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Funktionentheorie und Randwertproblem
der Diracschen Differentialgleichungen

Von Adolf Kriszten, Zurich

Einleitung
Herr Rud. Fueter hat in einer Arbeit*) seine Methoden, die zur Théorie

der regulâren Funktionen einer Quaternionenvariabeln fûhrten, auf die
Diracschen Differentialgleichungen mit verschwindender Ruhmasse m
angewendet. Dies fuhrte zur Aufstellung von analogen Integralsâtzen
(sie entsprechen dem 1. und 2. Cauchyschen Satz der klassischen
Funktionentheorie). Der zweite Integralsatz hat die Form einer Integralglei-
chung; es tritt, auBer dem Intégral ûber den (zweidimensionalen) Schnitt
der gegebenen Hyperflâehe mit dem charakteristischen Kegel des Auf-
punktes, noch ein solches erstreckt tiber die Wandung dièses Kegels auf.

In der vorliegenden Arbeit betrachten wir die kràftefreien Diracschen
Differentialgleichungen mit nicht-verschwindender Ruhmasse m. In ent-
sprechender Weise, wie fur den Fall m 0, stellen wir die beiden
Integralsàtze auf, und, mit Hilfe der Hadamardschen ,,solution élémentaire"

und unter Verwendung der Méthode der ,,partie finie"2) gelingt es,
die Integralgleichung im zweiten Integralsatz zu vermeiden. Der Funk-
tionswert im Aufpunkt lâBt sich direkt durch die Funktionswerte auf
einer geeignet gewâhlten Hyperflache ausdrucken. Um die Berechnungen
zu vereinfachen, werden wir nicht die Funktion selbst aus ihren Rand-
werten berechnen, sondern eine Hilfsfunktion (das e-Potential) aus der
wir durch Differenzieren die Funktion sehr leicht erhalten.

Die folgende Arbeit gliedert sich in vier Kapitel, wovon die beiden
ersten vorbereitenden Charakter haben. So stellen wir im ersten Kapitel
die notwendigen Begriffe und Sâtze uber partielle Differentialgleichungen
2. Ordnung zusammen, ebenso im zweiten uber Algebren mit einigen ein-
fachen Bemerkungen zu den Diracschen Differentialgleichungen. Im
dritten Kapitel wird die Funktionentheorie der Diracschen Gleichungen

1) Rud. Fueter, Die Funktionentheorie der Diracschen Differentialgleichungen,
Comm. Math. Helv., vol. 16, S. 19.

2) J. Hadamard, Le Problème de Cauchy et les Equations aux Dérivées
partielles linéaires hyperboliques (Paris, Hermann 1932).
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aufgestellt (erster und zweiter Integralsatz), und endlich wird im vierten
Kapitel das Randwertproblem dieser Differentialgleichungen gelôst.

Herr Nef)3 hat dièse Fuetersche Méthode verallgemeinert, und sie
auf hyperbolische und ultrahyperbolische Differentialgleichungen ange-
wendet. Bei der Aufstellung des 2. Integralsatzes ist er ebenfalls auf
eine Integralgleichung gestoBen. Voraussichtlich werden die hier ver-
wendeten Methoden, angewendet auf die Nef schen Funktionen, zu
analogen Resultaten fïihren; mindestens im hyperbolischen Falle.

I. Partielle Differentialgleichungen zweiter Ordnung
1. Wir betrachten homogène, partielle Differentialgleichungen zweiter

Ordnung mit konstanten Koeffizienten ; die Gleichungen sollen von
der folgenden Form sein :

n~1 du

c und bh sind (réelle oder komplexe) Konstante ; u ist eine (réelle oder
komplexe) Funktion der reellen Variabeln x0,..., xn_x 5). Setzen wir zur
Abkûrzung z (x0,..., xn^) und f =^= (£0?..., fw-1), so sind die

n
ckarakteristischen Hyperlcegel von 5 die (n — l)-dimensionalen Kegel :

iW) (*o - fo)2 - (*i - ii)2 (**-i - L-i)2 0

n

$(u) ist normal-hyperbolisch, d. h. es tritt nur eine der zweiten Ablei-
tungen — hier diejenige nach x0 — mit positivem Vorzeichen auf ; das

n
bedeutet geometrisch, daB F den Raum in drei getrennt liegende Teile

n n
zerlegt : Zwei innere Teile F>0 (x0^ 0) und ein âuBerer Teil F<0.

