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Hyperkomplexe Differentiale

Von HaAxs Geore HAereLI, Rom

Herr Rud. Fueter und seine Schiiler haben in mehreren Arbeiten die
Theorie der hyperkomplexen Funktionen entwickelt. Dabei wurden zu-
erst der Korper der Quaternionen zugrunde gelegt, dann die Erweite-
rung in Cliffordsche Linear- und spezielle Produktsysteme behandelt und
schlieBlich Argument und Funktionswert in verschiedenen Algebren
betrachtet!). Daher ist es wiinschenswert, diese mannigfachen Moglich-
keiten systematisch zu durchgehen. Dabei soll vor allem auf die jeweilige
Regularititsbedingung, die zuerst eine formale Ubertragung der Cauchy-
Riemannschen Differentialgleichungen ist, aber als Voraussetzung fir
die Giiltigkeit der Integralsitze ihre wesentliche Bedeutung hat, geachtet
werden. Diese kann auf eine invariante Form gebracht werden, womit
die Invarianz der ihr geniigenden Funktionen ersichtlich wird. Dabei
zeigt sich, dal die Form des Differentials nicht nur die regulidren Funk-
tionen, sondern auch ihre Spezialisierung so weitgehend charakterisiert,
daf3 sie geradezu definierend verwendet werden konnte. Das wird vor
allem bei den Systemen von analytischen Funktionen von mehreren
komplexen Veridnderlichen, welche durch einen Integralsatz ausgezeich-
net werden, und bei den Quaternionenfunktionen durchgefiihrt. Dabei
soll die Schonheit der letztern, die die Symmetrien der Funktionen in
Linear- und Produktsystemen in einer Divisionsalgebra vereinigen, zum
Ausdruck kommen und das Natiirliche der Begriffsbildungen hervor-
springen.

Einleitung

Bevor wir mit den eigentlichen Untersuchungen beginnen, soll kurz
die Regularitdtsbedingung im allgemeinen erldutert werden. Wir wollen
am Beispiel der Potentialfunktionen in einem Linearsystem den Zu-
sammenhang mit dem dupfern Differentialcalcul aufzeigen. Dabei bietet
aber gerade in diesem Fall die hyperkomplexe Schreibweise noch keine
wesentliche Vereinfachung.

1) Siehe Seite 420.

382



Es sei ein Linearsystem  einer Cliffordschen Algebra €,, wie das in I
néher ausgefiihrt wird, gegeben.

L=1J[e...e,] mit ee, = —ee, h#*k h,k=1...n
und e e, = + 1 k=1...n.

n freie Variablen z, im Korper der reellen Zahlen fassen wir zu einer
n

hyperkomplexen Variablen x =3 z,e, zusammen ; ebenso bilden wir
k=1

mit » Funktionen wu,(x,...z,), die in einem n-dimensionalen Gebiet H

des euklidischen R™ zweimal partiell differenzierbar seien, eine hyper-

n

komplexe Funktion w =X u,e,. In L definieren wir ferner einen
k=1

A9
Differentialoperator D =Y g G und verlangen fiir regulire Funk-
tionen : L
Dw=0. (1)

Diese Regularititsbedingung ist eine Verallgemeinerung der Cauchy-
Riemannschen Differentialgleichungen, welche man auch in eine einzige

0
komplexe Bedingung (6_ + ¢ ) - (u + tv) = 0 zusammenfassen kann.

9,
Interpretieren wir w als Vektorfunktion, so besagt (1) reell einfach :

divw =0 und rotw= 0. (1a)

Daraus folgt sofort die Existenz eines Potentials @, so dal w = D®
wird, und A4® = 0; weiter folgt D- AP = A4-DP = Aw =0, und
wegen der linearen Unabhéngigkeit der e, sofort Au, = 0. Dieses kann
aber direkt aus der hyperkomplexen Form (1) geschlossen werden, denn
es ist D-D = A. Die Komponentenfunktionen sind demnach harmo-
nisch und durch die Existenz eines skalaren Potentials miteinander ver-
bunden.

Daraus ergibt sich unmittelbar der Zusammenhang mit dem &uflern
Differentialcalcul. Wir ersetzen e, durch dz, und fassen w als Pfaffsche
Form 1. Grades auf.

w=u,dx, .
k=1
Die Multiplikation der dx, ist jetzt nur noch schief.
dx,dz, = — dx,dx, fir h £k, aber dyydz,=1. h,k=1...n.

Damit wird
Dw = dw + dw, wobei ow = (dw*)* ist, w* die zu w adjungierte
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Form bedeutet und d das duBlere Differential bezeichnet. Der Differential-
operator erscheint also als Summe von d und 6 2)
D=d+ 6. (2)
Ferner wird D-Dw=d-dw 4+ d- 0w — é-dw + 6-ow=d-ow — 8-dw,
da d-dw =0 und 6-dw = 0 werden; somit D-D=d-6 — 6-d =A.
Die Regularitdtsbedingung D-w = 0 zerféllt in dw = 0 und dw = 0,
was gerade die Gleichungen (1a) ergibt. Die Eleganz der hyperkomplexen
Schreibweise besteht somit in der Zusammenfassung der Operatoren d
und ¢ ; dies ist in der angefiihrten Weise aber nur in affinen Réumen
moglich.
Nun koénnen natiirlich eine Menge Integralformeln abgeleitet werden,
welche alle auf den Integralsatz der Pfaffschen Formen zuriickzufiihren
sind. Hier soll nur auf zwei besonders wichtige Fille kurz eingegangen

werden.
Es sei H ein n-dimensionales Gebiet im euklidischen R", das von einer

zweiseitigen, sich nicht durchdringenden Hyperfliche R mit stetigem
n

Normalenfeld n berandet wird, und dZ = n-dr = X n,e,-dr das Hyper-

k=1
flichendifferential, wo n die ins Innere gerichtete Einheitsnormale und

dr das Hyperflichenelement bedeuten. Dann gilt :
fwn)dr = fdivwdk und f[wn]dr = [rot wdh .
R H R :

In hyperkomplexer Schreibweise erhalten wir :

fwdZ 4 dZw) = | (wD + Dw)dh und
R 4

f(wdZ — dZw) = | (wD — Dw)dh .
R i

Durch Addition der beiden Gleichungen erfolgt :
fwdZ = fwD-dh .
R :
Ist nun w in H eine regulire Funktion, gilt also Dw = 0, so gilt auch

wD = 0. (Die Rotationsterme haben entgegengesetzes Vorzeichen.) Dem-
nach wird fiir eine regulire Funktion w

fwdZ =0.
R

Ist ferner auch v eine in H regulire Funktion, so kann entsprechend
bewiesen werden, daf3 auch

2) Pierre Bidal et Georges de Rham, Les formes différentielles harmoniques.
Comm. Math. Helv., vol. 19, S. 9.
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fwdZv =0 (3)
2

wird. Dies nennen wir den 1. Integralsatz; er kann als eine Verallge-
meinerung des Cauchyschen Integralsatzes aufgefat werden und wird
in der Regel mit Hilfe des Gaufschen Integralsatzes hergeleitet. Aus (3)
kann in unserm Fall nun w in jedem innern Punkt x von H durch ein
Integral iiber R dargestellt werden. Wir umschlielen den Aufpunkt z
mit einer Hyperkugel K mit dem Rande R und wihlen als Funktion »
die mit Ausnahme ¢ = x iiberall reguldre Funktion

v=[¢—2p *(¢—a).

Dann kann im Gebiet H’' = H — K der 1. Integralsatz angewendet
werden.

[(waz[E—2y] *@E—2)=0 .

R-GYRK

Durch bekannten Grenziibergang folgt daraus:

n
2

w (x) = const. fde [(—=x)?] 2(—2) . (4)
R

Dies bezeichnen wir im folgenden als 2. Integralsatz ; er kann als Verall-

gemeinerung des Cauchyschen Residuensatzes betrachtet werden.

Aus dem Zusammenhang mit dem duBern Differentialcalcul ist ohne
weiteres ersichtlich, warum man als Basisgroen des hyperkomplexen
Systems Cliffordsche Einheiten zu wihlen hat. Ihre Multiplikation mufl
schief sein, und ihr Quadrat reell. Durch Bildung von Ableitungen
kénnen nun Pfaffsche Formen hoheren Grades erzeugt werden, doch ist
dann die bisherige hyperkomplexe Schreibweise keine grofle Erleichte-
rung. Dafiir aber 148t sie sich auf die Funktionentheorie von hyper-
bolischen Differentialgleichungen zweiter Ordnung iibertragen. Dabei
ist natiirlich (4) neu zu formulieren3). Weiter 148t sich die Theorie in
Linearsystemen mit Haupteinheit, in Produktsystemen und Algebren
entwickeln, wobei die Komponentenfunktionen von w nicht mehr immer
als partielle Ableitungen eines skalaren Potentials auftreten und als
Losungen des die Regularitit definierenden Systems linearer partieller

3) Rud. Fueter [10].
W. Nef [21].
Weitere Arbeiten werden bei den entsprechenden Abschnitten zitiert. Die Nummern
beziehen sich auf die Zusammenstellung von Seite 420.
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Differentialgleichungen 1. Ordnung uns interessieren. Da man zudem w
in einem andern Linearsystem oder einer Algebra wihlen kann, die nicht
Cliffordsch zu sein brauchen, kann letzteres die mannigfachsten Formen
besitzen. Das soll nun im folgenden nédher ausgefiihrt werden.

I. Funktionen in einem Linearsystem

Wir gehen von einer Cliffordschen Algebra €, aus. Diese besteht aus
den 2" Basiselementen

1, €e5,...,€,, €1a50cvy cuvy €1aeenn (5)

und ist durch die Relationen

ehek:—:—ekeh h,k:].,...,'n k;ék (5&)
und e = x;-1 E=1,...,n (5b)
vollstindig bestimmt4). Dabei ist 1 die Haupteinheit und #», = 4-1.
Die n BasisgroBen e,,...,e, bilden ein minimales Erzeugendensystem
von ©,. Dies nennen wir ein Linearsystem £ von €,

2=[61,-..,en] . (6)

Es sei jetzt a eine GroBe aus L im Korper der reellen Zahlen, also von

der Form n
k=1
mit reellen a,. Wir definieren ferner

n

a = x%,0,€, .
k=1

Ferner seien auch b und ¢ solche Groflen aus £. Dann werden

N(a) =aa =Xxa; , 2n(@) =aa+aa=23a’,
k=1 k=1
n ~ ~ n

S(ab) = ab + ba = 2 ¥ »x,a,b; , s(ab) =ab+ba=2Ya,b,
k=1 k=1

wegen (5a) reell, und es bleibt die multiplikative Verkniipfung
abc + cba = a-S(bc) + ¢c-S(ab) — b-S(ca)
im Linearsystem £. Daraus folgt als Spezialfall
aba = — a*b 4+ a-S(ab) .

