Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 20 (1947)

Artikel: Stiutzfunktion und Radius. I.

Autor: Scherrer, W.

DOl: https://doi.org/10.5169/seals-18067

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-18067
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Stiitzfunktion und Radius. .

Von W. SCHERRER, Bern

§ 1. Einleitung

In einer Note iiber ,,Integralsdtze der Fldchentheorve’“!) habe ich ge-
zeigt, daf es fiir die Bildung von Randintegralen auf Raumflichen notig
ist, neben der Stiitzfunktion P = — Nx mnoch einen ,,Stiitzvektor:
P = — [N, x] einzufiihren.

Die weitere Analyse hat nun ergeben, dall es ganz allgemein vorteil-
haft ist, neben dem Ortsvektor ¥ und der Flichennormalen It diesen
Stiitzvektor B systematisch heranzuziehen. Insbesondere empfiehlt es
sich, aus den drei genannten Vektoren ein orthogonales und normiertes
Dreibein zu bilden und hierauf die Raumfliche durch die infinitesimalen
Variationen dieses Dreibeins zu erzeugen. ,

Die Durchfithrung dieses Ansatzes ergibt weiter, dal es notwendig ist,

neben der Stiitzfunktion noch den ,radiusvektor r =V %2 als gleich-
wertigen Skalar mitzunehmen. Im Detail erweist es sich als zweckmaBig,
die in der erwéhnten Note gebrauchten Definitionen und Bezeichnungen
leicht zu modifizieren. Ich werde daher die den vorliegenden Zwecken
angepafiten Grundformeln der Raumflichentheorie in § 2 zusammen-
stellen.

Das Hauptergebnis der Untersuchung lautet: Die Integrabilitéts-
bedingungen sind in absolut invarianter Weise aus Beltramischen Ope-
ratoren der Stiitzfunktion und des Radius aufgebaut und lassen erkennen,
daB eine Fliche durch Vorgabe einer Hauptform und des dazu passenden
Kriimmungsskalars bestimmt ist.

§ 2. Grundformeln

Die Parameterdarstellung des Ortsvektors, seine Linge — der Radius-
vektor —, sowie dessen Quadrat seien gegeben durch

x=x(u,v) ; r=yY2; R=r?, (1)

1) Commentarii Mathematici Helvetici, Bd. 19, Heft 2, S. 1056—114 (1946).
Im folgenden zitiert mit [J].
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Die Flichennormale, die Stiitzfunktion und deren Quadrat seien definiert

durch [ |
X, X

T:.__*L’_”_; = — N : P—=n2 . 2

N=Tmzr’ P * P 2)

Nun fiihren wir ein die ,, Radialtangente’* T und den normierten ,,Stiitz-
vektor B durch die Gleichungen

— [k, %]

x+-pN
S e=s [, W] ==
BT R =

(3)

Wie man leicht nachpriift, bilden die Vektoren I, :t und P ein rechts-
geschraubtes und orthogonales System von Einheitsvektoren. Dieses
Dreibein soll also die Grundlage der weiteren Entwicklungen bilden. Die
Abweichung gegeniiber [J] besteht darin, dafl jetzt P ein Einheits-
vektor und P = p? das Quadrat der Stiitzfunktion ist.

Die beiden ersten Hauptformen der Fldachentheorie definieren wir in
der iiblichen Weise, wobei wir nur in der Bezeichnung der Determi-
nanten vom Usus abweichen.

E=zx; F=1x,%,; G=z%

4
D= [z, %]2 = EG— F? (4)

I =2=FEu+ 2Fuv + Go? (4a)

= — N, %, ; M=—N,x,
= 9kv:{u ; N=— 9tvx'u (5)
Q': [muamv] [xu’xv]: LN — M?
IT = — %tx = Lu + 2Muv - No? (5a)

Die totale (GauBsche) und die mittlere Kriimmung sind nun gegeben
durch

Q _ LN— M2 g EN—2FM + GL

K=p=me—rm ' B~ s@e—_m

(6)

Aus ihnen leitet sich die GrofBe

H_ EN—2FM +GL
K= 2(IN—M

(7)

ab, die man wegen ihrer Zusammensetzung aus den Hauptkrimmungen
als die (reziproke) ,harmonische Krivmmung‘‘ bezeichnen konnte.
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Bekanntlich ist gerade im Zusammenhang mit der Stiitzfunktion die
sogenannte dritte Hauptform von Interesse. Sie ist definiert durch die
Formeln

