l + ^2^2 H h [*r9r 97 -

Dabei werden die Vielfachheiten fa,..., fir im Fall einer Kurve (a 1)

durch relationstreue Spezialisierung definiert, indem man die Kurve zu-
erst mit einer allgemeinen Hyperflàehe desselben Grades schneidet und
dann dièse Hyperflàehe spezialisiert. Der allgemeine Fall wird auf den
Fall a 1 reduziert, indem man noch (a — 1) allgemeine Hyperflâchen
hinzunimmt, die die Mannigfaltigkeit nach 4.2 in einer irreduziblen Kurve
schneiden.

4.4. Der Durchschnitt einer rein a-dimensionalen Mannigfaltigkeit M
mit k^a Hyperflâchen von den Gradzahlen y1,...,yK enthâlt keine
Bestandteile von kleinerer Dimension als a — le. Falls sie auch keine
Bestandteile hôherer Dimension enthâlt, ist sie rein (a — &)-dimensional
und ihre irreduziblen Bestandteile kônnen mit solehen positiven Vielfachheiten

fa,..., ftr versehen werden, daB der gesamte Grad

Pi 9i H 1- Pr 9r 9 Yi- ' ' > y* •

ist, wo g der reduzierte Grad von M ist und gx,..., gr die reduzierten
Grade der Schnittbestandteile sind.

4.5. Sind / und g Formen gleichen Grades, von denen die zweite Null
wird auf M, so stimmt der Durchschnitt von M mit der Hyperflàehe
f o genau iiberein mit dem von M mit / -f- A gr 0, auch was die
Vielfachheiten der irreduziblen Bestandteile betrifft.

4.6. Ein Punkt P einer rein a-dimensionalen Mannigfaltigkeit M
heiBt ein s-fâcher Punkt von M, wenn ein allgemeiner, durch P gelegter
linearer Raum 8n__a die Mannigfaltigkeit im Punkte y mit der Multipli-
zitât s schneidet. Ist s — 1, so heiBt P ein einfâcher Punkt von M. Eine
Mannigfaltigkeit mit lauter einfachen Punkten heiBt singularitâtenfrei
oder glaM.

4.7. Eine a-dimensionale Mannigfaltigkeit M hat in jedem einfachen
Punkt einen Tangentialraum 8a9 Durchschnitt der Tangentialhyper-
ebenen aller Hyperflâchen durch M. Wenn umgekehrt M in P einen
Tangentialraum besitzt, so ist P ein einfacher Punkt von M.
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§ 5. Zugeordnete Formen und algebraische Système von algebraischen
Mannigfaltigkeiten

Beweise : Chow und v. d. Waerden, ZAG 9, Math. Ann. 113, p. 692.

Zum Teil auch Einf. alg. Geom. § 37.

5.1. Die zugeordnete Form einer irreduziblen nulldimensionalen Man-
nigfaltigkeit, bestehend aus den konjugierten Punkten «/(1),... ,y(h), ist
das Produkt

F(u)= fi

oder im Fall eines unvollkommenen Kôrpers von der Charakteristik p eine
solche pt-te Potenz dièses Produktes, daB die Form dem Grundkôrper Q
angehôrt.

5.2. Die zugeordnete Form F(u ; u{1),..., uir)) einer irreduziblen
r-dimensionalen Mannigfaltigkeit M ist definiert als die zugeordnete Form
der nulldimensionalen Schnittmannigfaltigkeit von M mit den allgemei-
nen Hyperebenen u{1),.. u{r). Sie ist (bis auf einen Faktor ±1) von
der Reihenfolge der Hyperebenen u, u(1\..., u^r) unabhângig. Ihr Grad
heiBt der Grad von M und ist im Fall eines vollkommenen Grundkôrpers
Q gleich dem reduzierten Grad (4.1), sonst gleich diesem mal *pf.

5.3. Die zugeordnete Form einer rein r-dimensionalen Mannigfaltigkeit,

deren irreduzible Bestandteile mit Vielfachheiten el9...,et ver-
sehen sind, ist das Produkt der zugeordneten Formen dieser Bestandteile
mit Exponenten ex,..., e8 :

F F? F? F*

5.4. Die Bedingung dafûr, daB die Hyperebenen v,v°\.. >,vir) einen
Punkt mit M gemeinsam haben, lautet

F(v,vM,...,vir>) 0

5.5. Die zugeordnete Form bestimmt die Mannigfaltigkeit M ein-
deutig. Ihre Koeffizienten kônnen als homogène Koordinaten von M
aufgefaBt werden. Durch dièse Koordinaten werden die Mannigfaltig-
keiten M gegebenen Grades und gegebener Dimension eineindeutig
abgebildet auf Punkte eines projektiven Bildraumes 93.

5.6. Die Bedingung, daB ein Punkt P einer Mannigfaltigkeit M
angehôrt, làBt sich durch algebraische Gleichungen zwischen den Koordi
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naten von P und denen von M ausdrûcken. Ebenso lafit sich die Bedin-
gung, daB M in einer anderen Mannigfaltigkeit N enthalten ist, durch
Gleichungen zwischen den Koordinaten von M und N ausdrûcken.

5.7. Ein algebraisches System von algebraischen Mannigfaltigkeiten ist
eine solche Menge von Mannigfaltigkeiten M, deren Bildmenge in 93 eine
algebraische Mannigfaltigkeit ist. Das System heiBt irreduzibel, wenn die
Bildmenge es ist ; die Dimension des Systems ist die Dimension der
Bildmenge.

5.8. Aile Mannigfaltigkeiten gegebenen Grades und gegebener Dimension

in 8n bilden ein algebraisches System.

5.9. Wenn in einer irreduziblen Korrespondenz zwischen M und N
jedem Punkt x von M eine Mannigfaltigkeit Nx auf N entspricht, die 1.

immer dieselbe Dimension b hat, wàhrend 2. M keine mehrfachen Punkte
besitzt, so bilden dièse Bildmannigfaltigkeiten Nx ein irreduzibles System
31, und M ist auf 31 rational abgebildet. — LâBt man die beiden Voraus-
setzungen 1., 2. fallen, so kann man das System 31 und die rationale
Abbildung von M auf 31 zwar immer noch definieren, und wenn einem
Punkt x von M in dieser Abbildung eine einzige Mannigfaltigkeit Ax
entspricht, so ist auch Nx Ax, andernfalls aber ist Nx die Vereinigungs-
menge aller Bildmannigfaltigkeiten AX9 die dem Punkte x in der Abbildung

entsprechen. Ist x ein einfacher Punkt von M, so ist entweder
Nx Ax, oder Nx hat eine hôhere Dimension als b.

Bemerkung : Die Ausfûhrungen dièses Paragraphen lassen sich ohne
weiteres auf Mannigfaltigkeiten von Punktepaaren, Punkttripeln usw.
iibertragen. Am einfachsten geschieht das dadurch, daB die Punktepaare
(x, y) auf Punkte z eines Bildraumes abgebildet werden, die durch die
Koordinaten

definiert werden, wo i von 0 bis m und Je von 0 bis n làuft, wenn x einem
Raume Sm und y einem Raume Sn angehôrt. Dièse Bildpunkte ztk bilden
eine algebraische Mannigfaltigkeit Z, deren Gleichungen lauten

Jeder Mannigfaltigkeit M von Punktepaaren (x, y) entspricht einein-
deutig eine Teilmannigfaltigkeit Mr von Z, und als zugeordnete Form von
M kann man die zugeordnete Form von Mr betrachten.
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§ 6. Durchsehnitte von algebraischen Mannigfaltigkeiten
Die Sâtze dièses § wetden in der vorliegenden Arbeit nicht gebraucht.

Beweise : ZAG 14, Math. Ann. 115, p 619.
Der Grundkôrper Q wird in diesem § als vollkommen vorausgesetzt.

6.1. Wenn zwei reine Mannigfaltigkeiten Md und Mn_d von den
Dimensionen d und n — d in Sn nur endlich viele Punkte gemeinsam
haben, so hat jeder dieser Schnittpunkte eine positive Vielfaehheit und
die Summe der Vielfachheiten ist gleich dem Produkt der Gradzahlen

6.2. Der Durchschnitt zweier Mannigfaltigkeiten Md und Me in Sn
hat, wenn d -f- e n + k ist, keine irreduziblen Bestandteile von klei-
nerer Dimension als k. Falls er aueh keine Bestandteile hôherer Dimension

hat, also rein &-dimensional ist, so kann man seine irreduziblen
Bestandteile mit solehen Vielfachheiten iw1,...,Jar versehen, daB die
Summe ihrer Gradzahlen, multipliziert mit diesen Vielfachheiten, gleich
dem Produkt der Gradzahlen von Md und Me ist :

t*i 9\ + /*2 9* H h t*r 9r 9 7 •

6.3. Durchlâuft Md ein irreduzibles System S von algebraischen
Mannigfaltigkeiten, so durchlâuft auch die Schnittmannigfaltigkeit Qk

MdMe ein irreduzibles System von i-dimensionalen Mannigfaltigkeiten
und die Zuordnung Md -> Qk ist eine irreduzible Korrespondenz zwischen
diesen beiden Systemen. Dièses gilt unter der Voraussetzung, daB kein
Md des Systems mit dem festen Me einen mehr als i-dimensionalen
Durchschnitt hat. Ist dièse Voraussetzung nur fur das allgemeine Elément
MJ von Q erfullt, so kann man das System der Qk und die Korrespondenz
M* -^Qk M* -Me immer noch definieren, und einem solehen Elément
Ma von ®, das mit Me einen i-dimensionalen Durchschnitt hat, ent-
spricht in der Korrespondenz auch nur ein Bildelement Q'k Md • Me;
hat aber Mrd einen mehr als i-dimensionalen Durchschnitt mit Me, so

kônnen diesem Mrd mehrere Bildelemente Qfk entsprechen, von denen jede
als virtuelle Schnittmannigfaltigkeit MdMe bezeichnet werden kann.

6.4. Ist Mn eine glatte, rein w-dimensionale Mannigfaltigkeit in Sr9

so kann man jede Mannigfaltigkeit Me auf Sr zu einem vollstândigen
Schnitt

ergânzen, wobei Ke+r_n so gewâhlt werden kann, daB der Restschnitt Nê
einen vorgegebenen Punkt P von Mn nicht enthalt.
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6.5. Ist Dk ein irreduzibler Bestandteil des Durchsehnittes Md>Me
zweier Mannigfaltigkeiten Md und Me auf Mn, von der Dimension k
d + e — n, und wird Ke+r_n wie in 6.4 so gewàhlt, daB Ke+r_n irgend-
einen Punkt von Dk nicht enthàlt, so wird die Vielfachheit von Dk als
Bestandteil von Md-Me auf Mn definiert als die Vielfachheit von Dk als
Bestandteil von Md-Ke+r_n. Dièse Vielfachheit ist von der Wahl von
Ke+r-n unabhângig. Die Summe aller Dk mit ihren Vielfachheiten ist der
Durchschnitt Md-Me auf Mn.

6.6. Fur die so definierten Durchschnitte Md-Me Qk gilt wieder
6.3; weiter gelten das kommutative, assoziative und distributive Gesetz :

Md-(Me + M'e) Md-M. + Md.M'e

§ 7. Lineare Scharen

Beweise : ZAG 6, § 5 —6, Math. Ann. 110, S. 148, sowie Einf. alg. Geom.
§ 42—44.

