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Divisorenklassen
in algebraischen Funktionenkdrpern

Von B. L. vAN DER WAERDEN, Laren, N.-Holland

H. Hasse hat eine arithmetische Theorie der Divisorenklassen eines
algebraischen Funktionenkorpers einer Verdnderlichen iiber einem belie-
bigen vollkommenen Konstantenkorper ©2 entwickelt?!). Bei einigen fiix
die Theorie des Abelschen Funktionenkorpers grundlegenden Sétzen ist
Hasse jedoch nicht zur Durchfithrung der Beweise gekommen, hat aber
die Erwartung ausgesprochen, daf3 diese Beweise sich aus der von mir
gegebenen Begriindung der algebraischen Geometrie ergeben wiirden. In
der Tat ist es mir gelungen, nicht nur die fraglichen Beweise mit meinen
Methoden zu erbringen, sondern dariiber hinaus noch ein weiteres Pro-
blem zu losen, das sich aus den Hasseschen Fragestellungen zwangslédufig
ergab, niamlich die Konstruktion einer Klassenmannigfaltigkeit, deren
Punkte eineindeutig den Divisorenklassen nullten Grades des gegebenen
algebraischen Funktionenkorpers entsprechen. Die Klassenmannigfaltig-
keit ist ein ausgezeichnetes projektives Modell des Abelschen Funktionen-
koérpers; ihre Punkte iibernehmen die Rolle der Hasseschen ,,X-Punkte“
(Hasse § 7, 7). Die Hasseschen Sitze § 6, 5 und § 8, 2 aber, deren Beweise
hier gegeben werden sollen, driicken im wesentlichen aus, dal den alge-
braischen Operationen, die man mit Divisorenklassen vornehmen kann, auch
algebraische Operationen auf der Klassenmannigfaltigkeit entsprechen. Diese
Operationen sind : die Addition von Klassen X 4+ Y = Z und die kom-
plexen Multiplikationen X = uY, die aus den algebraischen Korrespon-
denzen des Funktionenkorpers entstehen.

Der Darstellung dieser Ergebnisse soll eine Ubersicht iiber die grund-
legenden Begriffe und Sitze der algebraischen Geometrie vorangeschickt
werden. Ich habe mich dabei nicht auf das unbedingt notwendige Mini-
mum an Sédtzen beschrinkt, sondern ich habe mich bemiiht, aus diesem
einleitenden Teil einen Rechenschaftsbericht iiber die Begriindung der

1) H. Hasse, Zur arithmetischen Theorie der algebraischen Funktionen.
korper, Jahresber. D. M. V. 52 (1942) S. 1—48.
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algebraischen Geometrie und eine Art Lehrgang der algebraischen Geo-
metrie fiir Algebraiker zu machen. Die Definitionen sind vollstindig an-
gegeben, wihrend bei den Sidtzen jeweils angegeben ist, wo man ihre
Beweise finden kann.

Nach dieser Einfiihrung (§ 1 bis 10) folgt der Hauptteil (§ 11 bis 19).
Der Gedankengang des Hauptteils ist folgender. Wir gehen von einem
algebraischen Funktionenkorper K vom Geschlechte g aus und legen als
,projektives Modell“ dieses Korpers eine singularititenfreie Kurve I" zu-
grunde. Nach Erweiterung des Konstantenkoérpers (2 zu einem algebraisch
abgeschlossenen Korper Q2 entsprechen die Punkte von I' eineindeutig
den Stellen von K (§ 11). Die Gruppen von g Punkten auf I" kénnen
durch Koordinaten dargestellt und so auf Punkte eines Bildraumes ab-
gebildet werden (§ 12). Die Gesamtheit dieser Bildpunkte ist eine glatte,
d. h. singularitidtenfreie algebraische Mannigfaltigkeit M (§ 13). Produkte
und Aquivalenzen von Punktgruppen auf I" konnen durch algebraische
Gleichungen zwischen ihren Koordinaten ausgedriickt werden, geben
also zu algebraischen Korrespondenzen auf M Anlafl (§ 14). Setzt man
dieses Ergebnis zu dem Hasseschen Begriff des X-Punktes in Beziehung,
so erhidlt man den Beweis des ersten Hasseschen Satzes (§ 15). Sodann
wird die erwidhnte Klassenmannigfaltigkeit konstruiert, deren Punkte
eineindeutig den Divisorenklassen vom Grade Null entsprechen (§ 16).
Die Multiplikatoren (komplexe Multiplikationen) von K ergeben eben-
falls algebraische Korrespondenzen auf M sowie auch auf der Klassen-
mannigfaltigkeit (§ 17). Setzt man dieses Ergebnis wieder zum Hasse-
schen Begriff des X-Punktes in Beziehung, so ergeben sich Beweise der
weiteren Sétze von Hasse (§ 18).

Erster Teil

Grundlagen der algebraischen Geometrie

§ 1. Resultantensysteme. Relationstreue Spezialisierung. Prinzip der Er-
haltung der Anzahl.

1.1. Notwendig und hinreichend dafiir, daB ein System homogener
Gleichungen ‘
fil¥os- s Ya) =0 (1)

eine von der Nullosung verschiedene Losung in einem geeigneten (alge-
braischen) Erweiterungskorper des Konstantenkorpers £2 besitzt, ist das
Verschwinden des Resultantensystems

R,(a) =0 .
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Dabei sind die R, ganzzahlige Polynome in den Koeffizienten a der
Formen f,. Beweis: Moderne Algebra 1I, § 80 (2. Aufl.).

1.2. Zwei Nicht-Nullgsungen eines homogenen Gleichungssystems (1)
werden zur gleichen Losungsklasse gerechnet, wenn sie sich nur um einen
Faktor A unterscheiden. Die Losungsklassen heiflen auch Punkte des pro-
jektiven Raumes S, . Die Gesamtheit aller Losungsklassen eines Systems
(1) heiBt, falls nicht leer, eine algebraische Mannigfaltigkeit in S, .

1.3. Ein Punkt y’ heiBt eine relationstreue Spezialisierung eines von
unbestimmten Parametern ¢,,...,¢, abhingigen Punktes y fir die
Parameterspezialisierung t —t’, wenn alle in den y homogenen Glei-
chungen f(t,y) =0 bei der Spezialisierung ¢ —¢', y — gy’ erhalten
bleiben. Ist von Parametern ¢ nicht die Rede, so spricht man von einer
relationstreuen Spezialisierung y —y’ schlechthin.

1.4. Zu jeder Parameterspezialisierung ¢ — ¢’ gehort stets minde-
stens eine relationstreue Spezialisierung y — y’, vorausgesetzt daf ¢,
und ¥y, einem und demselben Erweiterungskoérper von 2 angehoren.
Ebenso 1dBt sich jede relationstreue Spezialisierung z — z’ stets zu
einer ebensolchen Spezialisierung (z,y) — (2/,y’) fortsetzen, sofern die
# und y einem und demselben Erweiterungskorper von £ angehoren.
Beweis : Math. Ann. 97, p. 761, oder Einfiihrung alg. Geom., p. 107.

1.5. Wenn ein Gleichungssystem
fi(t,2) =0 (2)

nur endlich viele Losungsklassen xz1),...,2'@ besitzt und wenn bei einer
Spezialisierung ¢ — ¢’ der Unbestimmten ¢ die Losungszahl endlich bleibt,
so gehort dazu eine bis auf die Reihenfolge der y eindeutige relationstreue
Spezialisierung V' —y® 2@ 4@  Sije wird gefunden, indem man
mit Unbestimmten u,,...,u, die Form

q
Fu)= IT (2 +uy 2+ -+ u,2)
v=1

bildet (oder im Fall eines Korpers von der Charakteristik p eine geeignete
p’-te Potenz dieses Produktes), sie durch Multiplikation mit einem von
den u unabhéngigen Faktor ganzrational in den ¢ und primitiv in den u
macht und dann in ihr ¢ — ¢’ spezialisiert. Die Zahl, die angibt, wie oft
eine Losungsklasse y des spezialisierten Systems f;(t',y) = 0 unter den
y V.. .., y'© vorkommt, heit die Multiplizitit der Losung y fir die
Spezialisierung ¢ — ¢'.
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1.6. Prinzip der Erhaltung der Anzahl: Die Summe der Multiplizi-
titen der Losungen des spezialisierten Gleichungssystems ist gleich der
Anzahl der Losungen des urspriinglichen Problems (2).

1.7. Die Multiplizitdt einer Losung y des spezialisierten Gleichungs-
systems ist positiv, wenn diese Losung y durch eine relationstreue Spe-
zialisierung fiir ¢ — ¢’ aus einer Losung x des Systems (2) hervorgeht.

Beweise zu 1.5 bis 1.7 : Math. Ann. 97, p. 762—766, oder Einf. alg.
Geom. § 38.

1.8. Knritersum fitr Multiplizitdt Eins : Wenn die spezialisierten Glei-
chungen

f(t,y) =0 (3)

eine Losung y besitzen, derart, dafl die ,, Tangentialebenen* der Hyper-
flichen (3) im Punkt y, die durch die Gleichungen

2o 0ofi(t',y) + 2, 0. f; (¢, y) +- -+ 2,0, f:(t',y) =0 [ax = ‘3—2?] (4)

definiert werden, nur den Punkt y miteinander gemeinsam haben, so hat
die Losung y hochstens die Multiplizitdt Eins. Beweis : ZAG 5, Math.
Ann. 110, oder Einf. alg. Geom. § 39.

1.9. Die Behauptungen 1.5 bis 1.7 gelten auch in dem allgemeineren
Fall, daB ¢ nicht ein System von Unbestimmten, sondern ein allgemeiner
Punkt einer irreduziblen Mannigfaltigkeit M (vgl. 2.2) und ¢’ ein ein-
facher Punkt von M (vgl. 4.6) ist. Beweis : ZAG 6, Math. Ann. 110, § 3.

§ 2. Algebraische Mannigfaltigkeiten

Beweise : Math. Ann. 96, p. 183 oder Mod. Alg. II, § 93 oder Einf. alg.
Geom. § 28.

2.1. Jede algebraische Mannigfaltigkeit ist eindeutig darstellbar als
unverkiirzbare Vereinigung von ¢rreduziblen, d. h. nicht weiter zerleg-
baren Mannigfaltigkeiten.

2.2. Jede irreduzible Mannigfaltigkeit M besitzt einen allgemeinen
Punkt, d. h. einen solchen Punkt & von M, aus dem alle Punkte von M
durch relationstreue Spezialisierung hervorgehen. Er ist bis auf Korper-
isomorphie eindeutig bestimmt. Wenn eine Mannigfaltigkeit einen all-
gemeinen Punkt besitzt, so ist sie irreduzibel. Jeder Punkt &, dessen
Koordinaten einem beliebigen Erweiterungskorper des Konstantenkor-
pers angehoren, ist allgemeiner Punkt einer irreduziblen Mannigfaltigkeit.
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2.3. Die Dimension einer irreduziblen Mannigfaltigkeit M ist der
Transzendenzgrad der Koordinatenverhiltnisse eines allgemeinen Punk-
tes von M.