4) Siehe auch P. BoBhard [14].
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Wir wollen nun die hyperkomplexen Zahlen aus £ den Punkten eines
affinen, n-dimensionalen Raumes R” mit doppelter Metrik zuordnen. Da-

n+1

zu erweitern wir unser Linearsystem £ und ordnen den Zahlen ¥ x,e, =
k=1

x+ x,..€,,, die Punkte P(x,;:2,:...:2,,;) des n-dimensionalen pro-

jektiven Raumes P zu. Dabei sei  in £, und e, , geniige den Relationen

2 . - T —
bpiy =6, und e, ,e,= —ee,, fir k=1,...,n

In P» fithren wir im Klein-Cayleyscher Sinn eine Metrik ein, indem wir

in einem projektierten Koordinatensystem die quadratische Hyperfliche

n

2 2
(@ + %p11€n41)? =k2 Hylp + €Ty =0
=1

als fundamental auszeichnen. Sind nicht alle x, positiv, was wir im fol-
genden annehmen, so erhalten wir eine hyperbolische Metrik. Den Punk-
ten P,(a,:...:@,,,) und P,(b,:...:d,,,) wird die Entfernung £y

Zugeerdnet S(ab) 4 2¢ Apy1bp11
2]/ a®+eaj ) (b® 4 b )

Ey(P,P,) = c.i. arc cos

. 9

Nun lassen wir die Fundamentalhyperfliche einmal ausarten, indem wir
¢ —>oo streben lassen. Dann wird x,,; = 0 zur unendlichfernen Hyper-
ebene, in welcher die ausgeartete Fundamentalhyperfliche

n
k=1

liegt. Fiir die Entfernung von P, und P, erhalten wir:

E(Pan):].imEN=

£-»00

V4 a?b® S%(a b)
1 e

. . * 8
lim c.1. arc sin Vs

£->00 a?
€ 2]/(;‘ -+ an+1) ( .a bn+1)
__.hm'f i V gg + 2bz __Slad +V( )2 ’
e>0 V€ Api1 bn+1 an+1 n+1 A1 n+1

wenn wir die MaBkonstante c rein imaginér wihlen und so gegen oo streben

+4a%b?  ,+4b%a}, - 4a,,,b,,,5(ab)

§) Entsprechende Ableitung wie bei H. G. Haefeli [16], wo die Formel fiir Quaternionen
hergeleitet wird.
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lassen, dafl limvi; -1 = + 1 wird. Damit wird der projektive Raum P»
€»o V€

zu einem affinen Raum R" mit einmal ausgearteter nichteuklidischer
Metrik. Seine Punkte sind den hyperkomplexen Zahlen aus £ eindeutig
zugeordnet, wenn wir deren Komponenten als affine Koordinaten auf-
fassen. Den Basiselementen von  entsprechen die Einheitspunkte auf
den Axen des affinen Koordinatensystems, in welches das projektive
iibergegangen ist. Die eingefiihrte Metrik bezeichnen wir als die ,,zum
Linearsystem L gehorende‘ Metrik. Fiir die Entfernung zweier Punkte P,
und P, erhalten wir:

E(P,P,)=+V(a—bEt=+VN(@a—b) . (8)

E kann reell, null oder rein imagindr werden. Die Gesamtheit der Punkte
P, die von einem festen Punkt P, verschwindenden Abstand haben, liegt
auf dem zu P, gehorenden isotropen Kegel, den wir auch Nullkegel
nennen. Dieser trennt den Bereich der Punkte mit reellem Abstand von
P, vom Bereich der Punkte, welche von P, einen rein imaginiren Ab-
stand besitzen. Die Winkelmessung ist im RE™ nicht ausgeartet und kann
auf das Messen der nichteuklidischen Entfernung der zu den Richtungen

gehorenden unendlichfernen Punkte zuriickgefiihrt werden. Fassen wir

a und b als Vektoren vom Ursprung nach den Punkten P, und P, auf,

so betrdgt ihr Winkel :
S (ab)
2V N(a) N (b)

, wenn nicht zugleich N(a) =0

und N (b) = 0 ist. (9)

W (ab) = arc cos

)
Dabei haben wir ¢ = B gewdhlt, um bei lauter positiven », mit der

euklidischen Winkelmessung iibereinzustimmen. Der Winkel W (ab) ¢)
wird reell zwischen 0 und 27z, wenn die durch a und b aufgespannte
Ebene E den Nullkegel nicht schneidet, rein imaginir zwischen 0 und oo,
wenn E den Nullkegel schneidet und a und 6 demselben Bereich ange-
horen, und sonst komplex ; beriihrt £ den Nullkegel, so wird W (ab) un-
bestimmt, wie auch, wenn sowohl a wie b auf Erzeugenden des Null-
kegels liegen, wihrend er co wird, wenn nur eine der beiden GroBen auf
einer Erzeugenden liegt. Daraus folgt speziell, dafl unser affines Koordi-
natensystem rechtwinklig ist. Gleichzeitig denken wir uns im R™ auch
die gewohnliche euklidische Metrik eingefiihrt. Die entsprechenden For-

%) Wenn keine Verwechslung méglich ist, soll fortan mit a sowohl die hyperkomplexe

—>
Zahl, wie der Punkt P, oder der Vektor a bezeichnet werden.
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meln fiir Entfernung und Winkel konnen aus (8) und (9) iibernommen
werden, da fiir lauter positive x, die euklidische Metrik zu £ gehort.

e(@b)=Vn@@—b) ; w(ab)=arc cos 21/;%—((?-;—)—(—&7 .

Damit haben wir die Moglichkeit, dort, wo die nichteuklidische Metrik
unbestimmt wird, euklidisch zu messen ; zudem werden wir analytische
Verhiltnisse bald in der einen, bald in der andern Metrik einfacher
deuten konnen. In diesem affinen R™ wollen wir nun die hyperkomplexen
Funktionen erkldren ; in einem spédtern Ausbau der Theorie miissen die
Punkte der unendlichfernen Hyperebene identifiziert werden, doch
brauchen wir hier bei den Untersuchungen iiber die Differentialform nicht
néher darauf einzugehen 7).

In R" sei ein zusammenhéngender Bereich H, der auch mit R" iden-
tisch sein kann, gegeben. Seinem allgemeinen Punkt P sei die hyper-

(10)

komplexe Zahl n
T =3 T8
aus £ zugeordnet. =
In H seien n Funktionen wu,(z,,..., xz,) erklirt, die wir zweimal nach
z, partiell differenzierbar voraussetzen, und in & zu einer hyperkom-
plexen Funktion n
w = u,e,
h=1

zusammenfassen. Wir verlangen ferner, da} die Funktionaldeterminante
in H nicht identisch verschwinde

Ouy,

vy =£=0 in H .

Wir erkldren und bezeichnen die partielle Ableitung von w nach z, wie

folgt : ou
T i) — k), __ LR
oz, E Unen= 2 axk

In £ definieren wir jetzt den Differentialoperator D

D =Y 9

fo1 0%

er

Nun bezeichnen wir diejenigen Funktionen, welche der Bedingung

Dw =0 (11)

7) Siehe Rud. Fueter [8].
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geniigen, als ,,reguldre’ Funktionen. (11) ist eine Verallgemeinerung der
Cauchy-Riemannschen Differentialgleichungen, wie einleitend gezeigt
wurde, und mit

wD =0 (11a)

dquivalent. In g sind somit die reguliren Funktionen immer beidseitig
2

reguldr. (11) zerfdllt reell in ein System von " 2” T2 linearen par-

tiellen Differentialgleichungen 1. Ordnung, die wir in vektorieller Schreib-
weise folgendermafBlen zusammenfassen konnen :

divw = 0 (11b)
und rotw =0 . (11¢)
Daraus folgt sofort die Existenz einer skalaren Grofle ¥, so da w = D¥W

n 02
wird. Wegen (5a, 5b) wird D-D =Q = ¥ x,
k=1

> ein reeller Differen-
oxy

tialoperator. Daher wird ¥ ein Integral der Differentialgleichung
=g =0 . (12)

Da (12) vom hyperbolischen Typus ist, nennen wir ¥ ein skalares Poten-
tial im weitern Sinn. Weiter folgt Qw = D-Dw = 0 und damit wegen
der linearen Unabhingigkeit der e, sofort Qu, = 0. Die Komponenten
von w sind somit Integrale von (12) und als partielle Ableitungen eines
ebensolchen untereinander verkniipft.

Umgekehrt kann jede lineare homogene partielle Differentialgleichung
2. Ordnung mit konstanten Koeffizienten durch eine lineare Variablen-
transformation auf die Form

" 2u %, =-+1 fir k=1,...,», und
i 0%y ,=—1 fir k=v+1,...,n

gebracht werden. Da nun nach (5a) x; beliebig + 1 oder — 1 gewihlt
werden kann, gibt es zu jeder Differentialgleichung vom Typus (13) ein
zugehorendes Linearsystem £ und im affinen R eine zu diesem gehdrende
Metrik. Jede regulire Funktion w liefert n Losungen von (13), und jede
kann auf diese Weise erhalten werden 8). In diesem Sinn kann die
Theorie der reguléiren Funktionen als Funktionentheorie der Differential-
gleichung (13) aufgefaBBt werden.