7.1. Eine virtuelle lineare Schar von (d— l)-dimensionalen Teil-
mannigfaltigkeiten einer irreduziblen d-dimensionalen Mannigfaltigkeit
M besteht aus den Schnittmannigfaltigkeiten von M mit einer linearen
Schar von Hyperflâchen

XoF0+X1F1+.--+XrFr 0 (1)

von denen keine M enthâlt, wobei zu allen diesen Schnittmannigfaltigkeiten
noch eine feste (d — l)-dimensionale Mannigfaltigkeit, deren Be-

standteile mit beliebigen positiven oder negativen Multiplizitàten ver-
sehen sind, hinzugefûgt werden darf. Sind aile Mannigfaltigkeiten der
Schar effektiv, d. h. haben ihre irreduziblen Bestandteile nichtnegative
Vielfachheiten, so heiBt die Schar effektiv. Die Zahl r heiBt die Dimension
der Schar. Ein Punkt, der allen Mannigfaltigkeiten einer effektiven Schar

gemeinsam ist, heiBt Basispunkt der Schar. Eine feste (d — l)-dimen-
sionale Mannigfaltigkeit, die allen Elementen der Schar als Bestandteil
angehôrt, heiBt fester Bestandteil der Schar.

7.2. Eine lineare Formenschar (1) von der Dimension r, in der t
linear unabhàngige Formen vorhanden sind, die M enthalten, schneidet

aus M eine lineare Schar von der Dimension r — t aus.

7.3. Die Dimension r einer linearen Schar ist gleich der Anzahl der
willkûrlichen Punkte, durch die ein Elément der Schar bestimmt ist.
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7.4. Eine lineare Schar ist ein irreduzibles System von Mannigfaltig-
keiten : ihre Elemente gehen durch relationstreue Spezialisierung aus
einem allgemeinen Elément C\ der Schar, dessen Parameter A Unbe-
stimmte sind, hervor.

7.5. Das allgemeine Elément einer linearen Schar ohne feste Be-
standteile ist relativ zum Kôrper Q(X) irreduzibel. Es ist gleichgiiltig, ob
man zuerst ein allgemeines Elément C\ der Schar und darauf einen
allgemeinen Punkt f bestimmt oder zuerst einen allgemeinen Punkt £ von
M nimmt und durch ihn ein môglichst allgemeines C^ der Schar legt :

beide Mâle erhâlt man bis auf Isomorphie dasselbe Paar (A, f). Die durch
das allgemeine Paar X, f) bestimmte irreduzible Korrespondenz zwischen
dem Parameterraum Sr und der Mannigfaltigkeit M ordnet jedem spe-
ziellen Punkt Xf von Sr genau die Punkte von C\ zu.

7.6. Jede lineare Schar ohne feste Bestandteile definiert eine ratio-
nale Abbildung von M auf eine Bildmannigfaltigkeit M! in Sr9 wobei den

Mannigfaltigkeiten C\ die hyperebenen Schnitte von Mf in folgendem
pràzisen Sinne entsprechen : Liegt ein Punkt P auf C\, so liegt mindestens
einer seiner Bildpunkte P1 in der entsprechenden Hyperebene ; liegt um-
gekehrt einer der Bildpunkte P! in dieser Hyperebene, so liegt P auf C\.
Die Fundamentalpunkte der Abbildung, d. h. die Punkte P, die mehr als
endlich viele Bildpunkte Pf haben, sind die Basispunkte der Schar.
Einem s-fachen Punkt von M 9 der nicht Fundamentalpunkt ist,
entsprechen hôchstens s Bildpunkte, insbesondere einem einfachen Punkt
nur ein Bildpunkt.

7.7. Ist M rational auf Mr abgebildet, so entspricht jeder linearen
Schar ohne feste Bestandteile auf M' eindeutig eine ebensolche Schar
auf M. Ist die Abbildung birational, so ist das Entsprechen eineindeutig.

7.8. Die Elemente einer effektiven linearen Schar von der Dimension

r, die einen gegebenen einfachen Punkt P von M enthalten, bilden,
sofern P nicht Basispunkt der Schar ist, eine lineare Teilschar von der
Dimension r — 1. Hait man Je einfache Punkte Pl9.. ,,Pk fest
so erhâlt man eine Teilschar von der Dimension r! mit

Hait man irgendwelche (d — l)-dimensionale Teilmannigfaltigkeiten
fest, die nicht aus lauter einfachen Punkten von M bestehen, so bilden
diejenigen Elemente der linearen Schar, die dièse Teilmannigfaltigkeiten
mit vorgegebener Vielfachheiten enthalten, fails es solche Elemente ûber-

haupt gibt, eine lineare Teilschar.
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7.9. Wenn zwei lineare Scharen ein Elément gemeinsam haben, so
sind sie in einer beide umfassenden linearen Schar enthalten. Sind beide
Scharen effektiv, und ist die Mannigfaltigkeit M glatt, so ist die um-
fassende Schar auch effektiv.

§ 8. Divisoren und lineare Scharen auf glatten Mannigfaltigkeiten

Beweise : Einf. alg. Geom. § 46—47, sowie Chow, Math. Ann. 114,

p. 655. Von jetzt an sei M eine glatte, irreduzible d-dimensionale
Mannigfaltigkeit.

8.1. Werden irgendwelche (d — l)-dimensionale Teilmannigfaltig-
keiten von M mit beliebigen ganzzahligen Vielfachheiten versehen, so
bilden sie einen Divisor, und wenn aile Vielfachheiten positiv sind, einen

ganzen Divisor.

8.2. Sind (r -\- 1) linear unabhângige Divisoren einer r-dimensionalen
Schar ganz, so ist die Schar effektiv, d. h. aile ihre Divisoren sind ganz.

8.3. Jede effektive lineare Schar lâfit sich zu einer eindeutig be-
stimmten Vollschar erweitern, die sich effektiv nicht mehr erweitern lâBt.

8.4. Zwei Divisoren G, D heiBen âquivalent, wenn sie in einer linearen
Schar enthalten sind. Die Âquivalenz ist symmetrisch, reflexiv und tran-
sitiv. Die zu einem Divisor àquivalenten Divisoren bilden eine Divisoren-
klasse. Die ganzen Divisoren emer Klasse bilden, falls es sie gibt, eine
Vollschar.

8.5. Durch Zusammenfassen der irreduziblen Bestandteile zweier
Divisoren und Addition ihrer Vielfachheiten bildet man ihr Produkt. Die
Divisoren bilden bei der Multiplikation eine abelsche Gruppe. Die zum
leeren Divisor oder Einsdivisor àquivalenten Divisoren bilden darin eine

Untergruppe : die Einskiasse. Die Faktorengruppe nach der Einsklasse
ist die Divisorenklassengruppe.

8.6. Ûber die Sàtze von Bertini siehe ZAG 10, Math. Ann. 113, p. 705,
sowie Chow, Math. Ann. 114, p. 664.

8.7. Der zur Mannigfaltigkeit M gehôrige Funktionenkôrper besteht
aus allen rationalen Funktionen

wo | ein allgemeiner Punkt von M ist, wâhrend / und g Formen gleichen
Grades sind. Der Divisor einer solchen Funktion y> ist der Quotient der

von den Hyperflâchen / 0 und g 0 auf M ausgeschnittenen
Divisoren.
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§ 9. Divisoren au! einer algebraischen Kurve

Beweise : W.-L. Chow, Math. Ann. 114, p. 655, oder Einf. alg. Geom.
§ 45. Von jetzt an sei der Konstantenkôrper Q vollkommen.

9.1. Jede irreduzible Kurve F kann durch birationale, Transformation
in eine glatte Kurve Ff verwandelt werden. Jedem Punkt von Ff ent-
spricht dabei ein einziger Punkt von F, einem Punkt von F kônnen aber
mehrere Punkte von F' entsprechen.

9.2. Eine Stelle von F ist ein Punkt von Fr. Ist F" eine zweite glatte
birationale Transformierte von F, so entsprechen sich die Punkte von Fr
und F" eineindeutig ; der Begrifï der Stelle ist also von der Wahl von F'
unabhàngig.

9.3. Ein Divisor von F ist ein Divisor von F!. Auch die Begriffe Àqui-
valenz, Divisorenklasse, Vollschar usw. werden auf F! definiert. Aile dièse

Begriffe sind von der Wahl von F1 unabhàngig.

9.4. Die Vielfachheit eines Schnittpunktes P von F mit einer Hyper -

flâche H ist eine Summe von Beitrâgen der einzelnen P entsprechenden
Stellen Pr von F', die so definiert werden : Man bette H ein in die lineare
Schar aller Hyperflâchen gleichen Grades, deren allgemeines Elément H\
sei. Dièse lineare Schar schneidet aus F eine lineare Schar von Punkt-
gruppen aus, der auf Fr wieder eine lineare Schar entspricht. Bei der
Spezialisierung H^-^H erhàlt man nicht nur auf F, sondern auch auf F!
durch relationstreue Spezialisierung eine ganz bestimmte Punktgruppe,
in der jeder Punkt P! mit einer gewissen Vielfachheit vorkommt. Dièse
heiBt die Schnittmultiplizitât von H und F fur die Stelle Pf.

9.5. Jede rationale Funktion

9
g (S)

im Sinne von 8.7 hat an jeder Stelle Pf eine gewisse Ordnung, die als
Differenz der Schnittvielfachheiten des Zâhlers und Nenners fur die Stelle
P1 definiert wird. Ist die Ordnung positiv, so hat man eine Nullstelle, ist
sie negativ, einen Pol der Funktion cp. Die Nullstellen und Pôle, mit ihren
Ordnungen als Vielfachheiten versehen, bilden den Divisor der Funktion
cp im Sinne von 8.7.

9.6. Die Summe der Ordnungen einer Funktion <p ist Null.

9.7. Es gibt zu jeder Stelle eine Ortsuniformisierende r, d. h. eine
Funktion der Ordnung 1. Aile anderen Funktionen auf F, insbesondere
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die Koordinatenverhâltnisse £{ : f0, kônnen in Potenzreihen nach r ent-
wickelt werden.

9.8. Umgekehrt gehôrt zu jedem System von Potenzreihenentwick-
lungen eines allgemeinen Punktes von F

h ako + «*i r + ak2 t2 -\

eine Stelle von F.
tîber den Zusammenhang des Stellenbegriffs mit dem Bewertungs-

begriff siehe § 11.

§ 10. Differentialklasse, adjungierte Eurven und Biemann-Bochscher

Satz

Beweise : Einf. alg. Geom.§ 48—51.

10.1. Sind (p und rj rationale Funktionen auf einer Kurve F, so heiBt
der Ausdruck (pdrj ein Differential des Funktionenkôrpers. Die Gleich-
heit (pdiq ipdÇ bedeutet

drj tp

Ist r Ortsuniformisierende einer Stelle Pf und setzt man (pdrj %dx,
so versteht man unter der Ordnung des Differentials an der Stelle Pr die
Ordnung von x în Pr- Ist sie positiv, so hat man eine Nullstélle, ist sie

negativ, einen Pol des Differentials. Die Nullstellen und Pôle, mit ihren
Ordnungen als Vielfachheiten versehen, bilden den Divisor des Differentials.

Die Divisoren aller Differentiale bilden eine Divisorenklasse W. Ein
Differential ohne Pôle heiBt Differential erster Gattung.

10.2. Eine ebene Kurve F habe die Gleichung / 0. Die Polare
eines Punktes Q wird durch

definiert. Sie schneide die Kurve F in einem Punkte P, und die Schnitt-
multiplizitàt an einer zu P gehôrigen Stelle Pf sei vr. Die Verbindungs-
gerade PQ schneide F an der Stelle Pr mit der Multiplizitât #c;. Dann ist
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unabhângig von der Wahl von Q und nicht negativ. Der Divisor, der aus
allen Stellen P1 mit den Vielfachheiten ôf besteht, heiBt der Doppélpunhts-
divisor von F. Eine Kurve g 0 heiBt zu F1 adfungiert, wenn ihr Schnitt
mit F durch den Doppelpunktsdivisor teilbar ist.

10.3. Satz vom Doppelpunktsdivisor. Wenn eine Kurve g 0 aus F
den Divisor 6? aussehneidet und wenn eine adjungierte Kurve F 0 aus
F mindestens den Divisor DG ausschneidet, wo D der Doppelpunkts-
divisor von F ist, so gilt eine Identitât

F Af + Bg

wobei die Kurve B 0 zu F adjungiert ist.

