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Das Verhalten der Laplace-Transformierten
in ihrer Beschranktheitshalbebene

Von Gustav DoEerscH, Freiburg i. B.

1. Die Beschriinktheitsordnung der Laplace-Transformierten
Die durch die Laplace-Transformation aus einer Funktion F () er-

zeugte Funktion ©
f(s) = [e st F(t)dt = R{F}
0

ist in der Konvergenzhalbebene Rs>f analytisch, kann aber diese
Eigenschaft in einer dariiber hinausreichenden Halbebene R s>y
(n<pB) haben?). Wir betrachten f(s) grundsitzlich in dieser ,,Holo-
morphiehalbebene” und interessieren uns in der gegenwirtigen Note fiir
den Fall, daB f(s) in einer Teilhalbebene Rs = o(oc>7) beschrinkt
ist 2). Als ,,Beschrianktheitsabszisse® u von f(s) definieren wir die untere
Grenze aller ¢, fiir die

| f(s) | = M = M(o) fir Rs = o

ist. Rs>u heillt die ,,Beschrianktheitshalbebene“ von f(s). Natiirlich
braucht f(s) in dieser Halbebene selbst nicht beschriankt zu sein.

1) In meinem Buch ,,Theorie und Anwendung der Laplace-Transformation®,
Berlin 1937, das in der Folge immer kurz als ,,L.Tr.* zitiert wird, war darauf hingewiesen
“worden (8. 405, Historische Anmerkung 19), daB bis dahin in der Literatur kein Beispiel
fir dieses Vorkommnis vorliege. Inzwischen sind mehrere Laplace-Transformierte an-
gegeben worden, die ein solches Verhalten zeigen. Ein besonders einfaches Beispiel wird

durch t
t d cos 7 €

— ot
F(t)=—mne'sinne Qi
geliefert. Hier ist B =0, wihrend zweimalige partielle Integration auf die Gleichung
o0
Je(—nesinmet)d =1 —‘8““(8 x ])J‘ e (—net sin v ef) dt
0
1
d.h. f(s) =1— "("+ D549

filhrt, die zeigt, daB f(s8) in die ganze Ebene fortgesetzt werden kann. Dieses Beispiel
wurde mir am 29. September 1943 von D. Grohne brieflich mitgeteilt.

2) Ob es Laplace-Transformierte gibt, die in keiner Halbebene beschrankt sind, scheint
nicht bekannt zu sein.
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Grundlegend fiir die Frage nach der Existenz einer Beschrianktheits-
halbebene ist der
Satz A 3%). Ist o ein recller Punkt im Innern der Holomorphiehalbebene
und st
a) |f(8)| =M auf =0, b) f(s)=0(?") fir [y[—>o0

gleichmdfig fiir x>0, wo s = x + 1y und k eine feste, aber beliebig grope
Zahl ist, so gilt in der ganzen Halbebene x=o: |f(s)|< M.

Da fir * =g + ¢>p gleichmiaBig f(s) =o(]y]|) ist?), so ergibt
sich: Liegt o in der Konvergenzhalbebene, so geniigt es,dal | f(s)| = M
auf der Geraden x = ¢ ist, damit | f(s)| < M auch fir x = o gilt.

Ob die Beschrianktheitshalbebene iiber die Konvergenzhalbebene hin-
ausreichen kann, ist nicht bekannt %).

Fir xz>p ist die Funktion

M(x) = obere Grenze von | f(s)| auf Rs= =
definiert. Diese hat die beiden Eigenschaften:

I. M(x) nimmt monoton ab: M(x,) = M(x,) fir z,<xz,%).
II. log M(x) — und infolgedessen auch M(x) — ist eine konvexe?)
Funktion ®).

I folgt aus Satz A, II aus dem ,,Dreigeradensatz.

Die einfachste Funktion, die monoton abnimmt und deren Logarith-
mus konvex ist, ist e (x>0). Es liegt nahe, M(x) mit dieser

log M(x)
x

Funktion zu vergleichen, m.a. W. den Quotienten ins Auge zu

fassen. Wir behaupten:

3) L.Tr. Satz 1 [4.4], S. 57.

4) L.Tr. Satz 5 [4.3], 8. 52.