8) W. Nef [21).
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Aus (11) ist nicht ohne weiteres ersichtlich, bei welchen Koordinaten-
transformationen eine regulire Funktion reguldr bleibt. Dies wird aber
aus der Form des Differentials sofort hervorgehen. Ist eine Funktion w
in jedem Punkt von H regulir, so nennen wir H einen Regularitéts-
bereich von w. Insbesondere bezeichnen wir einen Punkt P von H
reguldr, wenn die Funktionaldeterminante in P nicht verschwindet. Die
durch w vermittelte Abbildung des Regularitétsbereiches H auf einen
Bildbereich H’ ist daher in reguliren Punkten topologisch. Wir be-
schrinken uns in den nachfolgenden Ausfiithrungen immer auf regulire
Punkte. n

Unter dem totalen Differential dw = ¥ w®dx, ?) verstehen wir den
k=1
”n

Zuwachs von w, wenn sich  um dx = X dx,e, verindert. Ist w eine
k=1
regulidre Funktion, so hat dw wegen (11) eine spezielle Form. Diese soll

nun in einem reguliren Punkt berechnet werden. Wir nehmen zur Ver-
einfachung der Darstellung an, daBl der Ursprung 0 ein regulirer Punkt
sei, was ohne Einschrinkung der Allgemeinheit geschehen kann, und
schreiben :

n
dw= X Afe,dx, , wobei AF=ul"(0) bedeutet.
h =1

Die Regularitéitsbedingung besagt nun, da8 die reelle Matrix (4}) der
infinitesimalen Abbildung symmetrisch ist.

Ab=4% . hk=1,...,n.

Daher existiert in 0 ein euklidisch rechtwinkliges Koordinatensystem, in
welchem diese Matrix Diagonalform besitzt

(4¥)—>(BY) . Bi=0 fir k+h .

Auf jeder Axe dieses Koordinatensystems liege eine der hyperkomplexen
Zahlen “m, « = 1,..., n. Diese seien so normiert, daB 2o¢,n(*m) = By
wird ; o, legt das Vorzeichen fest.

Wegen (11b) muB3 ferner die nichteuklidische Spur der Abbildungs-
matrix verschwinden.

Wir erhalten somit fiir das Differential einer reguliren Funktion :

?) Eine Verwechslung mit dem &ufBlern Differential ist nicht zu befiirchten, da von
letzterm nur in der Einleitung gesprochen wird.
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dw= Y o,*m 8 (*m dx)
=1 n (1 4:)
mit der Nebenbedingung ¥ ¢, N (*m)=0 .
a=1
Da s(*mdx) = *mdz + dz®m ist, so erhalten wir bei Beriicksichtigung
der Nebenbedingung

n
dw = ¥ o, *mdz*m (15)
a=1
Die Transformation z’ =  bedeutet Spiegelung an der Koordinaten-
hyperebene £ ,, die von den ersten » Koordinatenaxen aufgespannt wird.
Die Transformation z’ = axza bedeutet nichteuklidische Spiegelung
und Streckung an der Geraden Aa; A reeller Parameter.
Aus diesen beiden Transformationen setzt sich dw zusammen, und es
gilt :

1. Satz. Die durch eine requlire Funktion vermittelte Abbildung der
Umgebung eines reguliren Punktes setzt sich aus n Streckspiegelungen,
denen eine Spiegelung an der Koordinatenhyperebene E., vorangegangen 1st,
an n orthogonalen Richtungen zusammen ; dabei verschwindet die Summe
der nichteuklidisch gemessenen Streckenverhdltnisse.

Um nun die Koordinatentransformation zu finden, denen gegeniiber
die Regularitdtsbedingung invariant bleibt, brauchen wir nur diejenigen
Transformationen zu suchen, welche die Form (15) des Differentials
nicht zerstoren. Dabei zeigt sich, daB wir w als Funktion von z aufzu-
fassen haben. Wir transformieren :

z=az'a-+b; w=aw'a-+c. (16)

n 1
Dann folgt sofort dw’ = Y o, *m’dz’ *m’ mit om’= pr (@ *m a). Die
a=1
om’ gehen aus den *m durch nichteuklidische Spiegelungen hervor und
bilden deshalb kein orthogonales System mehr. Sie liegen daher nicht

mehr auf den zu der infinitesimalen Abbildung gehorenden Eigenvek-

toren. Hingegen ist w’ wegen X g, N(*m’') = ¥ g, N(*m) = 0 immer
x=1 o=1

noch reguldr. Die Orthogonalitdt der Spiegelaxen ist somit fiir die Regu-

laritdt nicht wesentlich, und besagt nur, dal die Form (15) auf Haupt-
axen bezogen ist. Die Transformation (16) kann nun beliebig oft aus-
gefithrt werden. Wird dabei noch normiert, so erhidlt man gerade die
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nichteuklidisch orthogonalen Koordinatentransformationen. Andere
Transformationen lassen (11b) nicht invariant, und es gilt:

2. Satz. Wird auf die regulire Funktion w und die gespregelte Variable
z dieselbe nichteuklidisch orthogonale Koordinatentransformation ausge-
fithrt, so ist die Funktion w'(z’) im transformierten Bereich wieder reguliir.

Aus der Regularitdtsbedingung ist ohne weiteres ersichtlich, dafl die
reguliren Funktionen einen reellen Modul bilden, aber keinen Ring;
auch diirfen weder r noch w einzeln transformiert werden.

Um die geometrische Bedeutung der metrischen Bedingung der Streck-
verhéltnisse zu finden, ersetzen wir die orthogonalen Spiegelaxen durch
supplementire. Wir wollen aber bei der Umformung des Differentials (15)
voraussetzen, daf3 die Matrix (B%) lauter positive Eigenwerte besitzt,
daB also alle ¢, = + 1 sind ; das ist nur im hyperbolischen Fall mit der
Nebenbedingung von (14) vertriglich. Wir betrachten den Beitrag zweier
Glieder der Differentialform (14) und suchen zwei neue Richtungen, so
daf3 identisch gilt :

B = ms(imdzx) + *ms(*mdz) = 'as(ladz) + %as((adx) . (17)

Beschreibt dz eine euklidische Hyperkugel, so beschreibt B eine Ellipse
E, mit den Hauptaxen 2n(‘m) und 27 (*n). e und %z miissen daher
in der von m und 2m aufgespannten Ebene liegen

la =ry'm A+ rp®mo,
a? = ry Im + 7y, 2m .

Notwendig und hinreichend fiir die Identitdt (17) ist nun die Orthogo-
nalitit der Matrix (r;,). Wir kénnen somit die Richtung von a beliebig
wihlen ; dann ist die Liénge von la und Richtung und Léinge von 2a
bestimmt. Wir nennen la und 2z zwei in bezug auf die Ellipse E, supple-
mentire Richtungen, da der von ihnen eingeschlossene Winkel zu dem-
jenigen der beiden z-Richtungen, deren Bilder 'a und 2a sind, supple-
mentér ist. Seien ¢, und @, die Winkel, welche !a und %z mit der Haupt-
axe m bilden, so gilt:

n (*m)

n (m)

tg @1 tg o = —

Somit sind zwei in bezug auf eine Ellipse £, supplementéire Richtungen
immer konjugierte Richtungen in bezug auf eine Ellipse #,, deren Haupt-
axenrichtungen mit denen von £, zusammenfallen, und deren Axen-
lingen die Quadratwurzeln der Axenlingen von E, sind. Zwei supple-
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mentédre Richtungen bestimmen daher eine Ellipse eindeutig. Nun
wihlen wir 'a so, dal N (*a) = 0 wird. la liegt dann auf einer der
beiden Schnittgeraden der Ellipsenebene mit dem Nullkegel. Dieser ist
der zum Punkt 0 gehorige charakteristische Kegel der Differential-
gleichung (13). Wir bezeichnen dieses ¢ mit n. Dann wird

Ins (ndx) = ndrin

eine regulire Abbildung vom Range 1

X in[s(ndr)]®Me, =2 -n=0 .

h=1
Jetzt verfahren wir mit 2as(*.adx) 4 3ms(®mdzx) genau gleich, usw., bis
nur noch eine einzige Richtung "a iibrigbleibt, die mcht auf dem Null-

kegel liegt. Dann hat dw die Form :
n—1
dw = z“ndx"‘n—}— "a s ("adx) .
Da die n — 1 ersten Glieder regulir sind, muf3 das letzte fiir sich auch
reguldr sein ; dann mull aber ”a-"a = 0 sein, d. h. "a auch auf dem

Nullkegel liegen. Damit ist gezeigt :

3. Satz. Bildet die Funktion w eine infinitesimale Hyperkugel um den
Punkt P so auf ein Hyperellipsoid ab, daf3 dasselbe n supplementire Rich-
tungen auf dem charakteristischen Kegel besitzt, so ist die Funktion w im
Punkte P regulir.

Das Differential hat damit die Form

dw = ¥ *n dx *n , (18)

=1

wo aber die Komponenten *n, nicht immer reell sein werden. Entspre-
chend konnte man im Fall negativer Eigenwerte, der ja durch Spiege-
lung aus obigem hervorgeht, verfahren ; die supplementédren Richtungen
wiirden dann konforme Richtungen, doch miifliten gewisse Fille, bei
denen die letztern unbestimmt werden, ausgeschlossen werden. Mit
diesen Ausnahmen kann Satz 3 auf den elliptischen Fall v = n iiber-
tragen werden, wo natiirlich der Nullkegel selber imaginidr wird.

Da die einzelnen Beitrige der Differentialform (15) wohl vom Range n,
aber nicht regulir sind, diejenigen der Form (18) reguldr, aber vom
Range 1 sind, soll abschlieBend kurz auf die einfachsten regulidren Ab-
bildungen vom Range 7 eingegangen werden. Diese werden lineare Funk-
tionen von x sein.

aza=—a*z +as(ax) . (19)
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n
S[aza]Me, = (2 — n)a® regulir fir n = 2 .
h=1

bazab = a?b®z — a*bs(bx) — b2as(az) + bS(ab)s(az) . (20)

a und & sollen nichteuklidisch senkrecht sein, also S(ab) = 0. Dann
wird

n

S[bazabl®e, = a2b?(n — 4) regulir fiir » = 4 .
h=1

chazabe mit S(ab) = S(bc) = S(ca) =0 .
S [chazabc]Me, = (6 — n)a2hic? regulir fiir n = 6 .
h=1

So erhilt man fiir alle geraden Dimensionen lineare regulidre Abbildun-
gen, die als Produkte von nichteuklidischen Spiegelungen konform sind.

4. Satz. Zu jeder geraden Dimension n = 2m g¢ibt es in der zur
Differentialgleichung gehorenden Metrik konforme regulire Abbildungen ;
diese werden durch m-fache Streckspiegelungen an m senkrechten Richtungen
erhalten.

Durch Kombination erhilt man lineare regulire Abbildungen zu jeder
Dimension n, z. B.:

af{(n — )2 + (n —2)bxr bla .

