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Hyperkomplexe Differentiale

Von Hans Georg Haefeli, Rom

Herr Rud. Fueter und seine Schuler haben in mehreren Àrbeiten die
Théorie der hyperkomplexen Funktionen entwickelt. Dabei wurden zu-
erst der Kôrper der Quaternionen zugrunde gelegt, dann die Erweite-
rung in Cliffordsche Linear- und spezielle Produktsysteme behandelt und
schlieBlich Argument und Funktionswert in verschiedenen Algebren
betrachtet1). Daher ist es wiinschenswert, dièse mannigfachen Môglich-
keiten systematisch zu durchgehen. Dabei sollvor allem auf die jeweilige
Regularitàtsbedingung, die zuerst eine formale Ûbertragung der Cauchy-
Riemannschen Differentialgleichungen ist, aber als Voraussetzung fur
die Giiltigkeit der Integralsatze ihre wesentliche Bedeutung hat, geachtet
werden. Dièse kann auf eine invariante Form gebracht werden, womit
die Invarianz der ihr gentigenden Funktionen ersichtlich wird. Dabei
zeigt sich, daB die Form des Différentials nicht nur die regulâren
Funktionen, sondern auch ihre Spezialisierung so weitgehend charakterisiert,
daB sie geradezu definierend verwendet werden kônnte. Das wird vor
allem bei den Systemen von analytischen Funktionen von mehreren
komplexen Verànderlichen, welche durch einen Integralsatz ausgezeich-
net werden, und bei den Quaternionenfunktionen durchgefuhrt. Dabei
soll die Schônheit der letztern, die die Symmetrien der Funktionen in
Linear- und Produktsystemen in einer Divisionsalgebra vereinigen, zum
Ausdruck kommen und das Naturliche der Begriffsbildungen hervor-
springen.

Einleitung
Bevor wir mit den eigentlichen Untersuchungen beginnen, soll kurz

die Regularitàtsbedingung im allgemeinen erlautert werden. Wir wollen
am Beispiel der Potentialfunktionen in einem Linearsystem den Zu-
sammenhang mit dem âufiern Differentialcalcul aufzeigen. Dabei bietet
aber gerade in diesem Fall die hyperkomplexe Sehreibweise noch keine
wesentliche Vereinfachung.

Siehe Seite 420.
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Es sei ein Linearsystem £ einer Cliffordschen Algebra &n, wie das in I
nàher ausgefiihrt wird, gegeben.

£ [e1.. ,en] mit ehek — ekeh h ^ k h, k l.. .n
und ekek -\- 1 & 1.. .n

w freie Variablen xk im Kôrper der reellen Zahlen fassen wir zu einer
n

hyperkomplexen Variablen x=£xkek zusammen ; ebenso bilden wir

mit n Funktionen uk(x1. > .xn), die in einem w-dimensionalen Gebiet H
des euklidischen Rn zweimal partiell differenzierbar seien, eine hyper-

n

komplexe Funktion w =£ukek. In £ definieren wir ferner einen
k=l
n d

Differentialoperator D =2~â—efc >
un(^ verlangen fur regulâre

Funktionen : k=i k

Dw 0 (1)

Dièse Regularitâtsbedingung ist eine Verallgemeinerung der Cauchy-
Riemannschen Differentialgleichungen, welche man auch in eine einzige

/ d d \
komplexe Bedingung I — + i! — I • (u + iv) 0 zusammenfassen kann.

Interpretieren wir w als Vektorfunktion, so besagt (1) reell einfach :

div w 0 und rot w 0. (1 a)

Daraus folgt sofort die Existenz eines Potentials 0, so dafi w D0
wird, und A0 0 ; weiter folgt DA0 AD0 Aw 0, und

wegen der linearen Unabhângigkeit der ek sofort Auk 0. Dièses kann
aber direkt aus der hyperkomplexen Form (1) geschlossen werden, denn

es ist D-D A. Die Komponentenfunktionen sind demnach harmo-
nisch und durch die Existenz eines skalaren Potentials miteinander ver-
bunden.

Daraus ergibt sich unmittelbar der Zusammenhang mit dem âuBern
Differentialcalcul. Wir ersetzen ek durch dxk und fassen w als Pfaffsche
Form 1. Grades auf.

n

w =z^ukdxk

Die Multiplikation der dxk ist jetzt nur noch schief.

dxhdxk — dxkdxh fur h ^ k aber dxhdxh 1 h,k 1 .n
Damit wird

Dw dw + ôw wobei ôw — (dw*)* ist, w* die zu w adjungierte

383



Form bedeutet und d das âuBere Dififerential bezeichnet. Der Differential-
operator erscheint also als Summe von d und ô2)

D d + ô (2)

Ferner wird D-Dw=d-dw + d-ôw — ô-dw -{- ô-ôw — d-ôw — ô-dw,
da d-dw O und ô-ôw=O werden ; somit DD — d-ô — ôd — A.
Die Regularitâtsbedingung D-w 0 zerfallt in dw 0 und <5w 0,
was gerade die Gleichungen (la) ergibt. Die Eleganz der hyperkomplexen
Schreibweise besteht somit in der Zusammenfassung der Operatoren d
und à ; dies ist in der angefuhrten Weise aber nur in affinen Râumen
môglich.

Nun kônnen naturlich eine Menge Integralformeln abgeleitet werden,
welche aile auf den Integralsatz der Pfaffschen Formen zuriickzufùhren
sind. Hier soll nur auf zwei besonders wichtige Fâlle kurz eingegangen
werden.

Es sei H ein w-dimensionales Gebiet im euklidischen Rn, das von einer
zweiseitigen, sich nicht durchdringenden Hyperflâche R mit stetigem

n
Normalenfeld n berandet wird, und dZ n-dr =]£nkek'dr dasHyper-

flâchendifferential, wo n die ins Innere gerichtete Einheitsnormale und
dr das Hyperflâchenelement bedeuten. Dann gilt :

J(m n)dr Jdiv vo dh und J[tD n]dr Jrot tD dh

In hyperkomplexer Schreibweise erhalten wir :

J {wdZ + dZw) J (wD + Dw)dh und

§ (wdZ — dZw) $(wD - Dw)dh

Durch Addition der beiden Gleichungen erfolgt :

(wdZ= twDdh
R H

Ist nun w in H eine regulàre Funktion, gilt also Dw 0, so gilt auch
wD 0. (Die Rotationsterme haben entgegengesetzes Vorzeichen.) Dem-
nach wird fur eine regulàre Funktion w

iwdZ 0
R

Ist ferner auch v eine in H regulàre Funktion, so kann entsprechend
bewiesen werden, daB auch

2) Pierre Bidal et Georges de Rham, Les formes différentielles harmoniques.
Comm. Math. Helv., vol. 19, S. 9.
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fwdZv 0 (3)

wird. Dies nennen wir den 1. Integralsatz ; er kann als eine Verallge-
meinerung des Cauchyschen Integralsatzes aufgefaBt werden und wird
in der Regel mit Hilfe des GauBschen Integralsatzes hergeleitet. Aus (3)
kann in unserm Fall nun w in jedem innern Punkt x von H dureh ein
Intégral tiber R dargestellt werden. Wir umschlieBen den Aufpunkt x
mit einer Hyperkugel K mit dem Rande RK und wâhlen als Funktion v
die mit Ausnahme f x uberall regulâre Funktion

Dann kann im Gebiet H' H — K der 1. Integralsatz angewendet
werden.

n
Ç wdZ[(i -x)*]~J (f -x) 0

R+RK

Durch bekannten Grenzûbergang folgt daraus :

r --w (x) const. }wdZ[(Ç — x)2] 2 (f - x) (4)
R

Dies bezeichnen wir im folgenden als 2. Integralsatz ; er kann als Verall-
gemeinerung des Cauchyschen Residuensatzes betrachtet werden.

Aus dem Zusammenhang mit dem àuBern Differentialcalcul ist ohne
weiteres ersichtlich, warum man als Basisgrôfien des hyperkomplexen
Systems Cliffordsche Einheiten zu wàhlen hat. Ihre Multiplikation muB
schief sein, und ihr Quadrat reell. Durch Bildung von Ableitungen
kônnen nun Pfaffsche Formen hôheren Grades erzeugt werden, doch ist
dann die bisherige hyperkomplexe Schreibweise keine groBe Erleichte-

rung. Dafùr aber làBt sie sich auf die Funktionentheorie von hyper-
bolischen Differentialgleichungen zweiter Ordnung ubertragen. Dabei
ist naturlich (4) neu zu formulieren3). Weiter laBt sich die Théorie in
Linearsystemen mit Haupteinheit, in Produktsystemen und Algebren
entwickeln, wobei die Komponentenfunktionen von w nicht mehr immer
als partielle Ableitungen eines skalaren Potentials auftreten und als

Lôsungen des die Regularitàt definierenden Systems linearer partieller

3) Rud.Fueter [10].
W. Nef [21].

Weitere Arbeiten werden bei den entspreehenden Abschnitten zitiert. Die Nummern
beziehen sich auf die Zusammenstellung von Seite 420.
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Differentialgleichungen 1. Ordnung uns interessieren. Da man zudem w
in einem andern Linearsystem oder einer Algebra wâhlen kann, die nicht
Cliffordsch zu sein brauchen, kann letzteres die mannigfachsten Formen
besitzen. Das soll nun im folgenden nàher ausgefiihrt werden.