€= 124; fzmumv; g:m?’

d:[mu’mv]z‘_—eg‘_fz (8)

III = 92 = eu? + 2fuv + go? . (8a)

In der Flachentheorie wird die Identitit

INIl=—K-I+2H-IT . (9a)
bewiesen, was ausgeschrieben die Beziehungen

e=—KE +2HL
f=—KF+2HM (9)
g=—KG+2HN
ergibt.
Aus diesen Gleichungen erhilt man nun in Verbindung mit (6) und (7)
leicht die weiteren Beziehungen

Q_IN—M 1 eN—2fM+gL H o
d— eg—f* K’ 2(9—f) K’ )
eN———2fM+gL___H. (11)

2 (LN — I3

d_ eg—f ... eG—2fF+gE ..,
p=EG—Fr X —sme—m ~H-L. (12

SchlieBlich fiihren wir noch die zu den drei Hauptformeln gehérigen
Beltramischen Operatoren ein. Ist

= 9ix 3.71' 3.7k (13)

eine nicht ausgeartete quadratische Differentialform in den » Variabeln
x,, Z3,...%, mit der Determinante g, und sind weiter

P=¢@:,... %) 5 p=9(T1,...2,) (14)

zwei invariante Skalare, so sind die Beltramischen Differentialoperatoren
(Differentiatoren) erster und zweiter Ordnung bekanntlich definiert durch
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a¢ oy
ik
. Op Op
=gtk T __T
vVip =g 2w, orp (15)
1 o — .. 0
= V, wmqo).
A (9) v ax,.( 99 5.

Dabei bedeutet || gi* || die Inverse der Matrix || g;, || und iiber doppelt
auftretende Indizes wird in der iiblichen Weise summiert. Die Ausiibung
dieser Operationen in bezug auf die verschiedenen Grundformen wollen
wir durch Beifiigung der Zeiger I, II, 111 unterscheiden. Da wir diese
Operatoren ofters gebrauchen werden, wollen wir sie explicite an-
schreiben :

(E‘Pv“‘FSUu)'Pv—“(F‘Pv_G(Pu)V’

Vilg,p) = D . (16 a)
A1 (p) = T/l})" :v(E‘p”l;;)F%) au(F%;D'G%)t . (16b)
V(0w = (L%—-M%)%;(M%-—-N%)wu . (178)
Az () E;;IQ :v(L""" VQMw“)~ ai(mv}%m”"){. (171)
Virr (9 9) = (e%—ffpu)%-;(f%——g%) Py (18a)
A (@) = Vld - (e%mffpu) au(f%;(ig%)z' (181)
Da nach (15) gilt Vip) =Vip, 9) , (19)

haben wir in (16) bis (18) den Operator /(@) nicht notiert.

Beim Rechnen mit diesen Operatoren ist einmal zu beachten, daf3
V(p, w) bilinear, V(¢) also quadratisch und A (p) linear ist. Daneben
ist es aber auch niitzlich, sich die Wirkung dieser Operatoren auf Pro-
dukte, Quotienten, Quadrate und Wurzeln zu merken :
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V(e vy = vV(® )+ 2V (9 ¥)
Vg, vY) = 29V(p, v)

1 1
V(% ;) = —TPZ—V(% )
V(. v;'):?:,—;)_—vm v)

Vipy) = @*V(y) + 209V (g, v) + v*V (9)

V(9?*) = 4¢*V(9)
1 1
V("";}') = FV(‘P)

V (V) = z%,-w@

Aey) =AW+ 2V (p, v) + v A(p)

AN@®) =29 A(p) + 2V (p)

A(%) = ——;;A(w)—i—%ww)

AW;)—-—;%;—MW !

490‘/(;?7(90)

§ 3. Hilfsformeln

Nach [J, (16)] gilt in unserer neuen Bezeichnung (4)

R, N]=KVD R ;

R, N]R=KVD

(20)

(21)

(22)

(23)

Aus [/, (42)] erhalten wir daher unter Beachtung der neuen Bezeich-

nung (2)

P [mu ’ gt] T pu[mv ’ g't]
KvD

r=—pN+

Fiir den normierten Stiitzvektor (3) folgt somit

SB___

 VE—P KVD([R—P)

Die Vektorformel [J, (14)] liefert daher

370

=, % _ [lp.RN.—p.RN,, N, N]

(24)



“—pomu"l'pumv . “—pvmu'l'puml (25)

P= VKQ(R—P)  ViR—P)

wobei also im Nenner gemiB (4), (5) oder (8) je nach Bedarf die passende
Determinante eingefiihrt werden kann.