5) Beweisen konnte ich folgende, bisher nicht veroffentlichte Siatze: 1) Ist B{F} in
einer Halbebene z > ¢, konvergent und ist fiur ein gewisses ¢; < 6, in jedem Streifen
o+ e=2=0,+ ¢ (¢>0) f(s) analytisch und von negativer Ordnung, d. h. gleich-
maBig f(s) =0 (| y|~®) fir | y| >~ mit a> 0, so konvergiert 2{F} fir = > o;.
2) In der Beschranktheitshalbebene konvergieren die (C, k)-Mittel beliebig kleiner positiver
Ordnung von S{F} Zu letzteren vgl. G. Doetsch : Der Faltungssatz in der Theorie
der Laplace-Transformation, Ann. R. Scuola Norm. Sup. di Pisa (2) 4 (1935)
S. 71—84.

) Aus II folgt, daB entweder dauernd das Gleichheitszeichen gilt, d. h. M () = const.
ist, oder dauernd das Ungleichheitszeichen: M (x;) > M (x,) (Monotonie im engeren
Sinn). Ob der erstere Fall fiir eine Konstante >> 0 vorkommen kann, ist fraglich.

7) Das bedeutet: Auf der Kurve y = log M (z) liegt fiir je drei Abszissen x, << x, < 2,
der Punkt z,, ¥, unterhalb oder auf der Verbindungsgeraden der Punkte z,, y, und 23, y;.

8) L.Tr. Satz 3 [4.4], S. 58.



Satz1. (I. Hauptsatz). Fir jede Laplace-Transformierte f(s) = L{F},

log M(x)
—

die eine Beschrinktheitshalbebene besitzt, existiert lim Diese

Z->» o

Zahl ist stets < 0 ?):

lim lo_gﬂ"_)=__v__g_0 ]

Z-> o0 x

Wir nennen v (= 0) die Beschrinktheitsordnung von f (s).

Beweis: DaBl v = 0 ist, ist klar, denn als positive, monoton abneh-
mende Funktion mufl M(x) gegen 0 oder eine Zahl m >0 konvergieren.
Im letzteren Fall'?) ist offenbar v = 0. Ist aber M(x)—0, so ist von

log M(x)

einer Stelle an log M(x)<0, also lim———— |, wenn vorhanden,
T > o0
< 0. — Wir setzen:
limsuplig———{n—(—x—)r——v, lim inf Mz_w.
Z> 00 x z >0 x

Beide Groflen kénnen endlich oder gleich — oo sein, und es ist —v = — w.

a) w sei endlich. Dann gibt es nach der Definition von lim inf zu
gegebenem ¢>0 unendlich viele Zahlen z,<z,<---—>oc0 so, daB3

log M(z,)

Ln

<—w-+d6, also log Mz, <(—w-+ 6=z,

ist. In einem x y-System liegen mithin die Punkte x,, log M(z,) unter-
halb der Geraden y = (—w + é)x. Dann liegen aber wegen der Eigen-
schaft IT die Punkte z, log M(x) an den Zwischenstellen erst recht dar-

unter, d. h. fir « = z, ist dauernd l—(ﬁ—iy—(ﬁ)— <—w + §. Daher muBl
— v =lim sup———‘(—g-—l—l—l—(—g—c—2 —w -+ 6 und, da J Dbeliebig klein ist,
—v £ —w sein. Zusammen mit —v = —w filhrt daszu —v= —w,
d. h. lim log M) oxistiert.

T >0

9) Dieser Satz gilt allgemein fiir jede analytische Funktion, die in einer Halbebene be-
schrankt ist und fiir die M (x) monoton abnimmt.

10) Ob dieser Fall tatsiachlich eintreten kann, ist nicht bekannt. Wenn Q{F} eine Halb-
ebene absoluter oder auch nur gleichméagiger Konvergenz besitzt, so ist jedenfalls M (z)->0,
siehe L.Tr. Satz 6 [10.1], S. 197.



b) Essei —w = —oo. Dann kann im vorigen Beweis —w 4 4 durch
jede Zahl — K mit beliebig groBem K ersetzt werden, und es folgt:
—v=s ——K, dh —v=—c0=—w.