10.4. Die adjungierten Kurven irgendeines Grades schneiden aus F
auBer dem Doppelpunktsdivisor eine Vollschar aus. Insbesondere schneiden

die adjungierten Kurven (n — 3)-Ordnung die zur Differentialschar
W gehôrige Vollschar aus.

10.5. Die Anzahl der linear unabhângigen Differentiale erster Gat-
tung, oder die um 1 vermehrte Dimension der zu W gehôrigen Vollschar,
heiBt das Geschlecht g von F. Ist g 0, so ist Frational. Die Summe der
Ordnungen eines DifEerentials ist 2 g — 2.

10.6. Reduktionssatz. Es sei C ein ganzer Divisor und P eine Stelle.
Wenn es einen ganzen Divisor der Differentialklasse gibt, der C, aber
nicht CP enthâlt, dann ist P ein fester Punkt der Vollschar \C \, und
umgekehrt.

10.7. Biemann-Rochscher Satz. Ist dim C die Dimension einer Divi-
sorenklasse C, d. h. die um 1 verminderte Anzahl der linear unabhângigen
ganzen Divisoren der Klasse, und ist c der Grad der Klasse, d. h. die
Summe der Vielfachheiten aller Punkte eines Divisors der Klasse, so gilt

dim C c — g -f i

wobei der Spezialitâtsindex i^0 durch

i l -f dim -£-

definiert ist. Ist i > 0, so heiBt die Klasse und jede ihrer Divisoren spe-
zial. Ist dim C ^ g oder c > 2 g — 2, dann ist i 0 und die Klasse ist
nicht spezial.
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Zweiter Teil

Anwendung der algebraischen Géométrie auf die
arithmetische Théorie der algebraischen Funktionenkôrper

§ 11. Die Kurve F
Wie Hasse gehen wir von einem algebraischen Funktionenkôrper

K Q(x,y) vom Geschlechte g mit f(x,y) 0 aus. Hasse definiert
nun (§3) mit Hilfe einer Divisorenklasse M dièses Funktionenkôrpers
neue homogène Erzeugende x0 :... : xn, leitet ein System (G) von homo-

genen algebraischen Gleiehungen zwischen x0,.. .,xn her und bemerkt
dazu : In der Ausdrucksweise der algebraischen Géométrie ist der Ûber-

gang von der ursprunglich gegebenen Erzeugung K Q(x,y) mit
f(x,y) O zu einer Erzeugung K=Q(x0 :... : xn) mit (G) eine biratio-
nale Transformation der gegebenen zweidimensionalen affinen Kurve in
eine w-dimensionale projektive Kurve mit lauter einfachen Punkten. In
der Tat kann man in AnschluB an die Hasseschen Ausfûhrungen bewei-
sen, daB die Gleiehungen (G) eine irreduzible algebraische Kurve F defi-
nieren, deren allgemeiner Punkt die Koordinaten xQ,...,xn hat, daB
dièse Kurve zur Kurve f(x,y) 0 birational âquivalent ist, daB die
Schnittpunktgruppen von F mit den Hyperebenen des Raumes Sn den

ganzen Divisoren der Klasse M entsprechen und daB die Kurve F lauter
einfache Punkte hat.

Wesentlich einfacher werden aber die Beweise, wenn man nicht erst am
SchluB der Rechnungen, sondern gleich am Anfang die Begriffe und
Ausdrucksweise der algebraischen Géométrie einfûhrt. Man gehe zunâchst
von der affinen zur projektiven Ebene S2 ûber, indem man die Gleichung
f(x,y) 0 homogen macht. Die so erhaltene Kurve in S2 kann nach 9.1
durch birationale Transformation in eine glatte Kurve F in einem
projektiven Raum Sn verwandelt werden. Geht man den Beweis des Satzes

9.1 noch einmal durch, so sieht man leicht, daB die Dimension des
Raumes Sn beliebig groB gewâhlt werden kann ; wir kônnen also n ^ 2 g
annehmen. Die Hyperebenen des Raumes Sn schneiden aus der Kurve F
eine lineare Schar von Punktgruppen aus, von der wir annehmen kônnen,
daB sie eine Vollsehar ist. Der Existenzbeweis der glatten Kurve F kann
nâmlieh leicht so gefuhrt werden, daB dabei nur Vollscharen verwendet
werden. Man kann auch nachtrâglich die die Transformation vermittelnde
lineare Schar zu einer Vollsehar erweitern.

Ein allgemeiner Punkt von F habe die Koordinaten £0,..., fn, wobei
wir i0 1 normieren kônnen : dann sind f0,..'., fn sâmtlich Elemente
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des Funktionenkorpers K. Sie entsprechen den Hasseschen Erzeugenden
070,. #n.

Ist p ein ,,algebraischer Punkt" von KjQ 1,11 Smne von Hasse, d. h. ein
Primdivisor des Korpers K — Q(x,y) oder ein ,,Punkt" im Smne von
Dedekind und Weber1), wo Q der zu Q gehorige algebraisch abgeschlos-
sene Korper ist, und ist |, eine von den Koordinaten |fc, die die kleinste
Ordnung an der Stellep haben, so bleiben aile i^1^ endlich an der Stelle

p und durch

ist ein Punkt p mit den Koordinaten p0,.. ,,pn definiert, die aile endlich

und nicht aile Null sind. Aile homogenen Gleichungen F (|) 0, die
fur die |fc gelten, gelten auch fur l"1^, also auch fur die pk ; also ist p
ein Punkt der Kurve. Wir beweisen nun :

11.1. (Vgl. Hasse § 3, 2.) Verschiedene ,,algebraische Punkte" p, q
ergeben auch verschiedene Punkte p, q von F.

11.2. (Vgl. Hasse §3,5) Aile Punkte p der Kurve F mit Koordinaten
aus Q konnen in dieser Weise erhalten werden.

Beweis von 11.1 Gesetzt, zwei verschiedene Primdivisoren p, q
wurden denselben Punkt p (p0,..., pn) ergeben. Ohne Beschrânkung der
Allgemeinheit konnen wir p0 1 und |0 — 1 annehmen. Es sei £n+1

eine Funktion des Korpers, die fur p und q verschiedene endliche Werte
|w+1(p) und £n+1(q) annimmt. Durch die homogenen Koordinaten
(£0, lu..., fn, |n+1) ist ein allgemeiner Punkt |* einer Kurve J7* in ^w+1
definiert (2.2). Da die Koordinaten von f* rationale Funktionen von
denen von | sird und umgekehrt, so ist F* birational auf F abgebildet,
und zwar wird der einem Punkt p*(p0, Pu- • -, pn> Pn+i) von ^* en^'
sprechende Punkt p(p0,. pn) von F gefunden, indem die letzte
Koordinate einfach weggelassen wird. Zu jedem Primdivisor p oder q des

Korpers K gehort nach der oben angegebenen Vorschrift nicht nur ein
Punkt von F, sondern auch ein Punkt von 71*, und zwar gehoren zu p
und q zwei verschiedene Punkte von Z7*, da |w+1(p) ^ fw+ifa) sem sollte.
Dièse zwei Punkte von T7* stimmen aber in allen Koordinaten auBer der
letzten uberein, daher entspricht ihnen in der birationalen Abbildung ein
und derselbe Punkt p von F. Einem einfachen Punkt p von F kann aber
in einer birationalen Abbildung nur ein Punkt von F* entsprechen (7.6).

Dedekind und Weber, Crelle's Journal 92, (1882) p. 181.
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Beweis von 11.2. Zu einem Punkt p von F gehôrt eine Bewertung des
Funktionenkôrpers K, die folgendermaBen definiert wird : Jede Funktion
des Kôrpers kann als Quotient von Formen gleichen Grades in £0,..., fw

geschrieben werden : «. <.

/ Vsq > » « « £w)

DieFlâchen / 0 und ^ 0 schneidenFinp mitbestimmtenMultipli-
zitâten ju, und v. Dann wird die Bewertung durch

w(<p) fi — v

definiert. Die Eindeutigkeit der Définition und die Eigenschaft w(q>\p)

w(cp) + w(ip) sind klar. Die Eigenschaft

w((p + ip) ^ Min (w(<p), w(tp))

kommt darauf hinaus, da8 die Schnittmultiplizitât von fx + /2 oder all-
gemeiner von X1f1 + A2/2 mit F mindestens gleich der kleineren der
Schnittmultiplizitaten von fx und /2 mit F ist. Dies aber folgt aus 7.8.

Dièse Bewertung definiert bekanntlich einen Primdivisor des Kôrpers
ÎT im Sinne von Dedekind und Weber. Jedes Elément cp des Bewertungs-
ringes ist nâmlich modulo dem Bewertungsideal einer Konstanten œ aus
Q kongruent, und die Zuordnung q> -> co ist ein ,,Punkt" p im Dedekind-
Webersehen Sinne. Wir schreiben ç?(p) co.

Nimmt man wieder p0 1 und f0 1 an> so haben die Funktionen

li ~ Pu- • •» ^n ~~ Pn în der eben definierten Bewertung positive Ord-
nungszahlen, also gehôren sie dem Bewertungsideal an, mithin ist

Das heifit aber : der dem ,,algebraischen Punkt" p entsprechende Kurven-
punkt ist genau der Punkt p, von dem wir ausgegangen sind. Damit ist
11.2 bewiesen.

Nach 11.1 und 11.2 entsprechen die ,,algebraischen Punkte" p des

Kôrpers K eineindeutig den Punkten p der Kurve F mit Koordinaten aus
Q. Wir brauchen daher von jetzt an zwischen p und p nicht mehr zu unter-
scheiden. Wir bezeichnen mit Hasse p0,.. ,,pn als die homogenen
Koordinaten des Punktes p.

Als weitere Vereinfachung lassen wir von jetzt an die Querstriche, die
bei Hasse zum Ausdruck bringen sollen, daB die Koordinaten pk dem

Kôrper ~Ù angehôren sollen, weg. Wir bezeichnen die Punkte von F also
einfach mit P, p oder p, ihre Koordinaten mit pk, die Punktgruppen
mit 5Ï, SD, usw.
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§ 13. Die Chow-Eoordinaten eines Divisors

Ein ganzer Divisor 21 p(1)p(2)... p{h), d. h. eine Punktgruppe auf
J7, kann nach 5.5 eindeutig charakterisiert werden durch die zugeord-
nete Form

A(u) P(1)(u)P(2)(u)...P{h)(u)
wo

P{V) (U) PIV)UO + p^U, + • ¦ • + p{nV)Un

Die Koeffizienten der Form A (u) nennen wir die Ghow-Koordinaten des

Divisors 31, weil Chow als erster die zugeordneten Formen systematisch
als Beweismittel in die algebraische Géométrie eingefiihrt hat.

Hasse definiert die Koordinaten von 21 etwas komplizierter. Fiir jeden
Punkt p(v) werden die mit Unbestimmten xo,...,xn gebildeten Aus-
drucke pôXi — PiXj irgendwieals P0(x),.. ,,Pr(x) durchnumeriert und
dann die Form

FM{x,t) P0{x)t' + P±(x)tr-1 + • • •+ Pr(x)

gebildet, Multiplikation dieser Formen ergibt eine Form &(x,t), deren
Koeffizienten die Hasse-Koordinaten von 21 sind.

Die Beziehnung zwischen den Hasse-Koordinaten und den Chow-
Koordinaten ist leicht zu finden. Die Form F{v)(x,t) ist nâmlich linear in
Po>- - ->Pn un(i entsteht folglich aus der Linearform

indem fiir die uj gewisse ganzzahlige Polynôme in den x und t eingesetzt
werden. Folglich entsteht auch das Produkt 0(x,t) aus dem Produkt
A{u) durch dieselbe Substitution. Somit sind die Koeffizienten von
0(x,t) gewisse ganzzahlige Linearkombinationen der Koeffizienten von
A(u), m. a. W. die Hasse-Koordinaten sind ganzzahlige Linearkombinationen

der Chow-Koordinaten.
Umgekehrt sind bei Charakteristik Null nach Franz (Hasse, § 3, 3) aile

symmetrischen Funktionen der Koordinaten von p(1),.. .,p{h), also ins-
besondere die Chow-Koordinaten, homogène Polynôme in den Hasse-
Koordinaten.