Eine zweite Darstellung des Stiitzvektors erhdlt man direkt auf Grund
von (3), (2) und (1):

%: [x,m] __[5,[xu,£v]]=_[[xu,xv],x]

und wiederum folgt mit [J, (14)]

vau'— Rux'u . VX (Raxu_ Ruxv)

2VD(ER—P) = 2VQER—P) (26)

P =

Nach den Formeln (25) und (26) bildet der Stiitzvektor gleichsam die
Briicke zwischen Stiitzfunktion und Radius. Unter Beachtung der Defi-
nitionen (4), (5) und (8) fiir die Hauptformen folgt nun weiter

‘»B o ERv_FRu L Lp'v—Mpu
T OVD(ER—P)  VEKQER—D) ”n
pr, FE—GR. _ Mp,—Np, o
YT OVDE—P) VEQE—P)
" VdR—P) = 2VQ(R—P)
- b (27y)
" VdR—P) 2VQ(R— P) )
oder schlieBllich
K(FR,— GR,) =2(Mp,— Np,
( ) (Mp Pu) 28)

2(epv _fpu) = K(LRv - MRu)
2(fp,—9p.) =K(MR,—NR)
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Die zuletzt gewonnenen Formeln gestatten ein Hiniiberwechseln zwischen
den verschiedenen Hauptformen. Aus ihnen ist iibrigens ersichtlich, da
die zweite Hauptform eine Art Mittelstellung zwischen den beiden andern
einnimmt.

Das uns jetzt zur Verfiigung stehende Formelmaterial wiirde geniigen,
um die in Aussicht genommenen Integrabilitdtsbedingungen in absolut
invarianter Gestalt zu gewinnen. Um uns aber in allen Féllen vollkom-
mene Freiheit in der Auswahl der Hauptform zu sichern, wollen wir die
Tabelle (28) noch erweitern. Dies geschieht dadurch, da3 wir (9) auf die
linken Seiten von (28) anwenden. Wenn wir dabei noch iiberall gemif (2)

V' P an Stelle von p einfithren, erhalten wir schlieBlich folgende wvoll-
stindige Tabelle :

1
ER,—FR,= 5 = (LP,— MP,)
1
FR,—GR,= 5= (MP,—NP,)
__2H _

EP,—FP,= = (LP,— MP,) — VP (LR,— MR,
2H _
FP,— @GP, =% (MP,—NP)— VP (MR,—NR,)

(29)
1
¢R,—fR, =——5(LP,— MP,)+ 2H(LR,— MR,
1
f'Rv’—'gRu = _'_}/_P“_(MPV'—"NPu) + 2H(MRv_NRu)
eP,— fP, = KVP(LR,— MR,)
fP'u_gPu: KVP—(MRQ_“NRu)

Die Mittelstellung der zweiten Hauptform tritt wiederum in Erschei-
nung. Wir wollen daher auch alle weiteren Folgerungen um die zweite
Hauptform als Kern gruppieren.

An erster Stelle ergeben sich nun leicht die Umrechnungsformeln fiir
die Beltramischen Operatoren erster Ordnung iiber Radius und Stiitz-
funktion :
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Vi (R) V—— Vi (B, P)

1
VI(R3P) =WV11(P)
= 2HVII(R’P)-KVFVII(R)

VI(P) ZZHVII(P)—KVPVII(R’P)
1 2H (30)
Virr (B) = KVP Vir (B, P) 4+ — K Vi1 (R)
1 2H
Virg (B, P) = — KVP 1 (P) + —— I Vi (B, P)
= VPVII( )
Virr (P) = VPVII (R s P)

Aus dieser Tabelle folgert man leicht, daBl zwischen den drei Opera-
toren ein und derselben Hauptform eine lineare Relation besteht, und

zwar handelt es sich immer um dieselbe Relation :
KPV,(R) — 2HVP V,(R, P) + Vy(P) = 0 &
(x. =1 oder II oder 1II)

Weiter empfiehlt es sich, die gemischten Operatoren erster Stufe tiber
Radius und Stiitzfunktion einerseits und totaler und mittlerer Kriim-
mung andererseits ineinander umzurechnen :