I. Funktionen in einem Linearsystem

Wir gehen von einer Cliffordschen Algebra (£n aus. Dièse besteht aus
den 2n Basiselementen

1, elJ...,en, c12j..., ei2---n (5)

und ist durch die Relationen

ehek=—ekeh h,k=l,...,n h^k (5a)

und e\ xk-\ lc=l,...,n (5b)

vollstândig bestimmt4). Dabei ist 1 die Haupteinheit und xk ±1.
Die n BasisgrôBen el5..., en bilden ein minimales Erzeugendensystem
von Cn. Dies nennen wir ein Linearsystem fi von (£w

£ [ei,...,ej (6)

Es sei jetzt a eine GrôBe aus Q im Kôrper der reellen Zahlen, also von
der Form n

mit reellen ak. Wir definieren ferner

Ferner seien auch b und c solche GrôBen aus £. Dann werden

N(a) aa =]?>ckal 2n(a) — aa ~\-aa

n ^ ^
8(ab) ab + ba 2^xkakbk 5(a6) a 6 + à a

wegen (5 a) reell, und es bleibt die multiplikative Verkniipfung

abc + cba a-8(bc) + c-8(ab) — b-8{ca)

im Linearsystem fi. Daraus folgt als Spezialfall

aba — a?b + a-8(ab)

4) Siehe auch P. Bofihard [14].
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Wir wollen nun die hyperkomplexen Zahlen aus S den Punkten eines

affinen, w-dimensionalen Raumes Bn mit doppelter Metrik zuordnen. Da-
n+l

zu erweitern wir unser Linearsystem £ und ordnen den Zahlen ^xkek

x + %n+ien+i die Punkte P(x1: x2:... : xn+1) des w-dimensionalen pro-
jektiven Raumes Pn zu. Dabei sei x in £, und en+1 genuge den Relationen

e«+1 £> und en+i^k - Wn+i fur k=l9...9n.
In Pn fûhren wir im Klein-Cayleyschen Sinn eine Metrik ein, indem wir
in einem projektierten Koordinatensystem die quadratische Hyperflâche

n
(x + xn+1 en+1)2 £ xkx\ + ex2n+1 0

als fundamental auszeichnen. Sind nicht aile xk positiv, was wir im fol-
genden annehmen, so erhalten wir eine hyperbolische Metrik. Den Punkten

Pai^ :... : an+1) und P&(&! :... : bn+1) wird die Entfernung EN
zugeordnet +

EN (Pa Pt) c. 1. arc cos —, 5)N{ 2V{a* + al)(b> + ebl)
Nun lassen wir die Fundamentalhyperflâche einmal ausarten, indem wir
e -> oo streben lassen. Dann wird xn+1 0 zur unendlichfernen Hyper-
ebene, in welcher die ausgeartete Fundamentalhyperflâche

a* î>fc3Î 0 (7)

liegt. Fiir die Entfernung von Pa und Pb erhalten wir :

4 a2 62 S2(ab)

lim c. i. arc sin -

£->00

ï » » 2 n h
*+l °n+l an+l°n+l ' X^n+l

wenn wir die MaBkonstante c rein imaginâr wahlen und so gegen oo streben

5) Entspreehende Ableitung wie bei H, G. Haefeli [16], wo die Formel fur Quaternionen
hergeleitet wird.
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c
lassen, daB lim —p= • i + 1 wird. Damit wird der projektive Raum Pn

€->oo *€
zu einem affinen Raum Rn mit einmal ausgearteter nichteuklidischer
Metrik. Seine Punkte sind den hyperkomplexen Zahlen aus fi eindeutig
zugeordnet, wenn wir deren Komponenten als affine Koordinaten auf-
fassen. Den Basiselementen von fi entsprechen die Einheitspunkte auf
den Axen des affinen Koordinatensystems, in welches das projektive
ûbergegangen ist. Die eingefûhrte Metrik bezeichnen wir als die ^zum
LinearSystem fi gehôrende" Metrik. Fur die Entfernung zweier Punkte Pa
und Pb erhalten wir :

E(PaPb) +V(a-bf +VN(a-b) (8)

E kann reell, null oder rein imaginâr werden. Die Gesamtheit der Punkte
P, die von einem festen Punkt Pa verschwindenden Abstand haben, liegt
auf dem zu Pa gehôrenden isotropen Kegel, den wir auch Nullkegel
nennen. Dieser trennt den Bereich der Punkte mit reellem Abstand von
Pa vom Bereich der Punkte, welche von Pa einen rein imaginâren
Abstand besitzen. Die Winkelmessung ist im Rn nicht ausgeartet und kann
auf das Messen der nichteuklidischen Entfernung der zu den Richtungen
gehôrenden unendlichfernen Punkte zurûckgefuhrt werden. Fassen wir

a und 6 als Vektoren vom Ursprung nach den Punkten Pa und Pb auf,
so betrâgt ihr Winkel :

8 (a b)
W(ab) arc cos ,—-, wenn nicht zugleich N(a) 0

^ V N(a) N(b)
und N(b)=:0 ist. (9)

Dabei haben wir c ~ gewâhlt, um bei lauter positiven xk mit der

euklidischen Winkelmessung iibereinzustimmen. Der Winkel W (ab)6)
wird reell zwischen 0 und 2n, wenn die durch a und b aufgespannte
Ebene E den Nullkegel nicht schneidet, rein imaginâr zwischen 0 und oo,
wenn E den Nullkegel schneidet und a und b demselben Bereich ange-
hôren, und sonst komplex ; berûhrt E den Nullkegel, so wird W(ab) un-
bestimmt, wie auch, wenn sowohl a wie 6 auf Erzeugenden des Null-
kegels liegen, wâhrend er oo wird, wenn nur eine der beiden GrôBen auf
einer Erzeugenden liegt. Daraus folgt speziell, daB unser affines Koordi-
natensystem rechtwinklig ist. Gleichzeitig denken wir uns im Rn auch
die gewôhnliche euklidische Metrik eingefiihrt. Die entsprechenden For-

6) Wenn keine Verwechslung môglich ist, soll fortan mit a sowohl die hyperkomplexe

Zahl, wie der Punkt Pa oder derVektor o bezeichnet werden.
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meln fur Entfernung und Winkel kônnen aus (8) und (9) ûbernommen
werden, da fur lauter positive xk die euklidische Metrik zu fi gehôrt.

s (a b)
e(ab) Vn{a~b) ; w(ab) arc cos ^JL-J== (10)

£ V n (a) n (a)

Damit haben wir die Môglichkeit, dort, wo die nichteuklidisehe Metrik
unbestimmt wird, euklidisch zu messen ; zudem werden wir analytisehe
Verhâltnisse bald in der einen, bald in der andern Metrik einfacher
deuten kônnen. In diesem affinen Rn wollen wir nun die hyperkomplexen
Funktionen erklàren ; in einem spàtern Ausbau der Théorie mussen die
Punkte der unendlichfernen Hyperebene identifiziert werden, doch
brauchen wir hier bei den Untersuchungen tiber die Differentialform nicht
nàher darauf einzugehen 7).

In Rn sei ein zusammenhângender Bereich H, der auch mit Rn iden-
tisch sein kann, gegeben. Seinem allgemeinen Punkt P sei die hyper-
komplexe Zahl w

aus fi zugeordnet.
In H seien n Funktionen uk(xl9..., xn) erklàrt, die wir zweimal nach

xk partiell differenzierbar voraussetzen, und in fi zu einer hyperkomplexen

Funktion n

h=i

zusammenfassen. Wir verlangen ferner, da8 die Funktionaldeterminante
in H nicht identisch verschwinde

*ft " m
3%

dxk

Wir erklàren und bezeichnen die partielle Ableitung von w nach xk wie

w(k) __ W — 2dUh eh~ 2d fo eh
k h=l h=l axk

In fi definieren wir jetzt den Differentialoperator D

Nun bezeichnen wir diejenigen Funktionen, welche der Bedingung

0 (11)

7) Siehe Rud. Fueter [8].
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geniigen, als ,,regulàre" Funktionen. (11) ist eine Verallgemeinerung der
Cauehy-Riemannschen Differentialgleichungen, wie einleitend gezeigt
wurde, und mit

wD O (lia)
âquivalent. In £ sind somit die regulâren Funktionen immer beidseitig

regulâr. (11) zerfàllt reell in ein System von linearen par-

tiellen Differentialgleichungen 1. Ordnung, die wir in vektorieller Schreib-
weise folgendermaBen zusammenfassen kônnen :

0 (llb)
und xotw 0 (Ile)
Daraus folgt sofort die Existenz einer skalaren GrôBe W, so daB w DW

n $2
wird. Wegen (5a, 5b) wird D-D — Q =^Hk-z-y ein reeller Differen-

tialoperator. Daher wird W ein Intégral der Differentialgleichung
n d2u

Da (12) vom hyperbolischen Typus ist, nennen wir W ein skalares Poten-
tial im weitern Sinn. Weiter folgt Qw DDw 0 und damit wegen
der linearen Unabhangigkeit der ek sofort Quk 0. Die Komponenten
von w sind somit Intégrale von (12) und als partielle Ableitungen eines
ebensolchen untereinander verknûpft.

Umgekehrt kann jede lineare homogène partielle Differentialgleichung
2. Ordnung mit konstanten Koeffizienten durch eine lineare Variablen-
transformation auf die Form

xk + 1 fur k 1, v, und
0 mit (13)

gebracht werden. Da nun nach (5 a) xk beliebig +1 oder —1 gewâhlt
werden kann, gibt es zu jeder Differentialgleichung vom Typus (13) ein.

zugehorendes Linearsystem 2 und im affinen Rn eine zu diesem gehorende
Metrik. Jede regulàre Funktion w liefert n Lôsungen von (13), und jede
kann auf dièse Weise erhalten werden 8). In diesem Sinn kann die
Théorie der regulâren Funktionen als Funktionentheorie der Differentialgleichung

(13) aufgefaBt werden.