2.4. Eine nulldimensionale irreduzible Mannigfaltigkeit ist ein System
konjugierter Punkte.

2.5. Eine rein r-dimensionale Mannigfaltigkeit ist eine solche, deren
irreduzible Bestandteile alle dieselbe Dimension  haben. Diese Bestand-
teile konnen mit willkiirlichen positiven Vielfachheiten versehen werden.

2.6. Eine rein (n — 1)-dimensionale Mannigfaltigkeit in S, ist eine
Hyperfiiche, d. h. sie wird durch eine einzige homogene Gleichung f = 0
gegeben. Umgekehrt ist jede Hyperfliche rein (n — 1)-dimensional. Thre
irreduziblen Bestandteile entsprechen den irreduziblen Faktoren der
Form f und werden mit denselben Vielfachheiten versehen wie diese.

2.7. Wenn eine Mannigfaltigkeit M nicht ganz in der uneigentlichen
Hyperebene y, = 0 liegt, so kann man durch die Normierung y, =1
fiir die eigentlichen Punkte von M inhomogene Koordinaten y,,...,y,
einfithren. Das zugehorige Ideal von M im Polynombereich Q [z,,...,z,]
ist dann die Gesamtheit aller Polynome f, die Null werden in allen Punk-
ten von M.

2.8. Das zugehorige Ideal einer irreduziblen Mannigfaltigkeit ist
prim. Jedes Primideal in 0 = Q [«,,...,2,] mit Ausnahme des Einheits-
ideals p ist zugehoriges Ideal einer einzigen irreduziblen Mannigfaltigkeit.

2.9. Bei Erweiterung des Grundkorpers 2 kann eine irreduzible
Mannigfaltigkeit nur in irreduzible Bestandteile von derselben Dimension
zerfallen, die dann in bezug auf 2 konjugiert sind.

§ 3. Algebraische Korrespondenzen
Beweise : ZAG 6, Math. Anu. 110, S. 142, oder Einf. alg. Geom. § 33.

3.1. Eine algebraische Korrespondenz ist eine algebraische Mannig-
faltigkeit von Punktepaaren (z, y),xin 8, ¥ in §,, gegeben durch ein
System von homogenen Gleichungen

fo(z,y)=0. (1)

3.2. Die Punkte x bilden eine algebraische Mannigfaltigkeit M , die
Urmannigfaltigkeit der Korrespondenz, deren Gleichungen durch Elimi-
nation der y aus (1) gefunden werden. Die Punkte y bilden ebenso die
Bildmannigfaltigkeit N der Korrespondenz. Man spricht von einer Kor-
respondenz zwischen M und N .
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3.3. In einer irreduziblen Korrespondenz sind M und N beide irre-
duzibel. Einem allgemeinen Punkt & von M entspricht eine relativ zum

Kéorper 2 (—g—l- e e s %"—) irreduzible Teilmannigfaltigkeit N, von N, ebenso
0 0

einem allgemeinen Punkt 5 von N eine irreduzible Teilmannigfaltigkeit
M, von M.

3.4. Prinzip der Konstantenzihlung : Ist ¢ die Dimension einer irre-
duziblen Korrespondenz, a die von M, b die von N ¢» ¢ die von N und d
die von M, , so gilt

g=a+b=c+d.

3.5. Einem jeden Punkt x von M entspricht in einer irreduziblen
Korrespondenz eine Teilmannigfaltigkeit N, von N, die keine Bestand-
teile von kleinerer Dimension als b enthilt.

3.6. Ist die Urmannigfaltigkeit M einer Korrespondenz irreduzibel
und entspricht jedem Punkt von M eine irreduzible Teilmannigkeit von

N, die immer dieselbe Dimension b hat, so ist die Korrespondenz irredu-
zibel.

§ 4. Schnitt von Mannigfaltigkeiten mit linearen Teilriumen und Hy-
perflichen

Beweise : ZAG 13, Math. Ann. 115, p. 359, oder Einf. alg. Geom. § 34
und § 40—41.

4.0. Ein linearer Teilraum S,_, des Raumes S, wird durch £ unab-
hingige lineare Gleichungen definiert. Sind die Koeffizienten lauter un-
abhingige Unbestimmte, so heilt der Teilraum allgemein. Ein linearer
Teilraum §,, ist durch (m + 1) linear unabhingige Punkte bestimmt.

4.1. Der Durchschnitt einer irreduziblen a-dimensionalen Mannig-
faltigkeit M mit einem allgemeinen 8,_, ist im Fall k>a leer, im Fall
k = a ein System von endlich vielen konjugierten Punkten, im Fall
k<a eine irreduzible (@ — k)-dimensionale Mannigfaltigkeit. Die Anzahl
der Schnittpunkte im Fall £ = a heilt der reduzierte Grad von M .

4.2. Der Durchschnitt einer irreduziblen a-dimensionalen Mannig-
faltigkeit vom reduzierten Grad g mit %k allgemeinen Hyperflichen von
den Graden y,,...,y, istim Fall k>a leer,im Fall £ = a ein System
von g 79,,...,%, konjugierten Punkten und im Fall £ <a eine irredu-
zible (a — k)-dimensionale Mannigfaltigkeit vom reduzierten Grad

GVise+os Vi
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4.3. Der Durchschnitt einer irreduziblen a-dimensionalen Mannig-
faltigkeit vom reduzierten Grad g mit einer Hyperfliche vom Grade y,
die sie nicht ganz enthilt, ist rein (@ — 1)-dimensional und ihre irredu-
ziblen Bestandteile kénnen mit solchen positiven Vielfachheiten versehen
werden, dafl die Summe ihrer Gradzahlen g¢,,...,9, multipliziert mit
diesen Vielfachheiten, gleich gy ist :

M191+ﬂ292 +"'+/’Lrgr=gy .

Dabei werden die Vielfachheiten u,,..., 4, im Fall einer Kurve (a = 1)
durch relationstreue Spezialisierung definiert, indem man die Kurve zu-
erst mit einer allgemeinen Hyperfliche desselben Grades schneidet und
dann diese Hyperfliche spezialisiert. Der allgemeine Fall wird auf den
Fall a = 1 reduziert, indem man noch (¢ — 1) allgemeine Hyperflichen
hinzunimmt, die die Mannigfaltigkeit nach 4.2 in einer irreduziblen Kurve
schneiden.

4.4. Der Durchschnitt einer rein a-dimensionalen Mannigfaltigkeit M
mit k=<a Hyperflichen von den Gradzahlen y,,...,y, enthilt keine
Bestandteile von kleinerer Dimension als a — k. Falls sie auch keine
Bestandteile hoherer Dimension enthilt, ist sie rein (¢ — k)-dimensional
und ihre irreduziblen Bestandteile konnen mit solchen positiven Vielfach-
heiten py,,...,u, versehen werden, daB3 der gesamte Grad

gyt U e =9 Y1 Vi -

ist, wo g der reduzierte Grad von M ist und g¢,,..., g, die reduzierten
Grade der Schnittbestandteile sind.

4.5. Sind f und ¢ Formen gleichen Grades, von denen die zweite Null
wird auf M, so stimmt der Durchschnitt von M mit der Hyperfliche
f = 0 genau iiberein mit dem von M mit f + A¢g = 0, auch was die
Vielfachheiten der irreduziblen Bestandteile betrifit.

4.6. Ein Punkt P einer rein a-dimensionalen Mannigfaltigkeit M
heiB3t ein s-facher Punkt von M , wenn ein allgemeiner, durch P gelegter
linearer Raum &§,_, die Mannigfaltigkeit im Punkte y mit der Multipli-
zitdt s schneidet. Ist s = 1, so heiit P ein einfacher Punkt von M . Eine
Mannigfaltigkeit mit lauter einfachen Punkten heiBt singularititenfrer
oder glatt.

4.7. Eine a-dimensionale Mannigfaltigkeit M hat in jedem einfachen
Punkt einen 7Tangentialraum S,, Durchschnitt der Tangentialhyper-
ebenen aller Hyperflichen durch M. Wenn umgekehrt M in P einen
Tangentialraum besitzt, so ist P ein einfacher Punkt von M.
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§ b. Zugeordnete Formen und algebraische Systeme von algebraischen
Mannigfaltigkeiten

Beweise : Chow und v. d. Waerden, ZAG 9, Math. Ann. 113, p. 692.
Zum Teil auch Einf. alg. Geom. § 37.

5.1. Die zugeordnete Form einer irreduziblen nulldimensionalen Man-
nigfaltigkeit, bestehend aus den konjugierten Punkten y‘V,... y*) ist
das Produkt

h

Fu)= I (w9 + w9 +- -+ u,y)
v=1

oder im Fall eines unvollkommenen Korpers von der Charakteristik p eine

solche p’-te Potenz dieses Produktes, daB die Form dem Grundkorper 2

angehort.

5.2. Die zugeordnete Form F(u;uV,...,u™) einer irreduziblen
r-dimensionalen Mannigfaltigkeit M ist definiert als die zugeordnete Form
der nulldimensionalen Schnittmannigfaltigkeit von M mit den allgemei-
nen Hyperebenen u«, ... u™. Sie ist (bis auf einen Faktor 4-1) von
der Reihenfolge der Hyperebenen «,uY,..., 4" unabhingig. Ihr Grad
hei3t der Grad von M und ist im Fall eines vollkommenen Grundkorpers
Q gleich dem reduzierten Grad (4.1), sonst gleich diesem mal 27.

5.3. Die zugeordnete Form einer rein r-dimensionalen Mannigfaltig-
keit, deren irreduzible Bestandteile mit Vielfachheiten e,,...,e, ver-
sehen sind, ist das Produkt der zugeordneten Formen dieser Bestandteile
mit Exponenten e,,...,¢e;:

F =FaFs .. Fo.

5.4. Die Bedingung dafiir, daBl die Hyperebenen »,v?,...,v" einen
Punkt mit M gemeinsam haben, lautet

Fw,oV,, .., 9"N)=0 .

5.5. Die zugeordnete Form bestimmt die Mannigfaltigkeit M ein-
deutig. Thre Koeffizienten koénnen als homogene Koordinaten von M
aufgefaBt werden. Durch diese Koordinaten werden die Mannigfaltig-
keiten M gegebenen Grades und gegebener Dimension eineindeutig
abgebildet auf Punkte eines projektiven Bildraumes 8.

5.6. Die Bedingung, dafl ein Punkt P einer Mannigfaltigkeit M an-
gehort, 1a6t sich durch algebraische Gleichungen zwischen den Koordi-
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naten von P und denen von M ausdriicken. Ebenso li8t sich die Bedin-
gung, dal M in einer anderen Mannigfaltigkeit N enthalten ist, durch
Gleichungen zwischen den Koordinaten von M und N ausdriicken.