Wir werden im folgenden nur mit den Chow-Koordinaten arbeiten,
weil sie einfacher definiert, frei von Willkiir und leichter zu handhaben
sind.
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§ 13. Die Mannigfaltigkeit aller Gruppen von g Punkten aul F
Es sei g das Geschlecht der Kurve F. Wenn im folgenden von

Punktgruppen die Rede ist, so sind damit immer ganze Divisoren

vom Grade g auf F gemeint. Einer solchen Punktgruppe entspricht nach
§ 12 eine zugeordnete Form

A(u) Ï.P{1)(u)P™(u)...P{9)(u) (1)

deren Koeffizienten die Chow-Koordinaten a0,.. .,ah von 91 sind. FaBt
man sie als Koordinaten eines Bildpunktes A in einem A-dimensionalen
Bildraum 8h auf, so erhàlt man eine Abbildung der Gesamtheit aller
Punktgruppen 31 auf eine Gesamtheit von Bildpunkten in Sh. Wir wollen
beweisen, da6 dièse Gesamtheit eine algebraische Mannigfaltigkeit M ist.

Vergleicht man in (1) links und rechts die Koeffizienten der Potenz-

produkte der u, so erhâlt man Gleichungen der Form

a, Xg,{p^,...,p^) (2)

die durch Elimination von A homogen werden :

),- • - Pi9)) ° • (3)

Dazu kommen die Gleichungen, die ausdrùcken, daB die Punkte piv)
auf F liegen :

ft(p{v)) O (4)

Aus den homogenen Gleichungen (3), (4) eliminieren wir p{1),.. ,,pi9)
durch Bildung des Resultantensystems

B,(ao,...,ah) O (5)

Die Gleichungen (5) sind notwendig und hinreichend, damit a0,... ,ak
die Koordinaten einer Punktgruppe $1 auf F sind. Also bilden dièse

Punktgruppen eine algebraische Mannigfaltigkeit M.
Dièse Mannigfaltigkeit M ist irreduzibel ; demi aile Punktgruppen

31 p(1)... p(fif) entstehen durch relationstreue Spezialisierung aus
einer allgemeinen Punktgruppe X i7(1)... IJig) wo i7(1),..., TI(g)

unabhangige allgemeine Punkte von F sind.
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Wir wollen nun beweisen, da8 die Mannigfaltigkeit M glatt ist, d. h.
lauter einfache Punkte hat. Dazu dient das folgendelge

Kriterium. Wenn die Koordinaten l,fl5...,fn eines allgemeinen
Punktes einer g-dimensionalen Mannigfaltigkeit M separable Funktionen
von den g algebraisch unabhàngigen £l5..., Çg sind und wenn von den ver-
schiedenen konjugierten Punkten £(v) mit Koordinaten (1, £l5..., £g,

tfgl-L,.. Ç{n\ die zu den gegebenen |l5. ëg gehoren, bei der relations-
treuen Spezialisierung |(r) ->rj{v) nur einer in den Punkt rj(l9 ?yl5. .,rjn)
ûbergeht, dann ist rj ein einfacher Punkt von 31.

Beweis : Die Punkte f(v) sind die Schnittpunkte von M mit den Hyper-
ebenen

xk-x0Çk 0 (k= l,...,g) (6)

Da jedes Çg+t eine separable Furiktion von |t,..., £g ist, so gilt fur jedes
von ihnen eine Gleichung

/.(I1,...,f8,f1,+() O (7)
mit

Die Gleichung (7) kann durch Einfiihrung von f0 homogen gemacht
werden. Sie gilt fur den allgemeinen Punkt, also fur aile Punkte von M,
d. h. die Hyperflâche ft 0 enthalt M. Die Tangentialebene dieser

Hyperflàche im Punkte | hat nach 1.8 die Gleichung

*o3o/.(f) + «i3i/.(f) +• • •+ *.3./.(f) + W.+.MÊ) ° • (8)

Die Gleichungen (6) und (8) bestimmen die Verhàltnisse

Xq : xx : • • • : xg : xg+1 : • • • : xn

eindeutig, denn wenn x0 willkurlich angenommen wird, so bestimmen sich

xx,.. .,xg aus (6), die ùbrigen xg+t aus (8). Also zàhlt (nach Kriterium
1.8) der Punkt | als Schnittpunkt von M mit den Hyperebenen (6) ein-
fach, und dasselbe gilt von den konjugierten Punkten £{vK Spezialisiert
man also ein System von r allgemeinen Hyperebenen zunâchst zu den

Hyperebenen (6), so gehen die Schnittpunkte von 31 mit den allgemeinen
Hyperebenen in die nur einmal gezàhlten Punkte |(v) liber. Spezialisiert
man nun weiter Ç3 ->rj2 (j 1,..., r), so entsteht der Punkt r\ bei
dieser Spezialisierung nach Voraussetzung ebenfalJs nur einmal. Also ist
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tj ein einfacher Schnittpunkt von M mit den Hyperebenen xi — x0 r\i 0

und somit ein einfacher Punkt von M.
Als Anwendung dièses Kriteriums beweisen wir nun, daB die Mannig-

faltigkeit M der Punktgruppen % lauter einfache Punkte hat.
Es sei % p{1)... p{9) eine solche Punktgruppe. Die Punkte

p(1),..., p{0) môgen aile im endlichen liegen (p(ol) zfc. 0) und es môge
pW 1 gewâhlt werden (i 1,..., g). Die Tangenten von F in diesen
Punkten môgen die uneigentliche Hyperebene x0 0 in den Punkten
q{1),..., q{9) schneiden und die Verbindungslinien pWpM môge dieselbe

Hyperebene in q{ii) schneiden. Wir wâhlen die Koordinatenebene xx 0

so, daB sie keinen der Punkte qH), qiij) und keinen der uneigentlichen
Punkte von F enthâlt. Dann werden die Hyperebenen

die parallel zur Koordinatenebene xx 0 sind, ebenfalls die Punkte
q{1),..., qi9) nicht enthalten, also werden sie auch die Tangenten von F
in den Punkten p{1),..., p{9) nicht enthalten, d. h. sie berûhren F in
diesen Punkten nicht. Auch enthâlt keine von ihnen zwei verschiedene
Punkte p{i), pti*, denn sonst miiBte deren Verbindungsgerade und somit
auch der Punkt q{i^ in der betreffenden Ebene liegen.

Die Koordinaten von 91 sind die Koeffizienten der Form (1), wobei wir
A 1 annehmen dlirfen. Unter ihnen heben wir besonders die
Koeffizienten at von u^~"iu[ hervor. Setzen wir in (1) u2 • • • un 0, so

bleiben nur dièse Glieder ûbrig und wir erhalten

£ a, ul~l u\ K + tf? ih) K + 2>i2) %) - - • K + VÏg\) •

i
Folglich ist a0 1 und ax,..., ag sind die elementaren symmetri-

schen Funktionen der ersten Koordinaten p^,..., p[g) der Punkte
p(1),...,p('}.

Dies gilt fur jede Punktgruppe, also auch dann, wenn die Punkte
p{1),..., p{g) durch ebensoviele allgemeine Punkte 77(1),..., II{9) von F
ersetzt werden, deren erste Koordinaten njp,..., IT[g) unabhângige Un-
bestimmte sind. Von den Koordinaten <xo,...,otg dieser allgemeinen
Punktgruppe ist <x0 1, und ocx,..., <xg sind die elementar-symmetri-
schen Funktionen der Unbestimmten II^\.. .,n[g).

Nun ist klar, daB die Unbestimmten J7|1),..., II[g) separable
Funktionen sind ; denn sie sind Wurzeln einer Gleichung

II9 — II0-1 «! + II9-2 oc2 — • • • 0
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mit lauter verschiedenen, nàmlich unbestimmten Wurzeln n[x),...,
Die ùbrigen Koordinaten II(2v),..., U(^ eines jeden dieser Punkte sind
wiederum separable Funktionen der ersten Koordinaten II[V\ wie wir
nachher beweisen werden. Also sind aile i7j.2) separable Funktionen von
(xx,..., ocr. Dann sind aber auch aile Koordinaten der Punktgruppe
II{1),..., TI{9) separable Funktionen von <%l5..., ocgi d. h. die erste Be-
dingung des Kriteriums ist erfiillt.

Um auch die zweite Bedingung zu verifizieren, setzen wir die relations-
treue Spezialisierung <%l5..., <xg ->al5. ag zu einer relationstreuen
Spezialisierung nicht nur sâmtlicher Punkte IJ{1),..., i7(&), sondern
auch sâmtlicher konjugierter Schnittpunkte II{lv),..., II{9v) der Hyper-
ebenen xx — XqII^ 0,..., x1 — xoll[g) 0 mit der Kurve F fort.
Kombiniert man jeden der m Punkte II{lv) mit jedem der m Punkte 77(2y),

usw. bis TI(9V), so erhàlt man m9 Punktgruppen (Jr7(lA)/7(2^),..., II{gv)). Die
ersten g -j- 1 Koordinaten dieser Punktgruppen, nâmlich die Koeffizien-
ten der Potenzprodukte u^~i u\ in ihrer zugeordneten Form, sind aile
gleich den elementarsymmetrischen Funktionen 1, (xx,..., <xg der
Koordinaten 77}1),..., II[g). Dièse Punktgruppen sind auch die einzigen
Punktgruppen von F, deren erste g + 1 Koordinaten dièse Werte haben.
Wir haben nun nachzuweisen, daB bei der Spezialisierung ocx-^-a1,...>
ocg -> ag nur eine von diesen Punktgruppen in 31 p{1)... p{9) ûber-
geht.

Bei dieser Spezialisierung môgen die Punkte i7(lA) in p{1^ tibergehen.
Da die ersten Koordinaten 77j[1X) aile gleich Z7{1) sind, so sind auch nach
der Spezialisierung die ersten Koordinaten ^i1X) aUe gleich p^, ent-
sprechend aile p<*V <pf » • • • und aile p[°v) p{g). Die Punkte /7<lA)

sind die Schnittpunkte der Hyperebene xt — x0 IJ^ 0 mit der Kurve
F ; die spezialisierten Punkte p{1^ sind also die Schnittpunkte der Hyperebene

x1 — XqP^ 0 mit F. Gesetzt nun, es wùrden bei der Spezialisierung

zwei von diesen Punkten /7(lA) in den einen Punkt £>(1> hinein-
rucken, so muBte die spezialisierte Hyperebene die Kurve im Punkte pa)
berûhren. Dies ist aber nicht der Fall, also riickt nur einer von den
Punkten i7(lA) in p{1) hinein, ebenso nur ein 77(2^) in p{2), usw. bis p{9).