8) W. Nef [21].
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Aus (11) ist nicht ohne weiteres ersichtlich, bei welchen Koordinaten-
transformationen eine regulâre Funktion regulâr bleibt. Dies wird aber
aus der Form des Differentials sofort hervorgehen. Ist eine Funktion w
in jedem Punkt von H regulâr, so nennen wir H einen Regularitâts-
bereich von w. Insbesondere bezeichnen wir einen Punkt P von H
regulâr, wenn die Funktionaldeterminante in P nicht verschwindet. Die
durch w vermittelte Abbildung des Regularitâtsbereiches H auf einen
Bildbereich Hf ist daher in regulâren Punkten topologiseh. Wir be-
schrânken uns in den nachfolgenden Ausfuhrungen immer auf regulâre
Punkte. w

Unter dem totalen Difïerential dw £w{k) dxk 9) verstehen wir den

n
Zuwachs von w, wenn sich x um dx £dxkek verândert. Ist w eine

regulâre Funktion, so hat dw wegen (11) eine spezielle Form. Dièse soll

nun in einem regulâren Punkt berechnet werden. Wir nehmen zur Ver-
einfachung der Darstellung an, daB der Ursprung 0 ein regulârer Punkt
sei, was ohne Einschrânkung der AUgemeinheit geschehen kann, und
schreiben :

n
dw J£ A\ eh dxk wobei Al u^ (0) bedeutet.

Die Regularitâtsbedingung besagt nun, daB die réelle Matrix (-4*) der
infînitesimalen Abbildung symmetrisch ist.

A\ — A\ h, h 1,..., n

Daher existiert in 0 ein euklidisch rechtwinkliges Koordinatensystem, in
welchem dièse Matrix Diagonalform besitzt

(A*)^(Bt) B* 0 fur kïh

Auf jeder Axe dièses Koordinatensystems liège eine der hyperkomplexen
Zahlen ara, oc 1,..., n. Dièse seien so normiert, daB 2oocn(<*m) B%

wird ; aa legt das Vorzeichen fest.
Wegen (llb) muB ferner die nichteuklidische Spur der Abbildungs-

matrix verschwinden.
Wir erhalten somit fur das Differential einer regulâren Funktion :

•) Eine Verwechslung mit dem âufiem Differential ist nicht zu befûrchten, da von
letzterm nnr in der Einleitung gesprochen wird.
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dw= ]£ a0C0tm8(amdx)
a=l

n
mit der Nebenbedingung £

Da s(amdx) ocmdx + dx^m ist, so erhalten wir bei Beriicksichtigung
der Nebenbedingung

n ^
a=l

Die Transformation x! x bedeutet Spiegelung an der Koordinaten-
hyperebene Ev, die von den ersten v Koordinatenaxen aufgespannt wird.

Die Transformation x! axa bedeutet nichteuklidische Spiegelung
und Streckung an der Geraden la ; 1 reeller Parameter.

Aus diesen beiden Transformationen setzt sich dw zusammen, und es

gilt:
1. Satz. Die durch eine regulàre Funktion vermittelte Abbildung der

Umgebung eines regulâren Punktes setzt sich aus n Streckspiegelungen,
denen eine Spiegelung an der Koordinatenhyperebene Ev vorangegangen ist,
an n orthogonalen Richtungen zusammen ; dabei verschwindet die Summe
der nichteuklidisch gemessenen Streckenverhâltnisse.

Um nun die Koordinatentransformation zu finden, denen gegentiber
die Regularitâtsbedingung invariant bleibt, brauchen wir nur diejenigen
Transformationen zu suchen, welche die Form (15) des DifiEerentials
nicht zerstôren. Dabei zeigt sich, da6 wir w als Funktion von x aufzu-
fassen haben. Wir transformieren :

x ax' a + b ; w — awf a + c (16)

1

Dann folgt sofort dwf v aa 0Lmf dx! 0Lmr mit <xm/ — (a<xma). Die

ocm/ gehen aus den ara durch nichteuklidische Spiegelungen hervor und
bilden deshalb kein orthogonales System mehr. Sie liegen daher nicht
mehr auf den zu der infinitesimalen Abbildung gehôrenden Eigenvek-

n n

toren. Hingegen ist wr wegen ]£,0(XN(ocm/) ^o^N^m) 0 immer
a=l a=l

noch regulâr. Die Orthogonalitât der Spiegelaxen ist somit fur die Regu-
laritât nicht wesentlich, und besagt nur, dafi die Form (15) auf Haupt-
axen bezogen ist. Die Transformation (16) kann nun beliebig oft aus-

gefiihrt werden. Wird dabei noch normiert, so erhâlt man gerade die
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nichteuklidisch orthogonalen Koordinatentransformationen. Andere
Transformationen lassen (llb) nicht invariant, und es gilt :

2. Satz. Wird auf die regulare Funktion w und die gespiegelte Variable

x dieselbe nichteuklidisch orthogonale Koordinatentransformation ausge-
fûhrt, so ist die Funktion wf(x') im transformierten Bereich wieder regulàr.

Aus der Regularitâtsbedingung ist ohne weiteres ersichtlich, daB die

regulâren Funktionen einen reellen Modul bilden, aber keinen Ring ;

auch dûrfen weder x noch w einzeln transformiert werden.
Um die geometrische Bedeutung der metrischen Bedingung der Streck-

verhâltnisse zu finden, ersetzen wir die orthogonalen Spiegelaxen durch
supplémentaire. Wir wollen aber bei der Umformung des Differentials (15)
voraussetzen, daB die Matrix (JS*) lauter positive Eigenwerte besitzt,
daB also aile cra + 1 sind ; das ist nur im hyperbolischen Fall mit der
Nebenbedingung von (14) vertrâglich. Wir betrachten den Beitrag zweier
Glieder der Difïerentialform (14) und suchen zwei neue Richtungen, so
daB identisch gilt :

B hnsihndx) + 2ms(2mdx) ^s^adx) + 2as(2adx) (17)

Beschreibt dx eine euklidische Hyperkugel, so beschreibt B eine Ellipse
Ex mit den Hauptaxen 2n(1m) und 2n(2m). xa und 2a miissen daher
in der von 1m und 2m aufgespannten Ebene liegen

% rn xm -j- ^122m i

a2 r21 xm + r22 2m

Notwendig und hinreichend fur die Identitât (17) ist nun die Orthogo-
nalitât der Matrix (rtk). Wir kônnen somit die Richtung von xa beliebig
wâhlen ; dann ist die Lange von *a und Richtung und Lange von 2a

bestimmt. Wir nennen xa und 2a zwei in bezug auf die Ellipse Ex supple-
mentàre Richtungen, da der von ihnen eingeschlossene Winkel zu dem-

jenigen der beiden #-Richtungen, deren Bilder xa und 2a sind, supple-
mentâr ist. Seien cpx und q>2 die Winkel, welche xa und 2a mit der Haupt-
axe xm bilden, so gilt :

n (2m)

Somit sind zwei in bezug auf eine Ellipse Ex supplementâre Richtungen
immer konjugierte Richtungen in bezug auf eine Ellipse E2, deren Haupt-
axenrichtungen mit denen von Ex zusammenfallen, und deren Axen-
lângen die Quadratwurzeln der Axenlangen von Ex sind. Zwei supple-
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mentâre Biehtungen bestimmen daher eine Ellipse eindeutig. Nun
wàhlen wir *a so, da8 N^a) 0 wird. xa liegt dann auf einer der
beiden Schnittgeraden der Ellipsenebene mit dem Nullkegel. Dieser ist
der zum Punkt 0 gehôrige charakteristisclie Kegel der Differential-
gleichung (13). Wir bezeichnen dièses xa mit xn. Dann wird

xn s (xn dx) — xn dx %

eine regulâre Abbildung vom Range 1

J£ xn [s(ndx)Yh)eh 2xn • xn 0

Jetzt verfahren wir mit 2as(2adx) + 3ms(smdx) genau gleich, usw., bis
nur noch eine einzige Richtung na ubrigbleibt, die nicht auf dem
Nullkegel liegt. Dann hat dw die Form :

n-l ^dw X andx"n + nas(nadx)
a=l

Da die n — 1 ersten Glieder regulâr sind, muB das letzte fur sich auch
regulâr sein ; dann muB aber na-na 0 sein, d. h. na auch auf dem

Nullkegel liegen. Damit ist gezeigt :

3. Satz. Bildet die Funktion w eine infinitésimale Hyperkugel um den

Punkt P so auf ein Hyperellipsoid ab, da/3 dasselbe n supplementâre Rich-

tungen auf dem charakteristischen Kegel besitzt, so ist die Funktion w im
Punkte P regulâr.

Das Differential hat damit die Form
n

dw ^andx «n (18)
a=l

wo aber die Komponenten ank nicht immer reell sein werden. Entspre-
chend kônnte man im Fall negativer Eigenwerte, der ja durch Spiege-
lung aus obigem hervorgeht, verfahren ; die supplementàren Richtungen
wiirden dann konforme Richtungen, doch miiBten gewisse Fâlle, bei
denen die letztern unbestimmt werden, ausgeschlossen werden. Mit
diesen Ausnahmen kann Satz 3 auf den elliptischen Fall v n ûber-

tragen werden, wo naturlich der Nullkegel selber imaginâr wird.
Da die einzelnen Beitràge der Differentialform (15) wohl vom Range n,

aber nicht regulâr sind, diejenigen der Form (18) regulâr, aber vom
Range 1 sind, soll abschlieBend kurz auf die einfachsten regulâren Ab-
bildungen vom Range n eingegangen werden. Dièse werden lineare Funk-
tionen von x sein.

axa= — a*x + as(ax) (19)
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[a x a]ih)eh (2 — w)a2 regulâr fûr n 2

baxab a262ï — a26s(&a;) — b2as(ax) + b8(ab)s(ax) (20)

a und 6 sollen nichteuklidisch senkrecht sein, also $(aô) 0. Dann
wird

n
Jï[baxab]{h)eh a2ft2(w — 4) regulàr fur w 4

cbaxabc mit #(a6) #(6c) A§(ca) 0

(6 — n)a2b2c2 regulâr fur n 6
n

So erhâlt man fur aile geraden Dimensionen lineare regulâre Abbildun-
gen, die als Produkte von nichteuklidischen Spiegelungen konform sind.