5.7. Ein algebraisches System von algebraischen Mannigfaltigkeiten ist
eine solche Menge von Mannigfaltigkeiten M , deren Bildmenge in B eine
algebraische Mannigfaltigkeit ist. Das System heiflt irreduzibel, wenn die
Bildmenge es ist ; die Dimension des Systems ist die Dimension der Bild-
menge.

5.8. Alle Mannigfaltigkeiten gegebenen Grades und gegebener Dimen-
sion in 8, bilden ein algebraisches System.

5.9. Wenn in einer irreduziblen Korrespondenz zwischen M und N
jedem Punkt x von M eine Mannigfaltigkeit N, auf N entspricht, die 1.
immer dieselbe Dimension b hat, wihrend 2. M keine mehrfachen Punkte
besitzt, so bilden diese Bildmannigfaltigkeiten N, ein irreduzibles System
A, und M ist auf A rational abgebildet. — LaBt man die beiden Voraus-
setzungen 1., 2. fallen, so kann man das System A und die rationale
Abbildung von M auf U zwar immer noch definieren, und wenn einem
Punkt x von M in dieser Abbildung eine einzige Mannigfaltigkeit 4, ent-
spricht, so ist auch N, = 4,, andernfalls aber ist N die Vereinigungs-
menge aller Bildmannigfaltigkeiten 4,, die dem Punkte z in der Abbil-
dung entsprechen. Ist = ein einfacher Punkt von M, so ist entweder
N,= A,, oder N, hat eine hohere Dimension als b.

Bemerkung : Die Ausfithrungen dieses Paragraphen lassen sich ohne
weiteres auf Mannigfaltigkeiten von Punktepaaren, Punkttripeln usw.
iibertragen. Am einfachsten geschieht das dadurch, daB die Punktepaare
(z, y) auf Punkte z eines Bildraumes abgebildet werden, die durch die
Koordinaten *

Rit = XYy

definiert werden, wo ¢ vou 0 bis m und % von 0 bis » lduft, wenn z einem
Raume §,, und y einem Raume S, angehort. Diese Bildpunkte z,, bilden
eine algebraische Mannigfaltigkeit Z, deren Gleichungen lauten

ZinZin — 2R = 0 .

Jeder Mannigfaltigkeit M von Punktepaaren (z, y) entspricht einein-
deutig eine Teilmannigfaltigkeit M’ von Z, und als zugeordnete Form von
M kann man die zugeorduete Form von M’ betrachten.
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§ 6. Durchschnitte von algebraischen Mannigfaltigkeiten

Die Sitze dieses § werden in der vorliegenden Arbeit nicht gebraucht.
Beweise : ZAG 14, Math. Ann. 115, p 619.
Der Grundkérper 2 wird in diesem § als vollkommen vorausgesetzt.

6.1. Wenn zwei reine Mannigfaltigkeiten M, und M, , von den
Dimensionen d und n — d in 8, nur endlich viele Punkte gemeinsam
haben, so hat jeder dieser Schnittpunkte eine positive Vielfachheit und
die Summe der Vielfachheiten ist gleich dem Produkt der Gradzahlen,

6.2. Der Durchschnitt zweier Mannigfaltigkeiten M, und M, in S,
hat, wenn d + e = n 4 k ist, keine irreduziblen Bestandteile von klei-
nerer Dimension als k. Falls er auch keine Bestandteile hoherer Dimen-
sion hat, also rein k-dimensional ist, so kann man seine irreduziblen
Bestandteile mit solchen Vielfachheiten u,,...,u, versehen, daB die
Summe ihrer Gradzahlen, multipliziert mit diesen Vielfachheiten, gleich
dem Produkt der Gradzahlen von M, und M, ist:

U191+ Mo g+t u g =9y .

6.3. Durchliuft M, ein irreduzibles System & von algebraischen
Mannigfaltigkeiten, so durchlduft auch die Schnittmannigfaltigkeit @, =
M;-M, ein irreduzibles System von k-dimensionalen Mannigfaltigkeiten
und die Zuordnung M, — @, ist eine irreduzible Korrespondenz zwischen
diesen beiden Systemen. Dieses gilt unter der Voraussetzung, dafl kein
M, des Systems mit dem festen M, einen mehr als k-dimensionalen
Durchschnitt hat. Ist diese Voraussetzung nur fiir das allgemeine Element
M} von @ erfiillt, so kann man das System der @, und die Korrespondenz
M} —-Q,= M}.-M, immer noch definieren, und einem solchen Element
M), von &, das mit M, einen k-dimensionalen Durchschnitt hat, ent-
spricht in der Korrespondenz auch nur ein Bildelement Q) = M} - M,;
hat aber M7, einen mehr als k-dimensionalen Durchschnitt mit M,, so
konnen diesem M ; mehrere Bildelemente @}, entsprechen, von denen jede
als wvirtuelle Schnittmannigfaltigkeit M',- M, bezeichnet werden kann.

6.4. Ist M, eine glatte, rein n-dimensionale Mannigfaltigkeit in S,,
so kann man jede Mannigfaltigkeit M, auf S, zu einem vollstéindigen
Schnitt

M, -K,.r n=M,+N,

erginzen, wobei K, ., so gewihlt werden kann, dafl der Restschnitt IV,
einen vorgegebenen Punkt P von M, nicht enthilt.
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6.5. Ist D, ein irreduzibler Bestandteil des Durchschnittes M,- M,
zweier Mannigfaltigkeiten M, und M, auf M,, von der Dimension k =
d+e—mn, und wird K,,,_, wie in 6.4 so gewihlt, dal K, ., irgend-
einen Punkt von D, nicht enthilt, so wird die Vielfachheit von D, als
Bestandteil von M ;- M, auf M, definiert als die Vielfachheit von D, als
Bestandteil von M;-K,,, ,. Diese Vielfachheit ist von der Wahl von
K,,,_, unabhingig. Die Summe aller D, mit ihren Vielfachheiten ist der
Durchschnitt M ;- M, auf M, .

6.6. Fiir die so definierten Durchschnitte M, - M, = @, gilt wieder
6.3 ; weiter gelten das kommutative, assoziative und distributive Gesetz :

Md'Me = -Me'Md
(Md‘Me)’Mf == Md' (Me’Mf)
Md'(Me + M:) = Md'Me + Md'M;

§ 7. Lineare Scharen

Beweise : ZAG 6, § 5—6, Math. Ann. 110, S. 148, sowie Einf. alg. Geom.
§ 4244

7.1. Eine wirtuelle lineare Schar von (d — 1)-dimensionalen Teil-
mannigfaltigkeiten einer irreduziblen d-dimensionalen Mannigfaltigkeit
M Dbesteht aus den Schnittmannigfaltigkeiten von M mit einer linearen
Schar von Hyperflichen

10F0+11F1+".+11‘F1‘:0’ (1)

von denen keine M enthilt, wobei zu allen diesen Schnittmannigfaltig-
keiten noch eine feste (d — 1)-dimensionale Mannigfaltigkeit, deren Be-
standteile mit beliebigen positiven oder negativen Multiplizititen ver-
sehen sind, hinzugefiigt werden darf. Sind alle Mannigfaltigkeiten der
Schar effektiv, d. h. haben ihre irreduziblen Bestandteile nichtnegative
Vielfachheiten, so heiBt die Schar effektiv. Die Zahl r heiit die Dimension
der Schar. Ein Punkt, der allen Mannigfaltigkeiten einer effektiven Schar
gemeinsam ist, heit Basispunkt der Schar. Eine feste (d — 1)-dimen-
sionale Mannigfaltigkeit, die allen Elementen der Schar als Bestandteil
angehort, heillt fester Bestandteil der Schar.

7.2. Eine lineare Formenschar (1) von der Dimension 7, in der ¢
linear unabhingige Formen vorhanden sind, die M enthalten, schneidet
aus M eine lineare Schar von der Dimension r — ¢ aus.

7.3. Die Dimension r einer linearen Schar ist gleich der Anzahl der
willkiirlichen Punkte, durch die ein Element der Schar bestimmt ist.
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7.4. Eine lineare Schar ist ein irreduzibles System von Mannigfaltig-
keiten : ihre Elemente gehen durch relationstreue Spezialisierung aus
einem allgemeinen Element C) der Schar, dessen Parameter A Unbe-
stimmte sind, hervor.

7.5. Das allgemeine Element einer linearen Schar ohne feste Be-
standteile ist relativ zum Korper £2(4) irreduzibel. Es ist gleichgiiltig, ob
man zuerst ein allgemeines Element (', der Schar und darauf einen all-
gemeinen Punkt & bestimmt oder zuerst einen allgemeinen Punkt & von
M nimmt und durch ihn ein moglichst allgemeines C', der Schar legt :
beide Male erhilt man bis auf Isomorphie dasselbe Paar (4, £). Die durch
das allgemeine Paar (1, &) bestimmte irreduzible Korrespondenz zwischen
dem Parameterraum S, und der Mannigfaltigkeit M ordnet jedem spe-
ziellen Punkt A’ von 8, genau die Punkte von C,’ zu.

7.6. Jede lineare Schar ohne feste Bestandteile definiert eine ratio-
nale Abbildung von M auf eine Bildmannigfaltigkeit M’ in S,, wobei den
Mannigfaltigkeiten C, die hyperebenen Schnitte von M’ in folgendem
prézisen Sinne entsprechen: Liegt ein Punkt P auf C), so liegt mindestens
einer seiner Bildpunkte P’ in der entsprechenden Hyperebene ; liegt um-
gekehrt einer der Bildpunkte P’ in dieser Hyperebene, so liegt P auf C,.
Die Fundamentalpunkte der Abbildung, d. h. die Punkte P, die mehr als
endlich viele Bildpunkte P’ haben, sind die Basispunkte der Schar.
Einem s-fachen Punkt von M, der nicht Fundamentalpunkt ist, ent-
sprechen hochstens s Bildpunkte, insbesondere einem einfachen Punkt
nur ein Bildpunkt.

7.7. Ist M rational auf M’ abgebildet, so entspricht jeder linearen
Schar ohne feste Bestandteile auf M’ eindeutig eine ebensolche Schar
auf M. Ist die Abbildung birational, so ist das Entsprechen eineindeutig.

7.8. Die Elemente einer effektiven linearen Schar von der Dimen-
sion r, die einen gegebenen einfachen Punkt P von M enthalten, bilden,
sofern P nicht Basispunkt der Schar ist, eine lineare Teilschar von der
Dimension r — 1. Hilt man k einfache Punkte P,,...,P, fest (k=7r),
so erhilt man eine Teilschar von der Dimension 7’ mit

r—kzr'sr .