Im Falle n =4 kann dw immer durch reguldrkonforme Bestandteile

dargestellt werden, da wegen S(a 17) = s(a b) nichteuklidische Ortho-
gonalitdit immer auf euklidische zuriickgefithrt werden kann. Dieser
Fall interessiert uns wegen der spdtern Spezialisierung auf Quater-
nionen. Man erhélt nach einfacher Rechnung :

dw = k'm (oy*mdx *m + o5°mdx>m + o, mdx *m)im
-+ 2kim 3mdx *mim + 3k m32mdx*mim + %k m 3 mdximi*m (21)

wobei die Konstanten

. ) i — N ('m) g,
N(m) ’ ~ N(m) °’ — N(®m)N(®m)

"—'1 “"'0’1
. 2.
N (‘m) °’ k=

1 —

bedeuten.
Man kann nun fiir die Funktion w nur einseitige Regularitit, etwa

Linksregularitit D-w = 0, verlangen. D muf} wie bisher im Linear-
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system £ liegen, aus dem auch z stammt. w selber kann hingegen in
einem beliebigen hyperkomplexen Linearsystem £’ oder einer Algebra
liegen, die nicht Cliffordsch zu sein brauchen. £’ mufl bei Linksmultipli-
kation mit GroBen aus £ invariant bleiben und fiir diese Multiplikation
mul das assoziative Gesetz gelten.

n n

’
T=3x,e,; W= Up€p .
k=1 k=1

n n n
L.8=¢8, dh XIae, Xbe =3c.e; .
j=1 =1

h=1

w ist dann immer noch eine Losung der Differentialgleichung @-w = 0.

Insbesondere gelten der 1. und 2. Integralsatz, wenn man bei letzterem
als Greensche Funktion eine regulire Funktion aus £ wihlt. Fiir das
Differential folgt dann aus (15):

n
dw= X omdzom® mit *m aus £ und % aus ¢’ . (22)
=1
Invarianz und geometrische Eigenschaften richten sich dann nach £’.
Das der hyperkomplexen Regularitidtsbedingung entsprechende reelle
Differentialgleichungssystem kann nun die mannigfachste Gestalt an-
nehmen. Herr Rud. Fueter hat auf diese Weise die Diracschen Gleichungen
bei fehlender Ruhmasse als Regularitdtsbedingungen einer Klasse von
hyperkomplexen Funktionen dargestellt1?). Die Komponenten der regu-
lairen Funktionen sind Losungen der Wellengleichung und durch die
Existenz eines hyperkomplexen Potentials miteinander verkniipft!).
Hier stellt sich nun die Aufgabe, alle linearen Differentialgleichungs-
systeme zu finden, die @-w = 0 zur Folge haben, oder alle hyper-
komplexen Linearsystem £', fiir die £-8' = 2’ gilt. Wie weit £ selber
durch ¢ bestimmt ist, soll diese Arbeit zeigen.

II. Funktionen in einem Linearsystem mit Haupteinheit

Oft erscheint es zweckmiBig ein System £, von Cliffordschen Basis-
elementen zu betrachten, unter welchen die Haupteinheit ¢, = 1 selbst
auch auftritt

L=lec=1,¢,...,€, 4] . (23)

10) Rud. Fueter [10].
1) 4. Kriszten [17].
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Fiir die Basisgroen gelten jetzt die Relationen :

€olr = €160, €er= —e€e, h k=1,....n—1, h#k (24a)

und
e2=1, € = — ;-1 k=1,...,n—1. (24b)

Dabei haben die x, dieselbe Bedeutung wie bei (13).

Die Basisgroflen von £, bilden jetzt ein Erzeugendensystem einer
Cliffordschen Algebra §,_, der Ordnung 27-1. Wegen der Haupteinheit
ist dieses nicht mehr minimal. Wir nennen daher £, zum Unterschied
von { ein Linearsystem mit Haupteinheit.

Durch die Auszeichnung von e, =1 ist die Multiplikation (24a)
nicht mehr schief. Um die Unsymmetrie kiinstlich wegzuschaffen, defi-
nieren wir die konjugierten Kinheiten :

€p =€y ; €= — € k=1,...,n—1. (25)
zk:‘%kek. k:O,...,n—‘l.

Die beiden Operationen sind miteinander vertauschbar :

Es sei jetzt a eine Grofle aus £, im Korper der reellen Zahlen.

n--1
a=Na,e, mit reellen @, . Dann wird
k=0

a=Ya.e, und es gilt :

Damit kénnen wir die multiplikativen Verkniipfungen und metrischen
Formeln von I iibertragen '

—_ n—1 —_— — n—1
N(@) =aa=3xa%, 2n(ae)=aa+aa=2Ya},
k=0 k=0
—_ —_— n-—1 P - n—1
S(ab)=ab+ba=23Ix,a,b,; s@d)=ab+ba=2Xa,b, .
k=0 k=0
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S (ab)
2Vn(@)n®) ’
s(ab)

e(@b) =Vn@—b) , w(ab) = arccos Vn@n®)

E(@b)=VN(@—b) , W(ab)=arccos

Mit @, &b und ¢ liegen wiederum abe -+ cha und aba in £, und
haben dieselbe Bedeutung wie in I.
Nun betrachten wir die hyperkomplexen Funktionen in £,

n—1 n—1
T=3x,€, , W=DUi€, .
k=0 k=0
Uber die wu,(,..., z,_,) seien dieselben Voraussetzungen gemacht,

wie in I. Entsprechend definieren wir den Differentialoperator

D n—1 g

= e
;é% 0%,

Wegen (24b) wird dann

n—1 32

D-D=@Q= Z%kaxk

zum selben Differentialoperator 2. Ordnung wie in I.

Jetzt haben wir zwei Moglichkeiten, reguldre Funktionen zu defi-
nieren, deren Komponenten wieder Integrale der Differentialgleichung
(13) Qu = 0 sind. Die entsprechenden Regularitdtsbedingungen lauten :

Dw=0. (26a)
Dw=0. (26Db)
Reell erhalten wir im ersten Fall dieselben Bedingungen wie in I
divew=0 wund rotw=0.
Im zweiten Fall erhalten wir dagegen :
divw=0 und rotw=0.

Daraus folgt fiir beide Fille die Existenz eines skalaren Potentials im
weitern Sinn ¥, das ein Integral der Differentialgleichung (13) ist. Die
Funktion w ist dann im ersten Fall

w= DV ,
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wihrend sie im zweiten Fall
w= D¥
wird.
Damit ist die Beziehung zu den reguliren Funktionen in £ sofort
ersichtlich, wenn man die neuen Indizes sinngeméif mit den vorherigen
vergleicht.

b. Satz. Ist win L eine regulire Funktion, so sind w nach (26 a) und
w nach (26 b) in L, wiederum reguldr.

Natiirlich sind die Funktionen in £, in beiden Fillen immer noch
beidseitig reguldr, und es gelten die Integralsitze wie in €. Wegen der
spitern Spezialisierung auf Quaternionen und der Ubereinstimmung
mit den Regularititsbedingungen in den bisher erschienenen Arbeiten
wollen wir eine regulire Funktion nach (26b) durch eine der beiden
dquivalenten Gleichungen

Dw=0 oder wD=0

definieren, obwohl die Regularitit nach (26a) formal schéner wire. Die
durch w vermittelten Abbildungen gehen aus denen von I durch zusitz-
liche Spiegelung an der reellen Axe hervor. Deshalb erfihrt die Form
des Differentials einer reguliren Funktion gewisse Verinderungen. Die
Darstellung (15) lautet jetzt :

n n

— A —

dw = Y o,*mdx*m mit I g,*m =0 . (27)
=1 =1
In der Tat ist mdzm = — mmdz + ms(mdz) zu mdrm aus L

. konjugiert. Den Streckspiegelungen von (15) folgt noch eine Spiegelung
an der reellen Axe. Safz 2 iiber die zuldssigen Koordinatentransforma-
tionen gilt unverindert. Da mit » auch % ein Nullteiler ist, gilt der Form
(18) entsprechend :

n . N — —
dw= ¥ *ndz*n mit *»°*n=0 fir «a=1,...,n . (28)
a=1

Ganz entsprechend findet man wieder konformregulidre Abbildungen
in geraddimensionalen E". Diese entstehen durch dieselben Spiegelungen
wie in I, nur daB sich abwechslungsweise noch eine Spiegelung an der
reellen Axe einschaltet

— Oy S—

axa reguldr fir » = 2,
bazab reguldr fir n = 4,
cbazabe reguldr fir n = 6, usw.
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Durch Kombination erhdlt man fiir beliebige Dimensionen regulire
lineare Abbildungen

b{n—4aazr+(m—2aza)b .

Diese sind aber jetzt notwendigerweise Funktionen von z und z. Fir
n =4 und » = 2 kann das Differential wieder aus reguldr-konformen
Abbildungen zusammengesetzt werden

dw = k'm (02 2m das *m + as°m dx m -+ o, 'mdz 4m) m

~ ~ ~

1+ 2k Y 3 da *mim - 3k 'm 2mda 2m m + 4k 2m 3m dz Sm 2m. (29)

wobei die Konstanten k dieselben sind wie bei (21). Die Einfiihrung einer
Haupteinheit empfiehlt sich besonders bei einfachen hyperbolischen
Differentialgleichungen » = 1 und bei elliptischen Differentialgleichun-
gen y =mn.

A. Ist v=1, so wird @ =a, und damit n(a) =aa + aa und
s(ab) =ab + ba. Die Darstellungen (27) und (28) bleiben unveréndert ;

erst bei (29) zeigt sich, wie sehr das hyperkomplexe System der Diffe-
rentialgleichung angepalt ist:

dw = Y%m(g,2mdx®m + o,>mdz®*m + o4mdxim)im
+ 2k m3mdzdmim 4 3k2mimdxim?*m + %k2m3mdx3mim ,
wo die £ wiederum dieselben sind wie bei (21).

B. Haben wir eine elliptische Differentialgleichung, so tritt & iiber-
haupt nicht mehr auf. Zur Differentialgleichung gehort jetzt die euklidi-
sche Metrik, und wir kénnen konforme und antikonforme Abbildungen
unterscheiden :

aza regulir fir n = 2, konforme Abbildung
bazab regulir fir n» =4, antikonforme Abbildung
cbazabe reguldr fir » = 6, konforme Abbildung usw.

