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Das Verhalten der Laplace-Transformierten
in ihrer Beschrânktheitshalbebene
Von Gustav Doetsch, Freiburg i. B.

1. Die Beschrânktheitsordnung der Laplace-Transformierten
Die durch die Laplace-Transformation aus einer Funktion F (t) er-

zeugte Funktion ^
f(s) $e-"F(t)dt=Q{F}

0

ist in der Konvergenzhalbebene <Rs>f} analytisch, kann aber dièse

Eigenschaft in einer daruber hinausreichenden Halbebene 91 s >rj
(rj<p) haben1). Wir betrachten f(s) grundsâtzlich in dieser ,,Holo-
morphiehalbebene" und interessieren uns in der gegenwârtigen Note fur
den Fail, da8 f(s) in einer Teilhalbebene 51.5 ^ a(a>rj) beschrânkt
ist2). Als ,,Beschrânktheitsabszisse" ^ von f(s) definieren wir die untere
Grenze aller a, fur die

| f(s) | ^ M M{a) fur 9ts ^ a

ist. 3is>/Lt heiBt die ,,Beschrânktheitshalbebene" Von f(s). Naturlich
braucht f(s) in dieser Halbebene selbst nicht beschrânkt zu sein.

x) In meinem Buch ,,Theorie und Anwendung der Laplace-Transformation",
Berlin 1937, das in der Folge immer kurz als ,,L.Tr." zitiert wird, war darauf hingewiesen
worden (S. 405, Historisehe Anmerkung 19), da6 bis dahin in der Literatur kein Beispiel
fur dièses Vorkommnis vorliege. Inzwischen sind mehrere Laplace-Transformierte an-
gegeben worden, die ein solches Verhalten zeigen. Ein besonders einfaches Beispiel wird
dUrCh

„ t ¦ t dcosne*
Fit) — n & sin n e -.

eût

geliefert. Hier ist f$ 0, wâhrend zweimalige partielle Intégration auf die Gleichung

f e-st (_ n et sin n et} dt ___ *!*+}) T e~(s+2)t (_ net gin n et} dt f

d.h. /(8)

n i
l_îil^/(5+2)

fûhrt, die zeigt, dafî / (s) in die ganze Ebene fortgesetzt werden kann. Dièses Beispiel
wurde mir am 29. September 1943 von D. Grohne brieflich mitgeteilt.

2) Ob es Laplace-Transformierte gibt, die in keiner Halbebene beschrânkt sind, scheint
nicht bekannt zu sein.
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Grundlegend fur die Frage nach der Existera einer Beschranktheits-
halbebene ist der

Satz A3). Ist a ein reeller Punkt im Innern der Holomorphiehalbebene
und ist

a) \f(s)\^M auf x a, b) f(s) 0(elvlk) fur |y|->oo
gleichmdflig filr x>o, wo s — x -\- iy und k eine feste, aber beliebiggrofie
Zahl ist, so gilt in der ganzen Halbebene x ^ g • \f(s)\^M.

Da fur x ^ /S + e>f} gleichmaBig f(s) o (| y | ist4), so ergibt
sich: Liegt a in der Konvergenzhalbebene, so genugt es, daB | f(s) | ^ M
auf der Geraden x a ist, damit \ f(s) \ ^ M auch fur x ^ a gilt.

Ob die Beschranktheitshalbebene uber die Konvergenzhalbebene hin-
ausreichen kann, ist nicht bekannt5).

Fur x>fi ist die Funktion

M(x) obère Grenze von \f(s)\ auf 9îs x

definiert. Dièse hat die beiden Eigenschaften :

I. M(x) nimmt monoton ab: M(xy) ^ M(x2) filr x1<x2*)
II. log M(x) — und infolgedessen auch M(x) — ist eine konvexe7)

Funktion6).

I folgt aus Satz A, II aus dem ,,Dreigeradensatz".
Die einfachste Funktion, die monoton abnimmt und deren Logarith-

mus konvex ist, ist e"0^ (oc > 0). Es liegt nahe, M(x) mit dieser

Funktion zu v^ergleiehen, m. a. W. den Quotienten —~—— ins Auge zu
fassen. Wir behaupten :

8) L.Tr. Satz 1 [4.4], S. 57.