Hilt man irgendwelche (4 — 1)-dimensionale Teilmannigfaltigkeiten
fest, die nicht aus lauter einfachen Punkten von M bestehen, so bilden
diejenigen Elemente der linearen Schar, die diese Teilmannigfaltigkeiten
mit vorgegebener Vielfachheiten enthalten, falls es solche Elemente iiber-
haupt gibt, eine lineare Teilschar.
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7.9. Wenn zwei lineare Scharen ein Element gemeinsam haben, so
sind sie in einer beide umfassenden linearen Schar enthalten. Sind beide
Scharen effektiv, und ist die Mannigfaltigkeit M glatt, so ist die um-
fassende Schar auch effektiv.

§ 8. Divisoren und lineare Scharen auf glatten Mannigfaltigkeiten

Beweise : Einf. alg. Geom. § 46—47, sowie Chow, Math. Ann. 114,
P. 6565. Von jetzt an sei M eine glatte, irreduzible d-dimensionale Mannig-
faltigkeit.

8.1. Werden irgendwelche (d — 1)-dimensionale Teilmannigfaltig-
keiten von M mit beliebigen ganzzahligen Vielfachheiten versehen, so
bilden sie einen Divisor, und wenn alle Vielfachheiten positiv sind, einen
ganzen Divisor.

8.2. Sind (r + 1) linear unabhéngige Divisoren einer r-dimensionalen
Schar ganz, so ist die Schar effektiv, d. h. alle ihre Divisoren sind ganz.

8.3. Jede effektive lineare Schar 14Bt sich zu einer eindeutig be-
stimmten Vollschar erweitern, die sich effektiv nicht mehr erweitern 148t.

8.4. Zwei Divisoren C, D heilen dquivalent, wenn sie in einer linearen
Schar enthalten sind. Die Aquivalenz ist symmetrisch, reflexiv und tran-
sitiv. Die zu einem Divisor dquivalenten Divisoren bilden eine Divisoren-
klasse. Die ganzen Divisoren einer Klasse bilden, falls es sie gibt, eine
Vollschar. ’

8.5. Durch Zusammenfassen der irreduziblen Bestandteile zweier
Divisoren und Addition ihrer Vielfachheiten bildet man ihr Produkt. Die
Divisoren bilden bei der Multiplikation eine abelsche Gruppe. Die zum
leeren Divisor oder Einsdivisor dquivalenten Divisoren bilden darin eine
Untergruppe : die Einsklasse. Die Faktorengruppe nach der Einsklasse
ist die Divisorenklassengruppe.

8.6. Uber die Sitze von Bertini siehe ZAG 10, Math. Ann. 113, p. 705,
sowie Chow, Math. Ann. 114, p. 664.

8.7. Der zur Mannigfaltigkeit M gehorige Funktionenkérper besteht

aus allen rationalen Funktionen
_ 1)
P79

wo & ein allgemeiner Punkt von M ist, wihrend f und g Formen gleichen
Grades sind. Der Divisor einer solchen Funktion ¢ ist der Quotient der
von den Hyperflichen f = 0 und g = 0 auf M ausgeschnittenen Divi-
soren.
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§ 9. Divisoren auf einer algebraischen Kurve

Beweise : W.-L. Chow, Math. Ann. 114, p. 655, oder Einf. alg. Geom.
§ 45. Von jetzt an sei der Konstantenkorper 2 vollkommen.

9.1. Jedeirreduzible Kurve I"kann durch birationale Transformation
in eine glatte Kurve I verwandelt werden. Jedem Punkt von I ent-
spricht dabei ein einziger Punkt von I', einem Punkt von I" konnen aber
mehrere Punkte von I entsprechen.

9.2. Eine Stelle von I" ist ein Punkt von IV, Ist I eine zweite glatte
birationale Transformierte von I', so entsprechen sich die Punkte von I
und I'” eineindeutig ; der Begriff der Stelle ist also von der Wahl von I’
unabhingig.

9.3. Ein Divisor von I ist ein Divisor von I'". Auch die Begriffe Aqui-
valenz, Divisorenklasse, Vollschar usw. werden auf [ definiert. Alle diese
Begriffe sind von der Wahl von I unabhingig.

9.4. Die Vielfachheit eines Schnittpunktes P von I' mit einer Hyper-
fliche H ist eine Summe von Beitrigen der einzelnen P entsprechenden
Stellen P’ von I/, die so definiert werden : Man bette H ein in die lineare
Schar aller Hyperflichen gleichen Grades, deren allgemeines Element H
sei. Diese lineare Schar schneidet aus I' eine lineare Schar von Punkt-
gruppen aus, der auf I'” wieder eine lineare Schar entspricht. Bei der
Spezialisierung H,—H erhilt man nicht nur auf I', sondern auch auf I
durch relationstreue Spezialisierung eine ganz bestimmte Punktgruppe,
in der jeder Punkt P’ mit einer gewissen Vielfachheit vorkommt. Diese
heiBt die Schnittmultiplizitit von H und I fiir die Stelle P’.

9.5. Jede rationale Funktion

_ 19
g(&)

im Sinne von 8.7 hat an jeder Stelle P’ eine gewisse Ordnung, die als
Differenz der Schnittvielfachheiten des Zahlers und Nenners fiir die Stelle
P’ definiert wird. Ist die Ordnung positiv, so hat man eine Nullstelle, ist
sie negativ, einen Pol der Funktion ¢ . Die Nullstellen und Pole, mit ihren
Ordnungen als Vielfachheiten versehen, bilden den Divisor der Funktion
@ im Sinne von 8.7.

9.6. Die Summe der Ordnungen einer Funktion ¢ ist Null.

9.7. Es gibt zu jeder Stelle eine Ortsuniformisierende 7, d. h. eine
Funktion der Ordnung 1. Alle anderen Funktionen auf I', insbesondere
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die Koordinatenverhéltnisse &, : &,, konnen in Potenzreihen nach v ent-
wickelt werden.

9.8. Umgekehrt gehort zu jedem System von Potenzreihenentwick-
lungen eines allgemeinen Punktes von I

S =0+ 0T+ A v® +---
eine Stelle von I'.
Uber den Zusammenhang des Stellenbegriffs mit dem Bewertungs-
begriff siehe § 11.

§ 10. Differentialklasse, adjungierte Kurven und Riemann-Rochscher
Satz

Beweise : Einf. alg. Geom. § 48—51.

10.1. Sind ¢ und 7 rationale Funktionen auf einer Kurve I, so heil3t
der Ausdruck ¢d# ein Differential des Funktionenkodrpers. Die Gleich-
heit ¢dn = ypd{ bedeutet

an _ v
4

¢

Ist v Ortsuniformisierende einer Stelle P’ und setzt man ¢dy = yd7,
so versteht man unter der Ordnung des Differentials an der Stelle P’ die
Ordnung von y in P’. Ist sie positiv, so hat man eine Nullstelle, ist sie
negativ, einen Pol des Differentials. Die Nullstellen und Pole, mit ihren
Ordnungen als Vielfachheiten versehen, bilden den Divisor des Differen-
tials. Die Divisoren aller Differentiale bilden eine Divisorenklasse W. Ein
Differential ohne Pole heil3t Differential erster Gattung.

10.2. Eine ebene Kurve I' habe die Gleichung f = 0. Die Polare
eines Punktes ¢ wird durch

& 0

= qx0xf =0 (ak o= —a&:)

definiert. Sie schneide die Kurve I in einem Punkte P, und die Schnitt-
multiplizitit an einer zu P gehorigen Stelle P’ sei »’. Die Verbindungs-
gerade PQ schneide I" an der Stelle P’ mit der Multiplizitét «’. Dann ist

a/:yl__(Kl__ 1)
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unabhingig von der Wahl von ¢ und nicht negativ. Der Divisor, der aus
allen Stellen P’ mit den Vielfachheiten ¢’ besteht, heit der Doppelpunkts-
divisor von I'. Eine Kurve g = 0 heiBt zu I" adfungiert, wenn ihr Schnitt
mit I" durch den Doppelpunktsdivisor teilbar ist.

10.3. Satz vom Doppelpunktsdivisor. Wenn eine Kurve g = 0 aus I"
den Divisor Gt ausschneidet und wenn eine adjungierte Kurve F = 0 aus
I' mindestens den Divisor DG ausschneidet, wo D der Doppelpunkts-
divisor von I’ ist, so gilt eine Identitit

F = Af 4+ By ,
wobei die Kurve B = 0 zu I" adjungiert ist.

10.4. Die adjungierten Kurven irgendeines Grades schneiden aus I'
auBler dem Doppelpunktsdivisor eine Vollschar aus. Insbesondere schnei-
den die adjungierten Kurven (n — 3)-Ordnung die zur Differentialschar
W gehorige Vollschar aus.

10.5. Die Anzahl der linear unabhéngigen Differentiale erster Gat-
tung, oder die um 1 vermehrte Dimension der zu W gehorigen Vollschar,
hei3t das Geschlecht g von I'. Ist ¢ = 0, so ist I' rational. Die Summe der
Ordnungen eines Differentials ist 29 — 2.

10.6. Reduktionssatz. Es sei C ein ganzer Divisor und P eine Stelle.
Wenn es einen ganzen Divisor der Differentialklasse gibt, der C, aber
nicht C P enthilt, dann ist P ein fester Punkt der Vollschar | C'|, und
umgekehrt.

10.7. Rriemann- Rochscher Satz. Ist dim C die Dimension einer Divi-
sorenklasse C', d. h. die um 1 verminderte Anzahl der linear unabhingigen
ganzen Divisoren der Klasse, und ist ¢ der Grad der Klasse, d. h. die
Summe der Vielfachheiten aller Punkte eines Divisors der Klasse, so gilt

dmC=c¢c—¢g+1,
wobei der Spezialititsindex = 0 durch

i:l-{—dim%

definiert ist. Ist ¢ >0, so heift die Klasse und jede ihrer Divisoren spe-
zial. Ist dim C = g oder ¢ > 29— 2, dannist ¢ = 0 und die Klasse ist
nicht spezial.
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Zweiter Teil

Anwendung der algebraischen Geometrie auf die
arithmetische Theorie der algebraischen Funktionenkorper

§ 11. Die Kurve [I'

Wie Hasse gehen wir von einem algebraischen Funktionenkorper
K = Q(x,y) vom Geschlechte ¢ mit f(x,y) = 0 aus. Hasse definiert
nun (§ 3) mit Hilfe einer Divisorenklasse M dieses Funktionenkorpers
neue homogene Erzeugende z,:...: z,, leitet ein System (G) von homo-
genen algebraischen Gleichungen zwischen z,,...,%, her und bemerkt
dazu : In der Ausdrucksweise der algebraischen Geometrie ist der Uber-
gang von der urspriinglich gegebenen Erzeugung K = Q(z,y) mit
f(x,y) =0 zu einer Erzeugung K= Q(z,:... : z,) mit (G) eine biratio-
nale Transformation der gegebenen zweidimensionalen affinen Kurve in
eine n-dimensionale projektive Kurve mit lauter einfachen Punkten. In
der Tat kann man in Anschlul an die Hasseschen Ausfiihrungen bewei-
sen, daf} die Gleichungen (@) eine irreduzible algebraische Kurve I" defi-
nieren, deren allgemeiner Punkt die Koordinaten z,,...,x, hat, dafl
diese Kurve zur Kurve f(x,y) = 0 birational dquivalent ist, dafl die
Schnittpunktgruppen von I' mit den Hyperebenen des Raumes S, den
ganzen Divisoren der Klasse M entsprechen und daf3 die Kurve I' lauter
einfache Punkte hat. '