Die Charakteristiken spielen eine ausgezeichnete Bolle in der Hada-
mardschen Théorie ; wir wollen deshalb die Hyperflâchen des Raumes
der x0,..., xn_x bezuglich dieser charakteristischen Hyperkegel einteilen :

8) W. Nef, Funktiçnentheorie einer Klasse von hyperbolischen und ultra-
hyperbolischen Differentialgleichungen zweiter Ordnung, Comm. Math. Helv.,
vol. 17, S. 83. n

4) Die Indizes senkrecht ûber den betreffenden Symbolen (hier in g) geben die Dimension

des betrachteten Raumes (Variabelnzahl) an; die Indizes rechts unten (etwa xv
dienen zur Numerierung dieser einzelnen Variabeln oder Funktionen.

6) Die betrachteten Funktionen werden nient analytisch vorausgesetzt, doch sollen sie

,,genûgend oft" stetig differenzierbar sein; so werden wir von den Losungsfunktionen
der Diraeschen Gleichungen zweimalige stetige Differenzierbarkeit verlangen. Auf die
Frage der niinûnalen Bedingungen soll hier nicht eingegangen werden.
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a) Eine Hyperebene heiBt ràumlich orientiert, wenn sie jeden dieser
Hyperkegel in einer geschlossenen (n — 2-dimensionalen) Flâche schneidet
(eventuell in einem Punkt).

b) Ein Hyperflâchenstiick heiBt ràumlich orientiert, wenn dies fur aile
ihre Tangentialhyperebenen gilt. (Die Hyperflâchen sollen immer ,,ge-
nûgend regulâr" sein, speziell also in jedem Punkt eine eindeutig be-
stimmte Tangentialebene besitzen.)

c) Im entgegengesetzten Falle heiBen die Hyperebenen und Hyper -

flâchenstûcke zeitlich orientiert.

2. In der klassischen Potentialtheorie spielt der Greensche Satz eine
groBe Rolle. Um das Analogon dièses Satzes zu erhalten, definiert man

n
den zu g odjungierten Difïerentialoperator (5 :

ox0 i=1

Es gilt folgende Identitàt

wobei
du dv

— 1)

Sei i7 eine geschlossene, orientierbare Hyperflàche im Raume der x0,...,
#«-i ; nk die Komponenten ihres inneren Einheitsnormalenvektors ; H
bedeute das (n-dimensionale) Innere von 27, dann gilt der Greensche Satz

• -J(v%(u)-u&(v))dr -/• • 'J(n0P0 + - • • +nn_1Pn_1)da

dr ist das w-dimensionale Volumenelement von H ; do das (n — l)-dimen-
sionale Hyperflâchenelement von S.

n
3. Um mit Hilfe dieser Formel die Lôsungsfunktion u von $(u) 0

aus ihren Randwerten auf (einem geeignet gewâhlten) E zu berechnen,
mussen wir die Hilfsfunktion v geeignet wâhlen :

a) v ist eine Funktion von zwei Punkten z (x0,..., xn^x) und f
(|0,..., èn^i) ; z spielt die Rolle des festen Aufpunktes.
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b) v ist als Funktion des Punktes £ eine Lôsung der adjungierten Diffe-
n

rentialgleichung ($>^\v) 0. Der obère Index (f) bedeutet Differen-
tiation nach den |&.

c) Fur z C wird v geeignet singulâr ; nach einem Satz von Le Roux
und Delassus6) ist v auf dem ganzen charakteristisehen Hyperkegel
n

P(z, £) 0 des Punktes z singulâr.
Das Problem, eine derartige Funktion v(z, C) zu finden, ist fur eine

Differentialgleichung mit konstanten Koeffizienten sehr einfach zu lôsen.
Die gesuchte Funktion ist die ^solution élémentaire1' der Hadamardschen
Théorie.