4. Satz. Zu jeder geraden Dimension n 2 m gibt es in der zur
Differentialgleichung gehôrenden Metrik konforme regulâre Abbildungen ;
dièse werden durch m-fache Streckspiegelungen an m senkrechten Richtungen
erhaUen.

Durch Kombination erhàlt man lineare regulâre Abbildungen zu jeder
Dimension n, z. B. :

a{(n — é)b2x + (n — 2)bxb}a

Im Falle n 4 kann dw immer durch regulârkonforme Bestandteile

dargestellt werden, da wegen S(ab) s(ab) nichteuklidische Ortho-
gonalitât immer auf euklidische zuruckgefuhrt werden kann. Dieser
Fall interessiert uns wegen der spâtern Spezialisierung auf Quater-
nionen. Man erhàlt nach einfacher Rechnung :

dw 1k1m(a22mdx2m +

+ ^m^mdx^mhra + Wm^mâx^m1™, + *k2mzm£c*m%m (21)

wobei die Konstanten

Nfm) ' N(*m) ' N(*m) ' N(*m)N(*m)

bedeuten.
Man kann nun fur die Funktion w nur einseitige Regularitât, etwa

Linksregularitat D-w 0, verlangen. D muB wie bisher im Linear-
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System fi liegen, aus dem auch x stammt. w selber kann hingegen in
einem beliebigen hyperkomplexen Linearsystem fi' oder einer Algebra
liegen, die nicht Cliffordsch zu sein brauchen. fi7 mu8 bei Linksmultipli-
kation mit GroBen aus fi invariant bleiben und fur dièse Multiplikation
mu8 das assoziative Gesetz gelten.

n
w 2,

w ist dann immer noch eine Losung der Difïerentialgleiehung Q • w 0.
Insbesondere gelten der 1. und 2. Integralsatz, wenn man bei letzterem

als Greensche Funktion eine regulare Funktion aus fi wahlt. Fur das
Differential folgt dann aus (15) :

dw 2,0Lmdx0LmQt<p mit am aus fi und ap aus fi7. (22)
a-l

Invarianz und geometrische Eigenschaften richten sich dann nach fi7.
Das der hyperkomplexen Regularitatsbedingung entsprechende réelle
DifiEerentialgleichungssystem kann nun die mannigfachste Gestalt an-
nehmen. Herr Rud. Fueter hat auf dièse Weise die Diracschen Gleichungen
bei fehlender Ruhmasse als Regulantatsbedingungen einer Klasse von
hyperkomplexen Funktionen dargestellt10) Die Komponenten der regu-
laren Funktionen sind Losungen der Wellengleichung und durch die
Existenz eines hyperkomplexen Potentials miteinander verknupft11).

Hier stellt sich nun die Aufgabe, aile linearen Differentialgleichungs-
systeme zu finden, die Qw 0 zur Folge haben, oder aile
hyperkomplexen Linearsystem fi7, fur die fi• fi7 fi7 gilt. Wie weit fi selber
durch Q bestimmt ist, soll dièse Arbeit zeigen.

n. Funktionen in einem Linearsystem mit Haupteinheit

Oft erscheint es zweckmaBig ein System fii von Cliffordschen Basis-
elementen zu betrachten, unter welchen die Haupteinheit e0 1 selbst
auch auftritt

fii [co=l,e1,...,ell.J (23)

10) Rud Fueter [10].

u) A. Krwzten [17].
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Fur die BasisgrôBen gelten jetzt die Relationen :

eoek ekeo> ehek=—ekeh A,fc=l,...,»— 1, h^Jc (24a)
und

eg 1 e\=—xrl h l,...,w — 1 (24b)

Dabei haben die xk dieselbe Bedeutung wie bei (13).
Die BasisgrôBen von Qx bilden jetzt ein Erzeugendensystem einer

Cliffordschen Algebra (£„_-,, der Ordnung 2n~x. Wegen der Haupteinheit
ist dièses nicht mehr minimal. Wir nennen daher Qt zum Unterschied
von Q ein Linearsystem mit Haupteinheit.

Durch die Auszeichnung von e0 1 ist die Multiplikation (24a)
nicht mehr schief. Um die Unsymmetrie kiinstlich wegzuschaffen, defi-
nieren wir die konjugierten Einheiten :

eo eo ; ek - tk k 1,. n — 1 (25)

Unabhàngig davon gilt aber immer noch :

ek *kek • k Of...,n — 1

Die beiden Operationen sind miteinander vertauschbar :

ek — ek Xkek

Es sei jetzt a eine GrôBe aus Qx im Kôrper der reellen Zahlen.

n-l
k mit reellen ak Dann wird

a ^ akek un(^ es

a a und a a a

Damit kônnen wir die multiplikativen Verknùpfungen und metrischen
Formeln von I xibertragen

_ n-l _ — w-1

l, 2n(a) aa |
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E(ab) VN(a- 6) W{ab) arc cos \& v n (a) n (o)

s(ab)
e{ab)=Vn(a-b) w{ab) arc cos

Mit a, b und c liegen wiederum abc + cba und aba in Qt und
haben dieselbe Bedeutung wie in I.

Nun betrachten wir die hyperkomplexen Funktionen in Qx

k=0 Jc=O

Ûber die uk (x0,..., xn^1) seien dieselben Voraussetzungen gemacht,
wie in I. Entsprechend definieren wir den Differentialoperator

n-l fl

Wegen (24b) wird dann
n-l

zum selben DifiEerentialoperator 2. Ordnung wie in I.
Jetzt haben wir zwei Moglichkeiten, regulâre Funktionen zu

definieren, deren Komponenten wieder Intégrale der Differentialgleichung
(13) Qu 0 sind. Die entsprechenden Regularitâtsbedingungen lauten :

Dw 0 (26a)

Dw 0 (26b)

Reell erhalten wir im ersten Fall dieselben Bedingungen wie in I
div w 0 und rot w 0

Im zweiten Fall erhalten wir dagegen :

div w 0 und rot w 0

Daraus folgt fur beide Falle die Existenz eines skalaren Potentials im
weitern Sinn W, das ein Intégral der Differentialgleichung (13) ist. Die
Funktion w ist dann im ersten Fall
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wâhrend sie im zweiten Fall

w
wird.

Damit ist die Beziehung zu den regulâren Funktionen in £ sofort
ersichtlieh, wenn man die neuen Indizes sinngemâB mit den vorherigen
vergleicht.

5. Satz. Ist w in £ eine regulâre Funktion, so sind w nach (26 a) und
~w nach (26 b) in fij wiederum regulâr.

Naturlich sind die Funktionen in £x in beiden Fâllen immer noch
beidseitig regulâr, und es gelten die Integralsâtze wie in fl. Wegen der
spàtern Spezialisierung auf Quaternionen und der Ûbereinstimmung
mit den Regularitâtsbedingungen in den bisher erschienenen Arbeiten
wollen wir eine regulâre Funktion nach (26b) dureh eine der beiden
âquivalenten Gleichungen

Dw 0 oder wD 0

definieren, obwohl die Regularitât nach (26a) formai schôner wâre. Die
durch w vermittelten Abbildungen gehen aus denen von I durch zusâtz-
liche Spiegelung an der reellen Axe hervor. Deshalb erfâhrt die Form
des Differentials einer regularen Funktion gewisse Verânderungen. Die
Darstellung (15) lautet jetzt :

n ^ n
dw £cr(Xamdx«m mit ]£o(X0Cm<xm= 0 (27)

a=l a=l

In der Tat ist mdxm — — mmdx + ms{mdx) zu mdxm aus £
konjugiert. Den Streckspiegelungen von (15) folgt noch eine Spiegelung
an der reellen Axe. Satz 2 uber die zulâssigen Koordinatentransforma-
tionen gilt unverândert. Da mit n auch n ein Nullteiler ist, gilt der Form
(18) entsprechend :

dw £«ndx^n mit «n^n =0 fur oc 1, n (28)
a=l

Ganz entsprechend findet man wieder konformregulâre Abbildungen
in geraddimensionalen Rn. Dièse entstehen durch dieselben Spiegelungen
wie in I, nur dafi sich abwechslungsweise noch eine Spiegelung an der
reellen Axe einschaltet

axa regulâr fur n 2

b a xab regulâr fur n 4

c b a xab c regulâr fur n 6 usw.
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Durch Kombination erhàlt man fur beliebige Dimensionen regulàre
lineare Abbildungen

b {(n — 4) aa x -{- (n — 2) a xa} b

Dièse sind aber jetzt notwendigerweise Funktionen von x und #. Fur
n 4 und n 2 kann das Differential wieder aus regulâr-konformen
Abbildungen zusammengesetzt werden

dw 1k1rn\G22mdx2m +

4- 2k 1m 3ra dx 3ra hn, + 3& *m 2m d# 2m 1m + 4& 2m 3m rfx zm 2m (29)

wobei die Konstanten k dieselben sind wie bei (21). Die Einfiihrung einer
Haupteinheit empfiehlt sich besonders bei einfachen hyperbolischen
Differentialgleichungen v 1 und bei elliptischen Differentialgleichun-
gen v n.

A. Ist v 1, so wird a a, und damit n(a) «a -f- aa und

^(a6) ab + 6»- Die Darstellungen (27) und (28) bleiben unveràndert ;

erst bei (29) zeigt sich, wie sehr das hyperkomplexe System der Diffe-
rentialgleichung angepaBt ist:

dw (2 \

-\- ^k^mPmdx^m^m -f-

wo die k wiederum dieselben sind wie bei (21).