Wesentlich einfacher werden aber die Beweise, wenn man nicht erst am
Schlul der Rechnungen, sondern gleich am Anfang die Begriffe und Aus-
drucksweise der algebraischen Geometrie einfithrt. Man gehe zunéchst
von der affinen zur projektiven Ebene 8, iiber, indem man die Gleichung
f(x,y) = 0 homogen macht. Die so erhaltene Kurve in S, kann nach 9.1
durch birationale Transformation in eine glatte Kurve I in einem pro-
jektiven Raum S, verwandelt werden. Geht man den Beweis des Satzes
9.1 noch einmal durch, so sieht man leicht, dal die Dimension des
Raumes 8, beliebig groB8 gewihlt werden kann ; wir konnen also n= 2¢g
annehmen. Die Hyperebenen des Raumes S, schneiden aus der Kurve I"
eine lineare Schar von Punktgruppen aus, von der wir annehmen konnen,
daB sie eine Vollschar ist. Der Existenzbeweis der glatten Kurve I" kann
ndmlich leicht so gefiihrt werden, dafl dabei nur Vollscharen verwendet
werden. Man kann auch nachtriglich die die Transformation vermittelnde
lineare Schar zu einer Vollschar erweitern.

Ein allgemeiner Punkt von I" habe die Koordinaten &,,...,&,, wobei
wir &, = 1 normieren konnen : dann sind &,,.."., &, sidmtlich Elemente
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des Funktionenkérpers K. Sie entsprechen den Hasseschen Erzeugenden
Ty s = Ly

Ist p ein ,algebraischer Punkt* von K/Q im Sinne von Hasse, d. h. ein
Primdivisor des Korpers K = Q(x,y) oder ein ,Punkt“ im Sinne von
Dedekind. und Weber?), wo Q der zu Q2 gehorige algebraisch abgeschlos-
sene Korper ist, und ist &; eine von den Koordinaten &,, die die kleinste
Ordnung an der Stelle p haben, so bleiben alle £; &, endlich an der Stelle
p, und durch

Pr =& 1&(p)

ist ein Punkt p mit den Koordinaten p,,...,p, definiert, die alle end-
lich und nicht alle Null sind. Alle homogenen Gleichungen F (&) = 0, die
fiir die &, gelten, gelten auch firr & '¢£,, also auch fir die p,; also ist p
ein Punkt der Kurve. Wir beweisen nun :

11.1. (Vgl. Hasse § 3, 2.) Verschiedene ,algebraische Punkte“ P, q
ergeben auch verschiedene Punkte p, q von I

11.2. (Vgl. Hasse § 3, 5.) Alle Punkte p der Kurve I mit Koordinaten
aus Q konnen in dieser Weise erhalten werden.

Beweis von 11.1. Gesetzt, zwei verschiedene Primdivisoren p, q
wiirden denselben Punkt p (p,,...,p,) ergeben. Ohne Beschrinkung der
Allgemeinheit konnen wir p, =1 und &, = 1 annehmen. Es sei &, ,
eine Funktion des Korpers, die fiir p und q verschiedene endliche Werte
£,0a(P) und £,..(q) annimmt. Durch die homogenen Koordinaten
(o> E15v - o5 Ep» &,yy) 18t ein allgemeiner Punkt £* einer Kurve I'™*in S,
definiert (2.2). Da die Koordinaten von £* rationale Funktionen von
denen von ¢ sind und umgekehrt, so ist I™ birational auf I" abgebildet,
und zwar wird der einem Punkt p*(po, Pys---> Pns Puy) vOn I'* ent-
sprechende Punkt p(po,...,p,) von I' gefunden, indem die letzte
Koordinate einfach weggelassen wird. Zu jedem Primdivisor p oder q des
Korpers K gehort nach der oben angegebenen Vorschrift nicht nur ein
Punkt von I', sondern auch ein Punkt von I'*, und zwar gehoren zu\'ﬁ
und q zwei verschiedene Punkte von I'*, da &, ,(p) # &,...(q) sein sollte.
Diese zwei Punkte von I'* stimmen aber in allen Koordinaten aufler der
letzten iiberein, daher entspricht ihnen in der birationalen Abbildung ein
und derseibe Punkt p von I'. Einem einfachen Punkt p von I" kann aber
in einer birationalen Abbildung nur ein Punkt von I"* entsprechen (7.6).

1) Dedekind und Weber, Crelle’s Journal 92, (1882) p. 181.

85



Beweis von 11.2. Zu einem Punkt p von I" gehort eine Bewertung des
Funktionenkérpers K , die folgendermaBen definiert wird : Jede Funktion
des Korpers kann als Quotient von Formen gleichen Grades in &,,...,&,
geschrieben werden : FlEarens &)

LT R

Die Flachen f =0 und g = 0 schneiden I" in p mit bestimmten Multipli-
zititen u und ». Dann wird die Bewertung durch

w(p)=u—v»

definiert. Die Eindeutigkeit der Definition und die Eigenschaft w(py) =
w(p) + w(yp) sind klar. Die Eigenschaft

w(@ + ) = Min (w(p), w(y))

kommt darauf hinaus, daBl die Schnittmultiplizitdt von f, + f, oder all-
gemeiner von A,f, + 4,f, mit I" mindestens gleich der kleineren der
Schnittmultiplizitdten von f, und f, mit I" ist. Dies aber folgt aus 7.8.

Diese Bewertung definiert bekanntlich einen Primdivisor des Kérpers
K im Sinne von Dedekind und Weber. Jedes Element ¢ des Bewertungs-
ringes ist ndmlich modulo dem Bewertungsideal einer Konstanten « aus
Q kongruent, und die Zuordnung ¢ —  ist ein ,,Punkt“ p im Dedekind-
Weberschen Sinne. Wir schreiben ¢ (p) = .

Nimmt man wieder p,= 1 und &, = 1 an, so haben die Funktionen
£ — D1+, &y — P, in der eben definierten Bewertung positive Ord-
nungszahlen, also gehoren sie dem Bewertungsideal an, mithin ist

£0(P) = Po, E1(P) = P1s-- -5 Ea(P) = D0 -

Das heiBt aber : der dem ,,algebraischen Punkt“ p entsprechende Kurven-
punkt ist genau der Punkt p, von dem wir ausgegangen sind. Damit ist
11.2 bewiesen.

Nach 11.1 und 11.2 entsprechen die ,algebraischen Punkte“ p des
Korpers K eineindeutig den Punkten p der Kurve I" mit Koordinaten aus
Q. Wir brauchen daher von jetzt an zwischen p und p nicht mehr zu unter-
scheiden. Wir bezeichnen mit Hasse p,,...,p, als die homogenen Koor-
dinaten des Punktes p.

Als weitere Vereinfachung lassen wir von jetzt an die Querstriche, die
bei Hasse zum Ausdruck bringen sollen, da8 die Koordinaten p, dem
Korper Q angehoren sollen, weg. Wir bezeichnen die Punkte von I" also
einfach mit P, p oder p, ihre Koordinaten mit p,, die Punktgruppen
mit A, O, usw.
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§ 12. Die Chow-Koordinaten eines Divisors

Ein ganzer Divisor A = pMp® ... p® d. h. eine Punktgruppe auf
I, kann nach 5.5 eindeutig charakterisiert werden durch’ die zugeord-
nete Form

A (u) = PO (y) P® (u)...PW(y) ,
WO
PO (u) = p{uy + p{uy +- -+ 20U,

Die Koeffizienten der Form A (z) nennen wir die Chow-Koordinaten des
Divisors U, weil Chow als erster die zugeordneten Formen systematisch
als Beweismittel in die algebraische Geometrie eingefiihrt hat.

Hasse definiert die Koordinaten von U etwas komplizierter. Fiir jeden
Punkt p® werden die mit Unbestimmten w,,...,%, gebildeten Aus-
driicke p;x; — p;x; irgendwie als Py(x),...,P,(x) durchnumeriert und
dann die Form

FO) (x,t) = Py(x)t" + Py(2)t™' +-- -+ P, ()

gebildet. Multiplikation dieser Formen ergibt eine Form @&(x,f), deren
Koeffizienten die Hasse-Koordinaten von U sind.

Die Beziehnung zwischen den Hasse-Koordinaten und den Chow-
Koordinaten ist leicht zu finden. Die Form F®)(x,¢) ist ndmlich linear in
Pos- - -, P, und entsteht folglich aus der Linearform

P(V)(u) = pgv)’“o + tee + pgpun ’

indem fiir die u,; gewisse ganzzahlige Polynome in den « und ¢ eingesetzt
werden. Folglich entsteht auch das Produkt @(x,t) aus dem Produkt
A (u) durch dieselbe Substitution. Somit sind die Koeffizienten von
@ (x,t) gewisse ganzzahlige Linearkombinationen der Koeffizienten von
A (u), m. a. W. die Hasse-Koordinaten sind ganzzahlige Linearkombina-
tionen der Chow-Koordinaten.

Umgekehrt sind bei Charakteristik Null nach Franz (Hasse, § 3, 3) alle
symmetrischen Funktionen der Koordinaten von p@,... ,p®  also ins-
besondere die Chow-Koordinaten, homogene Polynome in den Hasse-

Koordinaten.
Wir werden im folgenden nur mit den Chow-Koordinaten arbeiten,

weil sie einfacher definiert, frei von Willkiir und leichter zu handhaben
sind.
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§ 13. Die Mannigfaltigkeit aller Gruppen von g Punkten auf [’

Es sei g das Geschlecht der Kurve I". Wenn im folgenden von Punkt-
gruppen die Rede ist, so sind damit immer ganze Divisoren

A = p(l)p(z). ., p(g)

vom Grade g auf I' gemeint. Einer solchen Punktgruppe entspricht nach
§ 12 eine zugeordnete Form

A(u) = APV (u) PP (u)... P9 (u) , (1)

deren Koeffizienten die Chow-Koordinaten a,,...,a, von U sind. Faf3t
man sie als Koordinaten eines Bildpunktes 4 in einem A-dimensionalen
Bildraum S, auf, so erhilt man eine Abbildung der Gesamtheit aller
Punktgruppen U auf eine Gesamtheit von Bildpunkten in §,. Wir wollen
beweisen, daf} diese Gesamtheit eine algebraische Mannigfaltigkeit M ist.

