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Grundziige
einer Zahlentheorie der quadratischen Formen
im rationalen Zahlkérper |.

Von MartiN E1cHLER, Gottingen

Meinem Lehrer HEINRICH BRANDT zum 60. Geburtstag am
8. November 1946 in dankbarer Verehrung gewidmet. Driese
Arbeit, die in zwei Teilen erscheinen soll, ist zum grofen Teil
aus seinen Anregungen erwachsen, mehr als es durch Hinweise
auf seine Publikationen zum Ausdruck gebracht werden kann.

Einleitung

Es ist die Aufgabe einer Theorie, die Fiille der Einzeltatsachen eines
Wissensgebietes nach ihrem Verhiltnis zu wenigen tragenden Funda-
mentalbegriffen zu ordnen. Diese Fundamentalbegriffe liegen meist nicht
offen zutage, sondern man gewinnt sie erst durch Abstraktion. Ein Bei-
spiel hierfiir ist die Theorie der biniren quadratischen Formen und die
aus ihr durch Verallgemeinerung entstandene Zahlentheorie der alge-
braischen Zahlkérper und der Algebren. Allein die Benennungen der
Grundbegriffe wie ,irrationale Zahl“, ,imagindre Zahl“, ,Ideal®“ kenn-
zeichnen schon geniigend die Rolle der Abstraktion bei der Entwicklung
dieser Gebiete. Wihrend jedoch hier das begriffliche Tréigersystem des
Gebiudes lingst erkannt wurde, hat es lange Zeit gebraucht, bis man auf
dem Gebiet der Zahlentheorie der quadratischen Formen beliebiger
Variablenzahl ebensoweit war.

Noch in der umfangreichen Gesamtdarstellung von Bachmann (Die
Arithmetik der quadratischen Formen, Leipzig und Berlin 1889) findet
man meist eine miithsame Betrachtung der einzelnen Erscheinungen. Zahl-
reiche und wenig iibersichtliche Invarianten liefern eine Einteilung der
Klassen ganzzahlig dquivalenter Formen in Ordnungen und Geschlechter.
Ein auf diesen Unterscheidungsprinzipien gegriindeter Weiterbau der
Theorie ist bei den schwerfilligen Begriffsbildungen, die manchmal
Wesentliches und Unwesentliches nicht geniigend zu unterscheiden
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erlauben, fast unmoglich. Erst die neuere Zeit hat eine Wandlung
gebracht.

Ein einziger Satz von Minkowski, von Hasse in den Jahren 1923|24
erneut aufgegriffen und prégnant formuliert!), erlaubt jetzt eine Beherr-
schung der Theorie, wenn man sich nicht auf ganzzahlige Formen und
ganze Werte der Variablen beschridnkt, sondern fiir Koeffizienten und
Variable beliebige Zahlen eines Zahlkorpers zuldfit. Hasses gegeniiber
frither etwas allgemeinere Auffassung des Geschlechtsbegriffes und seine
Loslosung vom Ordnungsbegriff brachte eine viel einfachere Theorie der
Geschlechter. Gleichzeitig regten Hasses Arbeiten eine Entwicklung an,
die in einer Arbeit von Witt im Jahre 19362) ihren Niederschlag fand. Witt
bemerkte, daBl alle Geschlechtsinvarianten (auBer der Variablenzahl) mit
der Variablenzahl nicht wesentlich in Beziehung stehen und fiihrte Ge-
samtheiten von ,,dhnlichen“ Formen ein, welche Formen verschiedener
Variablenzahl aber sonst gleicher Geschlechtsinvarianten umfassen3). Die
Benutzung dieses Begriffes ermoglicht nunmehr einen Aufbau der Ge-
schlechtertheorie in kaum zu iibertreffender Eleganz. Hierbei zeigt sich
eine Erscheinung, die auch fiir das Folgende wichtig erscheint : den Ge-
samtheiten dhnlicher Formen entsprechen gewisse Algebrenklassen im
Sinne von R. Brauer, die Theorie der quadratischen Formen tritt hiermit
in Beziehung zur Algebrentheorie.

Mit den genannten Arbeiten ist nun erst die algebraische Grundlage fiir
eine Zahlentheorie der quadratischen Formen im eigentlichen Sinne ge-
legt. Auf ihr wire unter anderem insbesondere die Lehre von der Dar-
stellung von Zahlen durch Formen und von der Aquivalenz von Formen
aufzubauen. Wollte man dies im alten Stile machen, so miilte man jetzt
wieder den Anschlull an die alte schwerfiillige Geschlechtertheorie suchen

1) H.Hasse, Uber die Darstellbarkeit von Zahlendurch quadratische Formen
im Koérper der rationalen Zahlen, Journ. reine angew. Math. 152 (1923), S. 129,
Uber die Aquivalenz von quadratischen Formen im Kérper der rationalen
Zahlen, ebd. 152 (1923), S. 205. Symmetrische Matrizen im Kérper der rationa-
len Zahlen, ebd. 1568 (1924), S. 12. Darstellbarkeit von Zahlen durch quadrati-
sche Formen in einem beliebigen algebraischen Zahlkérper, ebd. 158 (1924),
S.113. Aquivalenz quadratischer Formen in einem beliebigen algebraischen
Zahlkoérper, ebd. 158 (1924), S. 158.

2) E. Witt, Theorie der quadratischen Formen in beliebigen Kérpern, Journ.
reine angew. Math. 176 (1937), S. 31—44.

3) Schon vorher hatte H. Brand: das Vorteilhafte einer solchen Betrachtungsweise er-
kannt, allerdings ohne einen geschlossenen Aufbau der Geschlechtertheorie auf dieser
Grundlage der Offentlichkeit vorzulegen: Diskriminante einer quadratischen Form,
Verh. Intern. MathematikerkongreB Ziirich 1932, II, S. 10—11; s. besonders die unter 1)
zitierte Arbeit, Nr. 9.
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und hétte somit nur geringen Gewinn von den neueren Ergebnissen. Man
weill aber auch, dafl sich die Zahlentheorie der Formen vielfach in
mancherlei einzelne Teilergebnisse und Verfahren verlief. Nun haben aber
gerade in diesem Zusammenhang neuere Arbeiten von Hecke?) und
Siegel °) Tatsachen allgemeiner Giiltigkeit aufgezeigt, die friiher nicht
bemerkt wurden, und die wiederum, und zwar diesmal von ganz anderer
Seite her, auf eine gewisse Parallelitit zwischen der Formentheorie und
der Algebrentheorie hinweisen.

Jetzt sind es zwei Ideen von Brandt, die weiter fithren. Seine Zahlen-
theorie der quaterniren Formen hatte im Jahre 1928 den entscheidenden
Ansto zur Entwicklung einer allgemeinen Zahlentheorie der hyper-
komplexen Systeme gegeben ¢). Er ging von dem Grundsatz aus, daB die
Zahlentheorie simtlicher Formenklassen einer Ordnung gleichzeitig zu
entwickeln sei. Die verschiedenen Klassen einer Ordnung sind verkniipf-
bar durch lineare Substitutionen, welche eine Form in das Vielfache einer
anderen iiberfithren. Solche Substitutionen werden im Falle kompositions-
fahiger Formen durch die Kompositionstheorie geliefert, sie entsprechen
den Idealen der Algebren. Jedoch ist ihre Existenz durchaus nicht an die
Moglichkeit einer Komposition gekniipft. Man hat es hier also mit der
sinngeméBen Ubertragung des Idealbegriffes aus der Zahlentheorie der
Algebren in die Formentheorie zu tun. In zwei kleineren Noten habe ich
diesen Begriff bei zwei Aufgaben benutzt: Erstens versuchte ich mit
seiner Hilfe, die genannte Entdeckung von Hecke iiber die Darstellung
von Zahlen durch gewisse Systeme definiter quadratischer Formen be-
grifflich zu kldren, was damals, wenn auch nur in bescheidenem Umfang
gelang 7). Zweitens zeigte ich, wie dieser Begriff es erlaubt, einen gewissen
Gedankengang aus der Algebrentheorie in die Formentheorie zu iiber-

4) E. Hecke, Analytische Arithmetik der positiven quadratischen Formen,
Kgl. Danske Vidensk. Selsk., Math.-fys. Medd. XVII, 12 (1940). An dieser Stelle findet man
eine vollstandige Ubersicht tiber die Resultate Heckes in dieser Richtung nebst weiteren
Literaturhinweisen. Fiir die Normenformen von Quaternionenalgebren wurden Heckes
Resultate direkt, d. h. ohne Verwendung analytischer Hilfsmittel bewiesen durch H. Brandt,
Uber die Zerlegungsgesetze der rationalen Zahlen in Quaternionenkérpern,
Math. Ann. 117 (1941), S. 899—908; s. auch %7),

8) C.L.Siegel, Uber die analytische Theorie der quadratischen Formen, An-
nals of. Math. 86 (1935), S. 527—606. Formes quadratiques et modules des courbes
algébriques, Bull. Sci. Math. 2¢ gérie, LXT (1937), S. 1—21. Weitere, hier nicht mehr
aufgefiihrte Arbeiten beziehen sich auf indefinite Formen und Formen in algebraischen
Zahlkérpern.

8) H. Brandt, Idealtheorie in Quaternionenalgebren, Math. Annalen 99 (1928), S. 1—29.

) M.Eichler, Uber gewisse Anzahlformen in der Theorie der quadratischen
Formen, Sitz.-Ber. Bayer. Akad. Wiss., Math.-Nat. Abt. 1943, S. 1—24.
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tragen ; hiernach stehen der Satz von A. Meyer &), dafl die Klassenzahl
der indefiniten Formen bei mehr als zwei Verdnderlichen i. a. mit der
Geschlechterzahl iibereinstimmt, und der Satz, dal die Idealklassenzahl
einer normalen einfachen Algebra iiber einem algebraischen Zahlkorper
i. a. gleich der Idealklassenzahl ihres Zentrums ist ?), in engster verwandt-
schaftlicher Beziehung?).

Die zweite Idee von Brandt ist die, dal man eine besondere Art von
Formen vor allen anderen bevorzugt behandeln soll; es sind dies die
Stammformen, welche bei der immer wieder von neuem auftretenden
Parallelitit von Formen- und Algebrentheorie den maximalen Ordnungen
entsprechen, wihrend die iibrigen Formen den nicht maximalen Ordnun-
gen entsprechen!). Ich werde mich im folgenden ausschliefilich auf sie
beschréinken.

In der vorliegenden Arbeit soll nun die schon friiher ?) 1?) angekiindigte
ausfiihrliche Behandlung der beriihrten Themen erfolgen. Dabei erweist
es sich als ratsam, die Theorie der Geschlechter, wie sie sich nach der ge-
nannten Arbeit von Witt darstellt, nochmals in verdnderter Form zu
bringen. Und zwar werde ich die Formentheorie nicht auf die Theorie der
Algebren, sondern parallel neben ihr aufbauen. Dies Vorgehen hat einer-
seits den didaktischen Vorteil, daBl die Algebrentheorie nicht voraus-
gesetzt zu werden braucht, zweitens ermoglicht es einen bequemeren
AnschluB8 des Folgenden. Eine Ubersicht iiber den weiteren Gedanken-
gang soll die nachstehende Gliederung liefern ; eine genauere Aufzihlung
aller angeschnittenen Einzelprobleme wiirde zu weit fithren. Es erwies
sich als moglich, mit wenigen Voraussetzungen auszukommen, wodurch
die gewihlte Uberschrift der Arbeit eine gewisse Rechtfertigung
erfahrt.

8) A.Meyer, Zur Theorie derunbestimmten terndren quadratischen Formen,
Diss. Ziirich 1871. Ferner: Journ. reine angew. Math. 108 (1891), S. 125—139. Ebd. 113
(1894), S. 186—206. Ebd. 114 (1895), S. 233—254. Ebd. 115 (1895), S. 150—182. Ebd. 116
(1896), S. 307—325. Diese Arbeiten beziehen sich auf ternare Formen. Die Ubertragung
auf Formen beliebiger Variablenzahl findet sich in der Viertelsjahrsschrift Naturf. Ges.
Zirich 36 (1891), S. 241—250.

%) M. Eichler, Bestimmung der Idealklassenzahl in gewissen normalen
einfachen Algebren, Journ. reine angew. Math. 176 (1937), S. 192—202. Uber die
Idealklassenzahl hyperkomplexer Systeme, Math. Zeitschr. 43 (1938), S. 481-494.

10) M. Eichler, Zur Theorie der quadratischen Formen gerader Variablen-
zahl, Speiserfestschrift Ziirich 1945, S. 34.

11y H.Brandt, Zur Zahlentheorie der quadratischen Formen, Jahresbericht
Deutsche Math.-Vereing. 47 (1937), S. 149—159.
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Bemerkungen zur Formelschreibweise

Betrachtet werden quadratische Formen

for T 2y fir = fr -
1

Fly e o oy By} == 3

i,

TM =

Die Variablenzahl heiBit stets n. Bezeichnet § die Matrix mit den Ele-
menten f;,,x die einspaltige Matrix mit den Elementen z;, und wird
schlielich der Spiegelungsprozef3 wie iiblich durch einen Punkt angedeu-
tet, so ist in Matrizenschreibweise

f@y,. o, ) =22 Fx .

Da keine Mi3verstindnisse zu befiirchten sind, darf abkiirzend von der

quadratischen Form § gesprochen werden.
Handelt es sich um ganzzahlige Formen, so sind die f,, ganz und die

fi: sogar gerade. Eine Kongruenz

& = G mod m
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fiir zwei ganzzahlige Formen §§ und & habe stets die Bedeutung, daB
—71; (& — ®) die Matrix einer ganzzahligen quadratischen Form ist. Diese

Bemerkung ist von Bedeutung, wenn es sich um uneigentlich primitive
Formen und geraden Modul m handelt : durch die getroffene Verabredung
entfillt die Schwierigkeit der Unterscheidung zwischen eigentlich und
uneigentlich primitiven Formen. .

Mit groflen deutschen Buchstaben bezeichne ich quadratische Matrizen
iiberhaupt, wobei die Reihenzahl eventuell durch einen oberen Index in
Klammern angedeutet wird. Rechteckige Matrizen sollen durch kleine
deutsche Buchstaben bezeichnet werden, zur Angabe von Zeilen- und
Spaltenanzahl wird, falls erforderlich, ein oberes Indexpaar in Klammern
benutzt. Speziell sei €™ die n-reihige Einheitsmatrix, o™ die Null-
matrix von n Zeilen und m Spalten, O™ = p-®»)  Ferner sei

zm) Om)  Fim) E(m)
Bo ™ = Em Om) = \gm) :

Tritt die Nullmatrix als Teil einer grofleren Matrix auf, so wird sie i. a.
ausgelassen werden.