B. Haben wir eine elliptische DifiPerentialgleichung, so tritt a iiber-
haupt nicht mehr auf. Zur DifiFerentialgleichung gehôrt jetzt die euklidi-
sche Metrik, und wir kônnen konforme und antikonforme Abbildungen
unterscheiden :

axa regular fur n 2, konforme Abbildung

b a xab regular fur w 4, antikonforme Abbildung

c b a xab c regular fur n 6 konforme Abbildung usw.

In ungeraden Dimensionen setzen sich die linearen Abbildungen immer
aus konformen und antikonformen zusammen. Im Unterschied zu (20)

gilt jetzt aber :
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6. Satz. Die durch eine regulâre Funktion vermittelte infinitésimale
Abbildung ist in Râumen Rn von gerader Dimension bei n 4m -f- 2

eine Summe von konformen, bei n 4 m eine Summe von antikonformen
regulâren Abbildungen.

El. Funktionen in einem Produktsystem

Eine wesentlich neue hyperkomplexe Funktionsklasse wird uns iiber
einem Produktsystem ty fi-fi' definiert, wo fi und fi' Linearsysteme
einer Clifïordsehen Algebra mit m und mf Basiselementen bedeuten. In
ty sollen freie Variable, Funktion und Diflferentialoperator liegen, und es
sollen wieder regulâre Funktionen durch eine entsprechende Bedingung
ausgezeichnet werden. Ûber *J3 kônnen wir die Funktionen nun so speziali-
sieren, daB sie als Funktionen von m/ hyperkomplexen Variablen in fi
oder von m hyperkomplexen Variablen in fi' regulàr werden. Dadureh
erhàlt man Système von hyperkomplexen Funktionen von beliebig vielen
hyperkomplexen Variablen. Natûrlich diirfen wir fur fi oder fi' oder auch
fur beide ein Linearsystem fij mit Haupteinheit setzen, oder sogar eine
Subalgebra. In letzterem Fall erhalten wir in der Regel ein hôheres

Produktsystem12). Wâhlt man fur fi speziell die Algebra der komplexen
Zahlen, so mu6 unter den zu einem solchen Produktsystem gehôrenden
regulâren Funktionen ein System von analytischen Funktionen von
mehreren komplexen Variablen enthalten sein. Solche regulâre
Funktionen nennt man analytisch-regulâr. Herr Rud. Fueter hat zum ersten-
mal dièse sinngemâBe Zusammenfassung analytischer Funktionen von
mehreren komplexen Verânderlichen zu einer hyperkomplexen Funktion
durchgefùhrt13). Dieser interessanteste Fall, der aile Merkmale des ail-
gemeinen besitzt, soll hier als Vertreter der Produktsysteme nâher unter-
sucht werden. Dabei werden die analytisch-regulâren Funktionen als die
einzige Funktionsklasse charakterisiert, fur die auch der 2. Integralsatz
unverândert gilt.

Es sei eine Cliffordsche Algebra (£n

gegeben, aus der wir die Linearsysteme

la) Siehe Hilfssatz, S. 411.

1S) Rud. Fueter [9].
Hier und in den darauf fufienden Arbeiten wird das zugrunde gelegte hyperkomplexe

Basissystem auch Linearsystem genannt.
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herausgreifen. Wir identifizieren en i mit der imaginâren Einheit der
komplexen Zahlen. Es sollen die folgenden Relationen gelten :

h k k h ' ' i ï, 1 mIV y K JL j j IV

Nun definieren wir das Produktsystem ^} :

Als hyperkomplexe Variable erhalten wir in ^5 die GrôBe

n-l n-l

wo #fc und yk réelle Variablen sind. a; und y sind Zahlen aus fij. Ver-
stehen wir unter den konjugierten Einheiten wie bisher

Cq 6q 1 5 i== î î ^A;^1113 &k >
fC l,. Tl -— 1,

so erhalten wir fur die konjugierte hyperkomplexe Variable :

~z=x — iy=Hc — yi
In ^} ist nun die Multiplikation auch bei AussehluB der Haupteinheit
nicht mehr durehwegs schief

eh'iek iek-eh h^£k, h, k 1,.. .,n — 1. (30)

Daher wird jetzt die Norm z-iT in der Regel nicht mehr reell.

n(z) z.z=(z + iy) (x — iy) x.x + y. y + i(y.x — x.y)
n—1 n-l

V\) + 2iv xhykehek

Nun fassen wir 2n réelle Funktionen ^fe(o;o,... 9 xn_ly y0,..., y^) und
^(^o»- • •> ^n-u ^oï* • •> 2/n-i)» die in einem 2w-dimensionalen Bereich
stetig und stetig partiell differenzierbar sein sollen, zu einer hyper-
komplexen Funktion w zusammen

n-l
w u + vi =£ek(uk + ivjc) •

402



w wird im Produktsystem ty' [1, ex,..., c^Jfl, i] definiert, damit
beim Spezialisieren auf analytisch-regulàre Funktion die Cauchy-Rie-
mannschen Differentialgleiehungen die ublichen Vorzeichen haben. In
*P wâre w u + i ~v

Zur Définition regulàrer Funktionen verwenden wir den DifiEerential-

operator

und nennen eine Funktion w rechts- oder linksregulâr, je nachdem

wD 0 oder Dw 0 (31)
wird.

Dabei verstehen wir unter

Wegen (30) sind jetzt links- und rechtsregulâre Funktionen wesentlich.
verschieden. Wir besehrânken uns in der Darstellung meistens auf
rechtsregulâre Funktionen.

Die Regularitâtsbedingungen zerfallen in ££ in die beiden Gleichungen :

uE — v F 0
(32)

v E + uF 0

Sie sind daher lineare Kombinationen der Regularitâtsbedingungen von
II. Da die Norm nicht mehr reell ist, genûgen die regulâren Funktionen
im allgemeinen nicht mehr einer linearen partiellen Differentialgleichung
2. Ordnung. Die Regularitât hat immer noch die Gûltigkeit des 1. Inte-
gralsatzes zur Folge :

wD 0, w rechtsregulâr
iwdZv (wDvdh 0, wenn
r é Dv 0, v linksregulâr. (33)

R, H und dZ sind bei (3) erklârt. Hingegen kann der 2. Integralsatz ohne
weitere Einschrânkungen nicht mehr aufgestellt werden, da die ent-
sprechende Greensche Funktion in P nicht regulâr ist.

Da die euklidische Metrik zu den beiden Linearsystemen gehôrt, aus
denen Sp zusammengesetzt ist, so werden wir den Zahlen aus ^} die
Punkte des euklidischen JB2n zuordnen. Die metrischen Formeln von II
gelten weiterhin, wenn man Norm n und Spur s durch nr und s' ersetzt,
die wie folgt definiert sind :
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ib){a — i6)| PJaa + 66 + i(ba - a6)}

6 6

ib)(c - id) + {c + id)(â - i6)J

Dabei sind a, b, c und d GrôBen aus fi(, und P vor einem Ausdruck soll
die in diesem enthaltenen Bestandteile aus dem Produktsystem ty be-
zeichnen.

Aus (32) folgt, daB wir die n-Funktionen uk beliebig wâhlen kônnen,
wâhrend wir fur die w-Funktionen vk folgendes réelles Gleichungssystem
erhalten :

div^ u ~ diVj, ~v 0

rot^ û - roty w 0

divy u + div,. v 0

roty w + rotj, v 0

Dabei deutet der Index an den Differentialoperatoren die Variablen an,
nach denen zu differenzieren ist. Wegen (34) setzt sich nun das Differen-
tial einer regulâren Funktion folgendermaBen zusammen :

n-l
dw= S \(Ahkd*h - Bhkdyh) ek +l

[(Bhk + Chk) dxh + (Ahk + Dhk) dyh] eki)

Dabei bedeuten (Ahk) und (Bhk) réelle Matrizen, die keinen Bedingungen
genûgen mûssen, wàhrend (Chk) und (Dhk) réelle Matrizen sind, die zu
den nach (26a) bzw. (26b) regulâren Abbildungen in &[ gehôren. Fassen

wir zu hyperkomplexen GrôBen zusammen und spalten die beiden in 2[
regulâren Funktionen ab, fiir welche wir die schon gefundene Differential-
form einsetzen, so erhalten wir :

7. Satz. Eine hyperkomplexe Funktion w aus dem Produktsystem ty
[1, i] • [£j] ist rechtsregulàr, wenn ïhr Differential in jedem regulâren Punkte
folgende Form hat :

n-l i n _ n _
dw 2 (ha + hbi) {dxh + idyh) + J] a^pdz"? +

A=0 \a=l
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Dabei bedeuten ha, hb beliebige GrôBen aus £[, wâhrend ap und Pq

ebenfails aus 2[ den Bedingungen

a=l j5=l

geniigen mûssen ; aa und o£ sind die Vorzeichen der Eigenwerte von
(Chk) und {Dhk).

Daraus folgt sofort die Invarianz der regulâren Punktionen gegenuber
orthogonalen Transformationen aus Qx oder £,[ und deren Produkte,
wenn auf ~x, y und w gleichzeitig dieselbe Transformation ausgefuhrt
wird.