Vergleicht man in (1) links und rechts die Koeffizienten der Potenz-
produkte der u, so erhdlt man Gleichungen der Form

a; = Ag;(p?,...,p?) , (2)

die durch Elimination von 4 homogen werden :

a’jgk(p(l)>° % @y p(g)) - a’kgj(p(l),- . ey p(g)) == 0 “ (3)

Dazu kommen die Gleichungen, die ausdriicken, dafl die Punkte p®
auf I' liegen :

fo(p®) =0 . (4)

Aus den homogenen Gleichungen (3), (4) eliminieren wir p®,. .. p@
durch Bildung des Resultantensystems

R,(ag,...,a,) =0 . (5)

Die Gleichungen (5) sind notwendig und hinreichend, damit a,,...,a,
die Koordinaten einer Punktgruppe U auf I"sind. Also bilden diese Punkt-
gruppen eine algebraische Mannigfaltigkeit M .

Diese Mannigfaltigkeit M ist irreduzibel; denn alle Punktgruppen
A = pW... p¥? entstehen durch relationstreue Spezialisierung aus
einer allgemeinen Punktgruppe X = IIV...II¥, wo IIV,. .., II?
unabhingige allgemeine Punkte von I sind.
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Wir wollen nun beweisen, dafi die Mannigfaltigkeit M glatt ist, d. h.
lauter einfache Punkte hat. Dazu dient das folgende

Kriterium. Wenn die Koordinaten 1,&,...,&, eines allgemeinen
Punktes einer g-dimensionalen Mannigfaltigkeit M separable Funktionen
von den g algebraisch unabhdingigen &,,...,§&, sind und wenn von den ver-
schiedenen konjugierten Punkten &% mat Koordinaten (1,&,...,¢&,,
5;’21,. ., EMY O die zu den gegebemen &,,. .., &, gehdren, bei der relations-
treuen Spezialisierung &£ —n®) nur einer in den Punkt n(1, ny,...,n,)

sbergeht, dann ist n etn einfacher Punkt von M .

Beweis: Die Punkte £ sind die Schnittpunkte von M mit den Hyper-
ebenen

xk—"xogkzo (kzl,...’g). (6)

Da jedes &, ; eine separable Funktion von &;,..., &, ist, so gilt fiir jedes
von ihnen eine Gleichung

filéyse oo, € Eg—i-i)”‘_“o (7)

mit

ag+ifi(§1:- s e Eg? 59+i) # 0.

Die Gleichung (7) kann durch Einfithrung von &, homogen gemacht
werden. Sie gilt fiir den allgemeinen Punkt, also fiir alle Punkte von M,
d. h. die Hyperfliche f, = 0 enthédlt M. Die Tangentialebene dieser
Hyperfliche im Punkte & hat nach 1.8 die Gleichung

20f;(§) + 10,1 (8) 4+ - -+ 2,0,f:(8) + 2,4:0,4:f:(£) = O . (8)
Die Gleichungen (6) und (8) bestimmen die Verhéltnisse
Zo i@y iv oo 1Ty Xypq i L X,

eindeutig, denn wenn x, willkiirlich angenommen wird, so bestimmen sich
Zy,...,x, aus (6), die iibrigen z,,; aus (8). Also zdhlt (nach Kriterium
1.8) der Punkt & als Schnittpunkt von M mit den Hyperebenen (6) ein-
fach, und dasselbe gilt von den konjugierten Punkten £). Spezialisiert
man also ein System von 7 allgemeinen Hyperebenen zunéichst zu den
Hyperebenen (6), so gehen die Schnittpunkte von A/ mit den allgemeinen
Hyperebenen in die nur einmal gezidhlten Punkte £ iiber. Spezialisiert
man nun weiter &; -, (j=1,...,r), so entsteht der Punkt # bei
dieser Spezialisierung nach Voraussetzung ebenfalls nur einmal. Also ist
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7 ein einfacher Schnittpunkt von M mit den Hyperebenen z; — x,7, = 0
und. somit ein einfacher Punkt von M.

Als Anwendung dieses Kriteriums beweisen wir nun, dal die Mannig-
faltigkeit M der Punktgruppen U lauter einfache Punkte hat.

Es sei A =p?...p9 eine solche Punktgruppe. Die Punkte

pM,. .., p® mogen alle im endlichen liegen (p{” % 0) und es moge
P = 1 gewdhlt werden (¢ = 1,...,g). Die Tangenten von I"in diesen
Punkten moégen die uneigentliche Hyperebene z, = 0 in den Punkten
q?,...,q"9 schneiden und die Verbindungslinien ' p moge dieselbe

Hyperebene in ¢*) schneiden. Wir wihlen die Koordinatenebene z, = 0
so, daf} sie keinen der Punkte ¢®, ¢/ und keinen der uneigentlichen
Punkte von I' enthélt. Dann werden die Hyperebenen

1
o, = pPay,..., 2, = PPz ,

die parallel zur Koordinatenebene x, = 0 sind, ebenfalls die Punkte
gV,..., q¢'9 nicht enthalten, also werden sie auch die Tangenten von I
in den Punkten »®,..., »'? nicht enthalten, d. h. sie beriihren I" in
diesen Punkten nicht. Auch enthélt keine von ihnen zwei verschiedene
Punkte p®, p¥), denn sonst miilte deren Verbindungsgerade und somit
auch der Punkt ¢/ in der betreffenden Ebene liegen.

Die Koordinaten von U sind die Koeffizienten der Form (1), wobei wir
A =1 annehmen diirfen. Unter ihnen heben wir besonders die Koeffi-
zienten a; von u{ ‘u! hervor. Setzen wir in (1) uy=---=u,=0, so
bleiben nur diese Glieder iibrig und wir erhalten

2 a; ug_i ’“i = (uy + P(11) uy) (U + p(lz) Uy) ... (Ug + Ip(lg)%) .

?

Folglich ist @y =1 und a,,...,a, sind die elementaren symmetri-
schen Funktionen der ersten Koordinaten p{V,...,7p? der Punkte
p(l)’. ”’p(y)_

Dies gilt fiir jede Punktgruppe, also auch dann, wenn die Punkte
pW ..., p'? durch ebensoviele allgemeine Punkte 77V ..., II¥) von I
ersetzt werden, deren erste Koordinaten I7(",..., IT{’ unabhingige Un-
bestimmte sind. Von den Koordinaten «,,...,x, dieser allgemeinen
Punktgruppe ist oy =1, und «,,...,«, sind die elementar-symmetri-
schen Funktionen der Unbestimmten I7(",...,II{".

Nun ist klar, daB die Unbestimmten II(,...,II{¥ separable Funk-
tionen sind ; denn sie sind Wurzeln einer Gleichung

I — 1 + I 2y —---=20
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mit lauter verschiedenen, ndmlich unbestimmten Wurzeln I7(,. .., IT{).
Die iibrigen Koordinaten II{’,...,IT%" eines jeden dieser Punkte sind
wiederum separable Funktionen der ersten Koordinaten IT{*), wie wir
nachher beweisen werden. Also sind alle I7{? separable Funktionen von
®y5...,%. Dann sind aber auch alle Koordinaten der Punktgruppe
v, . II9 separable Funktionen von «,,...,«,, d. h. die erste Be-
dingung des Kriteriums ist erfiillt.

Um auch die zweite Bedingung zu verifizieren, setzen wir die relations-
treue Spezialisierung o«,,...,%, >a;,...,a, zu einer relationstreuen
Spezialisierung nicht nur sdmtlicher Punkte I7%,... II9’, sondern
auch simtlicher konjugierter Schnittpunkte I71',..., [1¢%") der Hyper-
ebenen x, — 2, [TV = 0,..., 2, — 2, [T\ = 0 mit der Kurve I fort.
Kombiniert man jeden der m Punkte I7") mit jedem der m Punkte 72",
usw. bis /7" | so erhilt man m? Punktgruppen (IT0V [1C# . . IT@), Die
ersten g 4 1 Koordinaten dieser Punktgruppen, ndmlich die Koeffizien-
ten der Potenzprodukte «¢~*wu! in ihrer zugeordneten Form, sind alle
gleich den elementarsymmetrischen Funktionen 1,«,,...,«, der Koor-
dinaten II(",...,II{". Diese Punktgruppen sind auch die einzigen
Punktgruppen von I', deren erste g + 1 Koordinaten diese Werte haben.
Wir haben nun nachzuweisen, dafl bei der Spezialisierung «,—a,,...,
«, — a, nur eine von diesen Punktgruppen in A = p® ... p@ iiber-
geht.

Bei dieser Spezialisierung mogen die Punkte I7Y in p» iibergehen.
Da die ersten Koordinaten II{*¥ alle gleich JI{" sind, so sind auch nach
der ‘Spezialisierung die ersten Koordinaten p{!™ alle gleich p{", ent-
sprechend alle p**) = p{¥ ... und alle p{?*’ = p{?. Die Punkte I714)
sind die Schnittpunkte der Hyperebene ;, — z, II{" = 0 mit der Kurve
I'; die spezialisierten Punkte p(*? sind also die Schnittpunkte der Hyper-
ebene x, — x,p{") = 0 mit I". Gesetzt nun, es wiirden bei der Speziali-
sierung zwei von diesen Punkten /7% in den einen Punkt pV hinein-
riicken, so miilte die spezialisierte Hyperebene die Kurve im Punkte p‘!
beriihren. Dies ist aber nicht der Fall, also riickt nur einer von den
Punkten /7% in p» hinein, ebenso nur ein I7®# in p®, usw. bis p'?.
Daraus folgt leicht, daB nur eine von den m? Punktgruppen 70N [T
- [19) mamlich ITWIT® ... [I9, bei der Spezialisierung in p ...
p'9) iibergeht.

Wir haben noch den Beweis nachzuholen, dal die Koordinaten I7,,. . .,
IT,, eines Punktes von I', dessen erste Koordinate /7; eine Unbestimmte
ist, separable Funktionen von /7, sind. Zum Beweis betrachten wir die
zugeordnete Form von
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F(u,0) = IT (o€ + w, & + -+ -+ u, &) | (9)
wo &) die Schnittpunkte der Hyperebene v mit I" sind. Setzen wir fiir v
speziell die Hyperebene x, — II,x, = 0, so liegen diese Schnittpunkte
£® alle im Endlichen ; wir kénnen also £’ = 1 annehmen. & ist dann
= I7,. Alle £% sind allgemeine Punkte von I, also gehen sie durch Iso-
morphismen auseinander hervor, d. h. sie sind konjugiert iiber Q(I1,).
Daher haben alle Linearfaktoren in der Zerlegung (9) auch gleiche Viel-
fachheiten. Wiren diese Vielfachheiten >1, so wiirden sie nach der
Spezialisierung I, - p, auch noch >1 sein. Aber die Hyperebene
x; — pyxy = 0 beriihrt die Kurve I'im Punkt p nicht. Also sind die Viel-
fachheiten in der Zerlegung (9) alle gleich Eins. Betrachtet man die Form
(9) als Polynom in #,, so hat sie lauter einfache Nullstellen u, = — u, &
— o« — u, &) darunter auch die Nullstelle —w, [T, —- - - —uIT,. Also
ist —w Il —---—u,ll, eine separable Funktion von I71,, u,,..., u,.
Ersetzt man ein w, durch eine andere Unbestimmte v,, so ist auch
—ull,—- - —v, Il —---—u,ll, separabel. Also ist auch die Diffe-
renz (—u; + v,)lI, und somit auch /7, selber separabel iiber K (I1,,u,,
-, U,,V;). Da aber in der irreduziblen Gleichung fiir I7, die Un-
bestimmten u,,...,u%,,v, gar nicht vorkommen, so folgt, dal 17, sepa-
rabel iber K (I1,) ist, was wir beweisen wollten.