*) L.Tr. Satz 5 [4.3], S. 52.
5) Beweisen konnte ich folgende, bisher nicht veroffentlichte Satze 1) Ist £{-^} in

emer Halbebene x^> <r0 konvergent und ist fur ein gewisses a1 <C o0 in jedem Streifen
ax -f- s ~ ^ ~ cr0 -{- e (e >> 0) / (s) analytisch und von negativer Ordnung, d. h. gleichmaBig

f (s) « O (| t/|~"a) fur |2/|->-«» mit a ;> 0 so konvergiert £{jP} fur x> Cj.
2) In der Beschranktheitshalbebene konvergieren die (C, fc)-Mittel beliebig klemer positiver
Ordnung von 2{F}. Zu letzteren vgl. G.Doetsch Der Faltungssatz m der Théorie
der Laplace-Transformation, Ann. R. Scuola Norm. Sup di Pisa (2) 4 (1935)
S. 71—84

8) Aus II folgt, dafi entweder dauernd das Gleichheitszeichen gilt, d. h. M {x) const.
ist, oder dauernd das Ungleichheitszeichen M (xx) > M (x2) (Monotonie un engeren
Smn). Ob der erstere Fall fur eine Konstante > 0 vorkommen kann, ist fraghch.

7) Das bedeutet : Auf der Kurve y log M (x) liegt fur je drei Abszissen xx <C x2 <C xz
der Punkt x2 > y2 unterhalb oder auf der Verbmdungsgeraden der Punkte xx, yx und xz, yz.

8) L.Tr. Satz 3 [4 4], S 58.



Satzl. (I. Hauptsatz). Fur jede Laplace-Transformierte f(s)== £>{F},

die eine Beschranktheitshalbebene besitzt, existiert lim —-—— Dièse
a;->oo

Zahl ist stets ^ 0 9) :

v logM(x)lim —-—— — v <L 0
x-> oo X

Wir nennen v (^ 0) die Beschranktheitsordnung von /(s).

Beweis: DaB t? ^ 0 ist, ist klar, denn als positive, monoton abneh-
mende Funktion muB M(x) gegen 0 oder eine Zahl m>0 konvergieren.
Im letzteren Fall10) ist offenbar v 0. Ist aber M(x)->0, so ist von

einer Stelle an log M(x) < 0, also lim —-—— wenn vorhanden,
a;->-oo x

< 0. — Wir setzen:

logM(x) r log if (a:)lim sup —-—— =-¦—«;, hm mf —^—^ — w

Beide Grofien konnen endlich oder gleich — oo sein, und es ist — v ^ — w.

a) w sei endlich. Dann gibt es nach der Définition von liminf zu
gegebenem <5>0 unendlich viele Zahlen xx<x2<-—>oo so, daB

log M(xn) <w + ô alg0 log M{Xn) <{_w + ô)Xn

ist. In einem x «/-System liegen mithin die Punkte xn, log M(xn) unter-
halb der Geraden y — w + ô)x. Dann liegen aber wegen der Eigen-
schaft II die Punkte x, log M(x) an den Zwisehenstellen erst reeht dar-

tinter, d. h. fur x ^ x, ist dauernd —-—— < — w 4- ô. Daher muB— 1 x
loff Jfef(x)

~ v lim sup —-—— ^ — w + ô und, da ô beliebig klein ist,
x

-—v^—w sein. Zusammen mit — v ^ — w fuhrt das zu — v — w,
log M(x)d. h. lim —-—~ existiert.

9) Dieser Satz gilt allgemem fur jede analytische Funktion, die in einer Halbebene be-
schrankt ist und fur die M (x) monoton abnimmt.

10) Ob dieser Fall tatsàchhch emtreten kann, ist nicht bekannt. Wenn fî{i^} eine
Halbebene absoluter oder auch nur gleichmafîiger Konvergenz besitzt, so ist jedenfalls M(x)-*- 0,
siehe L.Tr. Satz 6 [10.1], S. 197.



b) Es sei — w — oo. Dann kann im vorigen Beweis — w -f- ô durch
jede Zahl — K mit beliebig groBem K ersetzt werden, und es folgt:
— v^L — K, d. h. — v=— oo — w.

