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Stûtzfunktion und Radius. I.

Von W. Scherrer, Bern

§ 1. Einleitung

In einer Note iiber ,,Integralsàtze der Flachentheorie"1) habe ich ge-
zeigt, da8 es fur die Bildung von Randintegralen auf Raumflâehen nôtig
ist, neben der Stiitzfunktion P — 5Rx noch einen ,,Stûtzvektor(i
ty — [515 x] einzufuhren.

Die weitere Analyse hat nun ergeben, da8 es ganz allgemein vorteil-
haft ist, neben dem Ortsvektor x und der Flàchennormalen 5R diesen
Stiitzvektor S$ systematisch heranzuziehen. Insbesondere empfiehlt es

sieh, aus den drei genannten Vektoren ein orthogonales und normiertes
Dreibein zu bilden und hierauf die Raumflàche durch die infinitesimalen
Variationen dièses Dreibeins zu erzeugen.

Die Durehfiihrung dièses Ansatzes ergibt weiter, dafi es notwendig ist,
neben der Stutzfunktion noch den ^radiusvektor" r l/x2 als gleich-
wertigen Skalar mitzunehmen. Im Détail erweist es sich als zweckmaBig,
die in der erwahnten Note gebrauchten Definitionen und Bezeichnungen
leieht zu modifizieren. Ich werde daher die den vorliegenden Zwecken
angepaBten Grundformeln der Raumflâchentheorie in § 2 zusammen-
stellen.

Das Hauptergebnis der Untersuchung lautet : Die Integrabilitâts-
bedingungen sind in absolut invarianter Weise aus Beltramischen Ope-
ratoren der Stûtzfunktion und des Radius aufgebaut und lassen erkennen,
da8 eine Plâche durch Vorgabe einer Hauptform und des dazu passenden
Krûmmungsskalars bestimmt ist.

§ 2. Grundîormeln

Die Parameterdarstellung des Ortsvektors, seine Lange — der Radius-
vektor —, sowie dessen Quadrat seien gegeben durch

X x (u, v) ; r \/¥ ; B r* (1)

Commentarii Mathematici Helvetici, Bd. 19, Heft 2, S. 105—114 (1946).
Im folgenden zitiert mit [«/].
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Die Flâchennormale, die Stxitzfunktion und deren Quadrat seien definiert
durch

Nun fuhren wir ein die ,,Badialtangente" % und den normierten ,,StMz-
vektor" ^ durch die Gleichungen

Wie man leicht nachpruft, bilden die Vektoren X, 5t und *J} ein reehts-
geschraubtes und orthogonales System von Einheitsvektoren. Dièses
Dreibein soll also die Grundlage der weiteren Entwicklungen bilden. Die
Abweichung gegenùber [J] besteht darin, daB jetzt *J} ein Einheits-
vektor und P p2 das Quadrat der Stutzfunktion ist.

Die beiden ersten Hauptformen der Flâchentheorie definieren wir in
der ùblichen Weise, wobei wir nur in der Bezeichnung der Determi-
nanten vom Usus abweichen.

g 9

I x2 =Eu2 + 2Fuv + Gv2 (4a)

(5)

II — Ûx Lu2 + 2Muv + Nv2 (5a)

Die totale (GauBsche) und die mittlere Krûmmung sind nun gegeben
durch

Q _ LN-M2 EN-2FM + GL

Aus ihnen leitet sich die GrôBe

H __ EN — 2FM + GL
2{LN—M2)

(7)

ab, die man wegen ihrer Zusammensetzung aus den Hauptkrûmmungen
als die (reziproke) ,,harmonische Krûmmung" bezeichnen kônnte.
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Bekanntlich ist gerade im Zusammenhang mit der Stûtzfunktion die
sogenannte dritte Hauptform von Interesse. Sie ist definiert durch die
Formeln

(8)

/// 9t2 eu2 + 2fùv + gv2 (8a)

In der Flâchentheorie wird die Identitât

III=~K.I+2H-II (9a)

bewiesen, was ausgeschrieben die Beziehungen

e= — KE + 2HL

f=—KF+2HM (9)

ergibt.
Aus diesen Gleichungen erhâlt man nun in Verbindung mit (6) und (7)

leicht die weiteren Beziehungen

Q _ LN-M2 __
1 eN—2fM + gL _ H

eN—2fM + gL „ii ;