Unter der Diskriminante?) einer Form ™ von gerader Variablen-
anzahl wird die Determinante der Matrix §(®® verstanden, wozu noch
ein Vorzeichen kommt ; sie wird stets mit dem Buchstaben D = D (&™)

bezeichnet :
D (Fem) = (— 1)y | Fem | |

Bei ungerader Variablenzahl dagegen kommt hierzu noch der Faktor :

D(%(2m+1)) — _(_Iél_)"i | 8.(2m+1)| .

I. Die Theorie der Geschlechter

§ 1. Die Einteilungsprinzipien

1. Wenn auch in dieser Arbeit die Theorie der quadratischen Formen
nur im rationalen Zahlkérper entwickelt werden soll, so kann doch zur
Erorterung der Einteilungsprinzipien ein allgemeiner Grundkorper & als
gegeben gedacht werden, dem die Koeffizienten aller hier auftretender
Formen und Matrizen angehoren sollen.

12) Nach wiederholtem Vorschlag von H. Brandt, s. 11).
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Zwei Formen @,, &, heillen dquivalent, wenn mit einer ganzzahligen
Matrix G in k, deren Determinante eine Einheit ist, die Gleichung

HF=6%6 (1)

gilt. Ich moéchte mir erlauben, in der Definition nun anders als iiblich
folgendermafBen fortzufahren : &, und §, heilen verwandt, wenn (1) mit
einer nicht notwendig ganzzahligen Matrix & gilt, deren Determinante
auch keine Einheit zu sein braucht. Diese Beziehungen der Formen zuein-
ander sind reflexiv, symmetrisch und transitiv. Die Gesamtheiten der
dquivalenten und verwandten Formen heilen Klassen und Geschlechter.
Fiir Aquivalenz und Verwandtschaft wird die Schreibweise

1= Fe s T~ &

gebraucht. Liegt in k keine Ganzheitsdefinition vor, so entfillt natiirlich
der Aquivalenzbegriff.

Beide Male wurde hier die begrifflich einfachste Eigenschaft zur Defini-
tion herangezogen, damit wird der Theorie die Aufgabe zugewiesen, Krite-
rien fiir Aquivalenz und Verwandtschaft aufzustellen. Diesem deduktiven
Verfahren steht das induktive gegeniiber ; leider hat man sich daran ge-
wohnt, den Aquivalenzbegriff deduktiv, den Geschlechtsbegriff induktiv
einzufiihren. Es ist an der Zeit, diese Inkonsequenz zu beseitigen !

2. Einem Geschlecht quadratischer Formen in » Variablen kann man
einen metrischen Raum R, zuordnen?): sind n Basisvektoren e,,...,e,
gegeben, so definiere man als die Norm eines Vektors

x:elxl_}_...—*—enajn

N(x) - 3(‘%17"-’ xn) s

wo § eine Form des Geschlechts ist. Gegenstand der eigentlichen Zahlen-
theorie sind die Gesamtheiten der Vektoren x, deren Normen ganzzahlig
oder bis auf einen konstanten Faktor ganzzahlig sind. Diese Gesamt-
heiten bilden Moduln in bezug auf den Ring o der ganzen Zahlen von
k, d. h. p-Moduln. Ein solcher Modul soll ein Giiter heilen, wenn er
vom Rang n ist.

Ein maximales, d. h. nicht mehr erweiterungsfihiges Gitter von Vek-
toren, deren Normen ganzzahlig sind, heil}t ein Kerngitter. Besitzt es eine
Basis a,,...,a,, was z. B. stets der Fall ist, wenn in k die Idealklassen-
zahl gleich 1 ist, so ist die quadratische Form

den Ausdruck

1 0’°N
N(ay 2z, +- - '+anxn)=§ EW%%
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eine Kernform in der Terminologie von Brandt 1!). Jedes Gitter ist in einem
Kerngitter enthalten, und das ,,Volumen* der einzelnen Gittermaschen
eines Kerngitters teilt das Volumen der Gittermaschen samtlicher in ihm
enthaltener Gitter. (Das Maschenvolumen ist zunéchst durch die gegebene
Metrik nur dann definiert, wenn eine Basis existiert ; allgemein hat man
es als den grofiten gemeinsamen Teiler der Maschenvolumina sdmtlicher
Teilgitter mit Basis zu definieren ; es ist i. a. kein Hauptideal.)

Kerngitter sind auch diejenigen maximalen Gitter, deren Vektoren
ganzzahlige Vielfache eines gegebenen (ganzen oder gebrochenen) Ideals §
als Normen haben ; sie gehoren jedoch i. a. zu einer anderen Metrik, wenn
ndmlich die urspriingliche Form & und die Form f-§ nicht zum gleichen
Geschlecht gehdren. In einer Gesamtheit solchermafen in Beziehung
stehender Gitter gibt es gewisse, die dadurch ausgezeichnet sind, daf} ihr
Grundmaschenvolumen der groBte gemeinsame Teiler der Grundmaschen-
volumina sdmtlicher dieser Gitter ist. Sie heilen Stammgitter und ihr
Grundmaschenvolumen die Stammdiskriminante. Der Existenzbeweis
fiir die Stammgitter zu einem Formengeschlecht wire zwar noch zu
erbringen, was aber durch ganz elementare Schliisse moglich ist, so da@l
ich ihn wohl iibergehen darf. Besitzt ein Stammgitter eine Basis, was
stets der Fall ist, wenn %k die Idealklassenzahl 1 hat, so ist seine
Normenform eine Stammform?1?).

Der Gedanke, die Kern- und Stammgitter bei der Entwicklung der
Zahlentheorie zu bevorzugen, bedarf keiner besonderen Rechtfertigung
mehr, da Brandt oft genug auf ihn hingewiesen hat.

Wenn die Idealklassenzahl von k grofler als 1 ist, so gibt es Formen, die
nicht mit einer Kernform oder dem Vielfachen einer Stammform ver-
wandt sind. Jedoch kann man sich in diesem Falle helfen, indem man
Kern- und Stammformen hinsichtlich eines Primideals p betrachtet, d. h.
solche Formen, die bei Erweiterung von k zu dem p-adischen Zahlkorper
k, Kern- bzw. Stammformen bleiben.

In dieser Arbeit werden hauptsidchlich Gesamtheiten von Stamm-
formen im rationalen Zahlkorper von gleicher Variablenzahl, gleicher Dis-
kriminante und von gleichem Sylvesterschen Trigheitsindex eine Rolle
spielen. Eine solche Gesamtheit soll kurz ein Formensystem heilen. Die
zu entwickelnde Zahlentheorie verkniipft simtliche Formen eines solchen
Systems miteinander. Beispiele fiir Formensysteme sind die Normen-
formen sdmtlicher Ideale eines quadratischen Zahlkérpers oder einer
rationalen Quaternionenalgebra ; in diesen Beispielen ist einem Formen-
system jeweils ein hyperkomplexes Zahlensystem umkehrbar eindeutig
zugeordnet.
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3. Das grobste Einteilungsprinzip verdankt man dem Einflu der
Algebrentheorie, es ist das der Ahnlichkeit von Formen. Zwei Formen

Ei(zy,..., 2, ) und Fy(xy,...,2,) in n; und n, Variablen heiflen
dhnlich?®), wenn n», = n, mod 2 und wenn
t'3‘1(:”13' ¥ 23 xnl) - %2(xn1+1:' c xn1+n2) ~ 88"“”‘2)

ist ; hinsichtlich FP™ vgl. die Bemerkungen zur Formelschreibweise.
Die Gesamtheit dhnlicher Formen bildet einen Formentyp oder Typ
schlechthin. Fir zwei dhnliche Formen wird &, ~ &, geschrieben.

Zwischen den Formentypen 18t sich eine Addition folgendermafien
erklédren : sind zwei Typen durch je einen Reprisentanten §,(#,,..., z,)
und §F,(x,,..., x, ) gegeben, so wird die Summe als der Typ der Form
F1( @150 T0) + Fa(@nyp1s -+ o> Typyp,) definiert. Es gilt der folgende
Satz von Witt2):

I. Hauptsatz. Die Ahnlichkeitsheziehung ist reflexiv, symmetrisch und
transitiv.

Beziiglich der eben erklirten Addition bilden die Formentypen evne Abelsche
Gruppe, das Einheitselement ist der Typ der Formen FE™,m =0,1,...

Verschwinden die Diskriminanten zweier Formen &, und &, gleicher
Variablenzahl nicht, so ist dann und nur dann F, ~ F, , wenn F; ~ F.
18t.

Die Gruppe der Formentypen soll kurz die Wittsche Gruppe heiflen ;
sie ist das Analogon der Brauerschen Algebrenklassengruppe. Witt erklért
l. c. auch eine Multiplikation der Formentypen, die jedoch weniger Be-
deutung zu haben scheint.

§ 2. Die lokalen Invarianten der Formentypen

1. Die Hauptaufgabe des ersten Abschnittes ist die Aufstellung eines
vollstindigen Invariantensystems gegeniiber Transformationen (1) mit
beliebigen rationalen Koeffizienten. Es ist praktisch, die Formen hierbei
auf Diagonalgestalt

F(er,..) =} X a,

transformiert anzunehmen und dann kurz mit dem Symbol (a,, a,,...) zu
bezeichnen. Dieses sei nicht dem Geschlecht, sondern dem Typ zugeord-
net, d. h. es sei

(@,,a,5,05,...,a,) = (ay,a,,085,...,a,)
= (@, B, q3,...,a,,b, —b)= ...

2 Commentarii Mathematici Helvetici 17



Formentypen werden auch mit groflen griechischen Buchstaben bezeich-
net, handelt es sich um Typen in einem p-adischen Zahlkorper, so soll dies
durch den oberen Index p angedeutet werden ; fiir die symbolische un-
endliche Primstelle p_ , der die gewdhnliche archimedische Bewertung des
rationalen Zahlkorpers entspricht, gebrauche ich kurz co als oberen Index.
Eine Verwechslung mit Potenzen ist nicht méglich, da solche nicht vor-
kommen. Wenn ein rationaler Formentyp X bei Erweiterung des ratio-
nalen Zahlkoérpers k zu k, mit einem p-adischen Formentyp 5P zusam-

menfillt, wird kurz
X ~ EPmod p

geschrieben. Ist X ein rationaler Formentyp, so bedeute X7 stets den
p-adischen Typ, mit dem X bei Erweiterung von k zu k, zusammenféllt.

Die Vorgehensweise ist nun die, zuerst die Invarianten der Formen-
typen fiir alle Primstellen anzugeben. Aus diesen werden dann vollstédn-
dige Invariantensysteme fiir die Geschlechter aufgebaut werden. Dabei
wird der Schwerpunkt der Untersuchungen bei den Formen und Typen
gerader Variablenzahl liegen; man kann ja jedem Typ X ungerader
Variablenzahl den Typ X + (1) gerader Variablenzahl zuordnen, diese
Zuordnung ist nicht nur eindeutig, sondern nach dem I. Hauptsatz auch
eindeutig umkehrbar.

2. Fiir die unendliche Primstelle p_ , fiir welche kp,, der Korper aller
reellen Zahlen ist, besitzt ein Typ X als einzige Invariante die Signatur o,
d. h. die Differenz der Anzahlen der positiven und negativen Zahlen a, in
der Darstellung X ~ (a,,...). Bezeichnet I" den Typ

r=q@,1), (2)

so gilt also stets fiir einen Typ X gerader Variablenzahl
XN-%F mod P, - (3)

Die Wittsche Gruppe der p-adischen Formentypen fir p = p_ ist die
unendliche zyklische Gruppe.

3. Es sei nun p eine ungerade Primzahl. Man kann jeden Typ durch
eine solche Kernform reprisentieren, welche die Zahl 0 nicht eigentlich
darstellt13), den Typ ausgenommen, welcher dem Einheitselement der
Wittschen Gruppe entspricht. Eine elementare Diskussion liefert folgende
8 Typen gerader Variablenzahl, wobei » einen quadratischen Nichtrest
mod p bedeutet :

13) g, 3), Satz 5 und 1), Nr. 9.
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E’p:(l’_l), Hp:(l’_'"p):

Hp:(ls_'v)a Pp:(v"—p)3 4
T* =1, —v, p, —vp), MP = (v, —vp), @
Or = (p, —vp), N? = (1, —»p) .

Die Wittsche Gruppe wird durch die nachstehende symmetrisch zu er-
ginzende Gruppentafel beschrieben :

E» Ar» T» @» . JI» PP M» N»
H» Ep @¢» Tr» . Pr J]» NP MP
T» E» H» = M» N¢ [I? Pr

or Er» - N» Mp pPr [I?
............................. fiir p:_:__]_mod4. (5)
1rr . E» Hr» Tr @P
Pr Er» @» Tr
MP» Er» HP
NP Er

(074 Er ° N» Mp PP ][IP
............................. furpE3mod 4. (6)
I7® © o @o Ep Hp
Pr T» H® EP®
M» T? @7
NP Tv

Es handelt sich um Abelsche Gruppen mit den Invarianten 2, 2, 2
(fir p = 1mod 4) bzw. 2, 4 (fiir p = 3 mod 4). Erzeugendensysteme
sind H?, T», [I? bzw. H?, II?,

4. Bei der Aufstellung der p-adischen Invarianten fiir p = 2 bleibt
man am besten bei der Angabe der Formen in Diagonalengestalt, auch
wenn es sich dabei i. a. nicht mehr um Kernformen handelt. Die Typen
gerader Variablenzahl sind

e i el B G el
— (3.2, —3.2) = (5.2, —5.2) = (1.2, —1.2) , -
: :(1> —‘5)=(59 _1)’:(3, "‘“7):(7» _3) ’
H: =1, —7)= (5, —3) = (2, —7.2) = (5.2, —3.2) ,
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=5, —7)= (3.2, —2)= (7.2, —5.2), \
, 1)=1(2,2,2,2)=---=(7,7,7,7)
, 2)=(1, 1, 5, 5) = usw.,

. IT2
; 2
Ty

. N® NZIP
. N2 N IT%

3
3
5.
5
7
7

- M2

(

3.2, —7.2) =(7.2, —3.2) = (2, —5.2) =

= (5.2, —2)= (1, 5,5, 5)=(1, 1, 1, 5) = usw.
3, —8)=(7, —1)= (3.2, —5.2) = (7.2, —2),

—3.2) = (5.2, —17.2),

-2),
-2)

2),

-2)
‘2) ’

.2) .