Wir betrachten nun die Werte von f(s) fiir reelle s = . Es ist
f(x) >0 fiir x - oo 1), aber | f(x)| braucht nicht monoton gegen 0
zu streben: es gibt Laplace-Transformierte, die auf der reellen Achse
reell sind und unendlich viele Zeichenwechsel haben, wie das Beispiel

Ly

F(t) = (nt)~%cos —2—1;:— , f(8) =8 "e cos s%

log |f(=)|
X

zeigt. Es ist auch keineswegs notwendig lim vorhanden,

& > o0
denn in diesem Beispiel ist

lim inf log [f(@)] _
> oo x

lim sup — oo ,

>0

log [f@)] _
X

weil log |[f(x)| = —oo in den sich gegen oo hidufenden Nullstellen von
f(x) ist. Es gilt jedoch

Satz 2. Wenn f(s) = L{F} eine Beschrinktheitshalbebene besitzt, so
hingt die Beschrinktheitsordnung v mit den Werten von f(s) fiir reelle
8 = x folgendermafen zusammen :

log | f(x) |

— v = lim sup —-1- ,
Z >0 P x
Bemerkungen: 1. Man kann also die Beschrinktheitsordnung, wenn
die Beschrinktheit von f(s) bekannt ist, schon allein aus den Werten von
f (8) fiir reelle x errechnen, was eine bedeutende Erleichterung darstellt,
da M (x) meist schwer festzustellen ist.

2. Die Grofle — V = lim sup log [/(=)] existiert auch fiir solche

T > o0 z

f(s) = L{F}, die keine Beschrinktheitshalbebene besitzen, und ist <0.

Beweis: a) V sei endlich. Ist >0 gegeben, so ist nach der Definition
von — V fiir alle hinreichend grolen «

loglf@)| . _p 9

x 2

11) L,Tr. Satz 1 [4.3], S. 49.



Deshalb und wegen der Existenz einer Beschrinktheitshalbebene fiir f (s)
kann man x, so wihlen, dafl zugleich

|f(x)|<e("”?)x fir x =22, und |f(s)| S M fir x = x,

ist. In der Viertelebene = = x,, y = 0 betrachten wir die Funktion

é
g —e Ty

Auf den Réndern ist sie beschrinkt, in dem Winkelraum dazwischen von

der Offnung —:g— ist

o
0., e Gl g . g<0

g@sue 7)o

= 0 (e* *!*) fiir |s| > o0

const. fir —V -+ gg 0

dd

fiir jedes noch so kleine ¢>0, also nach einem bekannten Satz von
Phragmén und Lindel6f!?) durchweg | g(s) | < const., d.h.

»

— V= (—V+8z
| f(s) | < const. e( ;)

e

IA

fiir alle hinreichend groflen z. Dasselbe gilt in der Viertelebene = = x,,
y = 0, also in der ganzen Halbebene = = z,, woraus

loe M
M) <e~"+92 ypd —p=Ilim log M(x)
X >0

<-—-V4+9

folgt, oder, da § beliebig klein ist, —v < —V. Nun ist aber |f(x) |
< M(z), also —V < —wv, so dal nur —V = —wv sein kann.
b) V sei gleichco. Dann ist in dem Beweis —V + ~g— durch — K

zu ersetzen, wo K beliebig gro sein kann, und es folgt —v < — K,
also —v = —oc0o= —VT.

12) Siehe L.Tr. 8. 56, Lemma 1.



2. Der Zusammenhang zwischen der Beschriinktheitsordnung von f(s)
und dem Verhalten von F'(t) in der Umgebung von ¢ = 0

Bekanntlich hingen ganz allgemein die Eigenschaften von f(s) in der
Umgebung der Stelle s =co von denen der Funktion F(t) in der Um-
gebung von ¢ = 0 ab. Die folgenden Satze zeigen, dafl das auch fiir die
Beschrianktheitsordnung gilt.

Satz 3. Wenn f(s) = LQ{F} eine Beschrdnktheitskalbebene besitzt und

F(t) in 0<t<a eine Nullfunktion ist, d. h. j'F )dr =0 fir 0<t<a,
8018t V= a.

Beweis: Ist z,>0 ein reeller Konvergenzpunkt von L {F}, so ist
fir Rs>x, 13)

f(s) = s et dt [ F(r)dr = 5 [ et di | F(z)d

und
4 t
J F(7) dr=o0(e"") fiir t>o00, also | F(7) dr|< Ce®™ fir t=a,

mithin fiir reelle s = z>z, :

f@) | S Cx e "™ dt=C T e emzae_ O (e~ *®) fiir z— oo 19).
g xr — x,
Folglich ist
— ¥V = lim sup og le(x) | =—a
oder nach Satz 2: —v < —a .

Wir beweisen nun die Umkehrung von Satz 3.

Satz 4. Wenn f(s) = Q{F} eine Beschrinktheiishalbebene besitzt und
die Beschrinktheitsordnung v>0 tst, so ist F(t) eine Nullfunktion fir
O<t<w.