2(EO--F2) ==2H2-K (12)

SchlieBlich fûhren wir noch die zu den drei Hauptformeln gehôrigen
Beltramischen Operatoren ein. Ist

s2 gikXiXk (13)

eine nicht ausgeartete quadratische DifiEerentialform in den n Variabeln
xl9 x2i.. ,xn mit der Déterminante g, und sind weiter

<p <p(xl9...xn) ; y= y){xt, xn) (14)

zwei invariante Skalare, so sind die Beltramischen Differentialoperatoren
(Differentiatoren) erster und zweiter Ordnung bekanntlich definiert durch
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V (V) 9*'
dx,

(15)

Dabei bedeutet || gik || die Inverse der Matrix || gtk || und ùber doppelt
auftretende Indizes wird in der ûblichen Weise summiert. Die Ausûbung
dieser Operationen in bezug auf die verschiedenen Grundformen wollen
wir durch Beifugung der Zeiger I, II, III unterscheiden. Da wir dièse

Operatoren ôfters gebrauchen werden, wollen wir sie explicite an-
schreiben :

V/(?>, y) - {F<pv - G<pJ y>u

D

Vd
d (E(p,-F<pu\ d

d\ VD ddv\ VD du VD }\

_ (L<pv— Mq>u)y>v— (M<pv — N<pu)y>a

(16 a)

(16b)

(17a)

Lq>v-M<pu M<pv-N<p

— f<P«)Vv—(f<Pv—9<PU) Vu
d

)|- (17 b)

(18a)

(f) ~yj

Da nach (15) gilt

dv 7 du\
f<Pv-9<P«

Vd I du\ Vd

v(v) =v(<p,v)

(18 b)

(19)

haben wir in (16) bis (18) den Operator S/{q>) nicht notiert.
Beim Rechnen mit diesen Operatoren ist einmal zu beachten, da6

V(ç7,^) bilinear, V(^) also quadratisch und A(<p) linear ist. Daneben
ist es aber auch niitzlich, sich die Wirkung dieser Operatoren auf Pro-
dukte, Quotienten, Quadrate und Wurzeln zu merken :
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V(ç>, WX) fV(<P, x) + *V(9>,

§ 3. Hillsîormeln

Nach [J, (16)] gilt in unserer neuen Bezeichnung (4)

(20)

(21)

(22)

(23)

Aus [«/, (42)] erhalten wir daher unter Beachtung der neuen Bezeich-

nung (2)

(24)

Fur den normierten Stûtzvektor (3) folgt somit

VE-P KVD{R-P)

Die Vektorformel [J, (14)] liefert daher
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p.9t.
VKQ\B — Vd(B —

(25)

wobei also im Nenner gema.6 (4), (5) oder (8) je nach Bedarf die passende
Déterminante eingefûhrt werden kann.

Eine zweite Darstellung des Stùtzvektors erhàlt man direkt auf Grand
von (3), (2) und (1) :

Ï^E-P VD(R-P)

und wiederum folgt mit [J, (14)]

RKXU—Raxv VK\

VD(B- P)

2VD(R — P) 2VQ(B-P)
(26)

Nach den Formeln (25) und (26) bildet der Stutzvektor gleichsam die
Brûcke zwischen Stùtzfunktion und Radius. Unter Beachtung der Defi-
nitionen (4), (5) und (8) fur die Hauptformen folgt nun weiter

ERV-FRU Lpv-Mpu
^P) ~~ ^ZQ Jî - P)

2VD(iî — P) ^ÏTG(iî —P)

V<i(£ —P)

Vd(R— P)
VK(MRV-NRU)

oder schlieBlieh

K(ERv-FRJ 2(Lpv-Mpu)
K{FRV-QRU) =2(Mpv-Npn)

-/pj =K(LRV-MRU)
(28)
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Die zuletzt gewonnenen Formeln gestatten ein Hinuberwechseln zwischen
den versehiedenen Hauptformen. Aus ihnen ist ûbrigens ersichtlich, daB
die zweite Hauptform eine Art Mittelstellung zwischen den beiden andern
einnimmt.