113 P P2 M: M: Ne
II* P: P> M: M2 N2
P2 M2 M2 N® N: IT®
P: M:M:® N2 N® IT%
M:N® NEIT* IT:
M: M2 N: N2 II% I
p: p?

7 2
Ny

P2
Py

...................................................

E: H?
B H:
T: T2 @

T: O

B E:

E* H?

T2 T2

HY =(1, —3)
T =(1,1, 1
=(1, 1, 2
s =
0 =
O =B, —1)=(7, —5) = (2,
nm? =1, —2)y=(-—1, 2),
Iy =5, —2)=(-5, 2),
P2 = (1, —7.2)=(—5,
P; = (5, —7.2) = (—1,
M2 = (5, —5.2) = (—35,
M2 = (1, —5.2) = (—1,
N2 = (5, —3.2) = (—1,
N =(1, —3.2) = (-5,
Die Gruppentafel ist
E* Ei H®* H; T* T} 0% 6}
Ei E* Hi H* T T* O} 62
H? T T 02 O E* E;
H; T® @; 02 EX E?
T? E* E: H? H;
T2 E* H} H?
©? T T3
oM T
112
Ik
P2
Py
Mz
My
N2
Ny

(7)




Die Tabelle ist symmetrisch zu ergénzen. Es handelt sich also um eine
Abelsche Gruppe mit den Invarianten 2, 4, 2; ein Erzeugendensystem
ist B2, H2, II2.

5. Die Typen ungerader Variablenzahl in %k, werden in der Form
X? + (1) dargestellt, wo X? simtliche Typen gerader Variablenzahl
durchlduft. Thre Anzahl ist also genau so groB3. Jeder dieser Typen 13t
sich wiederum durch eine die Null nicht eigentlich darstellende Form
reprisentieren !3) ; diese hat jetzt die Variablenzahl 1 oder 3.

Zugleich mit der Aufstellung sémtlicher p-adischen Formentypen bzw.
ihrer unidren, binidren, terniren oder quaterniren Reprisentanten sind
deren arithmetische Grundeigenschaften in k, zu diskutieren. Es ergibt
sich dabei zunichst durch eine elementare Einzelbetrachtung der még-
lichen Fille fiir die Formen, welche die Null nicht eigentlich darstellen,
der

Hilfssatz 1. Eine Form § in k, in » Variablen ist mit genau einer
Kernform §, verwandt. Dabei ist D(g,) durch eine Primzahl p>2
hochstens zweimal teilbar. Fir » = 1 mod 2 gilt dasselbe auch fiir
p =2, fir n = 0mod 2 dagegen ist D({,) durch 2 entweder keinmal,
zweimal oder dreimal teilbar.

Dieser Hilfssatz 148t sich leicht auf sdmtliche iibrigen Formen iiber-
tragen. Diese sind verwandt mit je einer Form

F=3" + & (9)

wo die Summe im Sinne der Wittschen Gruppe, also nicht als Matrizen-
summe zu verstehen ist, und {, eine die Null nicht eigentlich darstellende
Kernform ist. Hierbei gilt

D(®) = D(B,) - (10)

Man braucht nun nur zu beweisen, dal diese Formen (9) auch Kern-
formen sind, wenn §; Kernform ist. Wére § nicht Kernform, so wire §
in einer Kernform §’ eigentlich enthalten, es wiire also D(&’) mindestens
zweimal weniger durch p teilbar als D(§). D. h. nach Hilfssatz 1 fiir §,,
daB D(F’) zu p prim ist oder aber, falls p =2, n=0mod 2 und
D (%) = 0 mod 8 war, genau einmal durch 2 teilbar. Das letztere kann
bekanntlich nicht zutreffen. Wenn nun aber D(J’) zu p teilerfremd ist,
so miiBte ¥’ mit einer Form FE™") + §; verwandt sein, wo D(F;) auch
zu p prim ist. Dabei ist aber andererseits &, ~ §,, was einen Wider-
spruch darstellt. Der Hilfssatz 1 ist damit in vollem Umfange bewiesen.
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Ist eine ganzzahlige Form § im Korper £ der rationalen Zahlen gegeben,
8o kann man fiir die einzelnen Primteiler p von D(g) nacheinander
enthaltende ganzzahlige Formen aufsuchen, die beziiglich p Kernformen
sind. Das Verfahren bricht bei einer Kernform ab. Diese braucht nun aber
nicht mehr durch § eindeutig festgelegt zu sein, doch ist ihre Diskri-
minante, die Kerndiskriminante, auch jetzt noch eindeutig bestimmt,
und fiir ihre Teilbarkeit durch Primzahlen gilt der Hilfssatz 1.

Auf Grund der bewiesenen Invarianz der Kerndiskriminante bei Uber-
gang zu dhnlichen Formen fiihre ich die folgende Definition ein: Eine
Form § oder ein Formentyp X im rationalen Zahlkorper sei an der Stelle p
(rationale Primzahl) verzweigt, wenn p die Kerndiskriminante teilt ; p sei
eine Verzweigungsstelle erster oder zweriter Art, je nachdem p in der Kern-
diskriminante in ungerader oder gerader Vielfachheit aufgeht. Es ist also p
eine Verzweigungsstelle 1. Art fiir die Typen 717, PP, M?, N?, eine Ver-
zweigungsstelle 2. Art fiir die Typen 7, @? und keine Verzweigungsstelle
fiir die Typen E?, H? ; im Falle p = 2 sind die mit einem Stern ver-
sehenen zugleich mit denen gleichen Buchstabens und ohne Stern mit-
zuzdhlen, nur H2, H? gehoren jetzt in die 2. Gruppe.

Eine Erklirung dariiber, wann die unendliche Primstelle p_ Verzwei-
gungsstelle ist und von welcher Art, kénnte der Vollsténdigkeit halber
hinzugefiigt werden. Eine Bedeutung hat eine solche Erkldrung nicht, und
ich unterlasse sie daher.

§ 3. Das erste vollstindige Invariantensystem

1. Hilfssatz 2. Ist p>2 eine Primzahl oder p = p_, die unendliche
Primstelle, so gibt es im rationalen Zahlkérper einen Formentyp £,
welcher folgende Eigenschaften besitzt und durch sie eindeutig gekenn-
zeichnet ist :

2, ~Eimodq , (11)
Q,~T?modp, (12)
2, ~T*mod 2 ; (13)

dabei durchlaufe ¢ alle von 2 und p verschiedenen Primstellen des ratio-
nalen Zahlkorpers einschlieflich der unendlichen (7 = 21I").

Beweis. Fir p=1p,, ist 2,, = (1,1,1,1)= 2T, fiir eine Prim-
zahl p der Form 4k + 3 ist 2, = (1,1, —p, —p) dieser Formentyp,
wie man unmittelbar einsieht.

Es sei nun p = 1 mod 4. Es werde vollstindige Induktion angesetzt
und der Hilfssatz fiir alle kleineren Primzahlen als p bereits als richtig
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angenommen. Es sei r der kleinste positive quadratische Nichtrest mod p ;
offenbar ist » eine Primzahl. Ist » =2, soist 2, = (1, —2,p, —2p)
der verlangte Typ. Ist r>2, so gibt es nach der Voraussetzung ein 2,,
und es ist
0 — (1, —r, p, —7rp) filr r =3 mod ¢
@, —r,p, —rp)+ 2, fir r =1mod 4 .

Das Erfiilltsein von (11) bis (13) 148t sich in jedem Falle durch Benutzung
von (5), (6), (8) und des quadratischen Reziprozitdtsgesetzes leicht veri-
fizieren.

H:lfssatz 31%). Eine Form § in n >4 Variablen stellt die Null im ratio-
nalen Zahlkorper dann und nur dann eigentlich dar, wenn sie indefinit ist.

2. Es bezeichne Z das Einheitselement der Wittschen Gruppe im
rationalen Zahlkorper k, nimlich den Typ, dem die Formen F#™ ange-
horen. Ferner sei fiir eine Primzahl p=2

&, = (1, —p) . (14)

Durch die Formentypen I" (Gl. (2)), 2, (Hilfssatz 2) und @, wird die volle
Wittsche Gruppe der Formentypen gerader Variablenzahl in & erzeugt.
Es gilt ndmlich der

Satz 1. Es sei X ein Formentyp gerader Variablenzahl der Signatur o.
Dann ist

X=20, + 20, +X&, +2,)+o T (15)

wobei der letzte Term als g -malige Addition von I" aufzufassen ist. Hier

durchliduft p, simtliche ungeraden Verzweigungsstellen 1. Art, fiir welche
X ~II", P" mod p, (16)

ist, sowie p, = 2, falls 2 eine Verzweigungsstelle 1. Art ist ; p, durch-
lduft simtliche ungeraden Verzweigungsstellen 2. Art :

X ~ TP @ mod p, ; (17)
P, durchlduft simtliche ungeradén Verzweigungsstellen 1. Art, fiir die

X ~ M?, N?» mod p, (18)
ist.

14) g, die erste der unter !) zitierten Arbeiten.
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Beweis. Die Differenz beider Seiten von (15) werde mit = bezeichnet.
Es ist & = E zu zeigen. Nach (5), (6), (11), (12), (14) hat F keine un-
geraden Verzweigungsstellen mehr. Nach (8), (13), (14) ist p = 2 ent-
weder keine Verzweigungsstelle oder eine Verzweigungsstelle 2. Art. Die
Signatur von & ist Null. Die Kerndiskriminante von & ist demnach 1
oder 4.

Ist 5 + K, so werde in = eine Form f von moglichst kleiner Variablen-
zahl gesucht, es ist eine Form, welche die Null nicht eigentlich darstellt3).
Thre Variablenzahl ist nach Hilfssatz 3 also 4 oder 2. Es beschrinkt die
Allgemeinheit nicht, wenn man f als Kernform annimmt.

Ist die Variablenzahl 4, so ist f Normenform einer Idealklasse einer
rationalen Quaternionenalgebra, da die Diskriminante ein Quadrat ist.
Es kommen dabei wegen des Wertes der Diskriminante nur die Matrix-
algebra und die Hamiltonsche in Frage. Die erste scheidet aus, da dann f
die Null eigentlich darstellen wiirde, die zweite, da f nicht definit ist. —
Ist die Variablenzahl 2, so stellt f die Null ebenfalls eigentlich dar, da die
Diskriminante ein Quadrat ist. Mithin mufl & = £ sein, und der Satz 1
ist bewiesen.

3. Der Satz 1 lehrt unter anderem, dafl zwischen den lokalen In-
varianten X? eines rationalen Formentyps X gewisse Bindungen be-
stehen miissen. Um diese Bindungen aufzustellen, werden homomorphe
Abbildungen der Wittschen Gruppen in k£ und %, auf Untergruppen der
Wittschen Gruppen in k, vorgenommen. Sie werden durch das Symbol
[X?]2 beschrieben, zu einem Formentyp X wird demnach zuerst die
p-adische Invariante X2 gebildet, und dieser wird dann das Bild [X#]¢
zugeordnet, welches ein g-adischer Formentyp ist. Ich werde diese Ab-
bildungen fiir Typen gerader Variablenzahl angeben und vervollstédndige
sie durch die Festsetzung

[(X + (1))r]z = [X#]e + (1)2 (19)

fiir die Typen ungerader Variablenzahl.

Es sei

/ o

Ee fiir ((_'Zi)i) =1,
q
[X=]e = A (¢>2) (20)
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E? fir ¢=0 modS8 ,
@2 fir =2 mod 8
X o2 — - ’ 21
X T? fir o0=4 mod8 , (21)
\H? fir 0=6 mod 8 ,

Ee fir ) = 1, X beliebig,

— 1, X ~Er,H?,T?, 0P mod p, (22)

(
[XP]12 =( B¢ fiir (
Hae fir (

R R [

): —1, X ~II?, PP, M?, N® mod p ,
(@ #2, ¢ #p)

hierbei werden im Falle p = 2 die Typen B}, HZ,... bzw. II2, P},...
mit zu B2, H2,... bzw. I[I?, P?,... gerechnet ;

Er fir X ~E?, TP, [I?, M? mod p ,

[XPP = | 1y g X ~Hr, @ Pv, N* modp : (p>2) (23)

das Symbol [X7]? fir p>2 wird am bequemsten durch nachstehende
Tabelle erklirt :

X~ Er Hrp I, Pr Tr @ MP, NP modp

E? E? T2 T2 fir p =1mod 8 ,

E? E: g T fir p = 5mod 8 ,
[XP]? = iy (24)

B2 6?2 T2 H? fiir p = 7mod 8 ,

(Ez 62 T2 H: fir p = 3 mod 8 ,,

(X2 — Xz fir X ~ E?, E2, H*, H:, T?, T2, @, O mod?2 ,
X221 fir X ~ 112, IT;, P2, P2, M2, MZ N2 N; mod2,
(25)

wobei X2 der durch X ~ X2mod 2 erkldrte 2-adische Typ ist.

Man iiberzeuge sich zunéichst davon, dafl hierbei stets

[(X; + Xp)P]? = [XT]? + [XE] (26)

gilt. Fiir Typen gerader Variablenzahl gelten ferner die folgenden Summen-
relationen :
3 [XPle = Ee (@q=2,3,5,...) (27)
p
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die Summen sind iiber sdémtliche Primstellen p einschlieBlich der unend-
lichen zu erstrecken ; sie haben einen Sinn, da nur endlich viele der
Summanden von E? verschieden sind. Man braucht nach (15) diese Rela-
tionen nur fiir die speziellen Typen I', 2, @, zu beweisen, was eine Reihe
elementarer Einzeldiskussionen erfordert. Weitere Relationen als (27) be-
stehen zwischen den lokalen Invarianten X? eines rationalen Formen-
typs X nicht mehr, wie aus dem folgenden Satz hervorgeht. Eine kurze
Bemerkung werde diesem Satz noch vorausgeschickt :

Offenbar liegt mit den p-adischen Invarianten X? eines rationalen
Typs X gerader Variablenzahl auch seine Kerndiskriminante A4(X) fest,
und zwar ist sie

A(X) = (—1)= IT pe» (28)

das Produkt ist iiber simtliche Verzweigungsstellen p von X zu erstrecken,
wobei g, die Art der Verzweigungsstelle ist und im Falle p = 2, ¢, =1
durch g, =3 zu ersetzen ist. Mit anderen Worten ist fiir p>2:0, =0,
fir X» = Er, H?, o, =2 fir X? =7?,67 und p,=1 fir X? =
II?, Pp MP, N7 ;fir p = 2 ist g, = 0 fir X2 = E% E}, 0, = 2 fiir X2
= H2 HY, T2 T2, 02 O} und g,= 3 in den iibrigen Fillen. Die
Summenrelationen (27) fiir ein ¢>2 lassen sich jetzt auch so aus-

driicken :

(A0ee) _(C1) g (2)

sie geben also lediglich eine elementare Eigenschaft des Legendre-
symbols wieder.