§ 14. Algebraischer Ausdruck der Aequivalenz von Divisoren auf [’

Divisorenklassen vom Grade Null heiBBen nach Hasse Nullklassen. Jede
Nullklasse kann durch einen Quotienten O-! P von ganzen Divisoren
g-ten Grades représentiert werden, wobei der Nenner O sogar beliebig
gewihlt werden kann. Die Darstellung ist eindeutig, wenn B reguldr, d. h.
nicht spezial ist. Dies alles folgt leicht aus dem Riemann-Rochschen Satz
(10.7). Man kann bei gegebener Nullklasse 4 den Nenner O immer so
wihlen, daB der Zahler P regulir, also eindeutig bestimmt ist (vgl. Hasse
§ 4, 3). '

Der Ubergang zu einem anderen Nenner O’ wird durch die Aquivalenz

O'P ~O' P’ oder PO'~P'O (1)

vermittelt. Wir wollen diese Aquivalenz durch algebraische Gleichungen
zwischen den Koordinaten von P, O, P', O’ ausdriicken.

Durch die 2¢g Punkte der Punktgruppe PO’ kann man, da die Dimen-
sion » des Raumes S, grofer oder gleich 2g sein sollte, stets eine Hyper-
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ebene v legen. Diese schneide insgesamt eine Punktgruppe R PO’ aus I
aus. Ist nun PO’ '~ P'O, also RPO' ~RP’'O, so muB auch die
Punktgruppe R P’ O durch eine Hyperebene w ausgeschnitten werden, da
die Hyperebenen nach der in § 11 gemachten Voraussetzung eine Voll-
schar ausschneiden. Wenn umgekehrt die beiden Punktgruppen RPO’
und RP’'O je durch eine Hyperebene ausgeschnitten werden, so sind sie
dquivalent und es folgt (1). Die Aquivalenz (1) besagt also genau : Es gibt
zwet Hyperebenen v und w und exne Punktgruppe R, so dafl v die Punkt-
gruppe R PO’ und w die Punktgruppe RP’O auf I" ausschneidet.

Ist A die volle Schnittgruppe einer Hyperebene v mit der Kurve I, so
ist die zugeordnete Form G'(u,v) von W nach 5.2 ganz rational und
homogen in v,,...,v,. Bezeichnen nun P(u), P’'(v), O(u), O'(u),
R(u) die zugeordneten Formen der Punktgruppen B, P’, O, O', R, so
kann die eben kursivierte geometrische Beziehung algebraisch durch

G(u,v) = AR(u)P(u) O (u) @)
G(u, w) = uR(u)P'(u)O(u)

ausgedriickt werden, wobei die Proportionalitétsfaktoren A4 und u nicht
von den u abhéngen diirfen.

Vergleicht man in (2) links und rechts die Koeffizienten der Potenz-
produkte der u, so erhdlt man Gleichungen der Gestalt

g:i(v) = lha(m’ SB’D,) ’
g;,(w) = ph;(R, B, O)
Elimination von 4 und g ergibt homogene Gleichungen
g;’(v)hk(mﬁ %aD/)'—gk(v)hi(ma “B’ D,) =0 (3)
g; (w)h (R, B, O) — g (w)h; (R, P', D) =0 .

Dazu kommen noch die in § 13 (5) hergeleiteten homogenen Gleichun-
gen in den Koordinaten von ‘R, die ausdriicken, dal R eine Punktgruppe

von I ist R,(R) =0 .
Aus den homogenen Gleichungen (3), (4) eliminieren wir durch Bildung

des Resultantensystems nacheinander die v, die w und die Koordinaten
von R und erhalten so das Eliminationsergebnis

Sz(D: EB’D,’ S’B,)——"O . (5)

Die Gleichungen (5) sind homogen in den Chow-Koordinaten der
Punktgruppen O, P, O’, P’ und driicken genau die Aquivalenz (1) aus.
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§ 156. Punkte und relationstreue Spezialisierungen. Beweis des Satzes
von Hasse § 7, 6

Die Ausfiihrungen des vorigen Paragraphen reichen zum Beweis des
von Hasse § 7, 6 formulierten Satzes hin. Bevor wir diesen Beweis er-
bringen, miissen wir aber den Hasseschen Begriff des ,algebraischen
Punktes” eines Funktionenkorpers K vom Transzendenzgrad g nidher
betrachten und mit den Grundbegriffen der algebraischen Geometrie ver-
gleichen.

Hasse geht von einer homogenen Transzendenzbasis X,: X, :...: X,
des Korpers K aus, normiert X, = 1, bildet den Integritétsbereich I der
in bezug auf X,,..., X, ganzen Groflen von K und betrachtet die homo-
morphen Abbildungen von I auf algebraische Erweiterungskorper 2* von
2. Diese Homomorphismen werden dann noch ausgedehnt auf diejenigen
gebrochenen Elemente 7 = ¢ y~! von K, deren Nenner y beim be-
treffenden Homomorphismus nicht in Null iibergeht. Solche Homomor-
phismen nennt Hasse ,,algebraische Punkte” von K.

Sind ¢{;,..., {,, Erzeugende des Integritédtsbereiches I, so wird jeder
Homomorphismus von I durch eine relationstreue Spezialisierung
(C1se s &) > (215 - ., 2,) gegeben. Das Element 7 = f({)g({)~' geht
dabeiin y = f(2)g(2)! iiber.

Zu der Terminologie der algebraischen Geometrie pat die Bezeich-
nung dieser Homomorphismen als ,,Punkte” nicht. Ein Punkt ist in der
algebraischen Geometrie kein Homomorphismus, sondern eine Reihe von
homogenen Koordinaten oder etwas, was durch eine solche Reihe ein-
deutig bestimmt wird, und an diesem Begriff , Punkt® hingen soviele
andere Begriffe und Bezeichnungen, daBl man dasselbe Wort unmoglich
in einer anderen Bedeutung verwenden kann. Was bei Hasse , Punkt®
heift, ist in unserer Bezeichnungsweise eine relationstreue Spezialisierung
¢ -z, der Ubergang von einem allgemeinen zu einem speziellen Punkt
einer algebraischen Mannigfaltigkeit.

Die Unterscheidung des Hasseschen , Punkt“-Begriffes von unserem
war noch nicht notig, solange alle Homomorphismen ¢ — 2z immer von
etnem und demselben allgemeinen Punkt ¢ ihren Ausgang nahmen. In der
Tat konnten wir (§ 11) beweisen, dafl die Hasseschen ,algebraischen
Punkte” p des Korpers K eineindeutig den Punkten p der Kurve I" ent-
sprechen. Eine klare Trennung wird aber notig, sobald Homomorphismen
wie X — P und X’ — PB’, die von verschiedenen X ausgehen, gleichzeitig
betrachtet werden, wie es bei Hasse (§ 7, 6) geschieht.

Wir sahen oben, wie die Spezialisierung { — z die Spezialisierung
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n —y fiir solche Funktionen 7, deren Nenner bei der Spezialisierung
nicht Null werden, induziert. Die Spezialisierung ({,%) — (2,%) ist dann
wieder relationstreu. Denn wenn F({,7) = 0 eine algebraische Rela-
tion zwischen £ und 4 ist, und wenn % = f({)g({)~! in diese Relation ein-
gesetzt und das Ergebnis durch Multiplikation mit einer Potenz von ¢ ()
ganz rational gemacht wird, so bleibt das Ergebnis bei der Ersetzung
{ —z erhalten. Dividiert man nun wieder durch dieselbe Potenz von
g(z) und ersetzt f(z)g(z)~* durch y, so erhilt man F(z,y) = 0. Die
Spezialisierung ({,n) — (z,y) ist also eine relationstreue Fortsetzung der
gegebenen Spezialisierung { — 2z, und zwar die einzig mogliche, denn die

Relation
9(&)n = f(&)

mulB} bei jeder relationstreuen Spezialisierung erhalten bleiben.

Wir sehen also : Wenn # sich als Bruch f({)g({)~* so darstellen lif3t,
dafBl der Nenner fiir { — 2z nicht Null wird, so 148t sich die relationstreue
Spezialisierung { —z eindeutig durch #» —y fortsetzen. Von diesem
Satz gilt auch die Umkehrung :

15.1. Wenn die relationstreue Spezialisterung (£y,...,C,,) = (15« +32m)
sich eindeutig durch n —y fortsetzen lift, so ist n als Quotient
_ 19
T

so darstellbar, dafy der Nenner fiir { =z micht Null wird.

Beweis. Wir kénnen y % 0 annehmen, da man sonst nur z durch
7 — 1 zu ersetzen braucht. In I gilt die Idealtheorie der ganz-abge-
schlossenen Bereiche (Math. Ann. 101, p. 293 oder Mod. Alg. II, § 105).
Im Sinne dieser Theorie setzen wir als gekiirzten Bruch

~ pl"'p')’

T e A

Die gemeinsamen Nullstellen aller Polynome P({) eines Primideals p,
bilden die (nach 2.9 irreduzible) Nullstellenmannigfaltigkeit M, von p,.
Wir zeigen zunichst, daBl M, den Punkt z nicht enthilt. Ist £ ein allge-
meiner Punkt von M;, so kann man durch { — & eine erste relations-
treue Spezialisierung von 2[(,,..., {,] definieren. Da ¢,- - - q, nicht
durch p; teilbar ist, so gibt es im Produkt q,- - - q, ein Polynom A(¢),
das nicht durch p, teilbar ist. Dann ist #-h({) quasiteilbar durch
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P,
Ji- Qs

n-h(8) = p(l) (2)

Qi- - qs = P;

also ganz :

und sogar teilbar durch p;; denn in diesem Fall folgt, da p; ein hoheres
Primideal ist, aus der Quasiteilbarkeit die Teilbarkeit. Da also p(¢)
durch p; teilbar ist, aber % () nicht, so ist p(£) = 0, aber h(&) # 0.
Bei der Spezialisierung ¢ — & mull (2) erhalten bleiben, also muB % bei
dieser Spezialisierung in Null iibergehen. Gesetzt nun, z wire eine Null-
stelle von p;, dann konnte man an diese erste Spezialisierung { —& eine
zweite ebenfalls relationstreue & —z reihen. Dabei bleibt 4y Null; die
erhaltene relationstreue Spezialisierung ist also verschieden von der an-
genommenen Spezialisierung 7 — y £ 0, entgegen der vorausgesetzten
Eindeutigkeit. Also konnen die Nullstellenmannigfaltigkeiten von
Pys- .-, P, den Punkt z nicht enthalten.