In ungeraden Dimensionen setzen sich die linearen Abbildungen immer
aus konformen und antikonformen zusammen. Im Unterschied zu (20)
gilt jetzt aber :
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6. Satz. Die durch eine regulire Funktion vermaittelte infinitesimale
Abbildung ist in Rdumen R™ von gerader Dimenston ber n = 4m -+ 2
erne Summe von konformen, bev m = 4m eine Summe von antikonformen
requldren Abbildungen.

III. Funktionen in einem Produktsystem

Eine wesentlich neue hyperkomplexe Funktionsklasse wird uns iiber
einem Produktsysiem P = L-L' definiert, wo £ und ' Linearsysteme
einer Cliffordschen Algebra mit m und m’ Basiselementen bedeuten. In
B sollen freie Variable, Funktion und Differentialoperator liegen, und es
sollen wieder regulire Funktionen durch eine entsprechende Bedingung
ausgezeichnet werden. Uber P8 konnen wir die Funktionen nun so speziali-
sieren, dafB} sie als Funktionen von m’ hyperkomplexen Variablen in £
oder von m hyperkomplexen Variablen in £’ regulir werden. Dadurch
erhilt man Systeme von hyperkomplexen Funktionen von beliebig vielen
hyperkomplexen Variablen. Natiirlich diirfen wir fiir £ oder £’ oder auch
fiir beide ein Linearsystem £, mit Haupteinheit setzen, oder sogar eine
Subalgebra. In letzterem Fall erhalten wir in der Regel ein hoheres
Produktsystem 2). Wahlt man fiir £ speziell die Algebra der komplexen
Zahlen, so muBl unter den zu einem solchen Produktsystem gehérenden
reguliren Funktionen ein System von analytischen Funktionen von
mehreren komplexen Variablen enthalten sein. Solche regulire Funk-
tionen nennt man analytisch-reguldr. Herr Rud. Fueter hat zum ersten-
mal diese sinngemifBe Zusammenfassung analytischer Funktionen von
mehreren komplexen Veriénderlichen zu einer hyperkomplexen Funktion
durchgefiihrt 13). Dieser interessanteste Fall, der alle Merkmale des all-
gemeinen besitzt, soll hier als Vertreter der Produktsysteme néher unter-
sucht werden. Dabei werden die analytisch-reguliren Funktionen als die
einzige Funktionsklasse charakterisiert, fiir die auch der 2. Integralsatz
unverindert gilt.

Es sei eine Cliffordsche Algebra €,

€ =1, e,...,€,, €ra,cc.y ..., €5...,
gegeben, aus der wir die Linearsysteme

2 =[1l,e,] und £ =[1,e,...,€,,]

12) Siehe Hilfssatz, S. 411,

13) Rud. Fueter [9].
Hier und in den darauf fuenden Arbeiten wird das zugrunde gelegte hyperkomplexe
Basissystem auch Linearsystem genannt.
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herausgreifen. Wir identifizieren e, = ¢ mit der imaginéren Einheit der
komplexen Zahlen. Es sollen die folgenden Relationen gelten :

e e, = —¢€e,, hFk.
" . hk=1,...n.
ee=1; e&=—1;
Nun definieren wir das Produktsystem 3 :
“B=[l’i][laelx"wen—1]2[2137:2;]:

[1, 61’.;0, eﬂ—l’ ?”zel,°"’?’eﬂ—1] *

Als hyperkomplexe Variable erhalten wir in P die Grofle

n—1 n—1

z=x+1y=X (2, +1yr)e, = X 26 ,
k=0 k=0

wo x; und y, reelle Variablen sind. x und y sind Zahlen aus £;. Ver-
stehen wir unter den konjugierten Einheiten wie bisher

€ =¢,=1; [, ; e_k—:— —e ; k=1,...,n—1,
so erhalten wir fiir die konjugierte hyperkomplexe Variable :
z=x—iy=x —yt .

In 9P ist nun die Multiplikation auch bei Ausschlufl der Haupteinheit
nicht mehr durchwegs schief

e e, =1e,¢,, hz*k, hk=1,...,n—1. (30)

Daher wird jetzt die Norm z-z in der Regel nicht mehr reell.

n(2) =z2.2=(x+iy) ([ —iy)=2.2+y.y+i(ly.z—x.Yy)

n—1 n—1
2 2 3
= Z(xk + ?/k) + 21 X ZpYrenex
k=0 h, k=1
(k%)
Nun fassen wir 27 reelle Funktionen u,(%g,..., £,_1> Yos-+ > Yn-1) und
Ve (Zgseeos ugs Yoo+ o> Yno1), die in einem 2n-dimensionalen Bereich

stetig und stetig partiell differenzierbar sein sollen, zu einer hyper-
komplexen Funktion w zusammen

n~-1

w=u-+ vt =Y e(u, + 1vy) .
E=0
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w wird im Produktsystem P’'=[1,e,,...,e,,][1,?] definiert, damit
beim Spezialisieren auf analytisch-regulire Funktion die Cauchy-Rie-
mannschen Differentialgleichungen die iiblichen Vorzeichen haben. In
Pwire w=u-+1tv.

Zur Definition regulédrer Funktionen verwenden wir den Differential-
operator

YRR
D:—.E—}—zF:E( + )ek,
k=0 oY

oz,
und nennen eine Funktion w rechts- oder linksregulir, je nachdem

wD =0 oder Dw=0 (31)
wird.
Dabei verstehen wir unter
ow n1 (auk . avk)

o ek
or, = “\ox, ox,

Wegen (30) sind jetzt links- und rechtsregulire Funktionen wesentlich
verschieden. Wir beschrinken uns in der Darstellung meistens auf rechts-
regulire Funktionen.

Die Regularititsbedingungen zerfallen in £; in die beiden Gleichungen :

ulb —vF =0,

_ _ (32)
vE +uF =0,

Sie sind daher lineare Kombinationen der Regularitdtsbedingungen von
II. Da die Norm nicht mehr reell ist, geniigen die reguldren Funktionen
im allgemeinen nicht mehr einer linearen partiellen Differentialgleichung
2. Ordnung. Die Regularitdt hat immer noch die Giltigkeit des 1. Inte-

gralsatzes zur Folge :
wD = 0, w rechtsregulir ,

fwdZv = fwDv-dh = 0, wenn .
R : Dv =0, v linksregulir. (33)
R, H und dZ sind bei (3) erklirt. Hingegen kann der 2. Integralsatz ohne
weitere Einschrinkungen nicht mehr aufgestellt werden, da die ent-
sprechende Greensche Funktion in P nicht regulir ist.

Da die euklidische Metrik zu den beiden Linearsystemen gehort, aus
denen P zusammengesetzt ist, so werden wir den Zahlen aus P die
Punkte des euklidischen R?* zuordnen. Die metrischen Formeln von II
gelten weiterhin, wenn man Norm » und Spur s durch n’ und s’ ersetzt,
die wie folgt definiert sind :
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n' (@ + ib) = P{(a + ib)(@ — ib)} - P{a?;+ bb + i(ba — Eb)}
—=aa+bb.
(@ +ib, ¢+ id) = P{(a +ib)(c — id) + (¢ + id)(a — z‘b)}
—ac+cat+bdt+db.

Dabei sind @, b, ¢ und d GroBen aus £, und P vor einem Ausdruck soll
die in diesem enthaltenen Bestandteile aus dem Produktsystem P be-
zeichnen.

Aus (32) folgt, daf wir die n-Funktionen u, beliebig wihlen konnen,
wihrend wir fiir die n-Funktionen v, folgendes reelles Gleichungssystem
erhalten :

div,u —div,v =0,
rot, u — rot, v = 0 ,
div, v 4 div,v = 0 ,
rot, w +rot, v =0 .

(34)

Dabei deutet der Index an den Differentialoperatoren die Variablen an,
nach denen zu differenzieren ist. Wegen (34) setzt sich nun das Differen-
tial einer reguliren Funktion folgendermaflen zusammen :

n—1

dw= X {(Ahkdxh — By dy,) e +

k,h=0

+ [(Bux + Cii) dx, + (Apy + Dyy) dya) eki} .

Dabei bedeuten (4,,) und (B,,) reelle Matrizen, die keinen Bedingungen
geniigen miissen, wiahrend (C,,) und (D,,) reelle Matrizen sind, die zu
den nach (26a) bzw. (26b) reguliren Abbildungen in £; gehoren. Fassen
wir zu hyperkomplexen GroBen zusammen und spalten die beiden in £,
regulidren Funktionen ab, fiir welche wir die schon gefundene Differential-
form einsetzen, so erhalten wir :

7. Satz. Eine hyperkomplexe Funktion w aus dem Produktsystem P =
[1,4])-[R)] st rechtsregulir, wenn thr Differential in jedem reguliren Punkte
folgende Form hat :

n—1 n — n . —
dw =Y (*a + *i) (dz, + 1dy,) + ( > o, *pdz*p —}-leaﬁﬁqdyﬂq)i .
h=0 a=1 =
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Dabei bedeuten *a, b beliebige GroBen aus L], wihrend *p und Aq
ebenfalls aus £, den Bedingungen

=1

Eca ap ag:ﬁzlo'ﬁ Bq Ba = O

geniigen miissen; ¢, und og sind die Vorzeichen der Eigenwerte von
(Chr) und (Dyy).

Daraus folgt sofort die Invarianz der reguliren Funktionen gegeniiber
orthogonalen Transformationen aus £, oder £, und deren Produkte,
wenn auf z, y und w gleichzeitig dieselbe Transformation ausgefiihrt
wird.