VI(R>K) __V?VII(P’ K)
VI(P,K) = 2HVII(P’K) "‘KVI—)VII(R ’K)
1
VI(R’H) ZWVII(P’H)
Vi (PaH) = 2IIVII (P’ H) - KVFVII (R’ H) (32)
1 2H
Vi (B, K) = ~ KvVP Vir(P, K) +—— VII (R, K)
Virr (P, K) = V_V.r.r (B, K)
1 2H
Vi (B, H) = ”ﬁfvu(l)»ﬂ) +“’R‘“V11(Raﬂ)
Vi (P, H) = VP V. (R, H)
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Um nun auch noch die Umrechnungsformeln fiir die Operatoren
zweiter Ordnung zu gewinnen, mufl man die Relationen (29) in die Defi-
nitionen (16b) und (18b) einfithren. Zur Durchfiihrung der Rechnung
benotigt man die Beziehungen (20) bis (22). Die Endergebnisse stellen
wir zusammen in folgender Tabelle :

1 1 1
4;(R) = 8% A (P) — SKVDP Vir(P, K) — SPVP Vi1 (P)
H
AI(P) = 2HAII (P) ““‘k’vu (P, K) =t 2VII (P: H)
M K
— KVPAL (B) — YL 01 (R, K) — s Vis (B, P)

1 1 1
A1 (R) = “fﬁAII(P) + 3%y VU (P, K) + sKPyP VU (P)

2H H 2
+‘K‘—A11(R) _“f{?vu (R, K) —]-?-V”(R,H)

VP 1
A1 (P)=VPAp (R) t 5% Vu (B, K) +—40= avp Vi (B, P)
SchlieBlich fiigen wir noch die Relation
Vi(R) = 4(R — P) (34)

hinzu. Sie ergibt sich, wenn man die aus (2) folgende Gleichung
%, %] = — | [¥., %] | VP

quadriert und kann im Bedarfsfalle in die Relationen (30) eingefiihrt
werden.
§ 4. Ableitungsgleichungen und Integrabilitéitshedingungen

Wir bilden jetzt die Ableitungsgleichungen, indem wir die ersten
Ableitungen des Dreibeins I, N, P aus den Vektoren dieses Dreibeins
kombinieren.
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SIu = Amm + A135B
zv == Bmm -+ B13‘B
mu = A.‘nz + Az:;‘B
(35)
mv = 321:5 + Bza‘B

Pu=A45:T + 4, N
Po= By T + By N

Die A4,, und B,, bilden offenbar infinitesimale Drehmatrizen. Ihre
Komponenten ergeben sich, wenn man die Gleichungen (35) sukzessive
mit den Dreibeinvektoren T, )t und P skalar multipliziert. Die Rechen-
arbeit besteht in der Ermittlung der Skalarprodukte auf der linken
Seite von (35). Ausschlaggebend sind dabei die Definitionen (1), (2), (3)
in Verbindung mit den Gleichungen (27,) und (27,). Die Rechnung liefert
folgende Werte :

_ VE(LR,— MR,

= ——— - A4 32
2 2VQ(R — P)
By — — YEWME,—NE) ~ B,
2VQ (R — P)

KP(LR,— MR, — (LP,— MP,)
- 2VQKP (R — P)
KPMR,—NR,) — (MP,—NP,)

le = 2 VQ_I??(R _ P) = - Bw

(36)

P
= e =—A
P,
Bu=5vrE—p) .

Die Integrabilititsbedingungen der totalen Systeme (35) lauten

376



94,, 9B

ov a;a + 412 By — By, 45, =0 (371)
0A oB

a;l _ a;l + Ay B, — By A, =0 (375)
0A oB :

3?)12 - azzz + Agy Byy — By Agg = 0 . (375)

Bei der Auswertung auf Grund der Tabelle (36) benétigt man die
Formeln (17), (20), (21) und (22). Dabei zeigt sich, dal die Gleichung
(87;) identisch erfiillt ist. Die Gleichungen (37,) und (37,) aber liefern
schlieflich das System

1 1 1 1
AII(R)+”2‘7{'VII(R’ K) = S(R-P )vII( ) R—_—PVH(R:P)erVu(P)
1 ~-KP 1 2P—R
AII(P)_ﬁvII (P, ) 2(R—P) vII( )+ WVII(R ) mvu (P)

