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Uber einen Satz aus der Theorie der
Kristallklassen

Von F. BABLER, Ziirich

Die vorliegende Note enthilt einen elementaren Beweis des folgenden
Satzes: Existiert eine beliebige reelle Matrixz T, welche zwet orthogonale
Matrizen A und B ineinander transformiert, so gibt es auch eine reelle
orthogonale Matrix S, die dasselbe tut. S hingt nur von T ab.

Der Satz spielt eine wesentliche Rolle bei der Einteilung der Kristall-
klassen. Eine jede solche Klasse kann niamlich durch eine Anzahl (n) or-
thogonaler Matrizen dargestellt werden. Sei A4,,4,,...,4, eine solche
Klasse, B,,B,,...,B, eine zweite (4,4, = B,B, =E,»=1,2,...,n).
Ferner existiere eine reelle Matrix 7',so dall T4, T = B, fiir alle » gilt.
Dann heiBlen die beiden Klassen dquivalent. Der obige Satz fiihrt jetzt
unmittelbar zum folgenden Theorem :

Sind zwet Kristallklassen reell dquivalent, so sind sie auch reell-orthogonal
dquivalent. Mit andern Worten: Aus T reell und T-*A,T = B, folgt die
Existenz von S reell, mit SS' = E und 8'A,S = B, fir alle v.

Zum Beweis dieses Theorems benutzt man meistens ein bekanntes, von
Frobenius stammendes Verfahren. Das folgende besteht in einer Verein-
fachung dieses Verfahrens, indem von den dort verwendeten Mitteln nur
der elementare Matrizenkalkiil benutzt wird.

Der Kern des Beweises besteht im Nachweis der Tatsache, daB3 alle 4,
mit 77’ = P und mit einer Wurzel @ der Matrizengleichung @ = P
vertauschbar sind. Die transformierende orthogonale Matrix ist dann
S=T.

Sei 4 = (a;,) eine n-reihige quadratische Matrix, 4’ wie iiblich ihr
Spiegelbild an der Hauptdiagonale und A4" = E; B ebenfalls quadra-
tisch mit gleicher Zeilenzahl und BB’ = E; T = (t;,) reell und quadra-
tisch, so daB gilt 7-'AT = B. Daraus folgt

T1ATT'A’T-V = BB'=E .

5 Commentarii Mathematici Helvetici 65



Durch Multiplikation mit 7' von links, 7"/ und A von rechts, in dieser
Reihenfolge, gewinnt man daraus die Gleichung

ATT' =TT'A oder AP = PA . (I)

Die Matrix 77’ = P ist aber Matrix einer definit positiven quadrati-
schen Form. In der Doppelsumme:

n n 2 n n
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n

ist ndmlich der Faktor von z,z, = Y ¢ fiir jedes Wertepaar ¢, x.
1

in bep

Das ist gerade das Element p,, in der Matrix 77’ = P = (p,,). Nun
sei O die reelle orthogonale Matrix, welche P auf Diagonalform trans-
formiert

A
oro—=| *.
"

Wegen der Definitheit gilt A,>0 fiir alle 2. Der Transformation mit O
werden auch 7', A, B unterworfen. Sei

O'TO=T;: 0A0—=7A—@,); OBO—=F.
Esist AA'=0"A00'A'0 =0'AA'0 = E, desgl. BB’ = E, ferner

= 0'T-100'A00'TO = 0'T*ATO =0'BO =B .

N
N

-
Aus TYATT A'T-Y = BB' = E f{folgt wie oben fiir 77"
ATT =TT'4 . I’
Setzt man noch 7 7' = O'PO = P, so kann man statt 1’ schreiben
AP=P4 . 1”)
Die Diagonalmatrix Q mit den Elementen VA, geniigt der Gleichung

P .

Qz
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1
Q! ist die Diagonalmatrix mit den Elementen Vi Es gilt

AQ=QA wund 40 '=0Q'4 . (*)

Aus PA = A P folgt ndmlich Aa,, = A,a,. Gilt A, = 4,, so ist @,
nur den Einschrinkungen unterworfen, welche aus der Orthogonalitit
folgen. A, ## 4, zieht a; = 0 nach sich. Daraus folgt unmittelbar die
Behauptung, da ja mit 4, = 4, bzw. 4, # 4, auch 1/1_2 = ]/}; bzw.
Vi, #V2, gilt.

Nun bilde man Q@ = 0QO0’, also @-! = 0Q10’ und S = @Q-17T, also
S'=T.Q1. 8§ ist reell.

Dann gilt

88" = Q1TT'Q-' = 0Q-10'0T0'0T'0'00-10' =
— 0 TT' Q0 =00 Q2 0' =& .

S ist orthogonal. Transformiert man 4 mit §, so erhdlt man

S—148 = T-1QAQT = 0T-10'0Q0'0A0'0Q10'0T0" =
=0T-1QAQ'TO' =0T-14TO0 (wegen (*))

= 0OBO' = B ,
was zu beweisen war.

(Eingegangen den 18. November 1946.)
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