Daraus folgt leicht, daB nur eine von den m9 Punktgruppen 77(lA) /7(2^)

--II{9V), nàmlich i7(1)/7(2) •• Z7(flr), bei der Spezialisierung in pa) •••

p{9) ubergeht.
Wir haben noch den Beweis nachzuholen, daB die Koordinatennif...,

Un eines Punktes von F, dessen erste Koordinate TIX eine Unbestimmte
ist, separable Funktionen von II1 sind. Zum Beweis betrachten wir die
zugeordnete Form von
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F(u,v)=II («o!<"> + tH !<"> +•••+«,#>) (9)
V

wo £(v) die Schnittpunkte der Hyperebene v mit jT sind. Setzen wir fur v
speziell die Hyperebene xx — U1x0 0, so liegen dièse Schnittpunkte
|(y) aile im Endlichen ; wir kônnen also |^v) 1 annehmen. |(1l') ist dann

II1. Aile f(v) sind allgemeine Punkte von F, also gehen sie durch Iso-
morphismen auseinander hervor, d. h. sie sind konjugiert iïber Q{II1).
Daher haben aile Linearfaktoren in der Zerlegung (9) auch gleiche Viel-
fachheiten. Wâren dièse Vielfachheiten > 1, so wiirden sie nach der
Spezialisierung TI1 -> p1 auch noch > 1 sein. Aber die Hyperebene
xt — p1x0 0 beruhrt die Kurve Fim. Punkt p nicht. Also sind die
Vielfachheiten in der Zerlegung (9) aile gleich Eins. Betrachtet man die Form
(9) als Polynom in u0, so hat sie lauter einfache Nullstellen u0 — ux^
— • • — un£%\ darunter auch die Nullstelle — u1TI1 — — unTIn. Also
ist —u1ll1 — • • — unFIn eine separable Funktion von II1, ut,.. .,un.
Ersetzt man ein uk durch eine andere Unbestimmte vk, so ist auch
— u1ll1 — • • — vkllk — — unIJn separabel. Also ist auch die Diffe-
renz (—uk + vk)TIk und somit auch FIk selber separabel liber K(II1,u1,
-",un,vk). Da aber in der irreduziblen Gleichung fur FIk die Un-
bestimmten ut,..., un, vk gar nicht vorkommen, so folgt, da6 FIk separabel

uber K(II1) ist, was wir beweisen wollten.

§ 14. Algebraischer Ausdruck der Aequivalenz von Divisoren auf F
Divisorenklassen vom Grade Null heiBen nach Hasse Nullhlassen. Jede

Nullklasse kann durch einen Quotienten O"1 ^} von ganzen Divisoren
gr-ten Grades reprâsentiert werden, wobei der Nenner O sogar beliebig
gewâhlt werden kann. Die Darstellung ist eindeutig, wenn ^J} regulâr, d. h.
nicht spezial ist. Dies ailes folgt leicht aus dem Riemann-Rochschen Satz

(10.7). Man kann bei gegebener Nullklasse A den Nenner O immer so

wâhlen, daB der Zâhler ^3 regulàr, also eindeutig bestimmt ist (vgl. Hasse

§ 4, 3).^
Der Ûbergang zu einem anderen Nenner D; wird durch die Àquivalenz

O-1^^©7-1^7 oder ^O'^^D (1)

vermittelt. Wir wollen dièse Àquivalenz durch algebraische Gleichungen
zwischen den Koordinaten von ^3, O, tyf, O7 ausdrûcken.

Durch die 2g Punkte der Punktgruppe ^3O7 kann man, da die Dimension

n des Raumes 8n grôBer oder gleich 2 g sein sollte, stets eine Hyper-
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ebene v legen. Dièse schneide insgesamt eine Punktgruppe 9ltyD' aus F
aus. Ist nun ^O'^^'O, also 5R$£)'~ 5R<P'£), so muB auch die
Punktgruppe SR^'O durch eine Hyperebene w ausgeschnitten werden, da
die Hyperebenen nach der in § 11 gemachten Voraussetzung eine Voll-
schar ausschneiden. Wenn umgekehrt die beiden Punktgruppen 91^0'
und $R*J3'£> je durch eine Hyperebene ausgeschnitten werden, so sind sie

âquivalent und es folgt (1). Die Âquivalenz (1) besagt also genau : Es gibt
zwei Hyperebenen v und w und eine Punktgruppe 9t, so dafi v die Punktgruppe

SR^JO' und w die Punktgruppe 9Î^3;O auf F ausschneidet.

Ist % die voile Schnittgruppe einer Hyperebene v mit der Kurve F, so
ist die zugeordnete Form G(u,v) von 91 nach 5.2 ganz rational und
homogen in vo,...,vn. Bezeichnen nun P(u), Pf{u), 0(u), 0;(u),
R(u) die zugeordneten Formen der Punktgruppen ^3, ^}', O, O;, 9Î, so

kann die eben kursivierte geometrische Beziehung algebraisch durch

G(u,v) XR{u)P{u) Of(u)
G(u,w) /uR(u)Pf(u)0(u)

(2)

ausgedriickt werden, wobei die Proportionalitâtsfaktoren A und /u nicht
von den u abhângen diirfen.

Vergleicht man in (2) links und rechts die Koeffizienten der Potenz-
produkte der u, so erhàlt man Gleichungen der Gestalt

Elimination von X und [x ergibt homogène Gleiehungen

g,(v)htÇ3H, <P, O') - ?*(»)*,(«, % O') 0 (3)

g,{w)hk(%, «p', D) - gk(w)h,(*, V, O) 0

Dazu kommen noch die in § 13 (5) hergeleiteten homogenen Gleichungen

in den Koordinaten von 9Î, die ausdrûcken, daB 9Î eine Punktgruppe
vonri8t B,m o.

Aus den homogenen Gleichungen (3), (4) eliminieren wir durch Bildung
des Resultantensystems nacheinander die v, die w und die Koordinaten
von SR und erhalten so das Eliminationsergebnis

S,(O,?p,O',«P') 0 (5)

Die Gleichungen (5) sind homogen in den Chow-Koordinaten der
Punktgruppen £), ^}, £>', S$r und driicken genau die Âquivalenz (1) aus.
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§ 15. Punkte and relationstreue Spezialisierungen. Beweis des Satzes

von Hasse § 7, 6
Die Ausfuhrungen des vorigen Paragraphen reichen zum Beweis des

von Hasse § 7, 6 formulierten Satzes hin. Bevor wir diesen Beweis er-
bringen, mussen wir aber den Hasseschen Begriff des ,,algebraischen
Punktes" eines Funktionenkorpers K vom Transzendenzgrad g naher
betrachten und mit den Grundbegriffen der algebraischen Géométrie ver-
gleiehen.

Hasse geht von einer homogenen Transzendenzbasis Xo : Xx :... : Xg
des Korpers K aus, normiert Xo 1, bildet den Integritatsbereich / der
in bezug auf X1,..., Xg ganzen GroBen von K und betrachtet die homo-
morphen Abbildungen von I auf algebraische Erweiterungskorper £?* von
Q. Dièse Homomorphismen werden dann noch ausgedehnt auf diejenigen
gebrochenen Elemente rj <py)~1 von K, deren Nenner xp beim be-
treffenden Homomorphismus nicht in Null ubergeht. Solche Homomorphismen

nennt Hasse ,,algebraische Punkte" von K.
Sind d,..., Cm Erzeugende des Integritatsbereiches I, so wird jeder

Homomorphismus von I durch eine relationstreue Spezialisierung
Ci,..., Cm) -> ta,..., zm) gegeben. Das Elément rj / (C)g(C)"1 geht

dabeiin y f(z)g(z)~1 uber.
Zu der Terminologie der algebraischen Géométrie paBt die Bezeich-

nung dieser Homomorphismen als ,,Punkte" nicht. Ein Punkt ist in der
algebraischen Géométrie kein Homomorphismus, sondern eine Reihe von
homogenen Koordinaten oder etwas, was durch eine solche Reihe ein-

deutig bestimmt wird, und an diesem Begriff ,,Punkt" hangen soviele
andere Begriffe und Bezeichnungen, da8 man dasselbe Wort unmoglich
in einer anderen Bedeutung verwenden kann. Was bei Hasse ,,Punkt"
heiBt, ist in unserer Bezeichnungsweise eine relationstreue Spezialisierung
C ->z, der Ûbergang von einem allgemeinen zu einem speziellen Punkt
einer algebraischen Mantiigfaltigkeit.

Die Unterscheidung des Hasseschen ,,Punkt" -Begriffes von unserem
war noch nicht nôtig, Solange aile Homomorphismen C -> z immer von
einem und demselben allgemeinen Punkt f ihren Ausgang nahmen. In der
Tat konnten wir (§ 11) beweisen, daB die Hasseschen ,,algebraischen
Punkte" p des Kôrpers K eineindeutig den Punkten p der Kurve F ent-
sprechen. Eine klare Trennung wird aber notig, sobald Homomorphismen
wie X -> ^J und Xr -> ty', die von verschiedenen X ausgehen, gleichzeitig
betrachtet werden, wie es bei Hasse (§ 7, 6) geschieht.

Wir sahen oben, wie die Spezialisierung £ -> z die Spezialisierung

94



rj ->y fur solche Funktionen rj, deren Nenner bei der Spezialisierung
nicht Null werden, induziert. Die Spezialisierung (Ç,rj) ->¦ (z,y) ist dann
wieder relationstreu. Denn wenn F(Ç,rj) 0 eine algebraische Relation

zwischen £ und rj ist, und wenn r\ fiOuiC)"1 in dièse Relation ein-
gesetzt und das Ergebnis durch Multiplikation mit einer Potenz von g(Ç)

ganz rational gemacht wird, so bleibt das Ergebnis bei der Ersetzung
£ ->z erhalten. Dividiert man nun wieder durch dieselbe Potenz von
g(z) und ersetzt f(z)g(z)~1 durch y, so erhàlt man F(z,y) 0. Die
Spezialisierung (Ç9rj) ->(z,y) ist also eine relationstreue Fortsetzung der
gegebenen Spezialisierung £ -> z, und zwar die einzig môgliche, denn die
Relation

muB bei jeder relationstreuen Spezialisierung erhalten bleiben.
Wir sehen also : Wenn rj sich als Bruch /(C)^(C)"1 so darstellen lâBt,

da8 der Nenner fur f -> z nicht Null wird, so làBt sich die relationstreue
Spezialisierung £ -^2 eindeutig durch rj ->y fortsetzen. Von diesem
Satz gilt auch die Umkehrung :

15.1. Wenn die relationstreue Spezialisierung (£x,..., £m) -> (^,..., zm)
sich eindeutig durch rj -> y fortsetzen là/it, so ist rj als Quotient

„_/<«

so darstellbar, da/S der Nenner fur £ z nicht Null wird.

Beweis. Wir kônnen y ^ 0 annehmen, da man sonst nur rj durch

rj — 1 zu ersetzen braucht. In I gilt die Idealtheorie der ganz-abge-
schlossenen Bereiche (Math. Ann. 101, p. 293 oder Mod. Alg. II, § 105).
Im Sinne dieser Théorie setzen wir als gekiirzten Bruch

Die gemeinsamen Nullstellen aller Polynôme P(£) eines Primideals ps
bilden die (nach 2.9 irreduzible) Nullstellenmannigfaltigkeit Mi von p^.
Wir zeigen zunàchst, da6 Mj den Punkt z nicht enthâlt. Ist | ein allge-
meiner Punkt von Mi, so kann man durch £ -> | eine erste relationstreue

Spezialisierung von Q[Çl9..., £m] definieren. Da q1- • -qs nicht
durch y,- teilbar ist, so gibt es im Produkt qx- • • q8 ein Polynom A(£),
das nicht durch p, teilbar ist. Dann ist rj-h(Ç) quasiteilbar durch
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also ganz :

h(O p(C) (2)

und sogar teilbar durch p3 ; denn in diesem Fall folgt, da p} ein hoheres
Primideal ist, aus der Quasiteilbarkeit die Teilbarkeit. Da also p(Ç)
durch p, teilbar ist, aber h(Ç) nicht, so ist p(Ç) 0, aber h(Ç) =^= 0.
Bei der Spezialisierung £ -> I *imB (2) erhalten bleiben, also muB ^ bei
dieser Spezialisierung in Null ubergehen. Gesetzt nun, z ware eine Null-
stelle von p,, dann konnte man an dièse erste Spezialisierung £ ->| eine
zweite ebenfalls relationstreue £ -> z reihen. Dabei bleibt rç Null ; die
erhaltene relationstreue Spezialisierung ist also verschieden von der an-
genommenen Spezialisierung rj -> y z£ 0, entgegen der vorausgesetzten
Eindeutigkeit. Also konnen die Nullstellenmannigfaltigkeiten von
p1?..., pr den Punkt z nicht enthalten.