Wir wollen zwei Spezialfàlle der Gleichung © (v) 0 untersuchen :

a)

in diesem Fall ist :

[riz,

eine Lôsung von ©(^(t?) 0, mit der verlangten Singularitàt in z f.
n

Die entsprechende singulâre Lôsung von gf (^) 0 ist natûrlich mit der-
n

jenigen von © identisch.

Wir suchen eine Lôsung v(z, f die nur von

Q \T(Z, 0 |/(|0 - X0r - (Ix - ^)2 (f.-! - *n-!)2

abhângt ; fur v (q) besteht die gewôhnliche Besselsche Differential-
gleichung

6) Le Roux, Thèse, Paris 1899; Belasaus, Ann. Scient. Ec. Norm. Sup. 3. ser. vol. 13;
oder im erwâhnten Buch von Hadamard, S. 102.
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Haben wir eine w-dimensionale Lôsung v gefunden, so erhalten wir die
n+2

(n + 2)-dimensionale Lôsung v als

n+2 1 dv
v

Q dQ

Es geniigt also, die Fâlle n 1 ; 2 zu betrachten. Uns interessieren nur
die geraden Dimensionen. Fur n 2 :

dg2
'

g dg

existiert (im wesentlichen) eine regulâre und eine logarithmisch singulâre
Lôsung ; die letztere ist die gesuchte Funktion

2

v J0(qK)-log g -f- w (w regulâr).
Es ist

oo ~2k

J0(x) 2 (— l)fc—z »
e^ne BesseFsche Funktion.

Bie fur uns wichtige Lôsung v erhalten wir aus v durch eine einfache
Brechnung7) :

^ + ^ f ^r) l r + - Funktion.

Es bedeutet

man sieht sofort, da6 ^ eng mit der Besselschen Funktion Jo zusammen-
hângt.

Dièse Funktion v wird spàter noch eine Rolle spielen, da sie zur vier-
dimensionalen Gleichung

gehôrt. Ist K 0, so kommen wir zum Falle a) zurûck.

7) Hadamard, S. 150—151.
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4

c) AuBer der oben definierten Differentialgleichung $(u) 0 wird
7

die folgende Differentialgleichung 3K^) 0 und ihre Adjungierte wich-
tig sein :

dx\ dx\ dxl dx\

5

Wir fûhren © auf die Form des Falles a) zurûck durch die Substitution

fur die Funktion v besteht folgende Differentialgleichung

A

Setzen wir fur v die schon berechnete ,,solution élémentaire" der obigen
Gleichung ein, so erhalten wir

0 t __
e—l

5 5

Hier sind die beiden singulâren Lôsungen von ^ M 0 vlxiA

nicht mehr identisch ; es wechselt K in —K. Dies wird behoben, wenn
wir gleichzeitig z und f vertauschen8).

Betrachten wir dièse konstruierten, singulâren Lôsungen, so sehen wir,
daB (fur n ^ 3) die im Greenschen Satz auftretenden Intégrale nicht
existieren. Dièse Schwierigkeit wird fur ungerade Dimensionen durch
Einfûhrung der ^partie finie" ûberwunden.

4. ,,Partie finie" 9).

a) Einfache Intégrale : Wir gehen aus von dem Intégral
b

dx ;

8) Siehe Hadamard, S. 243—244.
•) Hadamard, S. 184—211.
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uni dièses nach b zu differentieren, mussen wir eine andere Intégrations-
variable einfuhren. Es gibt eine Moglichkeit, hier direkt zu differentieren :

Ist f (x) analytisch, so betrachten wir an Stelle des obigen Intégrales das
halbe Schleifenintegral, erstreckt von a um b zuruck zu a. Ist f(x) nicht
analytisch, so gehen wir folgendermaBen vor : Zwar existiert der Limes
fur x gegen b von

(1)
(6 - xf*

nicht ; aber dafur der Limes von

(6 - x)°
dx 'b-x

Das ist im wesentlichen die Ableitung des Intégrais, wenn wir auf die
Singularitât keine Rucksicht nehmen. Etwas allgemeiner existiert auch
der folgende Limes x -»• b

I f(x)
(b - X)*1*

dx H(x)
Vb-x

H(x) ist eine beliebige Funktion von x9 die nur den beiden Bedingungen
genugen mufi :

1) H ist in x 6 stetig und stetig differentierbar.