4. II. Hauptsatz. Die Variablenzahl und der p-adische Typ X? fir
jede Stelle p bilden ein vollstindiges System von Geschlechisinvarianten1®).

Zwischen den Invarianten bestehen bei gerader Variablenzahl die Summen-
relationen (27), ber ungerader Variablenzahl

> ([XPle+ (1)) = E? . (27')

Die aus X* berechenbare Signatur o ist = nmod 2. Esist n = | | sowre
n = 3, 4, falls unter den XP ein terndrer oder quaterndrer T'yp vorkommdt.
Nur fur endlich viele p ist X? # E®, HP.

15) Aquivalent mit diesem Invariantensystem ist auch das folgende: n, [X?]? firr p,

gZD.
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Zu jedem System p-adischer Invarianten und einer Zahl n>0 ¢qibt es ein
Geschlecht quadratischer Formen, wenn die angegebenen Bedingungen erfillt
sind.

Beweis. Der II. Hauptsatz enthilt gleichzeitig einen Satz iiber die
Invariantensysteme von Typen. Dieser auf die Variablenzahl » nur inso-
fern Bezug nehmende Teil, als die Félle » = 0 mod 2 und 72 = 1 mod 2
unterschieden werden, leitet sich im Falle # = 1 mod 2 aus dem Fall
n = 0 mod 2 in selbstverstindlicher Weise her. Man hat also nur noch
n = 0 mod 2 ins Auge zu fassen.

Zunichst wird nun der Nachweis gefiihrt, dafl es zu einem die Summen-
relationen (27) erfiillenden System von Invarianten X? gerader Variablen-
zahl einen rationalen Formentyp X gerader Variablenzahl mit gerade
diesen Invarianten gibt. Dazu bilde ich die Summe (15), wobei die Sum-
manden entsprechend der Erkldrung in Satz 1 zu nehmen sind, und be-
haupte, der so entstehende rationale Formentyp hat die gegebenen In-
varianten X?. Ersichtlich hat die Signatur den vorgeschriebenen Wert, es
ist also

X ~X*modp, .

Es sei p eine ungerade Primzahl, dann kann nach dem Bildungsgesetz der
Summe (17) schon entschieden werden, welchem der folgenden Paare von
Formentypen : E?, H? ; T?, @7 ; II?, PP; M?, N* X ink,angehort. Die
genaue Festlegung von X innerhalb jedes dieser Paare ist durch das
Legendresymbol (29) moglich, welches nach der Bemerkung in Nr. 3 zu-
gleich mit den X? zur Verfiigung steht. Der Typ von X in k, ist somit
durch das Bildungsgesetz der Summe (15) aus den X? in eindeutiger Weise
berechenbar, und folglich
X~X?Pmodp .

DafBl auch der 2-adische Typ von X bei der Summendarstellung (15) in
richtiger Weise festgelegt wird, folgt aus der Tatsache, dafl der Wert von
[X2]2 nach (27) fiir ¢ = 2 berechnet werden kann, und dafl damit wegen
(25) die Invariante X2 zunéchst zweideutig festliegt ; sie wird schlieBlich
durch [X?]2 und die Kerndiskriminante eindeutig fixiert, und dann
kann nur
X ~ X?mod 2

sein.

Jetzt muB man zeigen, dafl ein gegebener Formentyp X eine Form
beliebig gegebener Variablenzahl enthélt, wenn nicht die genannten Aus-
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nahmen vorliegen. Dieser Nachweis macht keine Schwierigkeit : man gehe
von einer Form § in X von grolerer Variablenzahl als n aus. Wenn § die
Zahl Null eigentlich darstellt, kann man die Variablenzahl um 2 erniedri-
gen13) ; diese SchluBweise ist geniigend oft zu wiederholen.

Endlich miite man umgekehrt beweisen, daBl Formen mit gleichem
Invariantensystem verwandt sind ; diese Tatsache ist von selber klar.

§ 4. Das zweite vollstiindige Invariantensystem

1. Das in § 3 aufgestellte Invariantensystem der Geschlechter ist fiir
die Anwendung in der Zahlentheorie noch zu unhandlich ; ich leite aus
ihm daher ein zweites her, welches einen bequemeren Anschlull der eigent-
lichen zahlentheoretischen Untersuchungen gestattet. ¥s unterscheidet
sich iibrigens einerseits von dem System der Invarianten, auf das in der
dlteren Theorie der Geschlechtsbegriff gestiitzt wurde, nicht wesentlich ;
andererseits ist es aber doch viel einfacher, da der hier zugrunde gelegte
Geschlechtsbegriff nicht an den alten Ordnungsbegriff gekniipft ist und
somit eine ganze Anzahl von Invarianten wegfallen.

Zunichst beschrinke ich mich auf gerade Variablenzahl. Diese, die
Signatur o, die Kerndiskriminante 4 (X) und das System der Charaktere

1 fiir

Z:p(X) = 3_1 fiir
fiir

%2 (X) = ;_1 fiir

X~ E?, H? I, N° mod p ,
X~Tr 6r, PP, M? mod p ,
X~E? E: H? H2 II?, N}, P2, M} mod 2,
X~T, T2 0,0, I; , N2, P2, M®> mod 2 .

p>2,

sind Invarianten. Aus ihnen lassen sich die X? in eindeutiger Weise ge-

winnen, wie nun zu zeigen ist.
Mit 4(X), das in der Form (28) gegeben sei, sind auch die Symbole

69(X) =

gegeben.
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(A(XM;p p) fir p>2,

1 fir p=2, A(X)2-e= 1 mod 4,; (31)
—1 fir p=2, 4(X)2-¢2= —1 mod 4

(30)



Man bekommt nun X? aus folgender Tabelle :

p>2 P =2
L 2 -1
( 4(X) 2"*’2) B (A (X) 27 )
1o(X) =12, (X) = — 1o (X) = 1o (X) = — Lo (X) = L o (X) = —1
ep 0,(X) X» X2
1! E» — E? — E2 —
0
1 Hp — _ — — -
1| 1| e M» II? M2 M I
bzw.
3 |—1| N» Pr P? N2 N: P?
1 — | _ I _ T
2 i
—1 ‘r —_ @GP H?2 62 H: @i

Aus den Liicken in der Tabelle erkennt man, daB 4(X) und die y,(X)
nicht vollig beliebig vorgegeben werden konnen, es bestehen vielmehr ge-
wisse Bindungen. Auller den angegebenen gilt noch die wichtige Produkt-
relation )

* (5-1)

HXp(X) = (— 1)4 : ) (33)
zu erstrecken iiber simtliche Primzahlen p = 2, wo jedoch nur fiir end-
lich viele p, nimlich hochstens die Teiler von A4(X) von 1 verschiedene
Faktoren stehen.

Diese Formel 148t sich fiir die Typen I, 2, @, leicht verifizieren. All-
gemein beweist man (33) durch Bezugnahme auf (15); es ist zu zeigen :
gilt (33) fiir X,, so auch fir X = X, + X,, wenn X, einer der Typen
I, Q,, @, ist (p>2). Die linke Seite von (33) werde dazu mit P(X) be-
zeichnet,.

Es sei X, = I'. Jetzt dndern sich bei Addition von X, hochstens die
Faktoren y,(X), wo p==1mod4 ist, da nur dann X, ~~ E? mod p
ist. Simtliche x,(X) mit p = 3 mod 4 gehen in die entgegengesetzten
Werte iiber, wenn p genau einmal in der Kerndiskriminante von X, auf-
geht, sonst bleibt y,(X) ungedndert. x,(X) #@ndert sich, wenn X, ~ H?,

29

(32)



H;, 6% 0, P2, P:, N2, N2 mod 2, also wenn 4(X,) 2% = 3 mod 4
ist, in den iibrigen Fillen, also fiir A4(X,)27% = 1 mod 4 bleibt yx,(X)
ungeindert. Da

[

4(X)) 2= (— 1)’2"‘1 IIp mod 4

ist, wo p die ungeraden Verzweigungsstellen 1. Art durchlduft, gilt nun-
mehr

P(X)=(—1)?2P(X,) ,

in Ubereinstimmung mit (33).
Essei X, =0 . Jetzt gilt

20Xy + Xp) = 5,(Xy) 7,(X) fir X,~EP, T» modp . (34)

Da (33) fir X, und X, gilt, und da X, und X die gleiche Signatur ¢, X,
dagegen die Signatur 0 haben, gilt (33) auch fiir X.

Es sei X,=®,, p=1mod4. Ist ¢ eine ungerade in der Kern-
. diskriminante A4(X,) von X, aufgehende Primzahl, so dndert y,(X)
dann und nur dann das Vorzeichen, wenn ¢ Verzweigungsstelle 1. Art ist

und (%) = —1. x,(X) dndert sich, wenn 2 eine Verzweigungsstelle

1. Art ist und p = 5 mod 8 ist, sonst nicht. Also erhdlt P(X) zunichst
einmal den Faktor

| (%)t (5)
P /at2,040 \
Es kommt aber noch der weitere Charakter x,(X) hinzu, wenn

4(X,)

war, er hat dann den Wert (

P =pun) (450) () 1 (5)

) . Mithin ist

das ist nach dem Reziprozititsgesetz

P(X)= P(X,) .
Da die Signatur sich nicht éndert, bleibt (33) mithin bei Addition dieses
X, bestehen.
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Schliellich sei X, = ®,, p =3 mod 4. Ist ¢ wieder eine Verzwei-
gungsstelle 1. Art von X, und (—%) = —1, so #ndert sich yx,(X), und
nur dann. y,(X) dndert sich in der gleichen Art wie bei Addition von I,
es kommt allerdings noch der Faktor (Eﬁs—) hinzu. Wieder tritt gege-
benenfalls y,(X) als neuer Charakter aﬁf, er hat den Wert (é—(?) :

Es ist mithin

) ety (459) () o1 (2). oz

Nach dem Reziprozitidtsgesetz ist also wieder
P(X) = P(X,) ,

womit (33) allgemein bewiesen ist.

Weitere Bindungen zwischen den Invarianten gibt es nicht. Hierzu ist
zu zeigen, daB es zu jedem System von GroBlen o, 4(X), x,(X), welches
mit ihnen vertriglich ist, einen Formentyp X gibt. Um dies zu beweisen,
berechne man die p-adischen Invarianten X? aus der Tabelle (32) und
setze X in Form der Summe (15) an, wobei die Summanden entsprechend
Satz 1 zu nehmen sind. Signatur und Kerndiskriminante des so kon-
struierten rationalen Typs haben dann offenbar schon die vorgeschriebe-
nen Werte. Es ist nur nachzuweisen, daf3 dasselbe auch fiir die Charaktere
zutrifft.

Es sei zunichst ¢ eine ungerade Primzahl. Die Summenrelation (27) fiir
q ist, wie in § 3, Nr. 3, erkannt wurde, mit (29) identisch und kann daher
als stets erfiillt angenommen werden, wenn 4 (X) die Form (28) hat. Die
Bildung von X als Summe (15) legt den g-adischen Typ von X bereits auf
eins der Typenpaare : K2, H?; T9, 6; [17, P1; M9 N4 fest. Die Werte
von o und 4(X) erlauben nach (20) und (22) die Berechnung von [X*]¢
und [X7]¢; jetzt kann man nach der bereits als giiltig nachgewiesenen
Gleichung (27) fiir ¢ das Symbol [X?]¢ berechnen, und schlieBlich nach
(23) den g-adischen Typ von X innerhalb der genannten Paare eindeutig
fixieren. Dies alles geschieht in volliger Ubereinstimmung mit den aus
(32) entnommenen Werten fiir die lokalen Invarianten, es hat also X¢
und damit x,(X) den vorgeschriebenen Wert fiir jede ungerade Prim-
zahl g. Der Charakter y,(X) mufl dann wegen der Produktrelation (33)
ebenfalls den vorgeschriecbenen Wert haben. Damit ist, zundchst fiir
gerade Variablenzahl, das Folgende gezeigt :
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II1. Hauptsatz. Variablenzahl n, Signatur o, Kerndiskriminante A(X)
und das System der Charaktere y,(X) bilden ein vollstindiges System von
Invarianten gegewiiber rationaler Transformation. Die Invarianten unter-
liegen folgenden Bedingungen.

1) Die vm I1. Hauptsatz genannten Bedingungen fir n.

2) A(X) st ber geradem n evn Produkt (28), wober ¢,<2 fir p>2 und
0, = 0, 2 oder 3 ist. Bei ungeradem n ist A(X) ein Produkt

og—1
A(X) = (1) * I p* (35)
mit p,<2 fir p = 2.
3) Wird 6,(X) aus A(X) gemdf (31) berechnet, so sind nur solche
Invariantenkombinationen méglich, fir welche die Tabelle (32) keine Leer-
stelle hat.

4. Hs qilt die Produktrelation (33) bzw. (36).

Fir Typen X ungerader Variablenzahl definiere man

XD(X) = x:o(‘X + (1)) s

was mit (34) im Kinklang steht. Die an dritter und vierter Stelle
genannten Bedingungen fiir die Invarianten iibertragen sich damit auch
auf ungerade Variablenzahl, die Produktrelation wird

e2—1

Ty,(X)=(—=1) ° . (36)

Die Gestalt (35) der Kerndiskriminante ergibt sich aus Hilfssatz 1. Der
Existenznachweis wird fir X — (1) an Stelle von X gefiihrt.