Nun wollen wir diejenigen Funktionen aufsuchen, fiir die auch der
2. Integralsatz in der Form (4) gilt. Diesen miissen wir in P jetzt folgen-
dermaflen schreiben :

w(2) = const. [w (¢) Plazn' ¢ — " —2)} . (35)
#

{ = & + in variiere im Innern und auf dem Rande R eines endlichen,
abgeschlossenen Regularitétsbereiches H ; fiir R gelten dieselben Vor-
aussetzungen wie bei (3). Um die Giiltigkeit des 2. Integralsatzes zu be-
urteilen, versuchen wir diesen aus dem ersten abzuleiten. Wir um-
schlielen den Aufpunkt z mit einer Hyperkugel K mit der Oberfliche Ry
und verlangen fiir den verkleinerten Regularitidtsbereich H' = H — K :

f wP{dZn' (C—2)"(— z)} =fwP{Dn’ (¢— z)"“(_C—:;)} dh=0
R+Rg < (36)

Gilt (36), so folgt aus

pr{dZn' C—2"C—2) —]—fwP{dZn’ C—a"E—2}=0
R Ry

nach Grenziibergang Rp — 0 sofort (35), da wir auf Ry fir dZ =

const. ({ — z) setzen diirfen, und damit P {dZn'({ — 2)~"({ — z)} reell
wird. Damit sich eine hyperkomplexe Funktion w nach dem 2. Integral-
satz berechnen 148t, muf3 demnach in H’

wP{Dn'(c-z)—"(c-—z)} =0
werden, da (36) fiir beliebige Hyperflichen R gelten mul.
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Wegen _ - - - -

D' ({—2)"({—2)=—2n-n({—2) i {(n—y) (§—2)—(§—2) (n—y)}
wird P{Dn'(¢ — 2)™({ — 2)} = 0. Also muB3 der Operator auf w an-
gewandt identisch in allen Komponenten von ({ — z) verschwinden. Wir
erhalten somit als Bedingung der Existenz des 2. Integralsatzes folgendes
System von Differentialgleichungen :

uJ%D%}=0, E=0,...,n—1. (37)

Da fiir £ = 0 sofort wD = 0 folgt, so sind alle Funktionen, fiir die der
2. Integralsatz giiltig ist, in der Klasse der rechtsreguliren Funktionen
enthalten. Differenzieren wir (37) nach z, und y, und summieren ent-
sprechend, so erhalten wir:

wP{DJ—)} =0.

Da aber P {D-ﬁ} — D-D = A, gleich dem reellen Laplaceschen Ope-
rator ist, folgt sofort
Aw =0 .

Da die ¢, und ¢e, linear unabhiingig sind, werden damit alle u, und v,
Potentialfunktionen.

Um die verschirfte Regularitatsbedingung (37) mit der allgemeinen
Regularititsbedingung (31) zu vergleichen, zerlegen wir (37) in £]:

. 0 . 0 0 . 0
u. B —v.F=0 und (u—}-m)(axo + 4 2, + o, e+ ¢ o, ek)=0
v.E+u.F=0 fir k=1,..., n—1 .

Summieren wir die letzten n — 1 Gleichungen, so folgt

0 2 \|
(u + v1) E—l—iF—{—(n——-Z)(axo + ayo) = .

Wegen (31) ist damit fir n>2:

.f 0 . 0
(u+m)(ax0 + 1 ayo) = .

Daraus folgt aber unmittelbar :

5 (=2 ;2 =0 fir £=0 1
(u—{-m)(axk-}-zayk)—— ur =0,...,n—1 .
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In £ zerfallen diese » hyperkomplexen Gleichungen in

ou ov —0- ou _93)_
or,. Oy,

Byk+ axk=0 ck=0,...,n—1.

Somit zerfallen sie reell in :

ou,, v, Oy n ov,,
0y, oY, oYy,

=0.h,k=0,...,n—1 . (38)

b

0%,

Dies sind gerade die Cauchy- Riemannschen Differentialgleichungen fiir
die » komplexen Variablen 2, = z, + ¢y,. Die n komplexen Funktionen
(us + tv;) sind also analytische Funktionen der » komplexen Verdnder-
lichen z, ; in diesem Fall nennen wir die hyperkomplexe Funktion w =
u + vt eine analytisch-rechtsregulire Funktion. Damit gilt :

8. Satz. Damait fir die rechtsregulire Funktion w = u + vi aus dem
Produktsystem P =[1,4][1,e;,...,€,_,] mit n>2 der 2. Integralsatz
in der Form (35) gilt, muf3 w eine analytisch-rechtsregulire Funktion sein.

Man konnte sich nun fragen, ob die rechtsregulidren Funktionen w,
fiir welche noch zusétzlich Aw = 0 gilt, nicht schon analytisch-rechts-
reguldr sind. Da zeigt sich sofort, dafl nur eine der Gleichungen (31) nach
(38) zerfallen muf}, damit Aw = 0 wird. Wir erhalten somit unter den
rechtsreguldren Funktionen zwei Funktionsklassen, deren Komponenten-
funktionen harmonisch sind. Thre Regularitdtsbedingungen sind :

ou ov 0 ul —vF=0
ox,, - oY -

) B oder o N o o
vE+uF =0 oy, ox,

wo beidemal £ =0,...,n — 1 lduft.

Natiirlich sind diese Funktionen noch nicht analytisch-rechtsregulir,
und der 2. Integralsatz gilt fiir sie in der vorliegenden Form nicht, obwohl
sich die einzelnen Komponentenfunktionen durch ein Randintegral be-
rechnen lassen. Da ihre Regularitdtsbedingungen aber gegeniiber Trans-
positionen 7', von wuy, vy, %o, Yo Mit u;, vy, T, Y bzw. mit —u,,
— v, X, Y, invariant bleiben, so konnen ihre komplexen Komponenten-
funktionen nach dem 2. Integralsatz in einer etwas spezielleren Form
berechnet werden.
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Es 148t sich ndmlich wu, 4 2v, bei jeder rechtsreguliren Funktion w
durch ein Randintegral darstellen 1)

Uy + tvy = const. K _fw(C)dZn’(C —2)"( —z) .
B
Dabei bedeutet K vor dem Integral, dafl nur komplexe Beitridge beriick-
sichtigt werden. Wegen den zulédssigen Transpositionen ist
w’(2) = Fw(*z)

eine neue, aber wiederum rechtsregulire Funktion ; dabei soll *z = T', 2
und *w = T, w bezeichnen. Dann gilt :

ug (2) + 1y (2) = uy (¥2) + 20y, (¥2) = const. Kjkw(ké)dZn’(C —2)" " ({ —2).
R

Uben wir auf *2 nochmals die Transposition 7', aus, so erhalten wir :

U (2) + 10, (2) = const. K (*w (¥ )dZn'({ — *2)(C — *2) .
R

Nach Linksmultiplikation mit e, und Summation iiber k erhilt man so-
mit eine Integraldarstellung fiir die Funktion w(z):
n—1

w(z) = const. ¥ e, K (*w (¥¢)dZn'(§ — *2)™(C — *2) .
k=0 R

Diese Integralformel kann als eine Erweiterung des 2. Integralsatzes
aufgefaflt werden ; hingegen mufl bei jedem Summationsglied die Green-
sche Funktion wie auch die Wertverteilung auf R geéndert werden, und
es mull R ganz im Innern des Bereiches liegen, fiir den die Transposi-
tionen 7', zuldssig sind, und natiirlich im gemeinsamen Regularitéts-
gebiet der n Funktionen *w.

Das Differential einer analytisch-rechtsreguliren Funktion w ergibt
sich aus (34) sofort, da die Matrizen (C,,) und (D,,) wegen (38) einzeln
verschwinden.

9. Satz. Ist w eine analytisch-rechtsregulire Funktion, so hat thr Diffe-
rential dw in jedem reguldren Punkt folgende Form :

n—1

dw = 3 (a + i) (da, + idy,)

h=0

hg, b beliebige Gréfen aus L.

14) M. Schaad [23], S.34. Am Schlusse des § 10 fithrt Fréulein Schaad Beispiele zu
diesen beiden Funktionsklassen auf; fiir diese gilt der weiter unten stehende verallgemei-
nerte 2. Integralsatz.
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Aus diesem Satz ist nun auch gut ersichtlich, wie das allgemeine Diffe-
rential einer rechtsreguldren Funktion aus dem Differential einer ana-
lytisch-rechtsreguldren Funktion und zweien nach (26a, 26b) reguliren
Differentialen in den Teilrdumen z und y zusammengesetzt ist.

Fiir den Fall n = 2 erhalten wir auller der gewohnlichen Regularitéts-
bedingung keine weitern Einschrénkungen fiir die Giiltigkeit des 2. In-
tegralsatzes. Aus (37) folgt in diesem Fall:

wP{De,} = wDe, =0 , (39)
also wiederum wD = 0.

Der 2. Integralsatz gilt also in einem Produktsystem mit 4 Einheiten,
sobald die Funktionen reguldr sind. Das hat seinen Grund darin, daf} die
Produktsysteme P =[1,7][1l,e] mit e = 41 die gleichen Sym-
metrieeigenschaften haben wie die Linearsysteme £,

tre= —e-t; 116 = — ie-1 ; e-1e = —1ie-e . (40)

Ihre Auszeichnung ist aber noch grofler, da sie mit den Algebren iiber
dem Linearsystem & = [¢,e] iibereinstimmen, also selber Algebren
sind. Zugleich sind sie auch die einzigen Algebren mit den Symmetrie-
eigenschaften (40).

IV. Funktionen in einer Cliffordschen Algebra

Wir wollen zuerst diejenigen Cliffordschen Algebren finden, in welchen
wir die Ergebnisse von II iibertragen konnen. Dazu geniigt, daBl ihre
Basiseinheiten®) sich ausschlieflich der Haupteinheit schief multipli-

zieren :
ihikz_ikih’ h#k, k,k———l,...,2n"—l.

Dann und nur dann werden Norm 7 und Spur s reell, und es konnen die
metrischen Formeln von II iibernommen werden.

Solche Algebren sind nun die zuletzt betrachteten Produktsysteme
der Ordnung 4, welche durch ein minimales Erzeugendensystem mit zwei
hyperkomplexen Einheiten bestimmt sind

L=1[i,4] mit 4= —1p5y, G=£1, =41,
Die von { erzeugten Algebren €, sind :
G2=[1,i1,i2,@.3] mit ?:3‘;?:12:1:1.1:2 .
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E, ist daher auch ein Produktsystem
G2’! =[1, 'il][la 7‘2] ’

und es gelten die Relationen :

Ity = — g0y ; lgly = — U305 ; Uty = — U303 ;
) (41)
n=41 ; =41 ; s = — 1242 .
Wir haben folgende 4 Fille zu unterscheiden :
A. =4 = —1. Dann wird auch 2 = — 1.
Wir erhalten die Algebra der Quaternionen
3 - 3 _ - —
a=Xa,,; a=Xa,; 1=1; i,=—1, k=1,2,3.
k=0 k=0

n@)=aa=aj+ a} + a2 + a2 .

Die zugehorige Metrik ist wegen der positiv definiten Norm euklidisch.