Wir betrachten nun die Werte von f(s) fur réelle s x. Es ist
/(#)->0 fur x -> oo 11), aber | f(x) \ braucht nicht monoton gegen 0
zu streben: es gibt Laplace-Transformierte, die auf der reellen Achse
reell sind und unendlich viele Zeichenwechsel haben, wie das Beispiel

F(t) (nt) coa-^f f(s) s e cos s

zeigt. Es ist auch keineswegs notwendig lim — ' vorhanden,

denn in diesem Beispiel ist

lim sup — 0 lim inf — — oo
37->-OO ^ X ->- OO •*/

weil log | f(x) | —oo in den sich gegen oo hâufenden Nullstellen von
f(x) ist. Es gilt jedoch

Satz 2. Wenn f(s) ~ 2{F} eine Beschrânktheitshalbebene besitzt, so

hangt die Beschrânktheitsordnung v mil den Werten von f(s) fur réelle

s x folgendermafien zusammen :

i~~ i ,t/~.\ i

— v lim sup x

Bemerkungen: 1. Man kann also die Beschrânktheitsordnung, wenn
die Beschrânktheit von f(s) bekannt ist, schon allein aus den Werten von
/ (s) fur réelle x errechnen, was eine bedeutende Erleichterung darstellt,
da M (x) meist schwer festzustellen ist.

2. Die GrôBe —F lim sup— - existiert auch fur solche

f(s) £{F}, die keine Beschrânktheitshalbebene besitzen, und ist ^0.
Beweis : a) F sei endlich. Ist ô > 0 gegeben, so ist nach der Définition

von — F fur aile hinreichend groBen x

«) L.Tr. Satzl [4.3], S. 49.
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Deshalb und wegen der Existenz einer Beschrânktheitshalbebene fur / (s)
kann man x0 so wâhlen, dafî zugleieh

| f(x) | <ev 2j fur x ^ x0 und | f(s) | ^ M fur x ^ x0

ist. In der Viertelebene x ^ x0, y ^ 0 betrachten wir die Funktion

f(s)

Auf den Rândern ist sie beschrânkt, in dem Winkelraum dazwischen von

der Ôffnung — ist

- I - V+ — x

const. fur

fur jedes noch so kleine e>0, also nach einem bekannten Satz von
Phragmén und Lindelôf12) durchweg | g (s) \ ^ const., d. h.

f(s) | ^ const.

s

j

fur aile hinreichend grofien x. Dasselbe gilt in der Viertelebene x ^ x0,
y ^ 0, also in der ganzen Halbebene x ^ xQ, woraus

Jf(«) ^ und - v lim

folgt, oder, da <5 beliebig klein ist, — v ^ — F. Nun ist aber | / (#) |

^ M(x), also — F fj — v, so dafi nur — F — v sein kann.

b) F sei gleich oo. Dann ist in dem Beweis — F + ~tr durch — K
là

zu ersetzen, wo K beliebig grofi sein kann, und es folgt —v^—K,
also — v — oo= — F.

12) Siehe L.Tr. S. 56, Lemma 1.



2. Der Zusainmenhang zwisehen der Beschrânktheitsordnung von f(s)
und dem Verhalten von F(t) in der Umgebung von t 0

Bekanntlich hângen ganz allgemein die Eigenschaften von f(s) in der
Umgebung der Stelle s oo von denen der Funktion F(t) in der
Umgebung von t 0 ab. Die folgenden Sâtze zeigen, daB das auch fur die
Beschrânktheitsordnung gilt.

Satz 3. Wenn f(s) 2{F} eine Beschrànktheitshalbebene besitzt und
t

F(t) in 0<t<a eine Nullfunktion ist, d.h. JF(r)dr =0 fur 0<t<a,
so ist v^ a. °

Beweis : Ist x0 > 0 ein reeller Konvergenzpunkt von fi {F}, so ist
fur

S
o

f(s) s$e~stdt $F(r)dr a $e~8idt $F(r)dr
0 0

und

t
dr o(eXot) fur £->*oo also |JF(r) dx | < CeXot fur t^a

a a

mithin fur réelle s x > x0 :

I / v / I — J v / /
a •" «^o

Folglich ist

_ V lim sup — fg — a

oder nach Satz 2 : — v ^ — a
Wir beweisen nun die Umkehrung von Satz 3.