2) Es gilt H(b) -2/(6).
Unter den obigen Bedingungen ist der Limes unabhângig von der Wahl

der Funktion H(x). Wir fuhren die folgende Schreibweise ein

lim I (b - x)
-dx (H(x)

Vb-x f f{x
J (b-x

und nennen diesen Limes ,,partie finie" des Intégrales (1). Kurz gesagt
besteht dièse Méthode darin, gebrochen singulâre10) Glieder wegzu-
streichen.

10) Eine Funktion heii3e ,,gebrochen smgulâr" in x b, wenn sie sich fur
verhàlt wie

(b-x)'
P + i
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Dièse Définition soll auf das folgende Intégral ausgedehnt werden

im / L-L-

!=& J (6 — x
lim

f+h
dx

Définition: Die partie finie des obigen Intégrais ist, wenn f(x) in
x — b p-nial differenzierbar ist, gleich dem Limes der folgenden Summe

lim f /(«)
J {b-xy+i'k

dx + (6 _ a;)*»

es bedeutet H(x) eine beliebige Funktion, die die Bedingungen erfûllt :

1) Der betrachtete Limes existiert.
2) # ist in x b p-mal stetig differenzierbar.

Die, bis auf die obigen Bedingungen, beliebige Wahl der Funktion
H (x) hat auf den Grenzwert keinen EinfluB, da die erste der beiden
Bedingungen H(b),H'(b),...,HiP-»(b) festlegt. H(x) kann sich also

(wegen 2) nur um eine Funktion àndern, die (6 — x)p als Faktor ent-
hâlt ; aber im Limes verschwinden aile dièse Glieder.

Differentiation nach b : Es giltn)

A.
db J (b — x)P+*t*

Das Glied, das wir durch differenzieren nach der obern Grenze b erhalten,
fallt weg, da es gebrochen singuKir ist ; solche Glieder streichen wir aber

weg.
Es sollen — als Beispiel — einige derartige Intégrale betrachtet werden

; Intégrale, auf die wir bei den Berechnungen des zweiten Integral-
satzes stoBen werden.

Es sei

•*¦ n. ~~~
du

(es wird ux > Va vorausgesetzt) ;

V a

aile In kônnen wir aus Ia herleiten

u) Hadamard, S. 194.
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-^5-
da (u2-

da?

Es ist
/ u-sw-

M~a

/Ul
du

~VW^a log • — l log a + log (ux +Vu\—a).

Das ergibt

dIQ _
1

da 2a

— 1 1

2a \ — a + u\ — a)

>h + 2 a

da2 2a2 4 Vu? — a {uxVu\ — a + ^2 — a)2

Wir wollen nur die Intégrale Ix und /2 berechnen ; dies genugt fur unsere
Zwecke

jr du
2 di0 i

ut

\a

2

a2 V'u\ — a

-f 2 j/fi* —

fa Vu*-a
a

+ v

Als zweites Beispiel betrachten wir

+ Va -f \ a

I — — 2 — /J {a-u^du da J Va - u2
du ;

- Va - V~a

12) Hadamard, S. 206—207.
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damit ist das Problem auf die Auswertung eines gewôhnlichen Intégrais
zurûckgefûhrt, das wir durch Reihenentwicklung von e*u leicht berechnen
kônnen. Wir brauehen nur die geraden Potenzen zu betrachten, d. h.
Intégrale der Form

+ 1

J Va-u2 J Vl-
V -1-Va

Eingesetzt erhalten wir

n(2n-l)(2n — 3)... 5-3dx an - — -
2n ni

71

A2wan

-Va

j ist die in I, 3 b definierte Funktion, wie der Vergîeich der beiden Reihen-
entwicklungen sofort zeigt. Fur das betrachtete Intégral ergibt sich somit

+ Va

J Ja^
-Va

b) Mehrfache Intégrale : Wir fûhren die mehrfachen Intégrale auf ein-
fache, sukzessive Integrationen zurûck. Es sei

f(x,y,z) dx dy dz

ein gewisses, dreidimensionales Intégral ; es soll nun die Flàche G 0

ein Teil der (oder die ganze) Begrenzung des Integrationsgebietes T sein.