(38)

Diesen Gleichungen fiigen wir noch hinzu die aus (34) und der ersten
Gleichung von (30) folgende Relation

Vir(R,P)=4VP (R —P) . (39)

Man stellt leicht fest, dafl die Gleichungen (38) nur vom Verhdltnis der
Koeffizienten der zweiten Hauptform, ndmlich den GroBen

L M N
vQ Ve Vg

Q= LN — M7 , (40)

abhéngen.
Von dem geschilderten Standpunkte aus vollzieht sich nun die natiir-

liche Bestimmung einer Flidche folgendermaBen :

1. Man gibt die Verhiltnisse der Koeffizienten der zweiten Haupt-
form — die GroBen (40) — und die GauBsche Kriimmung K als Funk-
tionen der Parameter vor.

2. Man bestimmt hierauf nach Vorgabe eines nicht-asymptotischen
Streifens auf Grund von (38) die Funktionen R(u,v) und P(u,v). Aus

(39) ergibt sich dann V'@ und somit kennt man die absoluten Koeffi-
zienten der zweiten Hauptform.
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3. Auf Grund der gewonnenen GroBen kennt man jetzt die Koeffi-
zienten (36) des totalen Systems (35). Seine Integration liefert dann das
Dreibein I, R, P und aus (3) erhidlt man schlieBlich den Ortsvektor x.

Wir fassen diese Ergebnisse kurz zusammen in

Satz 1. Eine Fliche ist durch die zweite Hauptform und die Gaufsche
Kriommung nach Vorgabe eines michtasymptotischen Streifens eindeutig
bestimmit.

Durch die Wahl ausgezeichneter Parameter kénnen die Gleichungen
(38) in besonders einfache Gestalt gebracht werden. Die reellen Fall-
unterscheidungen richten sich in bekannter Weise nach dem Vorzeichen
der GauBschen Kriimmung.

a) Hyperbolischer Fall: K <O0.

Man wihlt ,,Asymptotenparameter :
L=N=0; VQ =1M (40 a)
Die Gleichungen (38) und (39) verwandeln sich in

R,K,+R,K, _ R.R, ___Rqu""Rqu r,P, _
2Bwt——9g  ~R—_P E—P T KPE—DP)

38
op _ PKutPK, _ KPR,R, R,P,+RP, (@P—RP.P, (38)
ue 2K o R—P R—P P(R— P)
Rqu + Rv Pu
— =, 3
M=Fr_PvP (39a)
b) Elliptischer Fall: K >0.
Man wihlt isotherme Parameter :
L=N; M=0; VQ=1L (40 b)
Die Gleichungen (38) und (39) verwandeln sich in
B AR R,K,+R,K, R;+R;} __R,,Pu+R,,P,,+ P+ P?
wt o™ T T3(®-P) R-P 2KP(R-P) -
P P P“Ku+P,,K,,__KP(RE&R?,‘)+ R,P,+R,P, (2P-R)(P;+P}) )
w0 T T 9 (R-P) R-P 2P (R-P)
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R,P,+ R,P,
L="®_pPvp (39b)

c¢) Parabolischer Fall: K = 0.

Wegen @ = LN — M? =0 liegt Entartung vor und es folgt

(Lu + M v)?
L

Man kann daher die Parameter so wihlen, dafl gilt

IT =Lu?+2Muv + No2 =

M=N=0 (40 C)
Die Gleichungen (38) versagen. Man greift auf (28) zuriick und erhilt
p,= 0 (39¢)

womit die Flache als Torse charakterisiert ist.

Die vorliegenden Ergebnisse zeigen deutlich, dafl die Stiitzfunktion
und der Radius zusammen eine organische Einheit bilden.

Analoge Verhiltnisse bestehen auch bei den andern Hauptformen. Die
den Gleichungen (38) entsprechenden Relationen erhdlt man, wenn man
in den Gleichungen (33) die Operatoren A;;(R) und A;;(P) vermittels
(38) eliminiert und hernach die rechts auftretenden Operatoren erster
Ordnung mit Hilfe von (30) und (32) auf die gewiinschte Hauptform
zuriickfiihrt.

