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Ûber einen Satz aus der Théorie der
Kristallklassen

Von F. Bâbler, Zurich

Die vorliegende Note enthâlt einen elementaren Beweis des folgenden
Satzes: Existiert eine beliebige réelle Matrix T, welche zwei orthogonale
Matrizen A und B ineinander transformiert, so gibt es auch eine réelle

orthogonale Matrix S, die dasselbe tut. S hângt nur von T ab.

Der Satz spielt eine wesentliche Roi le bei der Einteilung der Kristallklassen.

Eine jede solche Klasse kann nâmlich durch eine Anzahl (n) or-
thogonaler Matrizen dargestellt werden. Sei Al9A2,.. ,,An eine solche
Klasse, Bx,B%,...,Bn eine zweite (AUA'V BvBfv E, v 1,2,...,»).
Ferner existiere eine réelle Matrix T, so daB T~XAV T Bv fur aile v gilt.
Dann heiBen die beiden Klassen équivalent. Der obige Satz fuhrt jetzt
unmittelbar zum folgenden Theorem :

Sind zwei Kristallklassen reell àquivalent, so sind sie auch reell-orthogonal
àquivalent. Mit andern Worten: Aus T reell und T~XAVT Bv folgt die
Existenz von 8 reell, mit SS' E und S'AVS Bv fur aile v.

Zum Beweis dièses Theorems benutzt man meistens ein bekanntes, von
Frobenius stammendes Verfahren. Das folgende besteht in einer Verein-
fachung dièses Verfahrens, indem von den dort verwendeten Mitteln nur
der elementare Matrizenkalkiil benutzt wird.

Der Kern des Beweises besteht im Nachweis der Tatsache, daB aile Av
mit TTf P und mit einer Wurzel Q der Matrizengleichung Q2 P
vertauschbar sind. Die transformierende orthogonale Matrix ist dann

Sei A (aik) eine w-reihige quadratische Matrix, A1 wie ûblich ihr
Spiegelbild an der Hauptdiagonale und AA ' E ; B ebenfalls quadra-
tisch mit gleicher Zeilenzahl und BB' E ; T (tik) reell und quadra-
tisch, so daB gilt T~XAT JS. Daraus folgt

T-iATT'A'T-v - BBr E
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Burch Multiplikation mit T von links, T' und A von reckts, in dieser
Reihenfolge, gewinnt man daraus die Gleichung

ATT' TT'A oder AP PA (I)

Die Matrix TTf P ist aber Matrix einer définit positiven quadrati-
schen Forai. In der Doppelsumme :

n r n ~J2 **¦ n

i L i J i *,*=i
w

ist nàmlich der Faktor von xtxK=^p £îft tKyL fur jedesWertepaar i,/c.
i

Das ist gerade das Elément ptK in der Matrix TTr P (piK). Nun
sei O die réelle orthogonale Matrix, welche P auf Diagonalform trans-
formiert

O'PO

Wegen der Definitheit gilt At > 0 fur aile i. Der Transformation mit O

werden aueh T, A, B unterworfen. Sei

O'TO T ; O'AO 1= (5,J ; O'jBO B

Es ist Z3"/ 0/^00/^/0 0/^^/0=:£, desgl. BB'= E, ferner

T-iHT O'T-^OO'AOO'TO O'T^ATO O'BO B

Aus r^ZTFZ'T-1' BBr E folgt wie oben fur Tï7'

JfF ffl (10

Setzt man noch T Tf O'PO P so kann man statt l7 schreiben

iP Pi (F)

Die Diagonalmatrix Q mit den Elementen VK genûgt der Gleichung
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-1 ist die Diagonalmatrix mit den Elementen ~y~ Es gilt

~ÂQ QJÎ und 1O-1 (HT (*)

Aus PA AP folgt nâmlich XtâtK A^â^. Gilt At AK, so ist âtK.

nur den Einschrânkungen unterworfen, welche aus der Orthogonalitat
folgen. Xt ^ XK zieht âÎK 0 nach sich. Daraus folgt unmittelbar die

Behauptung, da ja mit Xt kK bzw. At ^ XK auch VK V^A^ bzw.

^V% gilt.
Nun bilde man Q 0Q0r, also Q-1 0Q~10f und /S Q~1T, also

7^ r'.Ç-1. aS ist reell.
Dann gilt

88' Q^TT'Q-1 Oq-xO'OTO!OTfO!OQ^O'

S ist orthogonal. Transformiert man A mit $5 so erhâlt man

-^01 OQO'OÀO'OQ^O'OTO'

QiQ-iTO' 0T-1~S70' (wegen

was zu beweisen war.

(Eingegangen den 18. November 1946.)
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