Es gibt also in pi • • • pr Polynôme fi(Ç),-.., fr(C), die fur £ z

nicht Null werden. Ihr Produkt /(£) ist durch ip1- - • pr teilbar und es

ist f(z) 7^ 0. Da nun /(£) durch rj quasiteilbar ist, so ist /(£) auch durch
ry teilbar :

In dieser Gleichung fuhre man die relationstreue Spezialisierung £ ->z,
rj ->y durch. Da die linke Seite nicht Null wird, wird die rechte Seite auch
nicht Null, also ist g(z) ^0. Damit ist die gewûnschte Darstellung

Vj^ mit g(z)^Q
gefunden.

Nun seien O und O; zwei feste Punktgruppen auf F im Sinne von § 13.

Mit jeder allgemeinen oder in der Bezeichnung von Hasse hochsttranszen-
denten Punktgruppe X ist eine zweite Xf verbunden durch die Âquivalenz

X X'

Der Hassesche Satz § 7, 6 kann jetzt so formuliert werden :

w w

und ist ^3/ regular, d. h. nicht spezial (10.7), so lafit sich die relationstreue
Spezialisierung X ->^3 eindeutig durch Xf->ty' fortsetzen. Ist umgekehrt
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(X,Xf) -*(?$, tyf) eine Fortsetzung der relationstreuen Spezialisierung
£->$, sogilt (4).

Beweis. Nach § 14 wird die Âquivalenz (3) durch homogène alge-
braische Gleichungen

8%{D,X,Z)',X') 0 (5)

ausgedrùckt. Bei jeder relationstreuen Spezialisierung mussen dièse
Gleichungen erhalten bleiben, also folgt fur jede solche Spezialisierung
(X,Xr) -^(^3, ^50 die Âquivalenz (4). Die Fortsetzung einer gegebenen
relationstreuen Spezialisierung X -> ^3 ist nach 1.4 immer môglich und
wenn dabei Xf etwa in ^}/; ubergeht, so gilt (4) auch fur ty" ; da aber die
regulàre Punktgruppe tyf durch (4) eindeutig bestimmt ist, so kann ^37/

nur mit tyf zusammenfallen. Damit ist ailes bewiesen.

§ 16. Die Mannigîaltigkeit der Nullklassen

Bei gegebenem £) kann man aus jeder Nullklasse A einen Reprâsentan-

ten -—- auswâhlen, aber dièse Darstellung ist nicht invariant und auch

nicht immer eindeutig. Macht man aber (wie Hasse § 6, 3) 5D variabel

und betrachtet die Gesamtheit aller Repràsentanten -^ der Nullklasse A,
so ist dièse Gesamtheit eindeutig bestimmt. Nach § 14 ist dièse Gesamtheit

von Paaren (91, G) durch ein System algebraischer Gleichungen

gegeben, sie ist also eine algebraische Mannigfaltigkeit NA. Durchlàuft
nun A aile Nullklassen, so durchlàuft NA, wie wir zeigen werden, ein
algebraisches System von algebraischen Mannigfaltigkeiten. Das heiBt :

Bildet man die Mannigfaltigkeiten NA auf Punkte ab, so bilden dièse

Punkte eine irreduzible algebraische Mannigfaltigkeit &: die Klassen-

mannigfaltigkeit. Die Punkte von R entsprechen eineindeutig den
Nullklassen A.

Die Gesamtheit aller Paare (91, (3), derart daB

!~f
gilt, ist durch das Gleichungssystem

5,(0, ^,«, S) 0 (2)

7 Commentarii Mathematici Helvetici ^ •



gegeben. Halten wir £> fest und lassen ty die ganze in § 13 untersuchte
glatte Mannigfaltigkeit M durchlaufen, so definiert (2) eine algebraische
Korrespondenz zwischen M und der Mannigfaltigkeit N aller Paare

(9t, G). Wir wollen nun beweisen :

16.1. Die Korrespondenz (2) ist irreduzibel.

16.2. Jedem S$ entspricht in der Korrespondenz eine Mannigfaltigkeit
Ny von Paaren (9t, S), die immer dieselbe Dimension g besitzt.

Aus 16.1 und 16.2 folgt nach 5.9 :

16.3. Die Mannigfaltigkeiten N^ bilden ein irreduzibles System von
algebraischen Mannigfaltigkeiten.

Das ist aber genau das, was wir beweisen wollten. Da nâmlich N ofiEen-

sichtlich nur von der Divisorenklasse A =\~-_ abhângt, so kann man

statt JV*p auch NA schreiben. Die NA sind denNullklassenA eineindeutig
zugeordnet und bilden ein irreduzibles System 9? von algebraischen
Mannigfaltigkeiten.

Beweis von 16.1. Wir schreiben statt (1)

<P9Î~OS (3)

Die Àquivalenz (3) definiert zunâchst eine Korrespondenz zwischen
den S und den Produkten X ^3 9Î. Dièse ist nach dem Kriterium 3.6
irreduzibel, denn erstens bilden die Q nach § 13 eine irreduzible
Mannigfaltigkeit, und zweitens entspricht jedem S in der Korrespondenz (3)
eine lineare Schar von Punktgruppen ^8 91 Z, die als lineare Schar
selbstverstàndlich irreduzibel ist und nach dem Riemann-Rochschen
Satz immer dieselbe Dimension g hat.

Ein allgemeines Paar dieser irreduziblen Korrespondenz erhâlt man,
indem man S durch eine allgemeine Punktgruppe S* ersetzt und ty 91

durch die allgemeine Punktgruppe ï* der zugehôrigen linearen Schar

Ï*~DS* (4)

Aile Tripel (^$, 9Î, S) der Korrespondenz (3) erhâlt man nun, indem
man zunâchst das Paar (I*, G*) relationstreu zu (X, S) spezialisiert
und Z in allen môglichen Weisen in Z ty 91 zerlegt. Dièse relations-
treue Spezialisierung kann man aber fortsetzen zu einer relationstreuen
Spezialisierung aller einzelnen Punkte der Punktgruppe Z*. Also geht
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die Zerlegung % ty 5R aus irgendeiner der môglichen Zerlegungen
X* ^3* 91* durch relationstreue Spezialisierung hervor. Demnaeh
kann man die Tripel (^5, 9t, S) auch so erhalten : Zunâchst wird das

allgemeine Paar (X*, (5*) der Korrespondenz (4) gebildet, dann wird
X* in allen môglichen Weisen in zwei Faktoren *$* 91* zerlegt, schlieB-
lich wird relationstreu spezialisiert : *J3* -> *>$, 9Î* -> 9?, ®* -> S.

Wir wollen nun zeigen, daB die Zerlegungen X* ^}* 91* aile unter-
einander konjugiert sind, d. h. daB sie durch Kôrperisomorphismen —

auch eine Art von relationstreuen Spezialisierungen — aus einer solchen
Zerlegung hervorgehen. Wenn das gezeigt ist, so folgt, daB aile Tripel
(^}, 9t, S) aus einem einzigen Tripel (^}*, 91*, S*) durch relationstreue
Spezialisierung hervorgehen. Die Mannigfaltigkeit aller Tripel (^}, 9t, S)
besitzt also ein allgemeines Tripel (*p*, 91*, S*), woraus ihre Irreduzi-
bilitàt folgt.

Wir betrachten die Vollschar | X* | | O S* |. Die Punktgruppe S*
ist allgemem, also nicht spezial. Es sei £> qxq2- * • ?a. Die Restechar

von qtq2> • • qk (l^Jc^ g) in bezug auf | X* | ist | qk+1- - • gflS* | ;

dièse Schar ist mithin auch nicht spezial. Fur k<g hat sie auch keine
festen Punkte. Denn wenn etwa qk+1 ein fester Punkt wâre, so wâre
I #fc+2* ' ' (Zg®* I nach dem Reduktionssatz 10.6 eine Spezialschar, was
nicht der Fall ist ; und wenn einer der Punkte sx, s2,.. sg, aus denen
(5*besteht, etwa, sg ein fester Punkt wàre, so wàre \qk+1- • • qgs1- • • «a-1|
ebenfalls nach 10.6 spezial, also wâre auch \qgs1- • • s^ | spezial. Das
ist aber auch nicht der Fall; denn der Punkt qg stellt den Punktgruppen
der Differentialschar, die ihn enthalten sollen, eine lineare Bedingung
und die hinzukommenden allgemeinen Punkte sx,..., sg_x stellen ihnen
noch g — 1 davon unabhàngige lineare Bedingungen ; das macht ins-

gesamt g lineare Bedingungen, wàhrend doch die Differentialschar nur
die Dimension g — 1 hat. Damit ist gezeigt, daB die Restschar von
q1 • • • qk in bezug auf | %* \ fur h^g nicht spezial ist und fur Jc<g
auch keine festen Punkte hat.

Dièse Eigenschaften gelten um so mehr, wenn ql9..., qk durch ebenso-

viele allgemeine, von ®* unabhàngige Punkte ersetzt werden. Nun zer-
legen wir X* irgendwie in X* ^3* 91* und setzen ^J* p1 p2 - • • pg
und 9î* rx r2 • • • rg. Unter den Punkten px,..., pg seien etwa

^iî- • •> Vu algebraisch unabhângig untereinander und von S*, wàhrend
die ubrigen pk+l9..., pg algebraisch von ihnen und von (5* abhângen.
Dann folgt, daB der Rest von px- • -pk in bezug auf | X* | fur Je^g
nicht spezial ist und fur k<g auch keine festen Punkte hat.

Nun benutzen wir, daB X* ^}* 91* eine allgemeine Punktgruppe der
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Vollsehar | £* | ist. Hait man nun die algebraisch unabhângigen Punkte
Pu • • • 9 Pk fes^j so mu^ der Rest pk+1 • • • pg 9t* eine alJgemeine Punkt-
gruppe der Restschar | %* | : px • • • pk sein. Wâre nun k<g, so wâre
dièse Restschar nach dem eben Bewiesenen eine Sehar ohne feste Punkte.
Andererseits wâre pk+1 ein solcher fester Punkt, denn pk+1 ist algebraisch
abhàngig von S* und pl9..., pk. Also muB k g sein, d. h. die Punkte

pl9.. .,pg sind algebraisch unabhàngig. Weiter ist die Restschar | 9t* [

von Px' • - pg in bezug auf | %* | nicht spezial, also hat sie die Dimension

Null, d. h. die Punktgruppe 5R* ist durch ©* und ^J3* eindeutig be-

stimmt.
Die Punktgruppen S*, ^S* und $R* haben also folgende Strukturen :

S* und ^3* bestehen aus lauter unabhângigen allgemeinen Punkten, und
91* ist durch die Àquivalenz

OS*-f 91*

eindeutig bestimmt.
Nun ist klar, daB jedes System von 2g unabhângigen allgemeinen

Punkten von F aus jedem anderen ebensolchen System durch einen Kôr-
perisomorphismus hervorgeht. Also gibt es bis auf Kôrperisomorphie nur
ein Tripel (^P*, 9Î*, ®*), aus dem aile Tripel (*p, SR, S) relationstreu
hervorgehen. Damit ist 16.1 bewiesen.

Beweis von 16.2. Es sei ^} gegeben und (9Î, S) irgendeine Lôsung der
Àquivalenz (3). Wir haben zu beweisen, daB das Paar (91, S) hôchstens
den Transzendenzgrad g hat.

Es seien rl9.. .,rk die algebraisch unabhângigen unter den Punkten

rl3..., rg von 91. Weiter sei d die Dimension der durch (3) definierten
linearen Schar | © | bei gegebenen rl5..., rg. Dann ist das Paar (91, S)
von hôchstens k + d unabhângigen Parametern abhàngig. Wir haben zu
beweisen : k + d ^ g.