2. Die Primteiler der Kerndiskriminante werden eingeteilt in Kern-
diskriminantenprimieiler erster und zwester Art. Diese Einteilung moge fiir
ungerade Primzahlen mit der Einteilung in Verzweigungsstellen 1. und
2. Art iibereinstimmen, die Primzahl 2 dagegen sei ein Kerndiskriminan-
tenprimteiler 1. Art stets dann, wenn 4 (X) gerade ist, ausgenommen in
den Fillen, wo X bzw. X — (1) ~ T oder T3 mod 2 ist, dann heille 2
ein Kerndiskriminantenprimteiler 2. Art. Diese Einteilung hidngt mit den
Liicken in der Tabelle (32) zusammen ; sie ist so gewihlt worden, daf fiir
die Kerndiskriminantenprimteiler p erster Art die Charaktere y,(X) be-
liebig vorgeschrieben werden koénnen, wihrend sie fiir alle iibrigen Prim-
zahlen bereits durch A(X) festgelegt sind. Damit ist gezeigt :
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Satz 2. Es gibt bei a Kerndiskriminantenprimteilern 1. Art entweder
gar kein oder 2°-! Geschlechter mit vorgeschriebener Kerndiskriminante
A4(X), Signatur o und Variablenzahl »16),

Satz 3. Ein Formentyp X gerader Variablenzahl gestattet eine Dar-

stellun
s X=X, + X, + ¥, (37)

wo X, eine bindre Form, X, eine quaternire Form mit quadratischer Dis-
kriminante (also die Normenform einer Idealklasse einer rationalen Qua-
ternionenalgebra) und ¥ eine definite Form der Kerndiskriminante 1,
deren Variablenzahl durch 8 teilbar ist, enthilt. Dabei setzt sich 4(X,)
aus den Kerndiskriminantenprimteilern 1. Art zusammen, und es ist fiir

diese )
1,(X) fir pfAX)) ,

B =] Xt plAX) (38)

Ein Formentyp ungerader Variablenzahl gestattet die Darstellung
X=X, +X,+ ¥, (39)

wo X, eine unire, X, eine binédre und ¥ eine definite Form mit der Kern-
diskriminante 1 enthilt.

Beweis. Die Normaldarstellung (37) bei gerader Variablenzahl erhilt
man aus {15), wenn man diese Formel so schreibt :

a—a,— 20,

X=(£0,+ 50, +37)+ (20 + 30 +2 )+ =020,

dabei seien %i ,—02—2 gleich 0 oder + 1 und so gewihlt, daQ

7= “12"‘ 2% =0 mod 4 (40)

gilt. Die Terme in der ersten Klammer geben einen Typ X, an, welcher
nach dem II. Hauptsatz eine bindre Form enthélt, die im zweiten einen

Typ X,, fiir den

E?» modp fir p+A4(X,),

X = T? mod p fir p/ 4(X,)

(p=2) (41)

16) Wenn 4 == 4 mod 8 ist, gibt es 291 dieser Geschlechter. Dazu kommen noch 292
Geschlechter solcher Formen, fiir die 2 ein Kerndiskriminantenprimteiler 2. Art ist.
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gilt, und der restliche Typ ¥ ist wegen (40)

0’“‘“01"“'

3 2% P~ EP modp .  (p=2) (42)

Y —

Die Aussage iiber 4(X,) ergibt sich nun ohne weiteres, und ebenso (38),
denn nach (34), (41), (42) ist x,(X,) = %, (X)) x,(X4)-

Ist die Variablenzahl ungerade, so bilde man die Normaldarstellung (37)
zundchst fiir den Typ X 4 (1), also

X=X+X,—(1)+¥.

Es sei a eine ganze rationale zu A4(X,) teilerfremde Zahl, und zwar ein
quadratischer Nichtrest fiir jeden ungeraden Primteiler von A4(X,) und
a = Tmod 8, falls A(X,) gerade ist. Dann ist

X;ZX,;——(I,CL)

ein Typ, welcher fiir kein p mit 7'? dhnlich ist, und dasselbe gilt fiir die
beiden weiteren Typen

X'=X,+ X, X"—X —2X,.

Sind g,, ¢, die Signaturen von X,, X,, so haben X}, X, die Signaturen
0, = 0, + 6, — 1 — sign(a), o) = 0, — 0, — 1 — sign(a). Durch pas-
sende Wahl des Vorzeichens von @ kann erreicht werden, daBl | o] | <2
oder | o) |<2 ist. Dann enthilt X, oder X, nach dem II. Hauptsatz

eine bindre Form. Es ist also eine der Darstellungen
X=@+X]+¥=(a)+ X! + (¥ +2X,)

von der behaupteten Art, da 2X, und also auch ¥ +4 2X, die Kern-
diskrinante 1 hat. Der Satz 3 ist damit in vollem Umfange bewiesen.

§ 6. Stammformen

1. Da von jetzt ab die Stammformen im Mittelpunkt der Unter-
suchungen stehen sollen, stelle ich hier ihre Grundeigenschaften kurz zu-
sammen ; diese fallen bei gerader und ungerader Variablenzahl recht ver-
schieden aus.

Eine Form ist offenbar dann und nur dann Stammform, wenn sie es
hinsichtlich jeder Primzahl ist.
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Eine Stammform § ist zugleich auch Kernform. Schreibt man sie in der
Gestalt (9), wo §, eine Kernform von méglichst kleiner Variablenzahl ist,
so wird sich zeigen (zunéchst fiir gerade Variablenzahl) : & ist dann und
nur dann Stammform, wenn {, es ist.

Ist ¥, nicht Stammform, sondern verwandt mit ¢§;, wo ¥ Stamm-
form ist, so kann man durch Anwendung der Substitution

x, =2, »=1,2,...,m)

(43)
=tx, @P=m-+1,m+2,...,2m)

'/
1 4
/
14

x

auf die ersten 2m Variablen und Abspaltung des Teilers ¢ sehen, da8 §
mit FE™ + FI verwandt ist. Wenn also F Stammform ist, so ist es
auch ;.

Die Variablenzahl sei nun gerade. Dann #ndert sich die Diskriminante
bei rationaler Transformation und Abspaltung von gemeinsamen Koeffi-
ziententeilern um quadratische Faktoren. Ist jetzt D({,) durch p>2
nur einmal teilbar, so ist es auch D({), also & ist Stammform. Das
gleiche gilt fiir p = 2, wenn D({,;) durch 8 teilbar ist, denn wire §
nicht Stammform, so géibe es eine Form, deren Diskriminante nur einmal
durch 2 teilbar ist, aber eine solche kann es offenbar bei gerader Variablen-
zahl nicht geben.

Es sei D({;) und damit D(g) zweimal durch p teilbar, und § sei
nicht Stammform, jedoch Kernform ; &, dagegen sei Stammform. Dann
ist also § mit dem p-fachen einer Form §’ mit (D(F'), p) = 1 verwandt.
Diese ist dann vom Typ E? oder H? (p>2) bzw. E (p = 2). Im ersteren
Falle ist dann pF'~ §’ und andererseits nach der Voraussetzung
p& ~ F, also F ~ F', was aber der Annahme widerspricht, da §
Kernform sein sollte. Im letzteren Falle wire § ~ & und &, vom
Typ @7 (p>2) bzw. T2 (p = 2), und auch jetzt ist F, nicht Stammform.

Aus dieser SchluBweise geht gleichzeitig hervor, dal @7 (p>2) bzw.
T?: (p = 2) die einzigen p-adischen Typen gerader Variablenzahl sind,
welche keine p-adischen Stammformen enthalten.

Satz 4. Eine Kernform gerader Variablenzahl ist dann und nur dann
Stammform, wenn sie fiir jeden Primteiler p ihrer Diskriminante in %,
nicht dem Typ @? (p>2) bzw. T; (p = 2) angehort.

2. Bei ungerader Variablenzahl herrschen andere Verhiltnisse. Zu-
néchst kann jedoch & wieder in der Gestalt (9) geschrieben werden, wo §,
eine undre oder ternire Form ist. Diese kann man rational in folgende Ge-
stalt transformieren :
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E1(Tami1s Tamiz> Tames) = O (Topmi1, Tomys) + “xgm-m s (44)

falls &, nicht unidr war ; aber auch diesen Fall kann man mit erfassen,
wenn man jetzt & = x,,,*%;,,, nimmt (der triviale Fall, daBl § die
Variablenzahl 1 hat, bleibt allerdings ausgeschlossen).

Bei dieser Darstellung (44) kann man im Falle p>2 erreichen, dal ®
den Koeffiziententeiler p hat, wenn D(J,;) durch p? teilbar ist, und daB
a durch p teilbar ist, wenn p nur einmal in D({,) aufgeht. Jetzt kann
man durch Anwendung der Substitution (43) mit ¢ = p, ergéinzt durch
Zymis = P Tamyz, Und Abspaltung des Teilers p den ersteren Fall in letz-
teren iiberfiihren. Liegt der letztere Fall vor, und ist D(®) quadratischer
Rest mod p, so kann man wegen

3(()2"‘) + (Y) ~ 382m+2)

nochmals eine Substitution der Determinante p™+! auf z,,..., %,,,, an-
wenden und den Teiler p abspalten, so daf3 eine ganzzahlige Form ent-
steht, deren Diskriminante nicht mehr durch p teilbar ist.

Wenn hingegen D((®) quadratischer Nichtrest ist, so behaupte ich,
daB § Stammform ist: wire ndmlich § nur Kernform, aber keine Stamm-
form, so hitte man § ~ p ' mit (D(F'), p) = 1. & wire vom Typ (b)
oder H? + (b) mit (b, p) = 1, also § vom Typ (b p) oder @7 + (b p).
Esist § ~ &,, also wire

Gi~HP + (a) = (bp) oder =67+ (bp),
wo a einmal durch p teilbar ist. Diese Gleichung besagt nach (4) bis (6) :
H? = FP» oder = @7 ,

sie enthilt also einen Widerspruch.

Nach der Festsetzung y,(X) = %, (X + (1)) fiir die Typen ungerader
Variablenzahl und (30) ergibt sich fiir den zuletzt betrachteten Fall
%»(&) = — 1. Damit ist, zunéchst fiir die ungeraden Primzahlen, das
folgende gezeigt :

Satz 517). Eine Kernform § ungerader Variablenzahl ist dann und
nur dann Stammform, wenn ihre Diskriminante D quadratfrei ist, und
wenn fiir jeden Primteiler p von D

Xp(i}) = —1

17) Der Satz stammt von H. Brandt.
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gilt. Die Anzahl der Primteiler von D ist gerade oder ungerade, je nach-
dem fiir die Signatur ¢ =1, 7 mod 8 oder ¢ = 3, 5 mod 8 gilt.

Es sei jetzt p = 2. Die Kerndiskriminante ist hochstens zweimal durch
2 teilbar (Hilfssatz 1), also liegt bei gerader Kerndiskriminante in (44)
einer der folgenden Félle vor :

1) 6~T; ~2E} mod 2, a ungerade ;
2) & ~H? H:, 6 02 60; mod 2, a ungerade ;
3) & ~E2 E; mod 2, a gerade

Im 1. Falle ist obige SchluBweise fiir p>2 iibertragbar, welche den 1.
auf den 3. Fall zuriickfiihrt. Im 2. Falle ist eine Einzeldiskussion mit Hilfe
der Tabelle (7) erforderlich ; jetzt ist & mit einer Form des 3. Falles oder
dem Doppelten einer solchen Form #hnlich, nach dem I. Hauptsatz also
verwandt. Damit bleibt der 3. Fall allein zu diskutieren iibrig.

Bei gerader Kerndiskriminante kann also § hochstens dann Stamm-
form sein, wenn @ in (44) vom Typ E? oder E ist und a einmal durch 2
teilbar, und jetzt ergibt die Ubertragung der SchluBweise fiir p > 2, daB
& dann und nur dann Stammform ist, wenn & ~ £ ist. Der Charakter
%2(&) ist in diesem Falle gleich — 1. Hiermit ist der Satz 5 bis auf die
Aussage iiber die Anzahl der Teiler von D bewiesen. Diese letzte Aussage
erhilt man durch Bildung des Produktes aller Charaktere, es mufl nach
dem III. Hauptsatz den Wert (36) haben, woraus sich auch die letzte
Behauptung ergibt.

Man erkennt, dafl die Stammdiskriminante (§ 1, Nr. 2) sowohl bei ge-
rader wie bei ungerader Variablenzahl eine Invariante des Geschlechts, ja
sogar des Typs ist.

1. ldealtheorie der Formensysteme

§ 6. Die Transformatoren und Ideale

1. Ein System von Stammformen gleicher Variablenzahl n, Signatur
o und Diskriminante D sei vorgelegt, es seien 1, &, ,. . ., &, je ein Vertreter
aus jeder Formenklasse dieses Systems. Eine Matrix T, mit rationalen
Koeffizienten heilit ein Transformator®), der links zu §, und rechis zu §F,
gehort, wenn

iik i‘;’z zik = t'g‘k (45)

18) Diese Bezeichnung habe ich a. a. 0.7) vorgeschlagen.
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gilt, wo £ eine rationale Zahl ist, diese heifit die Normvon T, :t = N (T;,).
Durch Determinantenbildung folgt

2

N(zik) = l Tin l;; ’ (46)

bei ungerader Variablenzahl muB also ¢ stets eine Quadratzahl sein. Die
Gleichung (45) kann man auch in symmetrischerer Form schreiben :

ST = %’ik §r mit iik = iz'—kl N(Zi) - (47)

X1 heiBt der zu I, inverse oder reziproke Transformator, er gehort rechts
zu §; und links zu §,. Sind §,, §;, &, drei Formen des Systems und T,
T Transformatoren, deren Zugehorigkeit zu diesen Formen durch die
Indizes angedeutet ist, so kann man das Produkt

Tie = 11‘9’ za‘k (48)

bilden ; es ist ein Transformator, der links zu &, und rechts zu §, gehort.

Ein Transformator heit ganz, wenn seine Koeffizientenmatrix aus
ganzen Zahlen besteht. Sind T, und ;! ganz, so heilit T, eine Einheit ;
fiir eine Einheit I, stimmen die Formen §, und &, iiberein. Zwei Trans-
formatoren ¥, und I, heiBen rechtsseitig bzw. linksseitig assoziiert, wenn
es eine Einheit T,; bzw. I, gibt, dal

Iik = 1.,-,- 1:,, bZW. = 1:]‘ 1,6,6

ist. Die Gesamtheiten rechtsseitig bzw. linksseitig assoziierter Transfor-
matoren heilen Rechtsideale baw. Linksideale ; sie werden mit [T,;) bzw.
(Tix] bezeichnet. Als die Norm dieser Ideale ist selbstverstiandlich N (T,)
zu definieren. Eine lineare Substitution I;, welche &, in das ¢-fache einer
Form § gleicher Diskriminante transformiert, erzeugt ein Linksideal (T,]
fir §,; dieses enthilt mindestens einen Transformator I, = I, U, wo
U eine unimodulare Substitution ist, welche § in eine der Formen g,
transformiert.