Das uns jetzt zur Verfûgung stehende Formelmaterial wûrde geniigen,
um die in Aussicht genommenen Integrabilitàtsbedingungen in absolut
invarianter Gestalt zu gewinnen. Um uns aber in allen Fàllen vollkom-
mené Freiheit in der Auswahl der Hauptform zu sichern, wollen wir die
Tabelle (28) noch erweitern. Dies geschieht dadurch, daÔ wir (9) auf die
linken Seiten von (28) anwenden. Wenn wir dabei noch ûberall gemàB (2)

]/P an Stelle von p einfûhren, erhalten wir schlieBlich folgende voll-
stândige Tabelle:

M.-M.-
FBV GBU

FPV-GPU-

eRv-fRu -
j îiv — g Ku —

ep.-fp.
fp np __j v y •*¦ u —

i

i
kvp{Mj

2H(LP
K v

2H(MP

i tT_vp{

\-MPJ

Pv-NPJ

- MPU) -
-NPJ-

°* MPU)

PV-NPJ

VF(LRV-

VF(MRv-

+ 2H(LRV

+ 2H(MR

KV¥(LRV

KVF(MRt

MRJ

-NRJ

-MRJ

^
-MRJ
-NRJ

(29)

Die Mittelstellung der zweiten Hauptform tritt wiederum in Erschei-

nung. Wir wollen daher auch aile weiteren Folgerungen um die zweite
Hauptform als Kern gruppieren.

An erster Stelle ergeben sich nun leicht die Umrechnungsformeln fur
die Beltramischen Operatoren erster Ordnung ûber Radius und Stiitz-
funktion :
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V,

V,

V,

Vjfj

V/j

(B)
l

1

n tt

}

>

-V,/(.

1

1

B,P)

P)

)-Z,
7,i (22,

72/(P)

P)

+

V/i(-B

2H
|+ K

2H

r i

VPV

i CR > P)

Z7 ifi P)

(30)

Aus dieser Tabelle folgert man leicht, daB zwischen den drei Opera-
toren ein und derselben Hauptform eine lineare Relation besteht, und
zwar handelt es sich immer um dieselbe Relation :

- 2H VP Va(i2, P) + V«(P) 0

(oc I o4er // oder ///)
(31)

Weiter empfiehlt es sich, die gemischten Operatoren erster Stufe ûber
Radius und Stiitzfunktion einerseits und totaler und mittlerer Krûm-
mung andererseits ineinander umzurechnen :

=2Hs7lI(P,H)-KVp\/n(R,H)

K)
2H

K)

2H

Vin(P,H)=

(32)
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Um nun auch noch die Umrechnungsformeln fur die Operatoren
zweiter Ordnung zu gewinnen, muB man die Relationen (29) in die Defi-
nitionen (16b) und (18b) einfuhren. Zur Durchftihrung der Rechnung
benôtigt man die Beziehungen (20) bis (22). Die Endergebnisse stellen
wir zusammen in folgender Tabelle :

Ain(P

i

2HAU

1

2H
K An(R)

(R) +-

1

2KV

H

2K vl

(P,K) -i

1

- 2V//(P

2

1

PVJ

,B)

K

2R

r v

1

Tl

^)

,p)

SehlieBlich fugen wir noch die Relation

V2(*) 4(.B-P) (34)

hinzu. Sie ergibt sich, wenn man die aus (2) folgende Gleichung

quadriert und kann im Bedarfsfalle in die Relationen (30) eingefûhrt
werden.

§ 4. Âbleitungsgleichungen und Integrabilitâtsbedingungen

Wir bilden jetzt die Ableitungsgleichungen, indem wir die ersten
Ableitungen des Dreibeins X, 51, ^J aus den Vektoren dièses Dreibeins
kombinieren.
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29T

,91

l13 '

9tu A« X

%l« B21X

tyu A31X si. 32 Jv

B32 91

(35)

Die Ailc und 5ifc bilden offenbar infinitésimale Drehmatrizen. Ihre
Komponenten ergeben sich, wenn man die Gleichungen (35) sukzessive
mit den Dreibeinvektoren X, 91 und ty skalar multipliziert. Die Rechen-
arbeit besteht in der Ermittlung der Skalarprodukte auf der linken
Seite von (35). Ausschlaggebend sind dabei die Definitionen (1), (2), (3)
in Verbindung mit den Gleichungen (27j) und (272). Die Rechnung liefert
folgende Werte :