Nach dem Riemann-Rochschen Satz ist d gleich dem Spezialitâtsindex
von | © |, d. h. gleich der Anzahl der linear unabhângigen Divisoren der
Restschar

s
Oî>
os —

wo X) irgendein Divisor der Differentialschar ist. Setzt man

so ist d die Anzahl der linear unabhângigen Divisoren der Restschar
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Die Anzahl der linear unabhângigen Divisoren der Schar | î^ | vom
Grade 2g — 2 ist nach dem Riemann-Rochschen Satz hôchstens g. Die
algebraisch unabhângigen Punkte r1}.. .,rk von 5R legen den Punkt-
gruppen von | î^ |. die sie enthalten sollen, ebenso viele linear unab-
hàngige Bedingungen auf. Also ist die Anzahl der linear unabhângigen
Divisoren der Restschar hôchstens g — Je, mithin

d^g — Je

oder

was wir beweisen wollten.
Als Koordinaten der Klasse A bezeichnet man naturgemâB die Chow-

Koordinaten der Mannigfaltigkeit NA. Es kann keine Kollision ent-
stehen, wenn der Bildpunkt von A auf der Klassenmannigfaltigkeit Si,
dessen Koordinaten eben die Koordinaten von A sind, ebenfalls mit dem
Buchstaben A bezeichnet wird.

Die Mannigfaltigkeit NA besteht aus allen Paaren (9Î, S), so da8
5R-1 S zur Klasse A gehôrt. Druckt man die Tatsache, daB (9Î, S) zu
NA gehôrt, nach 5.6 durch algebraische Gleichungen zwischen den
Koordinaten von 5R, S und A aus, so erhâlt man ein Gleichungssystem

0,(91, S, il) 0 (5)

welches ausdrùckt, daB der Divisor 5R"1© zur Klasse A gehôrt.
Wenn ein zweiter Divisor S"1^ zur Klasse B gehôrt :

G,(D,I,JB) O (6)

so gehôrt der Produktdivisor W^Z zur Produktklasse AB C :

Ot(«,2,C) 0 (7)

Durch Elimination von 5R, S, % aus (5), (6), (7) erhâlt man ein

Gleichungssystem
Hk(A,B,C) 0 (8)

Umgekehrt, wenn (8) erftillt ist, so gibt es drei Divisoren 5R? ®, %, die

(5), (6), (7) erfûllen, d. h. A ist die Klasse von SR-1©, B die von S"1!!
und C die von Vi^Z, mithin ist dann C AB. Das Gleichungssystem
(8) ist also der Produktrelation C AB âquivalent.
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§ 17. Korrespondenzen und Multiplikatoren

Es sei ju, eine algebraische Korrespondenz zwischen F und F. Die Kor-
respondenz darf reduzibel sein, aber wir setzen voraus, daB jede ihrer
irreduziblen Bestandteile einem allgemeinen Punkt f von F endlich viele
Punkte rj rjh von F zuordnet. Geht man dureh relationstreue
Spezialisierung £ -> p zu einem speziellen Punkt p ûber, so gehen

Vi y • • • 9 Vh in (abgesehen von der Reihenfolge) eindeutig bestimmte
Punkte ?!,...,?& ûber. Die Korrespondenz p ordnet also jedem Punkt p
eine eindeutig bestimmte Punktgruppe [xp q qx... qh zu. Einer
Punktgruppe a px... pm wird demnach die Punktgruppe ju a

(lÀ'P\){!Ji/PÙ - • • (ftPm) zugeordnet. Man beweist leicht : Wenn a eine
rationale Punktgruppe ist, so ist auch pa rational, und wenn a eine
lineare Schar durchlâuft, so durchlâuft auch fia eine lineare Schar.
SchlieBlich kann man die Zuordnung auch auf nicht ganze Divisoren
ab"1 ausdehnen, indem man /uiab'1) =(jLta)(jub)~1 setzt. Auch jetzt
entspricht einer linearen Schar wieder eine lineare Schar, folglich ent-
sprechen àquivalenten Divisoren auch âquivalente Divisoren, und einer
Divisorenklasse B entspricht eine Divisorenklasse juB.

Die Korrespondenzen [jl heiBen nach Hasse auch Multiplikatoren, und
zwar regulare. Multiplikatoren, wenn sie einer allgemeinen Nullklasse
Y {?) U"1} (wo U eine feste, 3) eine allgemeine Punktgruppe ist) wieder

eine allgemeine Nullklasse X X O"1 zuordnen.
Wir wollen nun die Beziehung

durch algebraische Gleichungen zwischen den Koordinaten von ty, U, Q
und O ausdrucken. Wir zerlegen sie in

li % Q (2)

/*lt=33, (3)

Q 33-1 ~ S O"1 (4)

Die Système (p, qx,..., qh) gehen durch relationstreue Spezialisierung

aus (Ç,t)if.9r]k) hervor ; sie bilden also eine irreduzible Mannig-
faltigkeit, deren Gleichungen

heiBen môgen. Schreibt man die Gleichungen (5) fur aile Punkte pt,... ,pg
der Punktgruppe Ç auf, fûgt man die homogenen Gleichungen
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•., pg) -
hinzu, die nach § 13 ausdrûcken, dafi die Punktgruppe <J3 aus den Punkten
Pi,.. *ïVg besteht, dann noch die entsprechenden Gleichungen fur die
Punktgruppe Q (qn qlh)(qn... q2h) (qgl... qgh) und die
Gleichungen, die ausdriicken, da6 aile dièse Punkte <pt und ql3 auf F liegen,
und eliminiert man nunmehr die Koordinaten der Punkte pt und ql} aus
allen diesen Gleichungen, so erhâlt man ein System von Gleichungen

22,0P,Q) O (7)

das die Beziehung (2) ausdruckt.
Ebenso drûckt das System

*t(U,S) 0 (8)
die Beziehung (3) aus.

SchlieBlich haben wir noch die Âquivalenz (4)durch algebraische
Gleichungen auszudrucken. Zu diesem Zweck zerlegen wir Q und 93 in lauter
Gruppen von g Punkten :

Q Qx Qh (9)

»=»!...»». (10)

Dann ist (4) gleichwertig mit

Dièse Bedingung zerlegen wir in

OQ1-2i1O2) (11)

O2Q2 — 932O3 (12)

(13)

wo O2,O3J...,OA lauter Gruppen von ^ Punkten sind, die durch die
Âquivalenzen (11) bis (13) der Reihe nach bestimmbar sind. Nach § 10

kônnen aile Âquivalenzen (11) bis (14) durch algebraische Gleichungen
ausgedruckt werden Ebenso kann man (9) und (10) nach der Méthode
des § 14 durch algebraische Gleichungen ausdriicken [vgl. § 14, (2) und
(3)]. Eliminiert man aus allen diesen Gleichungen die Koordinaten der

Hilfsgruppen CLl9...,£Lh, 2?i,..., 33*, D2,...,Qh, so erhâlt man
schlieBlich ein System von Gleichungen
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St(O,û,S,») 0 (15)

das die Âquivalenz (4) ausdriickt.
Eliminiert man endlich $us (7), (8), (15) die Koordinaten der Punkt-

gruppen JQ und 93, so erhâlt man die gesuchten Gleichungen

ï\(O,$,tf,S) 0 (16)

welche die Âquivalenz (1) ausdrûcken.
Zum SchluB vollziehen wir den Ùbergang auf die Klassenmannigfaltig-

keit. Der zu Klasse A gehôrige Punkt der Klassenmannigfaltigkeit môge
ebenfalls mit A bezeichnet werden. Dann drûckt das Gleichungssystem

Gt(£,<5,A) 0 (17)

nach § 16, SchluB aus, daB der Divisor £> S"1 zur Klasse A gehôrt ; ebenso

driickt das System
Gt(«l, $,£)=(> (18)

aus, daB der Divisor ^pîl"1 zur Klasse B gehôrt. Eliminiert man aus
(16), (17), (18) und den Gleichungen, die ausdrûcken, daB £), S$, S, U
zu M gehôren, die Koordinaten von £), ^3, ©, 31, so erhâlt man ein

Gleichungssystem
H(A,B) 0 (19)

welches die Beziehung A /uB algebraisch zum Ausdruck bringt.

§ 18. Beweis der Hasseschen Sâtze § 8? 2
Die Ausfuhrungen des vorigen Paragraphen reichen zum Beweis der

von Hasse in § 8, 4 formulierten Sâtze hin. Bevor wir dièse Beweise aber

geben, miissen wir die in diesen Sâtzen steckenden Begriffe, insbesondere
die Zerlegung der Hasseschen ,,Punkte" bei Erweiterung des Funktionen-
kôrpers, nâher betrachten und mit den Begriffen der algebraischen
Géométrie vergleichen.

Was geschieht mit den ,,algebraischen Punkten" X -> ^3 eines Funk-
tionenkôrpers K bei Erweiterung dièses Funktionenkôrpers? Hasse beruft
sich (§ 7, 3) fur dièse Frage auf eine von Lorenzen ausgearbeitete, aber
nicht publizierte Erweiterung der Krullschen Zerlegungstheorie. Da wir
in dieser Arbeit ailes Behauptete auch beweisen wollen, kônnen wir uns
nicht auf dièse unpublizierte Théorie stûtzen. AuBerdem ist die Formu-
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lierung, die sich aus der algebraischen Géométrie ergibt, einfacher und in
gewisser Hinsicht auch allgemeiner als die von Hasse verwendete.

Hasse benutzt fur den Korper K und den separablen normalen Er-
weiterungskorper K* eine und dieselbe homogène Transzendenzbasis
Xo : Xx :... : Xg. Wenn es sich um solche Homomorphismen handelt, bei
denen Xo nicht in Null ubergeht, kann man wieder Xo 1 normieren.
Ein Erzeugendensystem der ganzen GroBen von K sei Ci, • • •, £m > von
K* ebenso £f • • •, £* Die £* sind ganze algebraische Funktionen von
den £, aie £ ganze rationale Funktionen von den £*. Das Punktepaar
(£, £*) ist allgemeines Paar einer algebraischen Korrespondenz zwischen
M und M*, wobei £ allgemeiner Punkt von Jf und £* allgemeiner Punkt
von Jf* ist Durchrelationstreue Spezialisierung (£,£*)—> (z,z*) erhâlt
man aus dem allgemeinen Punktepaar aile Punktepaare der Korrespondenz.

Die Frage der ,,Zerlegungstheorie" ist nun : In wievielen verschiede-
nen Weisen kann eine gegebene relationstreue Spezialisierung £ -> z zu
einer ebensolchen (£, £*) -> (z,z*) fortgesetzt werden?

Die Méthode der algebraischen Géométrie gestattet es, dieselbe Frage
gleich viel allgemeiner zu stellen. Die Voraussetzung, da8 die £* ganze
algebraische Funktionen von den £ und die £ ganze rationale Funktionen
von den £* sind, die bei den Anwendungen nicht von vornherein erfullt
ist, kann fallengelassen werden.

Wir brauchen bloB vorauszusetzen :

1) M sei eine irreduzible, glatte gr-dimensionale Mannigfaltigkeit.
2) ${ sei eine irreduzible Korrespondenz zwischen M und N 9 in der

einem allgemeinen Punkt f von M nur endlich viele konjugierte Punkte
Vi 9 - - • > Vh von N entsprechen. (Die Zahl h ist natûrlich gleich dem redu-
zierten Korpergrad von Q(2j,r]) uber 42(f), wo ty einer von den konju-
gierten Punkten r\v ist.)

3) Einem speziellen Punkt p von M entsprechen in der Korrespondenz
auch nur endlich viele Punkte q von N.