Ein ganzer Transformator I,, heiBt durch einen ganzen Transfor-
mator T,; von links teilbar, wenn (48) mit einem ebenfalls ganzen I, gilt,
I, heiBt ein Linksteiler von I,;,. Ebenso ist T,; durch I;; von rechts teil-
bar, I, ein Rechisteiler von T,;. Die Teilbarkeit ist eigentlich eine Eigen-
schaft der Ideale : jeder Transformator aus dem Linksideal (Z] ist ein
Linksteiler jedes Transformators aus dem Linksideal (I;.], und ebenso
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ist jeder Transformator aus dem Rechtsideal [T;.) ein Rechtsteiler jedes
Transformators aus dem Rechtsideal [T,,). Man konnte sagen: (I,]
ist ein Linksteiler von (I,], [T;.) ist ein Rechtsteiler von [T,;).
Anders als in der Idealtheorie der Algebren ist nicht jedes Linksideal zu-
gleich ein Rechtsideal, und eine Multiplikation der Ideale hat anscheinend
keinen Sinn. Jedoch gilt auch hier : die Anzahl der ganzen Ideale von
gegebener Norm ist endlich, wihrend es bei indefiniten Formen stets un-
endlich viele ganze Transformatoren gegebener Norm gibt.

Ein nur durch sich selbst und durch Einheiten teilbarer ganzer Trans-
formator heillt ein Primtransformator, das durch ihn erzeugte Links- bzw.
Rechtsideal ein Primideal. Jeder ganze Transformator 148t sich als Pro-
dukt von Primtransformatoren schreiben. Natiirlich ist die Zerlegung i. a.
nicht eindeutig. Jedoch iibertrigt sich die Eindeutigkeit der Primzerle-
gung im rationalen Zahlkorper, wenn man primdre Transformatoren ein-
fithrt, das sind solche ganzen Transformatoren, deren Normen Potenzen
von rationalen Primzahlen sind. Wie leicht zu sehen ist, gilt dann??):

Jeder ganze Transformator laBt sich als Produkt primérer Transforma-
toren schreiben. Diese sind nach Vorgabe ihrer Normen bis auf Einheiten
eindeutig festgelegt.

2. Die Definitionen sind noch im Anschlufl an die geometrischen Be-
griffsbildungen in § 1, Nr. 2, zu vervollstindigen. Jeder der Formen ;
werde ein Gitter J, in einem n-dimensionalen metrischen Raume R; zu-
geordnet, dadurch dafB fiir jeden Vektor t, aus J, vermittels

N(t) = 3t 5.t

eine Norm N (t,) definiert wird (hierbei wird t, gleichzeitig als eine ein-
spaltige Matrix aufgefafit, deren Elemente die Komponenten des Vektors
t; sind). Ein ganzer Transformator I;, bildet vermoge der Gleichung

ti=Tutr (49)

das Gitter J, auf ein Teilgitter von J; ab.

Besteht (49) mit ganzzahligen Vektoren t,, t, (d. h. t,cJ;, t.cJ)
und ganzem I,,, so heille t; durch IT,, teilbar ; {; ist dann durch jeden
Transformator aus dem Linksideal (%], d. h. kurz durch (I, ] teilbar.
Eine notwendige Bedingung der Teilbarkeit ist die Teilbarkeit der Nor-
men, denn es folgt aus (49) :

N(ti) = N(zik)N(tk) . (50)

19)8.7), § 2.

39



Anders als in der Zahlentheorie der algebraischen Zahlkorper, wo die
Gitterpunkte den ganzen Zahlen entsprechen, gibt es jetzt i. a. mehrere
ganze Ideale (¥;,] der Norm ¢, welche einen Vektor t, teilen, dessen
Norm durch ¢ teilbar ist ; diese Anzahl wird sich als eine Funktion der
Zahl t herausstellen, welche fiir das Formensystem charakteristisch ist.
Interessant sind in diesem Zusammenhang die Verhiltnisse bei nicht
kommutativen einfachen Algebren, wo diese Anzahl bereits groSer als 1
ist, jedoch noch leicht zu iibersehen ; vgl. hiezu § 8, Nr. 6.

3. Von besonderer Wichtigkeit ist der

Satz 6. Die Norm eines Primtransformators ist eine rationale Prim-
zahl p oder deren Quadrat p2. Der erstere Fall liegt vor, wenn die Variablen-
zahl n gerade und D durch p teilbar oder ein quadratischer Rest mod p ist,
der zweite, wenn n gerade und D ein quadratischer Nichtrest mod p ist oder
wenn n ungerade ist.

Entsprechend den beiden Moglichkeiten kann man die Primtransfor-
matoren und natiirlich auch die Primideale in Primtransformatoren bzw.
Primideale ersten und zweiten Grades einteilen.

Der nicht ganz einfache Beweis fiir Satz 6 wird den Rest dieses Para-
graphen ausfiillen. Er darf offenbar in der p-adischen Erweiterung &, von
k gefiihrt werden, wo p irgendeine rationale Primzahl ist ; hierbei kann
man von der Moglichkeit Gebrauch machen, die Formen auf eine einfache
Normalgestalt zu transformieren.

Es sei T, ein ganzer Transformator der Norm p®. Mit zwei unimodu-
laren Matrizen U, B gelte

wo pé1,... (r;-mal), p% ... (r,-mal),..., po=,... (r,-mal) mit
0, <0y <-:- <0

das System der Elementarteiler von I, ist. Dabei ist also

n
7151+7252+"'+7m5m:“2*5- (51)

Indem man §; mit U, &, mit B~ transformiert, kommt man zu zwei
Formen &, &) und einem Transformator I, in Diagonalgestalt, welcher
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& in p-§, transformiert. Es beschriinkt die Allgemeinheit also nicht,
wenn man gleich T, in dieser Gestalt voraussetzt.

Ist §,>0, soist p €™ ein Teiler von I;;, es ist also zu zeigen, dal
p €™ je nach den in Satz 6 genannten Umstédnden zerlegbar ist oder
nicht. Bei ungeradem = ist p €™ offenbar nicht weiter zerlegbar, denn
p €™ hat die Norm p2?, und die Norm jedes Transformators muf} eine

Quadratzahl sein. Bei geradem » hingegen ist nach § 5, Nr. 1:

ggn—#) 8,8%-—4)
&, o ( & oder &; = o

wo ®? eine bindre p-adische Stammform und &*¥ die einzige quater-
nire p-adische Stammform ist; sie gehért zum Typ 7. Die Diskrimi-
nante von ®® bzw. ¥ stimmt mit D iiberein. Man kann nun stets eine
ganzzahlige Matrix P bzw. P4 angeben, welche G2 bzw. H* in das
p-fache einer Form gleicher Diskriminante transformiert, mit alleiniger
Ausnahme des Falles, dafl &, von der ersten Form ist und & zum

Typ H? (p>2) oder EX (p = 2) gehort, d. h. also, daB (%) = — 1 ist,

Dann erzeugt die lineare Substitution

(5(321 _1) (5(223 _2)
B8] o p@(% ) bzw. = p(f,(% -)
5_‘3(2) SBH)

ein Primlinksideal (P$™] der Norm p, das links zu §, gehort, und das
p €™ von links teilt.
Ist umgekehrt PB™ eine solche Substitution, so besteht ihr Elementar-

teilersystem offenbar nur aus 1 und p, und zwar mull wegen (51) jede

dieser Zahlen —72?'— - mal vorkommen. Wiederum beschrinkt es die All-

gemeinheit nicht, wenn man

o3

)

e

CB(W) — (f(

annimmt. Es mufBl nun
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() (%) " ]
& = %nn 8 ; %Ef ) = D(E) mod p
&(3)

12 22

sein, und Determinantenbildung ergibt

2

mod p ,

12

es kann also nicht (%) = — 1 sein.

Die Zerlegung des Transformators p €™ steht also im Einklang mit
der Behauptung.

4. Nicht jeder Primtransformator braucht ein Teiler von p ™ zu
sein, es ist nun zu zeigen, dal die Behauptung auch fiir die iibrigen Prim-
transformatoren zutrifft. Die oben erkldrte Zahl §, darf jetzt gleich Null
angenommen werden. Ich zeige zunéchst :

Py =Ty s Op=29, | (52)

d. h. der letzte Elementarteiler ist gleich der Norm, er tritt ebenso oft auf
wie der erste.

Wegen iik 3,; 1“‘, == D(n) mod P

gelten fiir die Elemente f,, der Matrix §, folgende Kongruenzen (fir p=2
beachte man die , Bemerkungen zur Formelschreibweise“ in der Ein-
leitung !) :

fie = 0 mod p® fire=1,...,r,; k=1,...,r,,

fe=0mod p3-% firi=1,...,7,; k=r+1,..., 7,47, (53)

-----------------------------

Hiernach ist stets 6= 6,,.

n
—2‘“ ’
d. h. (562) ist in diesem Falle richtig. Von jetzt ab sei 6>1. Dann sind
die in (53) zuerst genannten Zahlen f,, jedenfalls durch p? teilbar.

Ist 6=1, so kann nur §,,=1 sein, und nach (51) r, =7, =
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Wire nun 6>, oder zwar é = 4, aber r,<r,, so wiren die 7,
ersten Zeilen von §, mod p linear abhéingig. Jetzt konnte man auf §, eine
unimodulare Substitution

6(1‘1)
S = ( ' @(n—m)

ausiiben, welche §, in eine dquivalente Form § iiberfithrt, wobei die
ganze erste Zeile der Koeffizientenmatrix von & durch p teilbar ist.
Wegen der besonderen Gestalt von & und der Teilbarkeit der f,, fiir ¢,
k=1,...,r, durch p?wire der Koeffizient von §; mit dem Indexpaar 11
sogar durch p? teilbar. Dann konnte aber §; und damit auch ¥, keine
Stammform sein, im Gegensatz zu der Voraussetzung. Mithin ist §,, =
und 7, =r,. Ersetzt man §, durch &,, T, durch p® I;1, so ver-
tauschen r, und r,, ihre Rollen, es ist also auch r,<r,, womit (52) be-
wiesen ist. Es ist gleichzeitig gezeigt, dal der Rang der Matrix der r, ersten
Zeilen von §; mod p gleich r, ist.

Nach dieser Vorbereitung teile man , folgendermaBen in Teilmatrizen

auf :
(1'1) (rl,n—~21‘1) (rlvrl)

11 12 13
- (n—2r;) (n—275,71)
?‘h’ = flz 22 ' 23 w " (54)
c : (r1)
f13 f23 3:"1
dabei ist nach (53)
(1"11) - (r1) rmod pz ’ (lgx,n"wx) - D("h”‘“z?‘l) mod D, (lfghfx) | ’ p) =1.
(55)
Nach (54), (55) definiert
(g(fl)
m e p(g(n—zr,)

p2 @(rl)

ein Linksideal (D] der Norm p2, welches links zu &, gehort und I, von
links teilt. Es ist fiir » = 27, in ersichtlicher Weise zerlegbar, in diesem
Falle ist also nichts mehr zu beweisen.

Folglich bleibt jetzt noch zu zeigen iibrig: (D] ist weiter zerlegbar,

wenn n gerade, >2r, und (—g—-) # —1 ist. Wegen (54), (55) ist

(_9_ ) _ (D(i‘s;’;“”"’)) |

p p
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hat dieses Symbol den Wert 1, so gibt es nach Nr. 3 ein Primlinksideal
der Norm p fiir die Form {227, es werde erzeugt durch eine Substitu-
tion P»—27) welche ein Teiler von p E»—21) igt, folglich erzeugt

@('1)

SB(") — ﬁl}(n"z”l)
p &('l)

ein Primlinksideal (] der Norm p fiir §,;, welches (D] teilt.
Dieselbe SchluBweise ist richtig, wenn D(F{*~2"Y) = 0 mod p ist, und
wenn man nur noch nachweist, daB F{32") eine Stammform ist.

5. Zu diesem Nachweis beachte man zunéchst: sind §, ® irgend
zwei ganzzahlige Formen, so ist § dann und nur dann eine p-adische
Stammform, wenn & + p ® eine p-adische Stammform ist. Die ganz
elementare Begriindung hierfiir darf {ibergangen werden. Man transfor-
miere nun &, mit

G(Tl)
@("—2"1)

. pu(fl,n‘zﬁ) (g(”l)
wo u""2") aus dem Kongruenzensystem

1
(r1,R—271) — §(r1,71) 14(T1,7—27})
il =f™u mod p

p

zu bestimmen ist, welches nach (55) auch wirklich eine ganzzahlige
Auflosung besitzt. §,; geht dann in dhnliche Gestalt iiber, wobei jedoch
an Stelle von (55) sogar

(r1) — Y1) 2 (r1,m—271) — H(r1,n—27y) 2
F=90 mod p? , f& =\ mod p (56)
gilt. Die neue ,innere“ Teilmatrix FU' "0 ist der alten mod p

kongruent, also zugleich mit dieser die Koeffizientenmatrix einer
Stammform oder nicht.

Wire 2" keine Kernform, so gébe es eine Substitution Y2

welche ‘&‘2’;‘2’1) in eine ganzzahlige Form kleinerer Diskriminante trans-
formiert, wobei p-U"~2") ganzzahlig ist. Dann transformierte
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._l_ (GARY
N — p u("“zﬁ)
) p G(rl)

wegen (56) die Form §,; in eine ganzzahlige Form kleinerer Diskriminante,
was jedoch der Stammformeneigenschaft von §; widerspricht. Wire §,
wohl Kernform aber nicht Stammform, so wire nach § 5, Nr. 1

(n—2r,—2)
g, "

B P ’

wo » ein quadratischer Nichtrest mod p ist (v = 5 fiir p = 2). Nimmj\
man F»~*") in dieser Gestalt an, so transformierte nun

D G(.;i - "~1)
E(r1+2)

die Form §, in das p-fache einer anderen, deren Diskriminante dann er-
sichtlich weniger oft durch p teilbar sein miiite, was auch einen Wider-
spruch darstellt. Damit ist der Beweis des Satzes 6 vollstindig.

§ 7. Klassen und Geschlechter von Transformatoren

1. Zwei Transformatoren I, und I, sollen dquivalent heiflen, wenn
sie links und rechts zu den gleichen Formen gehoren, d. h. wenn ¢ = j,
k =1 ist. Transformatoren ¥ ,;, welche links und rechts zur selben Form
gehoren, heillen Haupttransformatoren. Diese bilden jeweils eine Gruppe.
Die Gesamtheiten dquivalenter Transformatoren werden 7Transforma-
torenklassen genannt.