-^23

D _-°23

A^31

31

12

#12 —

l/Z(iiîv~Jlfi2J

VK{MRV-NRU)
2VQ(R-P)

KP (LRV - MRU) - (LPV - MPU)

2VQKP(R — P)

KP(MRV - NRU) - (MPv -NPU)
2VQKP (R-P)

Pu

2VP(R — P)

Pv

2VP(R~P)

A
'a- 32

-"32

A
A13

— ^13

A21

-"21

(36)

Die Integrabilitâtsbedingungen der totalen Système (35) lauten
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dv du + 12 31 12 si > 7i)

^¦"¦31 ol I A jy ~D A ç\ f^ir7 \
dv du 23 12 2s 12 2/

Bei der Auswertung auf Grund der Tabelle (36) benôtigt man die
Formeln (17), (20), (21) und (22). Dabei zeigt sich, da8 die Gleichung
(373) identisch erfiillt ist. Die Gleiehungen (37X) und (372) aber liefern
schlieBlich das System

— KP 1 2 P 7?

(38)

Diesen Gleiehungen fûgen wir noeh hinzu die aus (34) und der ersten
Gleichung von (30) folgende Relation

VTI(B,F) 4tVP(R-P) (39)

Man stellt leicht fest, daB die Gleiehungen (38) nur vom Verhâltnis der
Koeffizienten der zweiten Hauptform, nâmlich den GrôBen

(40)

abhangen.
Von dem geschilderten Standpunkte aus vollzieht sich nun die natûr-

liche Bestimmung einer Flâche folgendermaBen :

1. Man gibt die Verhâltnisse der Koeffizienten der zweiten Hauptform

— die GrôBen (40) — und die GauBsche Krummung K als Funk-
tionen der Parameter vor.

2. Man bestimmt hierauf nach Vorgabe eines nicht-asymptotischen
Streifens auf Grund von (38) die Funktionen R(u, v) und P(u,v). Aus

(39) ergibt sich dann V^Q und somit kennt man die absoluten
Koeffizienten der zweiten Hauptform.
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3. Auf Grund der gewonnenen GrôBen kennt man jetzt die Koeffi-
zienten (36) des totalen Systems (35). Seine Intégration liefert dann das
Dreibein X, 91, ty und aus (3) erhâlt man sehlieBlich den Ortsvektor s.

Wir fassen dièse Ergebnisse kurz zusammen in

Satz 1. Eine Flàche ist durch die zweite Hauptform und die Gaupsche
Kriimmung nach Vorgabe eines nichtasymptotischen Streifens eindeutig
bestimmt.

Durch die Wahl ausgezeichneter Parameter kônnen die Gleichungen
(38) in besonders einfache Gestalt gebracht werden. Die reellen Fall-
unterscheidungen richten sich in bekannter Weise nach dem Vorzeichen
der GauBschen Krùmmung.

a) HyperbolischerFall: K<0.

Man wâhlt ,,Asymptotenparameter" :

L=N 0 ; VQ~=iM (40a)

Die Gleichungen (38) und (39) verwandeln sich in

|
RyKu+ftuKy _ RuRy RUPV + BVPU

2K ~ R — P R-P ^ KP(R-P)
PVKU + PUKV_ KPRURV RuPv+RvPa (2P~R)PUP

(38 a)

2K R — P ' R — P P(R — P)

M RIV-F>VF • (39a)

b) Elliptischer Fall : K>0.

Man wâhlt isotherme Parameter :

L=N ; M 0 ; Vç"= i (40b)

Die Gleichungen (38) und (39) verwandeln sich in

RUKU + RVKV_ Rl + Rl RUPU + RVPV
r 2KP(R-P\

(38 b)
2JR-P) R-P ' 2KP(R-P)

PUKU+PVKV KP(R2U+Rl)
2 (R-P) R-P 2P(R-P)
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L==
4(B-P)VP (39b)

c) Parabolischer Fall : K 0.