Nun wollen wir diejenigen Funktionen aufsuchen, fur die aueh der
2. Integralsatz in der Form (4) gilt. Diesen mùssen wir in S$ jetzt folgen-
dermaBen schreiben :

w (z) const. (w (C) P idZ ri (f — z)~n (Ç—z) (35)
r l J

f f -)- irj variiere im Innern und auf dem Rande R eines endlichen,
abgeschlossenen Regularitâtsbereiches H ; fur R gelten dieselben Vor-
aussetzungen wie bei (3). Um die Gûltigkeit des 2. Integralsatzes zu be-
urteilen, versuchen wir diesen aus dem ersten abzuleiten. Wir um-
schlieBen den Aufpunkt z mit einer Hyperkugel K mit der Oberflâche RK
und verlangen fur den verkleinerten Regularitâtsbereich H' H — K :

J
à' (36)

Gilt (36), so folgt aus

fwP[dZri(Ç~-z)-n(Ç-z)}+jwP{dZri(Ç-z)-n(Ç--z)}==O

nach Grenzubergang RK -> 0 sofort (35), da wir auf RK flir dZ

const. (£ — z) setzen dûrfen, und damit P {dZn'(Ç — z)~n(Ç — z)} reell
wird. Damit sich eine hyperkomplexe Funktion w nach dem 2. Integralsatz

berechnen lâBt, muB demnach in Hf

werden, da (36) ftir beliebige Hyperflâchen R gelten muB.
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Wegen _ __ __ _
Dn'(Ç-z)-"(Ç-z)=-2n.n'(Ç-z)-"-H{(rJ-y)(è-x)-(Ç--x)(r}--y)}

wird P{Dn'(Ç — z)~n(Ç — z)} 0. Also mu8 der Operator auf w an-
gewandt identisch in allen Komponenten von (£ — z) verschwinden. Wir
erhalten somit als Bedingung der Existenz des 2. Integralsatzes folgendes
System von Difïerentialgleichungen :

wP{Dek} 0 k 0,..., n — 1 (37)

Da fur k 0 sofort wD 0 folgt, so sind aile Funktionen, fur die der
2. Integralsatz gûltig ist, in der Klasse der rechtsregulâren Funktionen
enthalten. Differenzieren wir (37) nach xk und yk und summieren ent-
sprechend, so erhalten wir :

\3} 0

Da aber P{DD} DD A, gleich dem reellen Laplaceschen
Operator ist, folgt sofort

Aw 0

Da die ek und iek linear unabhângig sind, werden damit aile uk und vk
Potentialfunktionen.

Um die verschàrfte Regularitâtsbedingung (37) mit der allgemeinen
Regularitatsbedingung (31) zu vergleichen, zerlegen wir (37) in fij :

— v.F=0 und (u + vi)
,-0

¦ -
dy0

'
dxk -*T

fur Jb l,..., n—1

Summieren wir die letzten n — 1 Gleichungen, so folgt

-*:- + •¦-^11 ° •

Wegen (31) ist damit fur w>2:
a ô

dyk 7

Daraus folgt aber unmittelbar :

/a a \
(« + t>t)(-T— + i-j— h=0 fiir k
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In fi{ zerfallen dièse n hyperkomplexen Gleichungen in

du dv du dv

Somit zerfallen sie reell in :

duh dvh duh dvh
—1 (38)

Dies sind gerade die Cauchy-Riemannschen Differentialgleichungen fur
die n komplexen Variablen zk xk + i yk. Die n komplexen Funktionen
(uk + ivk) sind also analytische Funktionen der n komplexen Verânder-
lichen zk ; in diesem Fall nennen wir die hyperkomplexe Funktion w
u + vi eine analytisch-rechtsregulàre Funktion. Damit gilt :

8. Satz. Damit fur die rechtsregulàre Funktion w — u + vi aus dem

Produktsystem S$ [1, i][l, el9..., en_1] mit n>2 der 2. Integralsatz
in der Form (35) gilt, mufi w eine analytisch-rechtsregulâre Funktion sein.

Man kônnte sich nun fragen, ob die rechtsregularen Funktionen w,
fur welche noch zusàtzlich Aw 0 gilt, nicht schon analytisch-rechts-
regulâr sind. Da zeigt sich sofort, dafi nur eine der Gleichungen (31) nach
(38) zerfallen mu6, damit Aw 0 wird. Wir erhalten somit unter den
rechtsregularen Funktionen zwei Funktionsklassen, deren Komponenten-
funktionen harmonisch sind. Ihre Regularitâtsbedingungen sind :

du dv uE — vF 0

nder

vE + uF =0 dyk dxk

wo beidemal k 0,..., n — 1 lauft.
Naturlich sind dièse Funktionen noch nicht analytisch-rechtsregulâr,

und der 2. Integralsatz gilt fur sie in der vorliegenden Form nicht, obwohl
sich die einzelnen Komponentenfunktionen durch ein Randintegral be-
rechnen lassen. Da ihre Regularitâtsbedingungen aber gegenûber Trans-
positionen Tk von u0, v0, x0, y0 mit uk, vk, xk, yk bzw. mit —uk,
— vk, xki yk invariant bleiben, so kônnen ihre komplexen Komponentenfunktionen

nach dem 2. Integralsatz in einer etwas spezielleren Form
berechnet werden.
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Es lâBt sich nâmlich u0 + iv0 bei jeder rechtsregulàren Funktion w
durch ein Randintegral darstellen14)

u0 + ivQ const. K $w(Ç)dZn'(Ç — z)~n{Ç — z)

Dabei bedeutet K vor dem Intégral, daB nur komplexe Beitràge beruck-
sichtigt werden. Wegen den zulàssigen Transpositionen ist

w'{z) kw{kz)

eine neue, aber wiederum rechtsregulâre Funktion ; dabei soll kz — Tkz
und kw Tkw bezeichnen. Dann gilt :

Ûben wir auf kz nochmals die Transposition Tk aus, so erhalten wir :

uk(z) + ivk{z) œn8t.K$kw(kÇ)dZn'(Ç — *«)-*(£ - H)

Nach Linksmultiplikation mit ek und Summation uber k erhâlt man so-
mit eine Integraldarstellung fur die Funktion w(z) :

w(z) oanst.îjCfcZ $kw{kÇ)dZn'(Ç - kz)~n(Ç - kz)

Dièse Integralformel kann als eine Erweiterung des 2. Integralsatzes
aufgefaBt werden ; hingegen muB bei jedem Summationsglied die Green-
sche Funktion wie auch die Wertverteilung auf R geandert werden, und
es muB R ganz im Innern des Bereiches liegen, fur den die Transpositionen

Tk zulâssig sind, und naturlich im gemeinsamen Regularitàts-
gebiet der n Funktionen kw.

Das Differential einer analytiseh-reehtsregulâren Funktion w ergibt
sich aus (34) sofort, da die Matrizen (Chk) und (Dhk) wegen (38) einzeln
verschwinden.

9. Satz. Ist w eine analytisch-rechtsregulâre Funktion, so hat ihr
Differential dw in jedem regularen Punkt folgende Form:

n—l

dw=£ (ha + hbi) (dxh + idyh)

ha, hb beliebige Grôfien aus S!x.

14) M. Schaad [23], S. 34. Am Schlusse des § 10 fûhrt Frâulein Schaad Beispiele zu
diesen beiden Funktionsklassen auf; fur dièse gilt der weiter unten stehende verallgemei-
nerte 2. Integralsatz.
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Aus diesem Satz ist nim auch gut ersichtlich, wie das allgemeine Diffe-
rential einer rechtsregulâren Funktion aus dem Difïerential einer ana-
lytisch-rechtsregulâren Funktion und zweien nach (26a, 26b) regulâren
Differentialen in den Teilrâumen x und y zusammengesetzt ist.

Fur den Fall n 2 erhalten wir auBer der gewôhnlichen Regularitâts-
bedingung keine weitern Einschrânkungen fur die Gultigkeit des 2. In-
tegralsatzes. Aus (37) folgt in diesem Fall :

wP{De1) wDex 0 (39)

also wiederum wD 0.

Der 2. Integralsatz gilt also in einem Produktsystem mit 4 Einheiten,
sobald die Funktionen regulâr sind. Das hat seinen Grund darin, daB die
Produktsysteme ^} [1, i] [1, e] mit e2=-j-l die gleichen Sym-
metrieeigenschaften haben wie die Linearsysteme Qi

i-e — e-i ; i*ie — ie-i ; e-ie — ie-e (40)

Ihre Auszeichnung ist aber noch grôBer, da sie mit den Algebren ûber
dem Linearsystem £ — [i, e] xibereinstimmen, also selber Algebren
sind. Zugleich sind sie auch die einzigen Algebren mit den Symmetrie-
eigenschaften (40).

IV, Funktionen in einer Cliffordschen Algebra

Wir wollen zuerst diejenigen Cliffordschen Algebren finden, in welchen
wir die Ergebnisse von II iibertragen kônnen. Dazu genugt, daB ihre
Basiseinheiten15) sich ausschlieBlich der Haupteinheit schief multipli-
zieren :

ihik — ikih h ^ k h,k — 1,..., 2n — 1

Dann und nur dann werden Norm n und Spur «s reell, und es kônnen die
metrischen Formeln von II ubernommen werden.

Solche Algebren sind nun die zuletzt betrachteten Produktsysteme
der Ordnung 4, welche durch ein minimales Erzeugendensystem mit zwei

hyperkomplexen Einheiten bestimmt sind

i\ ± 1 i\ ± 1

Die von 2 erzeugten Algebren (£2 sind :

*8 *12 H* H '
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(£2 ist daher auch ein Produktsystem

und es gelten die Relationen :

HH — HH ; HH ~ HH '> HH ~ HH >

(41)
il ± 1 ; il ± 1 ; il - i\il

Wir haben folgende 4 Fâlle zu unterscheiden :

A. il il — 1. Dann wird auch if — 1.

Wir erhalten die Algebra der Quaternionen
3 __ 3 _ __ _

jfc=o *=o

^(a) a~â a% + al + a% + al

Die zugehôrige Metrik ist wegen der positiv definiten Norm euklidisch.