Zwischen den Transformatorenklassen 148t sich eine Multiplikation er-
kldren, indem man aus ihnen einzelne Reprisentanten herausgreift und
diese multipliziert. In diesem Zusammenhang gilt

Satz 7. Die Transformatoren eines Systems von Stammformen gleicher
Variablenzahl, Stgnatur und Diskriminante bilden etn Gruppoid. Die Trans-
formatorenklassen bilden ein Gruppotd von der Ordnung 1 und vom Rang b,
wenn h die Anzahl der Formenklassen in diesem System ist.
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2. Der Beweis ist selbstverstiandlich bis auf die Tatsache, da3 es zu
zwei Formen {,, &, des Systems stets einen links zu §; und rechts zu ¥,
gehorigen Transformator I, gibt. Gehoren §, und &, dem gleichen Ge-
schlecht an, so ist auch diese Tatsache klar. Nach Satz 5 ist Satz 7 also
bereits fiir ungerade Variablenzahl bewiesen.

Um den Satz 7 allgemein zu beweisen, teile ich bei gerader Variablen-
zahl die Transformatoren in Geschlechter ein, indem ich ihnen mittels

zi — x p(%i) 57
¥s(Ta) = & D
ein System von Charakteren fiir alle Diskriminantenprimteiler 1. Art
zuordne. Wegen (33) gilt fiir sie die Produktrelation

Iy, (Ty)=1. (58)
7

Transformatoren mit gleichen Charakteren bilden ein Geschlecht ; ein
solches umfaBt stets (eine oder mehrere) volle Klassen. Ebenso wie fiir die
Transformatorenklassen kann man auch fiir die Geschlechter eine Multi-
plikation erkliren, dabei gilt der

Satz 8. Die Geschlechter der Transformatoren bilden eine Abelsche
Gruppe der Ordnung 22! und des Typs (2,.. ., 2) bei a Diskriminanten-
primteilern 1. Art.

Beweis. Die Behauptungen sind klar bis auf die Aussage iiber die An-
zahl der Geschlechter. Nach (58) kann sie offenbar nicht grofler als an-
gegeben sein. Es ist also, wie iiblich in der Theorie der algebraischen Zahl-
korper, zu beweisen, dafl alle denkbaren Geschlechter wirklich existieren.,

Es sei p eine ungerade Primzahl, welche in der Diskriminante genau
einmal aufgeht, und I,, ein ganzer Transformator mit zu p teilerfremder
Norm. Dann ist

2o(&) = 2, (N(Tin) &)
nach (57) und (30) also

waTa) = () (59)

Die Diskriminante hat die Gestalt
D = (—1)222PA? (60)

wo P das Produkt der ungeraden Diskriminantenprimteiler 1. Art ist und
A eine zu 2P teilerfremde ganze Zahl.
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Ein System von a Zahlen y, =-4-1 mit dem Produkt 1 sei vorgegeben,
wo p die a Diskriminantenprimteiler 1. Art durchlaufen mége. Es werde
nun eine Primzahl ¢ bestimmt, welche den Kongruenzen

()

fiir alle ungeraden p und

Imod 4 fiir gp =10 ,

lmod8 firgp=3, yp,= 1,
g={(5mod8 firgp=3, y,=-—1, (62)

lmod4 fireg=2, g,= 1,

3mod4 fire,=2, y,=—1

geniigt. Der letzte Fall kann offenbar nur dann eintreten, wenn

(]

(—1)2 P=3 mod 4 (63)

ist, denn sonst wire D nicht Stammdiskriminante. Nach (60) bis (63) und
dem quadratischen Reziprozititsgesetz ist dann

()1,

und nach Satz 6 gibt es einen ganzen Transformator I,, mit der Norm g¢.
Er erfillt fiir simtliche ungeraden Diskriminantenprimteiler 1. Art
wegen (59) und (61) die Gleichungen

Wp (Iik) = Q/"p ’

nach der Produktrelation also auch fiir p = 2. Aus dieser Schluweise
geht die Richtigkeit des Satzes 8 hervor.

Mit Satz 8 schlieBt sich gleichzeitig die letzte Liicke im Beweis fiir
Satz 7: es gibt hiernach ebensoviele Geschlechter von Transformatoren
wie Formengeschlechter (Satz 2), mithin sind letztere simtlich durch ge-
eignete Transformatoren untereinander verbunden.

§ 8. Die Primideale ersten Grades

1. In diesem Paragraphen werden eine Reihe von elementaren Einzel-
tatsachen der Theorie der quadratischen Formen in dem Restklassenring
der ganzen Zahlen nach einer Primzahlpotenz p* gebracht, wobei

(2)-
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und die Variablenzahl n = 2m gerade ist. Es handelt sich also um die
Zahlentheorie der speziellen Form FE™ bzw. ihrer Klasse.
Eine ganzzahlige Matrix U heiBt eine Einheit von § mod p*, wenn

u FU=F  mod p*
ist. Die EKinheiten mod p* bilden eine Gruppe. Ihre Ordnung ist fiir
o =1, p>2 bekanntlich?) gleich

m—1
2pmm=1) (pm — 1) IT (p* — 1) . (64)
k—1

Zwei ganzzahlige Vektoren x und y sollen mod p* dquivalent heiflen, wenn
es eine Einheit i von § mod p gibt, so dal

p=Ux
gilt. Ich beweise zunéchst den

Hilfssatz 4. Zwei ganzzahlige, vom Nullvektor mod p verschiedene
Vektoren x und 1 sind dann und nur dann mod p dquivalent, wenn

N(x) = N(y) mod p
ist.
Beweis. Dal} die genannte Bedingung notwendig ist, ist klar. Es be-
schrinkt die Allgemeinheit nicht, wenn man § = ™ annimmt. Es
gibt jetzt folgende speziellen Einheiten von § mod p:

B
U=t . " mod p , (65)
6+6 5
wo B und S m-reihige quadratische Matrizen sind und

S + S = O™ mod P, (66)

d. h. fiir p = 2 nach der eingangs getroffenen Verabredung : (S + é)
ist eine symmetrische Matrix mit geraden Diagonalengliedern. Eine
weitere Einheit von § = FE™ ist FE™ selbst.

Durch Anwendung einer Einheit (65) mit S = O™ auf x kann man

20) Vgl. etwa B.L.van der Waerden, Gruppen von linearen Transformationen,
Ergebn. d. Math. IV, 2, Berlin 1935, S. 15. Dort liegt offensichtlich (z. B. fiir n = 2) ein
Druckfehler vor. Das Original: L. E. Dickson, Linear Groups, Leipzig und Berlin 1901,
nach dem v.d. Waerden zitiert, ist mir leider nicht zugéanglich,
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bei passender Wahl von B zunéchst erreichen, daBB die Komponenten
Zy,..., %, durch p teilbar werden. Dann ist

N =x12,, modp. (67)

Ist auch z; = 0 mod p, so transformiere man jetzt ¥ mit der Einheit
FE™  wodurch z,,%,,... mit ,.;, Zp.s,... vertauscht werden. Eine
weitere Transformation mit einer Einheit (65) mit S = O™ und ge-
eignetem B macht schliefllich z, =-.-= x,,, = 0 mod p, wobei auch
noch z, =1 mod p erreicht werden kann, falls nicht ¥ der Nullvektor
mod p war.

Ist dagegen z; == 0 mod p, so kann man ¥ mit einer Einheit (65) mit
B = E™ und geeignetem S so transformieren, dal auch =x,.,,..., ,,
durch p teilbar werden. Dabei muBl & so bestimmt werden, da3 die erste
Spalte sq, 8515. .., 8, folgende Werte hat :

81150 ’ 321w15—xm+2,--.,8m1x15'_me mOdp,

was mit (66) vertréiglich ist. Wenn die Norm von x durch p teilbar ist, so
ist jetzt wegen (67) auch x,., = 0 mod p, es liegt dann der schon be-
handelte Fall vor. Anderenfalls kann man endlich noch eine Substitution

(65) mit B = -—x—l—-(ﬁ‘m’, S = O™ anwenden, dann erhdlt man die

1
endgiiltige Normalform :

n=1, n=.=2,=0, z,,=N(F,

Eppps =+ =%, =0 modp . (68)
Der Hilfssatz 4 ist hiermit bewiesen, da jeder ganzzahlige Vektor solch
einem Normalvektor mod p dquivalent ist.

2. Die Uberlegungen sind fast wortlich iibertragbar auf Kongruenzen
mod p*. Dazu werde noch folgender Begriff eingefiihrt : ein ganzzahliger
Vektor moge primitiv heilen, wenn seine Komponenten ohne gemein-
samen Teiler sind. Primitive Vektoren sind mit Normalvektoren der Ge-
stalt (68) auch mod p* dquivalent, und es gilt der

Hilfssatz 5. Zwei ganzzahlige primitive Vektoren x und p sind dann
und nur dann mod p* #dquivalent, wenn

N(x)=N(x) modp*
ist.
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3. Wird §& in der Gestalt FE™ angesetazt, so ist

(g(m)
Po = ( p(ﬁ""’)

ein spezieller Haupttransformator der Norm p fiir . Es sei § eine ganz-
zahlige lineare Substitution, welche ein Primlinksideal (] der Norm p
fir §§ erzeugt. Es gibt dann zwei unimodulare Matrizen i und B so, da

P=UP, B (69)
gilt. Man transformiere § mit U :
“ 312
S}’=1I$u=(,“ )’
812 %22

hier seien §,,, &z, & m-reihige Matrizen. Da (] ein Linksideal fiir §
ist, ist P, ein solches fir F’, also gilt

Su=0™modp, |Fyp|=+lmodp.

Es seinun T = T™ eine Losung der Kongruenz

T+ T+ F3' T Fp=0" modp, (70)

zu deren Verstdndnis im Falle p = 2 noch besonders auf die ,,Bemerkun-
gen zur Formelschreibweise hingewiesen sei ; sie besitzt stets eine ganz-
zahlige Auflosung. Mit ihr bilde ich die 2m-reihige Matrix

(g(m) 3:
W = ( _1)
12

Der Hauptnenner ihrer Koeffizienten ist zu p teilerfremd ; dasselbe gilt
auch fiir die Matrix

B’ = Pyt U P,

und die hierzu inverse. Mit

Uy,=uw, B,=B"'13
gilt nun nach (69)

P=UuU, Po B,
oder
| (B] = (U, Bo] (71)
und nach (70) wegen F = FE™
1.I1$§u1——_—8- mod p . (72)
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Da nach (72) stets | U, | = 4+ 1 mod p ist, gibt es eine ganzzahlige
Matrix U] der Determinante 4-1, welche der Kongruenz

U, =AU, modp

geniigt. Es folgt aus diesen Schliissen der

Hilfssatz 6. Zu zwei Primlinksidealen (P,] und (P,] der Norm p
fir & gibt es eine ganzzahlige Matrix U, der Determinante 4 1, welche
der Kongruenz (72) geniigt, so dafl

(T’l] = (U, P.]
ist.

4. Die Ergebnisse von Nr. 3 sind nun zu verallgemeinern. Ein Trans-
formator oder ein Ideal heiBle normal, wenn das Elementarteilersystem
der Matrix bzw. Matrizen, welche den Transformator bzw. das Ideal er-
zeugen, hochstens zwei verschiedene Zahlen enthilt. Handelt es sich nicht
um ein rationales Vielfaches der Einheitsmatrix, so sind offenbar m Ele-
mentarteiler gleich einer Zahl a, die anderen m Elementarteiler sind gleich
einer anderen Zahl b. Ein ganzer Transformator oder ein ganzes Ideal
heiBle ferner primitiv, wenn nicht alle Koeffizienten der erzeugenden
Matrizen einen gemeinsamen Teiler haben. Bei ganzen normalen primi-
tiven Transformatoren und Idealen ist der erste Elementarteiler gleich 1,
der zweite gleich der Norm. Die Uberlegungen von Nr. 3 sind zum Beweis
des folgenden Hilfssatzes fast wortlich iibertragbar ; an die Stelle von 3,
tritt dabei stets die Potenz L5 von P, :

Hilfssatz 7. Zu zwei ganzen primitiven normalen Linksidealen (%]
und (PB,] der Norm p* fiir § gibt es eine ganzzahlige Matrix U, der
Determinante + 1, welche der Kongruenz

LFU,=F modp (73)

(%1] = (ul ‘Bz]

geniigt, so daf3

ist.
5. Es sind nun einige Anzahlen zu berechnen, und zwar :

1) o(p*): die Anzahl der ganzen primitiven normalen Ideale der Norm
p* fir §.

2) w»(p*): die Anzahl solcher Ideale, welche einen gegebenen ganzzahli-
gen primitiven Vektor teilen, dessen Norm durch p*teilbar ist.
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3) &(p%: die Anzahl der ganzzahligen primitiven Vektoren mod p*,
deren Norm durch p* teilbar ist.

4) u(p*) : die Anzahl solcher Vektoren, welche durch ein gegebenes gan-
zes primitives normales Ideal der Norm p* fiir § teilbar sind.

Die Anzahlen »(p*), u(p™) héngen ihrer Definition nach zwar noch von
einem speziellen Vektor bzw. einem speziellen Ideal ab, sie sind jedoch
nach den Hilfssétzen 5 und 7 Invarianten des Formensystems allein.
Nachdem diese Tatsache festgestellt ist, erkennt man zwischen den er-
wiahnten Anzahlen sofort die Beziehung

3 (p*)
©(p*)

v (p%) = ¢(p*)

oder
o(p*) _ o(p™)
(%) u(e®) (74)

Hauptsidchlich dieser Quotient wird weiter unten eine Rolle spielen.