Im Falle der ersten Hauptform erhilt man so an Stelle von (38) folgen-
des System :

1-HvVP
4;(R) =—p-p Vi(£)
_ HY p-2H?P 2HVP 3P-R
A4,(P)-2VPV,(P,H) = R_P Vi(R)+ VI(R P)— mVI(P)

(41)

Wiederum ist es bemerkenswert, dall auch dieses System nur einen
Kriimmungsskalar — die mittlere Kriimmung H — enthilt. Ganz analog
wie oben tritt nun als Erginzung die Gleichung (34) hinzu
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Vi(B) =4(RB—P) , (42)

und man schlieBt entsprechend auf

Satz 2. Evne Fliche ist durch die erste Hauptform und die mittlere Krivm-
mung nach Vorgabe eines beliebigen Streifens eindeutig bestimmd.

Zur Vereinfachung eignen sich isotherme Parameter :

E=@; F=0; VD=E (43)
Man erhalt
_1-HVP , 5 ps
Ruu+va "_’RT_”‘P_‘(Ru+Rv)
2
P +P,—2VP(R,H,+R,H,)— HW; ;")H P B2+ RY) >
2HVP 3P-R
RP,+RP)-— -~ (P2, P2

(41a)

Fiihrt man schlieBlich dasselbe Verfahren fiir die dritte Hauptform
durch, so gelangt man vorerst zu folgendem System :

2 H €y _H 11V, (P
AIII(R)_V——[ Vi (P, H)- ‘"V]II(P K)] [(Ef) —VP ]—-——————(‘”1( ;
—H 3P-R|V,;, (P
A;51(P) =|:VP—-~ 5 ]PZ]I;_(P))

Hier treten also beide Krimmungsskalare in Erscheinung. Es ist jedoch
moglich, das System so umzuformen, daB als einziger Kriimmungsskalar

X auftritt. Entsprechend den Relationen (20) gilt ndmlich

H)’

1
‘K'VIII(P,H)— 4
— PV (B) .

H
K2 Vi (P, K) =V (P
und aus der dritten Zeile von (31) folgt

1 — H
Vlu(P) = 2VP7V1”(R,P)

K
Fiihrt man diese Beziehungen in die erste der Gleichungen (44) ein und
bezeichnet man die (reziproke) harmonische Kriimmung kurz mit %,

379



H
b= (45)

so verwandelt sich (44) in

2 2h2-VPh 2h 1
AIII(R)“V;;VIH (P,h) =mvzn(P)“mVuz (R, P) +ﬁvIII(R)
2 h+R-3P
A11:(P) A e i@

(46)
Auch dieses System ergénzen wir noch durch die Gleichung
Vi (P)=4P(R — P) . (47)

Sie ergibt sich, wenn wir (39) in die letzte der Relationen (30) einsetzen.
Nun argumentiert man wie im Anschlufl an (38) und erhélt .

Satz 3. Eine Fliche ist durch die dritte Hauptform und die harmonische

K 1
Krivmmung T 7 nach Vorgabe eines Streifens etndeutrg bestimmd.

Bei der dritten Hauptform eignet sich oft die Spezialisierung auf
Polarkoordinaten. Doch zeigt sich im vorliegenden Falle keine besondere
Symmetrie, weshalb wir auf die Wiedergabe der zugehorigen Formeln

verzichten.
SchlieBlich sei noch bemerkt, daf} die zweite Gleichung von (46) dqui-
valent ist mit einer bekannten Formel von Weingarten. Rechnet man

nimlich auf p =V P und r =V R um, so erhilt man

2h=2~%=2p+d111(p) . (49)

Ein Seitenstiick dazu ergibt sich in analoger Weise aus der ersten
Gleichung von (41), ndmlich

2H=%+£—me. (50)
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Bei diesen Umwandlungen mufllten natiirlich die Gleichungen (47) und
(42) herangezogen werden. Im zweiten Fall ist iibrigens die direkt mit
Hilfe von (42) aus der ersten Gleichung von (41) erhiltliche Gleichung

pH=1— 7}4, (r2) (50”)

einfacher.

Zum Schlusse sei noch bemerkt, dafl man bei der Bezugnahme auf die
erste oder dritte Hauptform natiirlich auch die Ableitungsgleichungen
(35), (36) im Gebrauchsfalle umzuwandeln hat. Es ist aber nicht noétig,

die Umwandlungsergebnisse explicite zu notieren, da ja alle erforder-
lichen Formeln, insbesondere die Tabelle (29), zur Verfiigung stehen.

(Eingegangen den 18. April 1947.)
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