Satz 4. Wenn f(s) £{F} eine Beschrànktheitshalbebene besitzt und
die Beschrânktheitsordnung v>0 ist, so ist F(t) eine Nullfunktion fiir
0<t<v.

Beweis: a) v sei endlich. Zu <3>0, das so klein gewàhlt sei, daB noch
— v + ô < 0 ist, gibt es nach der Définition von v ein x0 so, daB

\f(s) | < e<~v+*)x fiir x

18) L.Tr. Satz 1 [8.2], S. 149.

14) Das ist eine Teilaussage von L.Tr. Satz 10 [10.1], S. 199.



ist; wir kônnen xo>O und im Innern der Konvergenzhalbebene von
£{F} gewâhlt denken. Dann gilt ohne jede Einschrânkung hinsichtlich.
des Verhaltens von F und 2{F} die ,,integrierte" komplexe Umkehr-
formel der Laplace-Transformation15):

l Xq -t- IW

Fit) dx lim ~ Ç ets^- ds
,7 a>->oo £Tiv j b

0)

Nach dem Cauchyschen Satz kann man die Integrationsstrecke durch
einen die Punkte x0 — i a>, x0 + i œ verbindenden, in x ^ x0 ver-
laufenden Kreisbogen um s — 0 vom Radius £ ersetzen, und hat dann
den Grenzubergang £->oo statt co^-oo zu machen. Auf dem Kjreis-
bogen ist s q é®, wobei den Punkten xQ ± ico die Werte

0 ^0 < — 1 entsprechen môgen. Dann ist

'/•

Die cos-Kurve verlâuft im Intervall 0 ^ i? ^ — oberhalb ihrer Sehne,
2

also ist dort cos & ^ 1 # Fur f — v + (5 < 0 ist demnach
71

Also ist J F(r)dr 0 fur t<v — ô oder, da ô beliebig klein sein kann,

fur t<v.
b) v sei gleich oo. Dann ist in dem Beweis —v-\-ô durch — K mit

beliebig groBem K zu ersetzen, und es folgt, daB F fur 0<£<if, d. h. fur
aile t > 0 eine Nullfunktion ist.

Satz 3 und 4 zusammengenommen liefern eine erschôpfende Charakte-
risierung des Zusammenhangs zwisehen der Beschrânktheitsordnung von
/ (s) und dem Verhalten von F(t) bei t 0 :

15) L.Tr. Satz 5 [6.5], S. 107.



Satz 5 (II. Hauptsatz). f(s) 2{F} besitze eine Beschrânktheitshalb-
ebene und daher eine Beschrànktheitsordnung v ^ 0. Es sei a0 die obère

Orenzeder a>0, fur die F(t) in 0<t<a eine Nullfunktion ist. (akann
-f-oo sein.) Existieren solche a nicht, so sei a0 0. Dann ist v a0.

Beweis: Ist a0 0, so muB v 0 sein. Denn wâre v>0, so wâre
nachSatz4 F(t) in 0<^<v eine Nullfunktion und daher a0 ^ v>0. —
Ist ao>O und endlich, so ist fur jedes a<a0 nach Satz 3 v ^ a, also
auch v 2^a0. Wâre v>ao> so wâre nach Satz 4 i^(£) eine Nullfunktion
in 0 < t < v, im Widerspruch zu der Définition von a0. Also ist v a0. —
Ist a0 =oo, so ist fur jedes a nach Satz 3 v ^ a, also v oo.

Satz 5 zeigt, daB der Fall v oo nur fur ein F(t) eintreten kann, das

durchweg eine Nullfunktion ist. Dann ist aber f(s) =016). Das liefert
mit Riicksicht auf Satz 2 :

Satz 6. Oenûgt f(s) £{F} fur jedes noch so grofle K der Abschâtzung
I f(s) I <é~Kx far #->oo, oder hat f(s) eine Beschrânktheitshalbebene und
genûgt filr réelle s x der Abschâtzung \ f (x) | <e~~Kz mit beliebig grojiem
K fur x->oo, so ist f(s) =0.

Ist also eine beliebige, in einer Halbebene analytische Funktion
f(s)^kO und ist | f(s) \ <e~Kx fur a:->cx) bei jedem K, so kann sie keine
Laplace-Transformierte sein.

lc) L.Tr. S. 35, Bemerkung 2.

(Eingegangen den 7. August 1946.)
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