‘Die beiden letzten Anzahlen lassen sich ganz elementar berechnen, bei
der Berechnung von u(p*) darf fiir das genannte Ideal ein spezielles, und
zwar am bequemsten By eingesetzt werden :

d(p*) =ple-Dem=D(pr —1)(pm 1+ 1) , p(P*)=pVnpm—1). (75)

Nach (74) und (75) ist also
g (pa) — mlo—1) (m—1) (y;m—1 1 76
v P (Pt +1) . (76)

6. Die Anzahl p(p*) ist nach Hilfssatz 7 offenbar gleich der Ordnung
der Gruppe sémtlicher Einheiten von F¢™ mod p*, dividiert durch die
Ordnung der Gruppe derjenigen dieser Einheiten U, fiir welche

. (U Bs] = (Bs]
ist, d. h. fiir welche

Bo “ U By
ganzzahlig ist. Diese i miissen von folgender Gestalt sein :
U= (SB1 g311) mod p* ,
B,

wo B,, B,, T m-reihige Matrizen sind. Es sind Einheiten mod p*, falls
B=B7!, IT+IT=O™ modp
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gilt. Die Ordnung dieser Gruppe ist fir o« = 1 gleich pimm-1.mal der
Ordnung der vollen linearen Gruppe vom Grade m, also gleich

pmmV(p — 1)...(pm — 1) .

Da (64) die Ordnung der Einheitengruppe mod p fiir p>2 ist, hat man
jetzt fiir x =1, p>2, m=2:

e@=2+1...0"*+ )=+ 1)(p*+ 1)...(p 1+ 1) (77)

und

vip)=2(+1...p" 2+ 1) =@+ (@' +1)...(pm241). (78)

Fir m =1 hat man o(p) = 2, »(p) = 1; hiermit kommt der fol-
gende Sachverhalt zum Ausdruck: In einem quadratischen Zahlkérper,
dessen Diskriminante mod p ein quadratischer Rest ist, gibt es zwei
Primideale der Norm p. Eine primitive ganze Zahl, deren Norm durch p
teilbar ist, ist durch genau eines von diesen teilbar. Im Falle m = 2 ist
o(p) =2(p+ 1), »(p) = 2; hiermit kommt der folgende Sachverhalt
zum Ausdruck : es gibt fiir eine Maximalordnung J einer Quaternionen-
algebra, deren Diskriminante zu p teilerfremd ist, 2(p 4+ 1) Primideale
der Norm p. Eine ganze primitive Zahl « aus J, deren Norm durch p teil-
bar ist, ist in zweien von diesen Idealen enthalten ; diese Ideale sind offen-
bar das Linksideal B, = Jx + Jp und das Rechtsideal P, = & + pJ.

§ 9. Die Primideale zweiten Grades

1. Die Uberlegungen des § 8 sind nun soweit als moglich auf den Fall
zu iibertragen, wo D mod p ein quadratischer Nichtrest bei gerader
Variablenzahl = ist, oder wo die Variablenzahl » ungerade ist. Es handelt
sich also jetzt um die Zahlentheorie der Formen

(2m) (2m)
0 0
8 = 2 oder g = (n=2m+r,!r::1,2)
D

—27 20 (79

je nachdem die Variablenzahl gerade (r = 2) oder ungerade (r = 1) ist,
und zwar im Restklassenring der ganzen Zahlen mod p*. Dabei soll der
Kiirze halber der Fall p = 2 ausgeschlossen werden; es wire nicht
schwer, die fiir diesen Fall notwendigen Zusatziiberlegungen anzufiigen,
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die Ergebnisse diirften sich dabei nicht dndern. Ferner werde durchweg
m >0 angenommen.

Hilfssatz 8. Zwei ganzzahlige primitive Vektoren ¥ und 1 sind dann
und nur dann dquivalent mod p*, wenn

N(zx) = N(y) mod p*
ist.

Beweis. Die Notwendigkeit der genannten Bedingung ist klar. Um
einen ganzzahligen primitiven Vektor x auf eine Normalgestalt zu trans-
formieren, kann man zuniichst die Einheiten der Teilformen F?#™ von §
gemiB (79) benutzen und dadurch erreichen, dafl

Xy =+ =Ty = Tpppp =+ * = Lo = 0 mod p*
ist. Dann ist
D3 11 ) srz 1,
N(x) ‘—‘_-"xlxm+1+l : ——-£x§ 2§ mod p* fiir}r__ . (80)
m 4 m+ — .

Es bleiben nun nur noch die Einheiten der terndren oder quaterniren
Form

D
Bo=0:1%+Dy;, Bu=wnt+¥— v (81)
fir y, =2, Yo = Tpy1, Ys = Topmy1s Ys = ZLomye zZUr Anwendung iibrig.

Die erstere Form ist mod p* &dquivalent mit 2 — w w, und deren Ein-
heiten sind bekanntlich die Matrizen

o? 200 y P2
xf ad+ By o mit xd — By =1 mod p*
B2 280 02

d. h. u, v, w transformieren sich wie die Koeffizienten der bindren Form
ub? 4 2vén + wn? (82)

bei unimodularer Transformation der Variablen &, ». Man kann (82) stets
so transformieren, da » = 0 mod p* wird. Mithin gibt es eine Einheit
von § mod p*, welche die Kongruenz ,,,, =0 mod p* herstellt.
Wendet man nun, falls noch erforderlich, weitere Einheiten der Teilform
FE™ an, so erhilt man die Normalgestalt
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=1, =,

i
It

Zp =0, T,y =N(E), Zpypo =---=0 mod p* (83)

fiir alle ganzen primitiven Vektoren. Der Hilfssatz 8 ist damit jedenfalls
fiir ungerade Variablenzahl bewiesen. Bei gerader Variablenzahl mufl man
aus der Form §, in (81) zunichst die ternire Teilform y, ¥, + »35 heraus-
greifen und durch Anwendung einer Einheit von dieser y,, d. h. x,,., zu
Null mod p* machen. Sodann wende man eine Einheit der verbliebenen

terndren Form v, y, — % y: an und mache y,= @,,,, =0 mod p~.

Die Normalgestalt (83) ist also auch bei gerader Variablenzahl herstellbar.
2.  An Stelle der Normalform (79) werde jetzt die etwas allgemeinere

(2my) (ry—1) (ry—7)
0 0 0

8’ - ’ (5(71) = 2 bzw. (84:)
@) _2% 2D

(n=2m,4r =2m-4r)

verwendet ; ersichtlich sind die Formen (79) und (84) dquivalent.

Ein Transformator oder ein Ideal soll halbnormal heillen, wenn sein
Elementarteilersystem aus hochstens 3 Zahlen besteht. Spezielle ganze
primitive halbnormale Haupttransformatoren fiir die Form (84) sind

( (m)
P, = p2Em (85)
p @ (?’1) '

und deren Potenzen ; sie vertreten die Rolle, die B, und dessen Potenzen
in § 8 spielten, normale Ideale und Transformatoren der Norm p2* fiir &
gibt es in dem vorliegenden Falle nicht.

Es sei (P] ein ganzes primitives halbnormales Ideal der Norm p>*, der
mittlere Elementarteiler trete r,-mal auf. Dann gibt es zwei unimodulare
Matrizen i und B, so daB

P=UP: B (86)
ist. Man setze
Fn T fu
3, = ug’u = 812 8’;2 fés s (87)

fis  Ts &
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diese Aufspaltung in Teilmatrizen sei derart, daB §,,, &1, & das Format
My XMy, f13, Tos das Format m, X7, und ., das Format r, xXr, haben.
Nun ist (Py ] ein Ideal fiir §’', also

T = 0m) mod p2*, fl; = o™ ™ mod p* , (88)
= 18;2121)(8’;3) mod p** . (89)
Es sei jetzt U’ eine ganzzahlige Matrix mit

U, U, Uy
W = Wy, P*Uy, mod p2* , (90)
P*Uy; Uy, Uy,

deren Teilmatrizen dieselben Formate haben wie die Teilmatrizen von

&', und .
gll — ul 3/ u/ . (91)

Zerlegt man §” in derselben Weise in Teilmatrizen wie (87), so erhilt man
nach (87), (88), (90) folgende Kongruenzensysteme :
Fir

un e ugg = @(ml) » ulz = D(ml) s U3 = 1123 D(ml 1) mod p2a
ist
13 = (f13+ p 11315}33 ) U, fza = f23+ u32 333) U, %3% =33 8’:;3 U,; mod p?*,

Wegen (88), (89) kann man nun ug,, 5, Us; so bestimmen, daB

;’3 = ” D(ml "'1) %:,3,3 = G('rl) mOd pZa

gilt. Sind diese Kongruenzen erfiillt, so setze man 11,; = 11,, = 0™ "),
Uy = Ugp = 0F™) YW,o = G und kann dann U,,, U,,, U,, nach dem
Gedanken von § 8, Nr. 3 so bestimmen, daf3

=g =0m FI =E™ mod p=

11 —

wird, dann ist also
"=¢§ mod p2> , (92)
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wenn § in der Normalgestalt (84) angenommen wurde. Man setze weiter-
hin

 =UW,  By=P; AP B, (93)
dann ist nach (86)
P = U, fl B, (94)
und nach (87), (91) bis (93)
1.11 FU, =F mod p> . (95)

Nach (85), (90), (93) ist B, eine Matrix, deren Koeffizienten zu p teiler-
fremde Nenner haben, also folgt aus (94)

(P]= (U, 7] -

Wie in § 8, Nr. 3 kann man endlich sicherstellen, da [, eine ganzzahlige
Matrix der Determinante 4-1 ist. Also gilt der

Hilfssatz 9. Es seien P, und P, zwei ganze primitive halbnormale
Ideale fiir § mit dem gleichen Elementarteilersystem. Dann gibt es eine
ganzzahlige Matrix U, der Determinante 4 1, welche (95) erfiillt, so da@

(SBI] - (ul s;'32]

ist.
3. Wiederum sind einige Anzahlformeln zu berechnen, und zwar :

1) o(p*,r,): die Anzahl der ganzen primitiven halbnormalen Ideale
der Norm p2*, wobei der mittlere Elementarteiler genau
r;-mal auftritt.

2) w»(p*,r;): die Anzahl der Ideale dieser Art, welche einen gegebenen
ganzzahligen primitiven Vektor teilen, dessen Norm
durch p>* teilbar ist.

3) o(p*): die Anzahl der ganzzahligen primitiven Vektoren mod p**,
deren Norm durch p2?* teilbar ist.

4) u(p*,r,): die Anzahl der Vektoren dieser Art, welche durch ein
gegebenes ganzes primitives normales Ideal der Norm
p?* teilbar sind, dessen mittlerer Elementarteiler genau
r;-mal auftritt.
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Wie in § 8 folgt auch hier, dafl diese Anzahlen simtlich Invarianten des
Formensystems sind, und da@ die Gleichung

e(@** 1) _ 6(p*) (96)
v(p**, ry)  p(p?, )

gilt.
Eine ganz elementare Rechnung liefert

p(p, ry) = pleDmtar (pm ) (97)

Etwas schwieriger berechnet sich & (p?*). Zunéchst sei r = 2, &« = 1;
d(p?) ist gleich der Losungszahl mod p* der Kongruenz

wo a und b Vektoren von m ganzzahligen Komponenten und a b deren
skalares Produkt bedeuten. Diese Losungsanzahl setzt sich zusammen
aus der Losungsanzahl §, von

ab = a mod p?

bei festem zu p teilerfremdem a und der Anzahl 6, der primitiven Losun-
gen derselben Kongruenz mit a = 0. Die erstere Anzahl ist p?(p?* — 1)-
mal zu zdhlen entsprechend der Anzahl der Losungen mod p? von

xz—_—?ws_‘—'——a_—,ﬁéo mod p ,

die zweite p*mal entsprechend der Anzahl der Losungen mod p? von

xz—%yZEO mod p? ,

wobei zu beachten ist, daBB D ein quadratischer Nichtrest mod p sein
sollte. Man findet leicht

0, = p*"2(p™ — 1) ,

0, = p1i(p™ — 1)(p™ 1 + 1) .
Es ist mithin

0(p?) = 6, p*(p® — 1) + 0, p* = p™™+ (p™ — )(p™* + 1) .
Ist ag, bg, g, yp eine primitive Losung von
D
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so erhilt man eine Losung derselben Kongruenz mit g 4+ 1 an Stelle von
p durch den Ansatz ag,; = ag + p# o’ usw. Hierbei muB fiir o’ usw. eine
einzige lineare Kongruenz mod p bestehen, welche nicht identisch erfiillt
ist und daher p?m+! verschiedene Losungen besitzt. Mithin wird

0 (p*¥) = ple-bEmal(pn — 1)(pm+t + 1) (r=2) . (98)

Der Gedankengang verlduft bei ungerader Variablenzahl véllig analog
und liefert

d(p**) = pletim(pr — D"+ 1) . (r=1) (99)
Nach (96) bis (99) wird fiir r, = r:

Q(pza,_ﬂ _ p(zoz—-l) m—a(pm + 1) fiir r=1 :

(100)
v(p2°‘, ,r) p(2a——1) m—l(pm+1 + 1) fir r= 2.

4. Zum SchluB ist noch die Anzahl A(p?; N) der ganzen primitiven
halbnormalen Ideale (P] der Norm p? zu berechnen, deren mittlerer
Elementarteiler »-mal auftritt (r = 1 fiir ungerade und r = 2 fiir gerade
Variablenzahl), und welche einen gegebenen Vektor px teilen, wo x ein
ganzzahliger primitiver Vektor der Norm N ist :

px="Py .
Zufolge der Hilfsséitze 8 und 9 hidngt diese Anzahl nur von der Norm N
von x ab ; ja sogar nur von dem Legendresymbol (%) ; dasselbe gilt fiir

die Anzahl x(p?; N) der primitiven Vektoren mod p, die mit einem
solchen P in dieser Beziehung stehen. Ist d(p; N) die Anzahl aller ganz-
zahligen primitiven Vektoren mod p mit der Norm N, so gilt offenbar

A(p?; N)

5(P;N)W

= o(p% 7) (101)

oder
AP N) o) x@hN)
v vwhn) 8(piN) (102)

Ferner ist abgesehen von dem trivialen Fall n = 1:

(p» —1)(pm 4+ 1) fir N=0 modp,
DN - T:l,
iy = {7 (5)) o N0 mod, (103)
(p™ — 1)(p™*+t + 1) fir N =0 modp,ir__2

p™(pm+l 4 1) fir N 550 mod p,
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wie man ganz leicht verifizieren kann, und ebenso

(p™ — 1) fir N = 0 mod p, r beliebig,
w(p?; N) = pm(l—{—(—lzg)) fir N0 modp, r=1, (104)
Lp™(p + 1) fir N550 modp, r=2.

Nach (100) und (102) bis (104) ist dann

[ pm—1 fir N =0 mod p, r beliebig,
Ap*; N) _ pm-x(l +(P_1!)) fir N0 modp, r=1,  (105)
v (p?, 1) P

Pl p + 1) fir N£0 modp, r=2.

(Eingegangen den 19. September 1946.)
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