Beweis: a) v seiendlich. Zu >0, das so klein gewéhlt sei, dal noch
—v 4+ <0 ist, gibt es nach der Definition von v ein z, so, daBl

|f(s) | < e-vd=  fiir 2 =z,

13) L.Tr. Satz 1 [8.2], S. 149.
14) Das ist eine Teilaussage von L, Tr. Satz 10 [10.1], S. 199.



ist; wir kénnen x,>0 und im Innern der Konvergenzhalbebene von
L{F} gewihlt denken. Dann gilt ohne jede Einschrinkung hinsichtlich
des Verhaltens von F und f{F} die ,integrierte“ komplexe Umkehr-
formel der Laplace-Transformation®):

t 1 Zo+itw f )

! T s 1(8
JF(r)d’“wlﬂzm f' e-"———~—-—8 ds (t>0) .
0 Top—1iw

Nach dem Cauchyschen Satz kann man die Integrationsstrecke durch
einen die Punkte 2, — ¢ ®w, %, + ? @ verbindenden, in z = z, ver-
laufenden Kreisbogen um s = 0 vom Radius p ersetzen, und hat dann
den Grenziibergang p—oco statt w—>oco zu machen. Auf dem Kreis-
bogen ist s = ge'®, wobei den Punkten =z, +-iw die Werte

P=449, (290 < ——g—) entsprechen mogen. Dann ist

+ % ri

‘fetsf(s)d_:}éfe(t—-v+5)ecos~9d0<2fe(t~v+8)ecosad0 .
-3

0

Die cos-Kurve verlauft im Intervall 0 <9 < %— oberhalb ihrer Sehne,

also ist dort cos & =1 — —n2-19 . Fir ¢t —v» 4+ <0 ist demnach

K

—v+8)e

2
2 (e
Ifets (8)%S—i<2fe(t—v+8)9(1“;0)dﬂ=2 1—e — 0 fir g—>o00 .
0

2
— = (t—v+d)

t

Also ist | F(r)dr = 0 fiir t<v — & oder, da 8 beliebig klein sein kann,
0

fir t<w.

b) v sei gleich co. Dann ist in dem Beweis —v + 6 durch — K mit
beliebig groBem K zu ersetzen, und es folgt, daB F fiir 0<t< K, d. h. fir
alle t>0 eine Nullfunktion ist.

Satz 3 und 4 zusammengenommen liefern eine erschépfende Charakte-
risierung des Zusammenhangs zwischen der Beschrinktheitsordnung von
f(8) und dem Verhalten von F(¢) bei ¢t = 0:

15) L.Tr. Satz 5 [6.5], S. 107.




Satz b (II. Hauptsatz). f(s) = Q{F} besitze eine Beschrinktheitshalb-
ebene und daher eine Beschrinktheitsordnung v = 0. Es sei a, die obere
Grenze der a>0, fir die F(t) in 0<i<a eine Nullfunktion ist. (a kann
+ oo sein.) Existieren solche a micht, so sei a, = 0. Dann ist v = a,.

Beweis: Ist a, = 0, so mull v = 0 sein. Denn wire v>0, sc ware
nach Satz 4 F(t) in 0<t<wv eine Nullfunktion und daher a, = v>0. —
Ist a,>0 wund endlich, so ist fiir jedes @ <<a, nach Satz 3 v = a, also
auch » = a,. Wire v>a,, so wire nach Satz 4 F(t) eine Nullfunktion
in 0<t<w, im Widerspruch zu der Definition von a,. Alsoist v =a,. —
Ist @y, =oc0, so ist fiir jedes @ nach Satz 3 » = a, also v = co.

Satz 5 zeigt, daBl der Fall v =oo nur fiir ein F(¢) eintreten kann, das
durchweg eine Nullfunktion ist. Dann ist aber f(s) = 01¢). Das liefert
mit Riicksicht auf Satz 2:

Satz 6. Geniigt f(s) = LQ{F'} fiir jedes noch so grofe K der Abschitzung
| /() | <e &% fir x—>o00, oder hat f(s) eine Beschrinktheitshalbebene und
genilgt fir reelle s = x der Abschitzung |f (x)| <e X% mit beliebig groPem
K fir x—>o0, soist f(s) =0.

Ist also eine beliebige, in einer Halbebene analytische Funktion
f(s) == 0 undist | f(s)|<e %% fiir x—>oo beijedem K, so kann sie keine
Laplace-Transformierte sein.

16) L.Tr. S. 35, Bemerkung 2.

(Eingegangen den 7. August 1946.)
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