Unter diesen Voraussetzungen kann man die relationstreue Spezialisierung

| -> p zu einer relationstreuen Spezialisierung (|, r\x,..., rjh) ->
(P •> Ci > - • • Qn) fortsetzen, und die Punkte qx,..., qh sind nach §1.9 bis
auf die Reihenfolge eindeutig durch die Spezialisierung f -> p allein be-
stimmt. Die Multiplizitat et eines Punktes qt ist die Zahl, die angibt, wie
oft qt unter den g1?..., qh vorkommt. Konjugierte Punkte in bezug auf
O(p) haben natûrlich dieselbe Multiplizitat. Ist ft die Anzahl der ver-
schiedenen Konjugierten eines Punktes qt, oder, was dasselbe ist, der
reduzierte Korpergrad von Q(p,qt) uber Q(p), so ist
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h=Zetft (1)

die Gesamtzahl der Punkte qt, jeder mit seiner Vielfachheit gezâhlt.
Nun machen wir die weiteren Voraussetzungen, die in den Anwendun-

gen nachher auch erfiïllt sind :

4) N sei glatt ;

5) Den Punkten qx,..-,qh entsprechen in der Korrespondenz nur
endlich viele Punkte von M ;

6) Q(rjx) sei normal ùber Q(Ç), d. h. f und rjx,...,rjh seien rationale
Funktionen von r\x.

Dann kônnen wir beweisen, da8 in (1) aile et und ft gleich sind, so da6
wir statt (1) schreiben kônnen

h efr, (2)

wo r die Anzahl der Système konjugierter Punkte qt ist.
Zum Beweis bemerken wir zunàchst, da6 nach 6) die umgekehrte

Korrespondenz R eine rationale Abbildung von N auf M ist. Wegen 4)
und 5) folgt daraus, da8 jedem der Punkte qt nur ein Punkt von M, nâm-
lich der Punkt p entspricht.

Nunmehr betrachten wir die Korrespondenz zwischen den Punkten rjx

einerseits und den Systemen (f, rjx,..., rjh) andererseits. Die Korrespondenz

ist eine birationale Abbildung, deren Urmannigfaltigkeit N doppel-
punktfrei ist, und dem Punkt qx entsprechen nur endlich viele Système
(P> <Zi> • • • >

Ç[h)> nâmlich der einzige Punkt p und dazu endlich viele Môg-
lichkeiten fur qt,..., qh. Also entspricht dem Punkt qx nur ein einziges
System (p, ql9..., qh), d. h. die relationstreue Spezialisierung r)x -> qx

lâBt sich nur in einer Weise zu f -> p, f]x -> qx,..., rjh -> qh fortsetzen.
Wenn nun qx die Vielfachheit e hat uiid wenn etwa r\x,..., rje bei der

Spezialisierung in qx hineinriicken, so wollen wir zunàchst beweisen, daB
aile anderen q% auch die Vielfachheit e haben. Es seien Sl9..., Se die
Substitutionen der Galoisschen Gruppe, die r\x in rjl9..., rje ûberftihren.
Setzt man sie zusammen mit der relationstreuen Spezialisierung, die

%,..., r\e in qx ûberfûhrt, so erhâlt man lauter relationstreue Spezialisie-

rungen, die r\x in qx iiberfuhren, also mit der gegebenen Spezialisierung
Vi 9 - • • » Vh ~> $19 • • • » 9h ûbereinstimmen mûssen.

Wir uben nun dièse zusammengesetzte relationstreue Spezialisierung
auf rje+x aus. Die Substitutionen 8X,..., 8e môgen rje+1 in rje+1,..., rj2e

iiberfuhren. Die darauffolgende relationstreue Spezialisierung r\% -> q%
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flihrt r]e+1,..., rj2e in qe+1,..., q2e liber. Die resultierende Spezialisie-
rung ist aber nach dem vorigen Absatz immer dieselbe ; also mûssen

qe+1,..., q2e zusammenfallen. In dieser Weise fallen also je e von den
Punkten ?i,...,?n zusammen, d. h. jeder Punkt qi hat mindestens
dieselbe Vielfachheit wie q1. Umgekehrt hat qt auch mindestens dieselbe
Vielfachheit wie qt ; mithin haben die Punkte qt aile dieselbe Vielfachheit e.

Wie leicht ersichtlieh, bilden die Substitutionen 8;(j l,...,e) mit
der Eigenschaft, daJ3 8^ bei der relationstreuen Spezialisierung in qx

libergeht, eine Gruppe : die Trâgheitsgruppe der Spezialisierung r]x -> qt.
Dies nebenbei.

Nun môgen qt - • • q6, qe+x • • • q2e, usw. bis qu ein System
von / konjugierten Punkten bilden. Es gibt dann zu jedem dieser Punkte
qk einen Kôrperisomorphismus, der qk in qt liberflihrt, und dieser lâBt
sich zu einer isomorphen relationstreuen Spezialisierung des ganzen
Punktsystems qx,..., qh fortsetzen, die die qi irgendwie untereinander
permutiert.

Ûbt man nun nacheinander aus : zuerst die Substitution 8k der Galois-
schen Gruppe, die r\x in rjk uberfiihrt, dann die relationstreue Spezialisierung

(rjl9. ..,%)-> (ql9..., qh), die r\k in qk liberflihrt, schlieBlich die
eben konstruierte Permutation Pk, die qk in qx uberfIihrt, so erhâlt man
eine relationstreue Spezialisierung, die r\x in qx liberflihrt, also mit der
gegebenen (iyx,..., rjh) -+ (qx,..., qh) identisch sein mu6.

Die Substitutionen Sk (k=l,...,ef) môgen rjef+1 in r\ef+k Iiber-
flihren. Ûbt man danach die Spezialisierung rjef+k -> qef+Je und die
Permutation Pk aus, so mufi schlieBlich qef+1 herauskommen :

Pjc Qef+k — Qef+l '

Die Punkte qef+1,..., qef+ef gehen also aile durch Isomorphismen Pkl
aus dem einen Punkt qef+1 hervor, d. h. sie sind zu qef+1 konjugiert. Es

gibt somit mindestens ebenso viele zu qef+1 konjugierte Punkte als zu qx

konjugierte. Selbstverstândlich gilt auch das Umgekehrte, also gibt es zu
jedem Punkt q{ gleich viele konjugierte Punkte wie zu qx, d. h. aile jt sind
untereinander gleich.

Nebenbei bemerkt, bilden die 8k wieder eine Gruppe : die Zerlegungs-

gruppe der Spezialisierung rj1-^q1. Erweitert man den Grundkôrper Q
durch Adjunktion von qt, so wird / 1, d. h. aile Punkte qt sind ratio-
nal durch qx ausdrûckbar. Der Kôrper Q(p,qx) ist also normal liber
Q{p) und mit den Kôrpern Q(p,qt) identisch. Seine Galois'sche Gruppe
ist die Faktorgruppe der Zerlegungs- nach der Trâgheitsgruppe.
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Wie man sieht, ist die Voraussetzung, daB die rj ganz algebraisch von
den £ abhângen, bei allen diesen Beweisen nicht nôtig, was die Anwen-
dung, wie wir sehen werden, sehr vereinfacht. An die Stelle der von
Hasse, Krull und Lorenzen gemachten Voraussetzung der ganzen Ab-
geschlossenheit der Ringe £?[£1?..., fj und ii[rjl9...,rçn] tritt aller-
dings die etwas schârfere, da8 die algebraischen Mannigfaltigkeiten M
und N glatt sein sollen.

Auf Grund der hier entwickelten Begriffe kônnen wir nun die Hasse-
schen Sâtze I, II, III so formulieren :

18.1. Sind £>, 31 zwei feste Gruppen von g Punkten auf F, ist p ein
Multiplilcator, 3) eine allgemeine Punktgruppe und X durch

definiert, so bleibt dièse Âquivalenz bei jeder relationstreuen Spezialisierung

(£,?))-M$,Q) erhalten:

18.2. Jede relationstreue Spezialisierung X -> ty làfit sich zu (X, ->
(^P,£i) fortsetzen, wobei nach 18.1 wieder (4) gilt.

18.3. Jede relationstreue Spezialisierung 3) -> Q làjit sich zu (X, 3)) ->
(^3,Ci) fortsetzen. Ist dabei ty regulâr, so ist ^S durch (4) eindeutig be-

stimmt.

Beweis. 18.1 folgt unmittelbar aus § 17. Sodann sind 18.2 und 18.3
nach 1.4 selbstverstândlich.

DaB die Hassesche Formulierung dieser Sâtze erheblich komplizierter
ist, liegt daran, daB Hasse die Paare (^}, JQ) nicht direkt durch relationstreue

Spezialisierung definiert, sondern von 3E->^5 zuerst auf den ,,dar-
in steckenden Punkt" 36* -^ ^3* und von da aus erst auf den davon
,,mduzierten Punkt" 3) -> JQ iibergeht. Sein Ansatz zwingt ihn dazu, da
X und 2) nicht von einer gemeinsamen Transzendenzbasis abhângig sind
und somit die Krull-Lorenzensche Zerlegungstheorie der ,,Punkte" nicht
ohne weiteres auf X und 3) anwendbar ist. Aus diesem Grunde wird ein
X* zwischengeschoben, das von derselben Transzendenzbasis ganz
abhângig ist wie X, und von welchem 3) seinerseits rational abhângt. In
unserem Aufbau ist das nicht nôtig.
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Wir wollen zum SchluB noch kurz zeigen, da8 unsere Sàtze 18.1 bis 3

tatsâchlich dasselbe leisten wie die entsprechenden Sâtze von Hasse,
indem wir dieselben Folgerungen daraus ziehen. Der Multiplikator ju sei

regular, d. h. die durch (3) définierte Punktgruppe X habe ebenso wie die

allgemeine Punktgruppe den Transzendenzgrad g. Dann ist X auch

regulâr, also durch (3) eindeutig bestimmt. Da X rational von 3) abhângt
und beide denselben Transzendenzgrad haben, so hângt 9) umgekehrt
algebraisch von X ab, und bei gegebenem allgemeinem X gibt es nur end-
lich viele Lôsungen von (3). Das kann man auch so formulieren :

Die Gleichung
X ix Y (5)

hat, wenn X eine allgemeine Nullklasse ist, nur endlich viele Lôsungen.
Die Anzahl dieser Lôsungen ist der reduzierte Kôrpergrad n n(ju) von
i2(9)) liber Q(X). Ist Q(ty) separabel uber Q{X), so ist der reduzierte
Kôrpergrad n(ju) gleich dem Kôrpergrad N(/lc).

Die Lôsungen von (5) gehen aus einer einzigen Lôsung Y durch Multi-
plikation mit den Lôsungen der Gleichung

l=/iD (6)

hervor. Also hat dièse Gleichung ebenfalls genau n(/u) Lôsungen.
Nach 18.2 ist die Gleichung

A=pB (7)

bei gegebener Nullklasse A
sa i-¥- stets lôsbar. Da ihre Lôsungen aus

einer einzigen durch Multiplikation mit den Lôsungen von (6) hervor-
gehen, so hat die Gleichung (7) stets genau n(jbt) Lôsungen Bl9..., Bn.

Wahlt man nun bei gegebenem A und O den Divisor % so, daB die
Klassen Bx%,..., Bn% aile regular sind, so sind die Reprasentanten
dx,..., dn dieser Klassen eindeutig bestimmt, und die Gleichung (4)
hat nur endlich viele Lôsungen Q,x,..., £àw. Die Voraussetzungen unse-
rer ,,Zerlegungstheorie" sind dann anwendbar : die relationstreue Speziali-
sierung X -> <$ ist eindeutig zu (3£, &,..., tyn) -> (<$, d,..., QJ
fortsetzbar, die JQ zerfallen in r Klassen zu je / konjugierter Q^ mit der
Vielfachheit e. Nach 18.2 kommt aber jede von den n verschiedenen

Lôsungen der Gleichung (4) unter diesen Qt. vor. Also muB die Vielfachheit

e 1 sein.
Damit sind aile Ergebnisse von Hasse § 7, 3—4 neu hergeleitet, und

zwar sehr viel einfacher als bei Hasse.

(Eingegangen den 22. Oktober 1946.)
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