Wesentlich ist dabei vorausgesetzt, daB dieser Teil von G 0 keine
singulâren Punkte enthalt ; d. h. es darf nicht vorkommen, dafi gleieh-
zeitig aile ersten partiellen Ableitungen von G in einem Punkt von G 0
verschwinden.

Wir wollen voraussetzen, daB -=— nirgends

auf G 0 verschwindet und weiter, daB

jede Parallèle zur z-Axe G 0 in einem
einzigen Punkt z zx schneidet ; und zwar
unter einem nickt-verschioindenden Winkel.
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In diesem Fall kônnen wir schreiben G Gx(z ~ zx). Vorlâufig sei auch
noch vorausgesetzt, da8 die an die Flâche G 0 anstoBenden Teile B
der Randflâche von T einen Zylinder parallel der z-Axe bilden. Jetzt
definieren wir

z,

f
Damit dieser Grenzwert existiert, mûssen wir weiter voraussetzen, daB
G p-mal stetig nach x, y und z partiell differenzierbar ist ; in der Um-
gebung von G 0. Ebenso fur f(x,y,z).

Eine andere Définition, die zu demselben Résultat fûhrt, ist die fol-
gende : Die Umgebung T2 von G 0 werde vom Integrationsgebiet T
durch eine Flache (t)

G y(x,y,z,e)

abgetrennt (siehe Fig.). y, mitsamt den partiellen Ableitungen bis zur
p-ten Ordnung, muB dabei gleichmâBig mit s gegen Null konvergieren ;

also die Flâche (r) gegen die Flache G 0. Das verbleibende Stûck Tx

von T enthâlt keine singulâren Punkte des Integranden mehr ; somit
existiert das Intégral iiber Tx, nicht aber dessen Limes fur e -> 0. Doch
làBt sich die Konvergenz erreichen, indem wir einen Ausdruck der Form

H(e) Ho + Hxe+ - - - + Hp-xe*-1 ,TT ~ x c^ ° * (Bt Ortsfunktionen)^zr^ eP-y2

addieren.
Dadurch sind die Funktionen Hx,..., H^_x vollstândig bestimmt.

Dièse neue Définition enthâlt die erste gegebene Définition13) und ist un-
abhângig von der Wahl der Koordinatenaxen relativ zur Flâche G 0.

Wir wollen die notwendigen und hinreichenden Bedingungen ftir die
Flâche G 0 aufschreiben :

1) G 0 ist regulâr ; jede Koordinate — als Funktion der anderen —

hat stetige partielle Ableitungen bis zur ^p-ten Ordnung.

18) Hadamard, S. 197.
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2) Jeder an G 0 anstoBende Teil R der Begrenzung hat dieselben

Eigenschaften.
3) 0 0 und die anstoBenden Teile der Begrenzung berûhren sich in

keinem Punkte der Schnittkurve.

Besitzt G 0 einen singulâren Punkt z, so mussen wir diesen durch
ein kleines Flâchenstûck £ ausschneiden. Dabei muB der Radiusvektor
mitsamt seinen ^-ersten Ableitungen nach den Parametern der Flâche im
Limes Z gegen z versehwinden. Der Limes (wenn er existiert) ist unter
diesen Voraussetzungen unabhângig von der speziell gewâhlten Flâche Z.

Differentiation nach einem Parameter: Tritt der Parameter in a auf, so
kônnen wir das Glied, das wir in der Ableitung dadurch erhalten, weg-
streichen ; wir durfen dies ja auch bei den einfachen Integralen tun, und
auf dièse haben wir die mehrfache Intégrale zurûckgefûhrt.

Wir betrachten eine Integralformel (etwa die Greensche Formel) der
Art

u m ¦
s t

Der Integrand unter dem Doppelintegral (eventuell auch im dreifachen

Intégral) sei von der Form

Setzt sich S zusammen aus einer Flâche R und einem regulâren Teil der
Flâche G 0 (siehe Figur), so wollen wir G 0 durch die Flâche (r) :

G y(x, y,z, e) ausschneiden ; die Berandung bestehe nun aus Rt und
(t), das Innere sei Tx. Es ist :

n + n us ¦

Ri (r) Tx

Die Intégrale ûber R1 und Tx unterscheiden sich also nur um eine GrôBe,
die in e (fur e 0, d. h. (t) G) gebrochen singular wird. Lassen wir
(t) gegen G konvergieren (e -> 0), so geht die ursprlingliche Integralformel

in die folgende ûber :

w-w-
in welcher das Intégral iiber G 0 nicht mehr auftritt14).