B. 2=+1; =—1. Dann wird i = 4+ 1 und
n(@) =a —a+a) —a? .

C. #d=—1; id=+1. Dann wird 32 = 4+ 1 und
n(a) =aj + a2 — a2 —a? .

D 2=d=+1. Dann wird 2 = — 1 und
n(@) =a} —a2 — a4+ a} .

Die drei Algebren der Fille B, C und D sind isomorph. Wegen ihrer
indefiniten Norm gehoéren sie zu einer einmal ausgearbeiteten hyper-
bolischen Metrik. Wir unterscheiden die drei Algebren wegen ihrer Iso-
morphie nicht mehr, und nennen ihre hyperkomplexen Zahlen Pseudo-
quaternionen, da sich ihre Basiseinheiten mit Ausnahme der Haupt-
einheit wie bei den Quaternionen schief multiplizieren. Nun gilt :

Hiltssatz. Die Algebren der komplexen Zahlen, der Quaternionen und
der Pseudoquaternionen sind die etnzigen Cliffordschen Algebrem mit reellen
Normen und Spuren.

18) Da nur Quaternionen und Pseudoquaternionen in Betracht kommen, bezeichnen
wir die hyperkomplexen Basiseinheiten von jetzt an mit ,, um Verwechslungen mit den
bisher behandelten Systemen zu vermeiden.
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Beweis : €, sei eine Cliffordsche Algebra der Ordnung 2" mit »>2.
Diese besitzt ein minimales Erzeugendensystem £ = [e,,...,¢,]. In £
gelte e e, = — e,e, ; ansonst ist schon in £ keine reelle Spur moglich.
Dann ist aber bereits im Produktsystem [1,e,]- 8, das natiirlich in C,
liegt, die Norm nicht mehr reell, da e,-e,e, = e,e,-¢,, b %k, h, k=
2,...,n 1st.

Man koénnte nun trotzdem hyperkomplexe Funktionen in einer all-
gemeinen Cliffordschen Algebra betrachten. Diese ist dann als ein hoheres
Produktsystem zu betrachten. Fiir solche Funktionen gilt natiirlich ohne
zusitzliche Bedingungen nur der 1. Integralsatz. Vor allem aber sind
ihre Komponentenfunktionen nicht mehr Integrale einer reellen linearen
partiellen Differentialgleichung 2. Ordnung. Zudem konnen die Quadrate
der Basiseinheiten nur im minimalen Erzeugendensystem frei gewéihlt
werden, da die andern mit diesen bestimmt sind.

Uberdies aber geht die formale Eleganz verloren, welche doch wesent-
lich zur Berechtigung der hyperkomplexen Schreibweise beitrigt. Es ist
deshalb verniinftig, Funktionen von mehr als 4 Variablen in einem
Linearsystem zusammenzufassen, auch wenn es gerade eine Cliffordsche
Algebra passender Dimension gibt.

Im folgenden sollen nun die Funktionen in den Algebren der Quater-
nionen und Pseudoquaternionen betrachtet werden. Es sei:

3 3 3
=Tty 5 W= 3 Uyl ; Dzz*—a——*'lm .
k=0 k=0 h=0 0%

Wir iibernehmen die Regularitétsbedingungen von II und verlangen fiir
regulidre Funktionen :
Dw =20 und wD =0 . (41)

Reell zerfillt (41) in zweimal 4 Bedingungen
ud” + (7:1)2“(11) + (3,)° u(zz) + (i)*uf’ =0 ,
ugl) + ugo) =+ (7:2)2'”'(32) -+ (":2)2“(23) =0,
Wi T ) e =0

W+ wQPF wP+ wP=0 .

(41a)

Dabei gilt das obere Zeichen fiir rechtsregulire Funktionen wD = 0,
das untere fiir linksregulire Dw = 0. Fiir beidseitigregulire Funk-
tionen zerfillt (41a) in

divw = 0 und TOtw =0 .
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Wir erhalten genau die Regularitdtsbedingungen (26b), und konnen
den Ubergang vom Linearsystem zur Algebra ohne weiteres verfolgen.
Nach (29) ist das Differential einer reguléiren Funktion eine Summe von
reguléiren Ausdriicken der Form im *m dz *m fm mit Tm *m -+ *m im
= 0. In unsern Algebren wird ‘m *m = p eine hyperkomplexe Zahl,
und die Nebenbedingung besagt, daB3 der Realteil p, = 0 verschwindet.
Also ist pdaz;p mit p,= 0 eine regulire Form. Multiplikation mit
einer hyperkomplexen Zahl mit verschwindendem Realteil bedeutet
Drehung um 90°.

pP+p
2Vp.5
Die beiden Spiegelungen von (29) werden durch zwei Rotationen mit
dem Drehwinkel 90° ersetzt ; neue Spiegelaxe wird jetzt ;) Wir erhalten
somit nach einfacher Zusammenfassung als Differential einer regulédren
Funktion :

dw:a’d;z'l—}-b’d:iz—l—c’d:ic, mit a)=bj=co=0 . (42)

W (a,a p) = arc cos = arc cos O———g— fir p,=0 und pp #0.

Natiirlich ist dieses w immer noch links- und rechtsregulir und seine
Komponenten sind die partiellen Ableitungen eines skalaren Integrals
der Differentialgleichung 2. Ordnung Qu = 0

_ 3 92

k=0
In den Algebren konnen wir aber auf beidseitige Regularitdt verzichten.
Wir beschrinken uns hier auf rechtsregulire Funktionen, da die Resul-
tate mit Symmetrieiiberlegungen sofort auf linksregulidre iibertragen
werden konnen. Im folgenden gelte jetzt nur noch :

wD =0 .
Daraus folgt sofort wDD = Qw = 0, und wegen der linearen Unab-
héngigkeit der Einheiten wiederum :
Q’uk=o k=0,...,3.

Das Differential einer rechtsreguliren Funktion geht entsprechend (22)
durch Linksmultiplikation mit einem beliebigen Faktor aus (42) hervor.

10. Satz. Das Differential einer rechisreguliren Quaternionen- oder
Pseudoquaternionenfunktion hat in einem reguliren Punkt die Form

dw = adx t,+ b dz iy + cdx 15 und wmgekehrt ; ist insbesondere a, =
by = ¢y = 0, so ist die Funktion tm betreffenden Punkt auch linksregulir.
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Man kann diese Differentialform geradezu als neue Formulierung der
Regularitdtsbedingung auffassen. Die infinitesimale Abbildung setzt sich
aus drei reguldren in der zugehorigen Metrik konformen Abbildungen
zusammen.

Umgekehrt geht jedes Differential einer rechtsreguliren Funktion aus
dem Differential einer beidseitig reguliren Funktion hervor. Sind a, &, ¢

beliebige Zahlen unserer Algebren, so ist d = abc — cha eine Zahl,
deren Vektor auf denen von a, b, ¢ senkrecht steht ; somit haben da,
db, dc verschwindenden Realteil. Daraus folgt :

11. Satz. Das Differential einer rechtsreguliren Funktion w geht immer
durch Lanksmultvplikation mit einer hyperkomplexen Ortsfunition K aus
dem Differential einer beidseitig-regquldaren Funktion w* hervor. Fiir einen
requldren Punkt gilt: dw = Kdw* mit

K= (abc —cba)-

Natiirlich miissen im Falle der Pseudoquaternionen gewisse Einschrin-
kungen gemacht werden, da Nullteiler auftreten kénnten und K dann
unbestimmt wiirde. Wenn wir nun nach dem Zusammenhang der rechts-
reguliren Funktionen selber mit den beidseitig reguldren Funktionen
fragen, so haben wir einen Spezialfall von (22) vor uns ; die rechtsregu-
lairen Funktionen besitzen daher in der Regel an Stelle eines skalaren ein
hyperkomplexes Potential. Das soll nur noch fiir Quaternionenfunktionen
ausgefithrt werden. Die Beschrinkung auf Quaternionenfunktionen
dringt sich besonders auch deshalb auf, da man nur bei diesen auf ana-
lytische regulire Funktionen spezialisieren, und das Differential der Um-
kehrfunktion betrachten kann. Funktionen in Pseudoquaternionen haben
somit gegeniiber solchen in Linearsystemen trotz allgemeineren Regulari-
tiatsbedingungen wenig Vorteile. Die Korpereigenschaft der Quater-
nionen, die bisher nicht zur Geltung kam und zur Giiltigkeit der Integral-
sidtze in keiner Beziehung steht, gestattet erst, die Vorteile einer Algebra
richtig auszuniitzen.

Y. Quaternionenfunktionen

Die Quaternionenalgebra erscheint in diesem Zusammenhang als
interessanteste Spezialisierung ; sie besitzt die Symmetrieeigenschaften
eines Linearsystemes £,, ist ein Produktsystem und eine Algebra. Daher
vereinigen die Quaternionenfunktionen alle Eigenschaften von II, III
und IV.
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Beidseitig reguldre Quaternionenfunktionen bezeichnen wir mit w. Fiir
sie gilt :
Dw =20 und wD =0 .

Die einseitig reguliren Quaternionenfunktionen bezeichnen wir mit W.
Hier beschrinken wir uns auf rechtsseitig regulire

WD=0.
Aus der Regularitdtsbedingung folgt sofort :
dw =0 und AW =0 .

Somit sind sowohl die Komponentenfunktionen von w wie von W selber
Potentialfunktionen

Au, = 0 und AU, =0 k=0,...,3.

Die u, sind durch die Bedingung verkniipft, daf sie die partiellen Ab-
leitungen eines skalaren Potentials sein miissen

w=DP mit AP=0.

Nun soll als erstes untersucht werden, wie die U, verkniipft sind. Aus
dem 2. Integralsatz

W(x) =

1
o | F©)dZ A (s —ay
R

folgt wegen A (& —x)'=4,(&—z)?

W= 4, , wo der A-Operator jetzt auf den

[f@dzE—a

R

8 n?

Aufpunkt x angewandt wird. Somit ergibt sich :

_ ' 1
W=VD mit V= Py

[£®dzE—2 D und 4V=0 .
R

Umgekehrt ist W = VD immer rechtsreguldr, wenn AV = 0 ist.
WD = VDD = AV = 0. Somit gilt :

12. Satz. Eine rechisregulire Quaternionenfunktion W besitzt vmmer
ein Quaternionenpotential, das eine bedingungsfreie Losung der Potential-
gleichung 1st.
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Bezeichnen wir die Komponenten von ¥V mit V,, so folgt:
3 — 3 —
W=2Vk’l:k “D=Eik' VkD .
k=0 k=0

Nun ist aber *w = V, D eine beidseitig regulire Quaternionenfunktion,
da aus AV = 0 sofort AV, = 0 folgt. Somit kann W aus beidseitig
reguldren Funktionen dargestellt werden.