B. il + 1 ; i| — 1 Daim wird i| -f- 1 und

w(a) al — a? + «2 — al -

C. *J — 1 ; f* + 1 Daim wird if -f- 1 und

n(a) al + al — al — al

D. il tj + 1 Dann wird *| — 1 und

»(a) aj -al - a22 + à*

Die drei Algebren der Fâlle B, C und D sind isomorph. Wegen ihrer
indefiniten Norm gehôren sie zu einer einmal ausgearbeiteten hyper-
bolischen Metrik. Wir unterscheiden die drei Algebren wegen ihrer Iso-
morphie nicht mehr, und nennen ihre hyperkomplexen Zahlen Pseudo-

quaternionen, da sich ihre Basiseinheiten mit Ausnahme der Haupt-
einheit wie bei den Quaternionen schief multiplizieren. Nun gilt :

Hilïssatz. Die Algebren der komplexen Zahlen, der Quaternionen und
der Pseudoquaternionen sind die einzigen Cliffordschen Algebren mit reellen
Normen und Spuren.

u) Da nur Quaternionen und Pseudoquaternionen in Betracht kommen, bezeichnen
wir die hyperkomplexen Basiseinheiten von jetzt an mit i^, um Verwechslungen mit den
bisher behandelten Systemen zu vermeiden.
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n

Beweis : (£n sei eine Cliffordsche Algebra der Ordnung 2n mit n > 2.
Dièse besitzt ein minimales Erzeugendensystem fi [el9..., ej. In fi
gelte efeefc — ekeh ; ansonst ist schon in fi keine réelle Spur môglich.
Dann ist aber bereits im Produktsystem [1, ej-fl, das naturlich in C

liegt, die Norm nicht mehr reell, da eh-elek elek-eh, h =£ k, h, k

2,..., n ist.
Man kônnte nun trotzdem hyperkomplexe Funktionen in einer all-

gemeinen Cliffordschen Algebra betrachten. Dièse ist dann als ein hôheres

Produktsystem zu betrachten. Fur solche Funktionen gilt naturlich ohne
zusàtzliche Bedingungen nur der 1. Integralsatz. Vor allem aber sind
ihre Komponentenfunktionen nicht mehr Intégrale einer reellen linearen
partiellen Differentialgleichung 2. Ordnung. Zudem kônnen die Quadrate
der Basiseinheiten nur im minimalen Erzeugendensystem frei gewâhlt
werden, da die andern mit diesen bestimmt sind.

tjberdies aber geht die formale Eleganz verloren, welche doch wesent-
lich zur Berechtigung der hyperkomplexen Schreibweise beitrâgt. Es ist
deshalb vernunftig, Funktionen von mehr als 4 Variablen in einem
Linearsystem zusammenzufassen, auch wenn es gerade eine Cliffordsche
Algebra passender Dimension gibt.

Im folgenden sollen nun die Funktionen in den Algebren der Quater-
nionen und Pseudoquaternionen betrachtet werden. Es sei :

Wir ubernehmen die Regularitatsbedingungen von II und verlangen fur
regulàre Funktionen :

Dw 0 und wD 0 (41)

Reell zerfâllt (41) in zweimal 4 Bedingungen

<0) + (hf< + (hfnf + {i3fuf 0

u?+ »hro±(s)1«?):F(h)I«?>=0

«(3)+ upT uw± ^)=0.
Dabei gilt das obère Zeichen fur rechtsregulare Funktionen wD 0,
das untere fur linksregulàre Dw=0. Fur beidseitigregulàre
Funktionen zerfâllt (41a) in

div ~w 0 und rot lv 0
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Wir erhalten genau die Regularitâtsbedingungen (26b), und kônnen
den Ûbergang voni Linearsystem zur Algebra ohne weiteres verfolgen.
Nach (29) ist das Differential einer regulâren Funktion eine Summe von
regulâren Ausdrûcken der Form ?m km dx kin *m mit im km + km %

0. In unsern Algebren wird ^mkm p eine hyperkomplexe Zahl,
und die Nebenbedingung besagt, da6 der Realteil p0 0 verschwindet.

Also ist pdxp mit p0 0 eine regulâre Form. Multiplikation mit
einer hyperkomplexen Zahl mit verschwindendem Realteil bedeutet
Drehung um 90°.

p -)- p m
W(a,ap) arc cos —-17== arc cos 0 — fur pQ 0 und pp ^ 0

^ yp. p &

Die beiden Spiegelungen von (29) werden durch zwei Rotationen mit
dem Drehwinkel 90° ersetzt ; neue Spiegelaxe wird jetzt p. Wir erhalten
somit nach einfacher Zusammenfassung als Differential einer regulâren
Funktion :

dw afdxix + brdxi2 + c'dxiz mit afQ b'o c0 0 (42)

Natiirlich ist dièses w immer noch links- und rechtsregular und seine

Komponenten sind die partiellen Ableitungen eines skalaren Intégrais
der Differentialgleichung 2. Ordnung Qu 0

In den Algebren kônnen wir aber auf beidseitige Regularitât verzichten.
Wir beschrânken uns hier auf rechtsregulâre Funktionen, da die Resul-
tate mit Symmetrieiiberlegungen sofort auf linksregulàre ubertragen
werden kônnen. Im folgenden gelte jetzt nur noch :

wD 0

Daraus folgt sofort wDD Qw 0, und wegen der linearen Unab-
hângigkeit der Einheiten wiederum :

Das Differential einer rechtsregularen Funktion geht entsprechend (22)
durch Linksmultiplikation mit einem beliebigen Faktor aus (42) hervor.

10. Satz. Das Differential einer rechtsregularen Quaternionen- oder

Pseudoquaternionenfunhtion hat in einem regulâren PunJct die Form
dw a dx ix -\- b dx i2 + c dx i3 und umgekehrt ; ist insbesondere a0

60 c0 0, so ist die Funktion im betreffenden Punkt auch linksregular.
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Man kann dièse Difïerentialform geradezu als neue Formulierung der
Regularitâtsbedingung auffassen. Die infinitésimale Abbildung setzt sich
aus drei regulâren in der zugehôrigen Metrik konformen Abbildungen
zusammen.

Umgekehrt geht jedes Differential einer rechtsregulâren Funktion aus
dem Difïerential einer beidseitig regulâren Funktion hervor. Sind a, b, c

beliebige Zahlen unserer Algebren, so ist d abc — cba eine Zahl,
deren Vektor auf denen von a, b, c senkrecht steht ; somit haben da,
db, de verschwindenden Realteil. Daraus folgt :

11. Satz. Das Differential einer rechtsregulâren Funktion w geht immer
durch Linksmultiplikation mit einer hyperkomplexen Ortsfunktion K aus
dem Differential einer beidseitig-regulâren Funktion w* hervor. Fur einen
regulâren Punkt gilt: dw Kdw* mit

K=(âb'c—'cbâ)-1

Natiirlich miïssen im Falle der Pseudoquaternionen gewisse Einschrân-
kungen gemacht werden, da Nullteiler auftreten kônnten und K dann
unbestimmt wlirde. Wenn wir nun nach dem Zusammenhang der
rechtsregulâren Funktionen selber mit den beidseitig regulâren Funktionen
fragen, so haben wir einen Spezialfall von (22) vor uns ; die rechtsregulâren

Funktionen besitzen daher in der Regel an Stelle eines skalaren ein
hyperkomplexes Potential. Das soll nur noch fur Quaternionenfunktionen
ausgefuhrt werden. Die Beschrânkung auf Quaternionenfunktionen
drângt sich besonders auch deshalb auf, da man nur bei diesen auf ana-
lytische regulâre Funktionen spezialisieren, und das Differential der Um-
kehrfunktion betrachten kann. Funktionen in Pseudoquaternionen haben
somit gegenuber solchen in Linearsystemen trotz allgemeineren Regulari-
tâtsbedingungen wenig Vorteile. Die Kôrpereigenschaft der Quater-
nionen, die bisher nicht zur Geltung kam und zur Gultigkeit der Integral-
sâtze in keiner Beziehung steht, gestattet erst, die Vorteile einer Algebra
richtig auszunutzen.

V. Quaternionenfnnktioiien

Die Quaternionenalgebra erscheint in diesem Zusammenhang als
interessanteste Spezialisierung ; sie besitzt die Symmetrieeigenschaften
eines Linearsystemes fi1, ist ein Produktsystem und eine Algebra. Daher
vereinigen die Quaternionenfunktionen aile Eigenschaften von II, III
und IV.
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Beidseitig regulâre Quaternionenfunktionen bezeichnen wir mit w. Fur
sie gilt :

Dw 0 und wD 0

Die einseitig regulâren Quaternionenfunktionen bezeichnen wir mit W.
Hier besehrânken wir uns auf rechtsseitig regulâre

WD O

Aus der Regularitâtsbedingung folgt sofort :

Aw O und AW 0

Somit sind sowohl die Komponentenfunktionen von w wie von W selber
Potentialfunktionen

Auk 0 und AUk 0 ]fc 0,..., 3

Die uk sind durch die Bedingung verkntipft, dafi sie die partiellen Ab-
leitungen eines skalaren Potentials sein mûssen

w — D0 mit A0 0

Nun soll als erstes untersucht werden, wie die Uk verknûpft sind. Aus
dem 2. Integralsatz

folgt wegen A g f — x)*1 — Ax (f — a;)-1

Ax wo der J-Operator jetzt auf den

Aufpunkt x angewandt wird. Somit ergibt sieh :

W=VD mit F=
1

Stz2 ,_R
D und AV=0

Umgekehrt ist W VD immer rechtsregulâr, wenn A V 0 ist.

WD VDD AV 0. Somit gilt :

12. Satz. Eine rechtsregulctre Quaternionenfunktion W besitzt immer
ein Quaternionenpotential, das eine bedingungsfreie Losung der Potential-
gleichung ist,
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Bezeichnen wir die Komponenten von F mit Vk9 so folgt:

Nun ist aber kw VhD eine beidseitig regulâre Quaternionenfunktion,
da aus A V 0 sofort A Vk 0 folgt. Somit kann W aus beidseitig
regulâren Funktionen dargestellt werden.