Wegen Q LN — M2 0 liegt Entartung vor und es folgt

Man kann daher die Parameter so wâhlen, da8 gilt

M N=O (40e)

Die Gleichungen (38) versagen. Man greift auf (28) zuruck und erhâlt

pv=0 (39 c)

womit die Flàche als Torse charakterisiert ist.
Die vorliegenden, Ergebnisse zeigen deutlich, da8 die Stutzfunktion

und der Radius zusammen eine organische Einheit bilden.
Analoge Verhâltnisse bestehen auch bei den andern Hauptformen. Die

den Gleichungen (38) entsprechenden Relationen erhàlt man, wenn man
in den Gleichungen (33) die Operatoren Ajj(^) und An(P) vermittels
(38) eliminiert und hernach die rechts auftretenden Operatoren erster
Ordnung mit Hilfe von (30) und (32) auf die gewiinschte Hauptform
zuruckfuhrt.

Im Falle der ersten Hauptform erhàlt man so an Stelle von (38) folgen-
des System :

Wiederum ist es bemerkenswert, daB auch dièses System nur einen
Krùmmungsskalar — die mittlere Krummung H — enthàlt. Ganz analog
wie oben tritt nun als Ergânzung die Gleichung (34) hinzu
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P) (42)

und man schlieBt entsprechend auf

Satz 2. Eine Floche ist durai die erste Hauptform und die mittlere Krùm-
mung nach Vorgabe eines beliebigen Streifens eindeutig bestimmt.

Zut Vereinfachung eignen sich isotherme Parameter :

E G ; ^=0 ; VW=E (43)

Man erhalt

3P-R

Fuhrt man schlieBlich dasselbe Verfahren fur die dritte Hauptform
durch, so gelangt man vorerst zu folgendem System.

r llVH/(P)
P(R-P)

Hier treten also beide Krùmmungsskalare in Erscheinung. Es ist jedoch
moglich, das System so umzuformen, da8 als einziger Krummungsskalar
H
— auftritt. Entsprechend den Relationen (20) gilt namlich
XL

und aus der dritten Zeile von (31) folgt

j V/17 (P) 2 VP^VUI{R P)

Fuhrt man dièse Beziehungen in die erste der Gleichungen (44) ein und
bezeichnet man die (reziproke) harmonische Krummung kurz mit h,
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A=x (45)

so verwandelt sich (44) in

2
rr 2h2-VFh 2h 1

P(R-P) 1£l( Vp(B-P) iii( ' R-P IIl(

2VPh + R-3P ^
2P(R-P) viii( J

(46)

Auch dièses System ergànzen wir noch durch die Gleichung

P) (47)

Sie ergibt sich, wenn wir (39) in die letzte der Relationen (30) einsetzen.
Nun argumentiert man wie im AnsehluB an (38) und erhalt

Satz 3, Eine Floche ist durch die dritte Hauptform und die harmonische
K 1

Krilmmung -==¦ — nach Vorgabe eines Streifens eindeutig bestimmt.
M II

Bei der dritten Hauptform eignet sich oft die Spezialisierung auf
Polarkoordinaten. Doch zeigt sich im vorliegenden Falle keine besondere

Symmetrie, weshalb wir auf die Wiedergabe der zugehôrigen Formeln
verzichten.

SchlieBlich sei noch bemerkt, daB die zweite Gleichung von (46) âqui-
valent ist mit einer bekannten Formel von Weingarten. Rechnet man
nâmlich auf p \/P und r l^ïf um, so erhalt man

(49)

Ein Seitenstûck dazu ergibt sich in analoger Weise aus der ersten

Gleichung von (41), nâmlich

?+£-^'(r)- (50)
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Bei diesen Umwajidlungen muBten naturlich die Gleichungen (47) und
(42) herangezogen werden. Im zweiten Fall ist iibrigens die direkt mit
Hilfe von (42) ans der ersten Gleichung von (41) erhàltliche Gleichung

~AI(r*) (60')

einfacher.

Zum Schlusse sei noch bemerkt, daB man bei der Bezugnahme auf die
erste oder dritte Hauptform naturlich auch die Ableitungsgleichungen
(35), (36) im Gebrauchsfalle umzuwandeln hat. Es ist aber nicht nôtig,
die Umwandlungsergebnisse explicite zu notieren, da ja aile erforder-
lichen Formeln, insbesondere die Tabelle (29), zur Verfûgung stehen.

(Eingegangen den 18. April 1947.)
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