13. Satz. Jede rechtseitig regulire Quaternionenfunktion lift sich aus
vier beidseitig requldren zusammensetzen

W = 4 2,'w + 2, 2w + 25 %w .

Gleichzeitig ist damit auch eine koordinateninvariante Form der Regu-
laritdtsbedingung (41) gewonnen

divkw=0; rotkw=0 ; k=0,...,3.

Nun stellt sich sofort die Frage, was man bei der schwichern einseitigen
Regularititsbedingung gewonnen hat.

Die rechtsreguldren Funktionen bilden iiber den Quaternionen einen
Modul. Sind W..."W rechtsregulire Funktionen, so ist auch W =

n
S og oW mit konstanten Quaternionen “a eine rechtsregulire Funktion.
a=1
Insbesondere ist W’ = aW 4 b, a und b konstante Quaternionen,

wieder eine regulidre Funktion. Nach einer reguliren Abbildung kann
eine Cliffordsche Linksschraubung?®) und eine gewohnliche Parallelver-
schiebung ausgefiihrt werden, ohne dafl die Regularitit verlorengeht.
Um zu sehen, welche Transformationen im Argumentenraum mit der
Regularititsbedingung vertrdglich sind, hat man das transformierte
Differential zu betrachten.

Nach Satz 11 hat eine rechtsregulire Quaternionenfunktion die Diffe-

rentialform : _ _ _
dW = AdX+i, + BdXi, + CdXi, . (43)

Uben wir nun die Transformation X = a X’ + b aus, so wird dX =
adX’ und dW(X') = A'dX'i, + B'dX'i, + C'dX'i,.

W(X') ist also wieder eine regulire Funktion. Dabei ist natiirlich der
Regularitéitsbereich jeweils entsprechend zu transformieren. Hingegen
ist eine rechtsregulire Quaternionenfunktion bei einer linear gebrochenen

18) H.@. Haefeli [13].
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Transformation X = (cX’ + d)~! erst nach Hinzufiigen eines Regulari-
tatsfaktors wieder rechtsregulir. Es wird nédmlich:

ST (X’c+d)cdX’ (X' ¢ + d)
- n2(c X' + d)

d-c

Da nun aber n(X’;—{— c—i_)*l(X’;—}— [[)—1 mit Ausnahme X' = — e

eine beidseitig regulidre Funktion ist, so wird

W' = W[(X'c + d)n(X'c + d)1(X'c + d)-1
im transformierten Bereich wieder eine regulidre Funktion, weil
(X'c + d)i (Xc + d)?
verschwindenden Realteil hat.

Die rechtsreguliren Quaternionenfunktionen gestatten somit auBler

den orthogonalen Koordinatentransformationen, wobei X und W gleich
transformiert werden miissen, noch ganz lineare linksseitige Transforma-
tionen des Funktionswertraumes oder des an der reellen Axe gespiegelten
Argumentenraumes in sich. Somit erhalten wir :

14. Satz. Die rechtsreguliren Quaternionenfunktionen W(Iz ) bilden
etnen Quaternionenmodul, in welchem die ganz linearen linksseitigen Trans-
formationen einen Automorphismus erzeugen.

Da man die Algebra der Quaternionen auch als Produktsystem auf-
fassen kann, miissen wir durch Spezialisieren von den rechtsregulidren
Quaternionenfunktionen zu den analytisch-rechtsreguliren Quater-
nionenfunktionen gelangen, welche Verbindungen zweier analytischer
Funktionen von zwei komplexen Verdnderlichen sind. Wir identifizieren
etwa ¢; = ¢ und schreiben :

X =7 +22Z1, =(Xo+ 14, X, + (X, + ¢, X3) 2, ,
W=1W + i W = (Uy+ i, Uy) + 6x(Us + 4, Uy)

wo wiederum wie bei III wegen der Vorzeichen der Cauchy-Riemann-
schen Differentialgleichungen die Funktion

W ="U,+ Uyt + Usiy — Usty

eine analytisch-regulire Funktion werden soll. Dazu miissen W (1Z, *Z)
und 2W (Z,2Z) analytische Funktionen werden. Dann zerfillt die
Regularitdtsbedingung (41) :

WO 4+ Whi, =0 und W® 4 W®i =0, (44)
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Dieser Zerfall hat nichts mit dem Zerfall bei beidsettig reguldren Funk-
tionen zu tun, wo nach Rotationsthermen aufgespalten wird. Nun fragen
wir, wie das Differential einer analytisch-rechtsreguliren Funktion aus-
gezeichnet ist. Darauf antwortet folgender Satz :

15, Satz. Damit W'eine rechtsregulire analytische Funktion ist, ist not-
wendig und hinreichend, daf3 das Differential folgende Form hat:

dW = BdX i, + CdX i, .
Zum Beweis haben wir nur zu zeigen, dafl (44) erfiillt ist. Es ist:

W® = Bi,+ Ciy; W= — Bi,+ Ci,,
We =B —Ci; W®= Bi+C

Somit folgt sofort :
Wo L Wy =Bi,4+Cig— Biy,—Ci3 =0,
we + Wiy =B —Ci,—B 4+0i¢=0.

Ist umgekehrt W rechtsregulidr, so folgt aus (43) allgemein:
WO =A4, 4+ Bi,+ Ciy ; W =4 — B+ Ci, .
Soll nun W analytisch rechtsregulér sein, so mull
Wo + W4, = 44, + Biy + Ciy + Aty — Biy — Ciy = 244, =0

werden. Das ist nur moglich, wenn 4 = 0 ist.
Natiirlich kann das Differential auch auf die Form von Satz 9 gebracht

werden.

AW = (B, + Ct3)(dX, + dX,i) + (B — C4y)(dX, + dXyiy) .

Man hitte natiirlich anstatt ¢, auch ¢, oder #; mit der komplexen Einheit ¢
identifizieren konnen ; dann wire in der Differentialform (43) B bzw. C
Null zu setzen.

Nun soll noch kurz untersucht werden, wie sich in einem reguldren
Punkte die inverse Funktion X (W) verhilt, wenn W eine rechtsregulére
Quaternionenfunktion ist. Dazu losen wir die Differentialform nach dX
auf ; dabei hat man sich in 4(X), B(X), C(X) X durch X (W) ersetzt
zu denken. Man erhilt :
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1 - - —_ - - - -
dX = |dW (CBA —ABO) + #,dW (444 + BAB + CAC)
+ i,dW(ABA + BBB + CBC) + i,dW (4C4 + BCB + CCC)

mit reellem K =A(4AA+ BAB+CAC) +BABA-+BBB

+CBC)+CACA+BCB+CCO).

K ist im wesentlichen die Funktionaldeterminante und daher in einem
reguldren Punkt von Null verschieden. Damit die Umkehrfunktion X (W)

linksregulir wird, muB CBA — ABC = 0 werden; d.h. 4, B und C
miissen linear abhdngig sein. Ist die urspriingliche Funktion zudem noch
linksregulér, so ist auch die Umkehrfunktion beidseitig regulidr. Es ist
nédmlich AAA + BAB + CAC = A {n(4) — n(B) — n(C)} + Bs(AB)
+ Cs(4C), und hat daher mit 4, = B, = C, = 0 selber verschwinden-
den Realteil. Insbesondere sind die Umkehrfunktionen der analytisch-
rechtsreguldren Funktionen analytisch-linksreguldre Funktionen ; spezielle
lineare Abhingigkeit 4 = 0. Damit ist bewiesen :

16. Satz. Die Umbkehrfunktion X (W) einer rechisrequliren Quater-
nionenfunktion W (X) ist in jedem reguliren Pumkt eine lLinksregulire
Quaternionenfunktion, wenn in der Differentialform dW die Komponenten
A, B und C linear ahhdingig sind.

Nun soll noch gezeigt werden, welche Bedingung die Komponenten. der
Differentialform erfiillen miissen, damit die durch eine rechtsregulére
Quaternionenfunktion geleistete Abbildung im betrachteten Punkte kon-
form wird. Da gilt der Satz :.

17. Satz. Eine rechisregulire Quaterniomenfunktion bildet die Um-
gebung eines reguldren Punktes konform ab, wenn die Komponenten A, B
und C threr Differentialform proportional sind.

Es sei B=pud und C =v4; w, » reelle Konstanten. Dann: wird
AW = AdXi, + uAdXi, + vAdXi, = AdX (i, + pi, + vis). Dies. ist
in der Tat eine konforme und natiirlich immer noch regulére Abbildung.

Damit haben wir gesehen, wie die reguliren Quaternionenfunktionen
mit allen ihren Spezialféillen durch ihre Differentiale vollstindig charakte-
risiert werden. Deren Form kann somit als Definition der jeweiligen
Spezialisierung verwendet werden, obwohl doch diese urspriinglich dureh
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ein System von Differentialgleichungen festgelegt wurde. Bemerken wir
noch, da3 das Differential einer beliebigen Quaternionenfunktion immer

auf die Form _ _ _ _
dW = DdX 4 AdXi, + BdXi, 4 CdXi,

gebracht werden kann, so erhalten wir abschlieBend :

18. Klassifikationssatz. Das Differential einer beliebigen Quaternionen-
funktion W (X) hat die Form :

dW = AdXi, + BdXi, + CdXi, + DdX .

Ist: a) D=0, sotist W(X) rechtsregulir.

b) D=0, wund A,= By,=C, =0, so ist W(X) beidsettig
requldr.

¢c) D=C=0, soist W(X) analytisch-rechtsregulir.
d) D=0 wund ABC = CBA, soist X(W) linksreguldr.

e) D= und A = uB =vC, so ist die infinitesimale Abbil-
dung konform.

Natiirlich konnen mehrere Unterfdlle zugleich vorkommen. Damit sind
die Differentiale der Quaternionenfunktionen in reguliren Punkten er-
schopfend behandelt, und es mull nun deren Verhalten an Stellen, wo die
Funktionaldeterminante verschwindet, untersucht werden.
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