13. Satz. Jede rechtseitig regulâre Quaternionenfunktion Idfit sich aus
vier beidseitig regulâren zusammensetzen

W °w + iy^w -f- i2 2w + i3 3io

Gleichzeitig ist damit auch eine koordinateninvariante Form der Regu-
laritâtsbedingung (41) gewonnen

div^ 0 ; rot kw 0 ; fc 0, 3 •

Nun stellt sich sofort die Frage, was man bei der schwachern einseitigen
Regularitâtsbedingung gewonnen hat.

Die rechtsregularen Funktionen bilden ûber den Quaternionen einen
Modul. Sind XW.. .nW rechtsregulâre Funktionen, so ist auch W

aW mit konstanten Quaternionen aa eine rechtsregulâre Funktion.

Insbesondere ist Wf aW + b, a und b konstante Quaternionen,
wieder eine regulâre Funktion. Nach einer regulâren Abbildung kann
eine Cliffordsche Linksschraubung16) und eine gewohnliche Parallelver-
schiebung ausgefuhrt werden, ohne daB die Regularitât verlorengeht.
Um zu sehen, welche Transformationen im Argumentenraum mit der
Regularitâtsbedingung vertraglich sind, hat man das transformierte
Differential zu betrachten.

Nach Satz 11 hat eine rechtsregulâre Quaternionenfunktion die Diffe-
rentialform : _____dW AdXix + BdXi2 + CdXiz (43)

Ûben wir nun die Transformation X a X' -\- b aus, so wird dX
adXf und dW(X') AfdX% + B'dX'i2 + CrdX\.

W(X') ist also wieder eine regulâre Funktion. Dabei ist naturlich der

Regularitâtsbereich jeweils entsprechend zu transformieren. Hingegen
ist eine rechtsregulâre Quaternionenfunktion bei einer linear gebrochenen

M) B. O. Baefeli [13].
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Transformation X (cXf + d)~x erst nach Hinzufûgen eines Regulari-
tâtsfaktors wieder rechtsregulâr. Es wird nâmlich :

J - (Xf~c + d)c dXf (X'~c + d)

d • c
Da nun aber n(Xrc + d)~1(Xrc + d)-1 mit Ausnahme Xr jeine beidseitig regulâre Funktion ist, so wird '

W ' W[{X'7+ d)~1]n(X''c + d)-i(X'"c + H)-1

im transformierten Bereich wieder eine regulâre Funktion, weil

{X'7+d)ik{X''c + d)-1

verschwindenden Realteil hat.
Die rechtsregularen Quaternionenfunktionen gestatten somit auBer

den orthogonalen Koordinatentransformationen, wobei X und W gleich
transformiert werden miissen, noeh ganz lineare linksseitige Transforma-
tionen des Funktionswertraumes oder des an der reellen Axe gespiegelten
Argumentenraumes in sich. Somit erhalten wir :

14. Satz. Die rechtsregularen Quaternionenfunktionen W(X) bilden
einen Quaternionenmodul, in welchem die ganz linearen linksseitigen Trans-
formationen einen Automorphismus erzeugen.

Da man die Algebra der Quaternionen auch als Produktsystem auf-
fassen kann, miissen wir durch Spezialisieren von den rechtsregularen
Quaternionenfunktionen zu den analytisch-rechtsregulâren
Quaternionenfunktionen gelangen, welche Verbindungen zweier analytischer
Funktionen \on zwei komplexen Verànderlichen sind. Wir identifizieren
etwa ix i und schreiben :

X =lZ +*Zi2 (Xo + i^J + (X, + H X,) H
W W + h*W (Uo + i, UJ + h(U2 + i, Us)

wo ¦wiederum wie bei III wegen der Vorzeichen der Cauchy-Riemann-
schen DifEerentialgleichungen die Funktion

W Uo + U^i + U2i2 - U3i3

eine analytisch-regulâre Funktion werden soll. Dazu mûssen 1ïT(1Z, *Z)
und *W(^Z,2Z) analytische Funktionen werden. Dann zerfâllt die
Regularitâtsbedingung (41) :

jp<o) + ^d)^ ^ o und TF(2> + W^h 0 (44)
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Dieser Zerfall hat nichts mit dem Zerfall bei beidaeitig regulâren Funk-
tionen zu tun, wo nach Rotationsthermen aufgespalten wird. Nun fragen
wir, wie das Differential einer analytisch-rechtsregulâren Funktion aus-
gezeichnet ist. Darauf antwortet folgender Satz :

15. Satz. Damit W'eine rechtsregulâre analytische Funktion ist, ist not-
wendig uni hinreichend, dafi das Differential folgende Form hat:

dW 2 + z

Zum Beweis haben wir nur zu zeigen, daB (44) erfullt ist. Es ist :

- Bh + Ci2

B - Cix ; W™ Bix+C
Somit folgt sofort :

If (o) + |f(i) ii== Bi2 + C i3 - B i% - C iz 0

W(2) + Jf(3> i1== B -Cix~B +(7^=0.
Ist umgekehrt W rechtsregulàr, so folgt aus (43) allgemein :

W«» =*Aix + Bi2 + Cis ; W™ A~Biz + Ci%.

Soll nun W analytisch rechtsregulàr sein, so muB

»! - Bi2 - Ciz 2Aix 0

werden. Das ist nur môglich, wenn ^4 0 ist.
Natûrlich kann das DifiEerential auch auf die Form von Satz 9 gebracht

werden.

dW (B i2 + C i3) (dX0 + dXM + (B-C ix) (dX2 + dXzix)

Man hâtte natûrlich anstatt ix auch i2 oder iz mit der komplexen Einheit i
identifizieren kônnen ; dann wâre in der Differentialform (43) B bzw. G

Null zu setzen.
Nun soll noch kurz untersucht werden, wie sich in einem regulâren

Punkte die inverse Funktion X(W) verhâlt, wenn W eine rechtsregulâre
Quaternionenfunktion ist. Dazu lôsen wir die Differentialform nach dX
auf ; dabei hat man sich in A{X), B(X), C(X) Zdurch X(W) ersetzt

zu denken. Man erhâlt :
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•¦j: dW(CBA-ABC) + i1dW(AAA+BAB + CAC)

+ i2dW(ABA + BBB + CBC) + isdW {ACA + BCB + CGC)

mit reellem K I (AÂ A + BA B + G ÂC) + B{AB A + BB B

K ist im wesentlichen die Funktionaldeterminante und daher in einem
regulâren Punkt von Null verschieden. Damit dieUmkehrfunktion X(W)
linksregulâr wird, muB CBA — ABC 0 werden ; d. h. A, B und C

mûssen linear abhàngig sein. Ist die ursprungliche Funktion zmdem noch
linksregulâr, so ist auch die Umkehrfunktion beidseitig regular. Es ist
nâmlich AÂA + BAB + CAC A {n{A) — n(B) - n(C)} + Bs(AB)
+ Cs(AC), und hat daher mit Ao Bo Co 0 selber verschwinden-
den RealteiL Insbesondere sind die Umkehrfunktionen der analytisch-
rechtsregulâren Funktionen analytisch-linksregulàre Funktionen ; spezielle
lineare Abhângigkeit A 0. Damit ist bewiesen :

16. Satz. Die Umkehrfunktion X(W) einer rechtsregularen Quater-
nionenfunktion W(X) ist m jedem regvlaren Punkt eine linksregulàre
Quaternionenfunktion, wenn in der Differentialform dW die Komponenten
A, B und C linear abhàngig sind.

Nun soll noch gezeigt werden, welche Bedingung die Komponenten der
Differentialform erfiillen mûssen, damit die durch eine rechtsregulâre
Quaternionenfunktion geleistete Abbildung im betrachteten Punkte kon-
form wird. Da gilt der Satz :

17, Satz. Eine rechtsregulâre Quaternionenfunktion bildet die Um-
gebung eines regulâren Punktes konform. ab, werm die Komponenten A, B
und C ihrer Differentialform proportional sind.

Es sei B fiA und G vA ; fi, v réelle Konstanten. Daim wird
dW AdXix + iiAdXi% + vAdXiz AdX(ix + fii2 + v%). Dies ist
in der Tat eine konforme und natûriich immer noch regular© Âbbildïimg.

Damit haben wir gesehen, wie die regulâren QuatermonenÉunktioneiî
mit allen ihren S^ezialfâllen durch ihre Differentiale vollstândig Gharakte-
risiert werden. Deren Form kann somit als Définition der jj&w^iligea
Spezialisierung verwendet werden, obwohl doch dièse ursprunglieh dureh



ein System von Differentialgleichungen festgelegt wurde. Bemerken wir
noch, daB das Differential einer beliebigen Quaternionenfunktion immer
auf die Form

__

dW DdX + AdXix + BdXi2 +

gebracht werden kann, so erhalten wir abschlieBend :

18. Klassifikationssatz. Das Differential einer beliebigen Quaternionenfunktion

W(X) hat die Form:

dW AdXi± + BdXi2 + CdXis + DdX

Ist: a) D 0, so ist W(X) rechtsregulâr.

h) D 0, ^ra£ Ao Bo Co 0, ^o i5« Tf (X) beidseitig
regulâr.

c) D C 0, so ist W(X) analytisch-rechtsregulâr.

d) D 0 und ABC CBA, so ist X(W) linksregulàr.

e) D 0 tm<# A fj,B — vC, so ist die infinitésimale Abbil-
dung konform.

Naturlich kônnen mehrere Unterfalle zugleich vorkommen. Damit sind
die Differentiale der Quaternionenfunktionen in regulàren Punkten er-
schôpfend behandelt, und es muB nun deren Verhalten an Stellen, wo die
Funktionaldeterminante verschwindet, untersucht werden.
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