Es gibt also in p,---p, Polynome f ({),...,f, (), die fir ==z
nicht Null werden. Ihr Produkt f(¢) ist durch p,- - - p, teilbar und es
ist f(z) £ 0. Da nun f({) durch 5 quasiteilbar ist, so ist f({) auch durch

7 teilbar :
&) =mn-9(0) .

In dieser Gleichung fiithre man die relationstreue Spezialisierung ¢ —z,
1 — y durch. Da die linke Seite nicht Null wird, wird die rechte Seite auch
nicht Null, also ist g(z) = 0. Damit ist die gewiinschte Darstellung

() :
= mit z 0
=910 it g(z) #
gefunden.
Nun seien O und O’ zwei feste Punktgruppen auf I" im Sinne von § 13.
Mit jeder allgemeinen oder in der Bezeichnung von Hasse hochsttranszen-

denten Punktgruppe X ist eine zweite X’ verbunden durch die Aquivalenz

* &
W) o
. Der Hassesche Satz § 7, 6 kann jetzt so formuliert werden :
Ist
8 L “
) b0l

und ist P’ regulir, d. h. nicht spezial (10.7), so lipt sich die relationstreue
Spezialisierung X —P eindeutig durch X'—P’ fortsetzen. Ist umgekehrt
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(X,X) > (P, P') eine Forisetzung der relationstreuen Spezialisierung
X —>P, so gilt (4).

Beweis. Nach § 14 wird die Aquivalenz (3) durch homogene alge-
braische Gleichungen

S8;(0,%,0,X)=0 (5)

ausgedriickt. Bei jeder relationstreuen Spezialisierung miissen diese Glei-
chungen erhalten bleiben, also folgt fiir jede solche Spezialisierung
(X,X") (B, P’) die Aquivalenz (4). Die Fortsetzung einer gegebenen
relationstreuen Spezialisierung X — P ist nach 1.4 immer moglich und
wenn dabei X’ etwa in PB” iibergeht, so gilt (4) auch fiir P”; da aber die
reguldre Punktgruppe P’ durch (4) eindeutig bestimmt ist, so kann P”
nur mit P’ zusammenfallen. Damit ist alles bewiesen.

§ 16. Die Mannigfaltigkeit der Nullklassen

Bei gegebenem O kann man aus jeder Nullklasse 4 einen Représentan-

P

ten - auswéhlen, aber diese Darstellung ist nicht invariant und auch

O

nicht immer eindeutig. Macht man aber (wie Hasse § 6, 3) O variabel

und betrachtet die Gesamtheit aller Repriasentanten % der Nullklasse 4,

so ist diese Gesamtheit eindeutig bestimmt. Nach § 14 ist diese Gesamt-
heit von Paaren (R, ©) durch ein System algebraischer Gleichungen

Sz(Da ‘B? ‘R, 6) =0

gegeben, sie ist also eine algebraische Mannigfaltigkeit NV, . Durchlduft
nun A alle Nullklassen, so durchlduft N ,, wie wir zeigen werden, ein
algebraisches System von algebraischen Mannigfaltigkeiten. Das heilit :
Bildet man die Mannigfaltigkeiten N, auf Punkte ab, so bilden diese
Punkte eine irreduzible algebraische Mannigfaltigkeit K: die Klassen-
mannigfaltigkeit. Die Punkte von & entsprechen eineindeutig den Null-
klassen 4.
Die Gesamtheit aller Paare (R, ©), derart dal

gilt, ist durch das Gleichungssystem

Rz(D’ %7 ma 6)=O (2)
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gegeben. Halten wir O fest und lassen P die ganze in § 13 untersuchte
glatte Mannigfaltigkeit M durchlaufen, so definiert (2) eine algebraische
Korrespondenz zwischen M und der Mannigfaltigkeit N aller Paare
(R, S). Wir wollen nun beweisen :

16.1. Die Korrespondenz (2) ist irreduzibel.

16.2. Jedem P entspricht in der Korrespondenz eine Mannigfaltigkeit
Ng von Paaren (R, ©), die immer dieselbe Dimension g besitzt.

Aus 16.1 und 16.2 folgt nach 5.9:

16.3. Die Mannigfaltigkeiten Ng bilden ein irreduzibles System wvom
algebraischen Mannigfaltigkeiten.

Das ist aber genau das, was wir beweisen wollten. Da ndmlich N offen-

sichtlich nur von der Divisorenklasse 4 = )% abhéngt, so kann man

statt Ny auch N, schreiben. Die N, sind den Nullklassen A eineindeutig
zugeordnet und bilden ern irreduzibles System R von algebraischen Mannig-
faltigkeiten.

Beweis von 16.1. Wir schreiben statt (1)
PR~DGS . (3)

Die Aquivalenz (3) definiert zunichst eine Korrespondenz zwischen
den G und den Produkten T = B R. Diese ist nach dem Kriterium 3.6
irreduzibel, denn erstens bilden die & nach § 13 eine irreduzible Mannig-
faltigkeit, und zweitens entspricht jedem & in der Korrespondenz (3)
eine lineare Schar von Punktgruppen P R = T, die als lineare Schar
selbstverstindlich irreduzibel ist und nach dem Riemann-Rochschen
Satz immer dieselbe Dimension ¢ hat.

Ein allgemeines Paar dieser irreduziblen Korrespondenz erhilt man,
indem man & durch eine allgemeine Punktgruppe G* ersetzt und P R
durch die allgemeine Punktgruppe I* der zugehorigen linearen Schar

I*¥~ O S* . (4)

Alle Tripel (B, R, &) der Korrespondenz (3) erhélt man nun, indem
man zunichst das Paar (T*, ©*) relationstreu zu (¥, &) spezialisiert
und ¥ in allen moglichen Weisen in I = P R zerlegt. Diese relations-
treue Spezialisierung kann man aber fortsetzen zu einer relationstreuen
Spezialisierung aller einzelnen Punkte der Punktgruppe IT*. Also geht

98



die Zerlegung T = PR aus irgendeiner der moglichen Zerlegungen
T* = P* R* durch relationstreue Spezialisierung hervor. Demnach
kann man die Tripel (B, R, &) auch so erhalten : Zunidchst wird das
allgemeine Paar (T*, S*) der Korrespondenz (4) gebildet, dann wird
T* in allen moglichen Weisen in zwei Faktoren P* R* zerlegt, schliel3-
lich wird relationstreu spezialisiert: P* — P, R* - R, S* > S.

Wir wollen nun zeigen, dafl die Zerlegungen T* = P* R* alle unter-
einander konjugiert sind, d. h. daB sie durch Korperisomorphismen —
auch eine Art von relationstreuen Spezialisierungen — aus einer solchen
Zerlegung hervorgehen. Wenn das gezeigt ist, so folgt, daB3 alle Tripel
(P, R, S) aus einem einzigen Tripel (P*, R*, S*) durch relationstreue
Spezialisierung hervorgehen. Die Mannigfaltigkeit aller Tripel (B, R, &)
besitzt also ein allgemeines Tripel (f*, R*, S*), woraus ihre Irreduzi-
bilitdt folgt.

Wir betrachten die Vollschar | T* | = | O &*|. Die Punktgruppe S*
ist allgemein, also nicht spezial. Es sei © = ¢,q,- - - ¢,. Die Restschar
von ¢q, - ¢, (1=k=yg) in bezug auf |T*| ist |gp,---¢,*];
diese Schar ist mithin auch nicht spezial. Fir k£ <g hat sie auch keine
festen Punkte. Denn wenn etwa q,., ein fester Punkt wire, so wire
| ¢ryso- * - 9,6* | nach dem Reduktionssatz 10.6 eine Spezialschar, was

nicht der Fall ist ; und wenn einer der Punkte s,,s,,...,s,, aus denen
S* besteht, etwa s, ein fester Punkt wire, so wire [g,.,- - ¢,8; - * 8;4|
ebenfalls nach 10.6 spezial, also wire auch | q,s,- - - s,_, | spezial. Das

ist aber auch nicht der Fall; denn der Punkt g, stellt den Punktgruppen
der Differentialschar, die ihn enthalten sollen, eine lineare Bedingung
und die hinzukommenden allgemeinen Punkte s,,...,s,_; stellen ihnen
noch ¢ — 1 davon unabhingige lineare Bedingungen ; das macht ins-
gesamt g lineare Bedingungen, wihrend doch die Differentialschar nur
die Dimension g — 1 hat. Damit ist gezeigt, dafl die Restschar von
¢, -+ ¢ in bezug auf | T*| fir k<g nicht spezial ist und fir k<g
auch keine festen Punkte hat.

Diese Eigenschaften gelten um so mehr, wenn g¢,,. .., g, durch ebenso-
viele allgemeine, von S* unabhingige Punkte ersetzt werden. Nun zer-
legen wir T* irgendwie in I* = P* R* und setzen P* =p, p, - - - p,

und R*=r7,-.-7r,. Unter den Punkten p,,...,p, seien etwa
Py,- .., P algebraisch unabhingig untereinander und von S*, wihrend
die iibrigen 7p;,,,...,p, algebraisch von ihnen und von &* abhingen.

Dann folgt, da3 der Rest von p,- - -p, in bezug auf | T*| fir k=g
nicht spezial ist und fiir k<g auch keine festen Punkte hat.
Nun benutzen wir, dafl T* = P* R* eine allgemeine Punktgruppe der
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Vollschar | T* | ist. Halt man nun die algebraisch unabhingigen Punkte
Pys- - -5 Dp fest, so mull der Rest p,,, - - - p, R* eine allgemeine Punkt-
gruppe der Restschar |T*|:p; - -+ p, sein. Wire nun k<g, so wire
diese Restschar nach dem eben Bewiesenen eine Schar ohne feste Punkte.
Andererseits wire p,, ein solcher fester Punkt, denn p, ., ist algebraisch
abhéingig von S* und p,..., p;. Alsomull k = g sein, d. h. die Punkte
Py, -, P, sind algebraisch unabhingig. Weiter ist die Restschar | R* |
von p,--- p, in bezug auf | T* | nicht spezial, also hat sie die Dimen-
sion Null, d. h. die Punktgruppe R* ist durch S* und P* eindeutig be-
stimmt.

Die Punktgruppen S*, B* und R* haben also folgende Strukturen :
S* und P* bestehen aus lauter unabhéngigen allgemeinen Punkten, und
R* ist durch die Aquivalenz

O G* ~ P* R*
eindeutig bestimmt.

Nun ist klar, daBl jedes System von 2g unabhingigen allgemeinen
Punkten von I aus jedem anderen ebensolchen System durch einen Kor-
perisomorphismus <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>