M) Hadamard, S. 204—205.
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5. Principe de descente.

Es sei gegeben eine Losungsfunktion u der Gleichung

w^ du

dann ist u — formai — auch Losung von

ni\

Dabei definieren wir : u(x0,..., xn_ly xn) u(x0,..., xn^x) ; also ist u
auf allen Parallelen zur xn-Axe konstant. n+1

Umgekehrt liefern uns die Losungen der Gleichung Qf (u) 0, fur

die -r— =0 gilt, genau aile Losungen von $(w) 0.
oxn

II. Algebren ; die Diracschen Gleichungen

1. Wir fuhren die Cliffordschen Zahlen c0, cl9 c2, c3, c4 ein. Ihre Multi-
phkationstafel ist definiert durch :

*. ~ n * n ,,2 o (T. ni 9 n d.\^0 k — k 0 — k > k — 0 V — ' ' s ' / '

ckct=—ctck (i,t 1,2,3,4; i ^ k)

Wir definieren die konjugierten GroBen c0, c1? ï2? ^3, £4 als.

C q — Cq C j — Cj j C 2 — ~~~ ^2 j C 3 — Cg j C 4 — C4 •

Dièse Cliffordschen Zahlen bilden ein Linearsystem £,e einer Algebra Œ,

mit den Basiselementen c0,..., c4, CjCg,..., c3cà, c1c2c3,..., c2czc4,

Es sei a aocQ + ^Cj + ^2C2 + #3^3 + a4c4 eine Grôfie aus £c mit
reellen oder komplexen ak, dann ist die Norm von a

71 (a) aâ âa al — a\ — a\ — a\ — a\
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Man verifiziert leicht, daB die Matrizen

'0 0 0-iN

_ 0 0-t 0 _>Cl"1 0 i 0 0 ''C2"
,i 0 0 Oy

/O 0-i 0\ /l 0 0 0^

/ 0 0 0 » \ / 0 1 0 0
C3~l i o o o );C4"\ o o-i o

\0-i 0 0/ \0 0 0-]

eine Darstellung dieser Cliffordschen Zahlen bilden. Damit ist automa-
tisch bewiesen, daB die Algebra (£ assoziativ ist.

Wir wollen einen einfachen Hilfssatz ùber die GrôBen aus fic beweisen.

Lemma: Es seien

4 4

a £ akck ; 6 ]£bkck (ak, bk beliebig komplex),

dann folgt aus der Gleichung

ab 0 auch die Gleichung ba 0

4 4

Beweis: ab c0 ]£ akbk + Jg cick(aibk — afc6a) + ^S ck(ao^k + a*A) >

4 4

6a c0 J£ afc6fc + JJj

Da die auftretenden hyperkomplexen GrôBen linear unabhângig sind,
miissen nach Voraussetzung aile Koeffizienten des ersten Ausdrucks, also
auch der zweite Ausdruck ba, verschwinden.

Mit Hilfe des Linearsystems fic kônnen wir die Punkte des reellen fiinf-
5

dimensionalen Raumes B darstellen als

5 4
z ^ a;tcfc (oj^ réelle Zahlen).

4

Ebenso durch die GrôBen co,...,c3 diejenigen des reellen B:
4 3
z X xk ck (xk réelle Zahlen).

346



2. AuBer Lc fiihren wir ein zweites Linearsystem fie der hyperkom-
plexen GrôBen e0, el9 e^ e3 ein15). Wir definieren die ek durch die Matrix -

darstellung :

'1 0 0 0\ /0 0 0 0\ /0 0 0 0\ /0 0 0 0\

ooooi _/iooo\ /oooo\ /oooo
ooor 6l ~i o o o o r e2" îooo ' e3~loooo
0 0 0/ \0 0 0 0/ \0 0 0 0/ \1 0 0 Oy

Die GrôBen c* aus flc und die GrôBen ek aus 26 kônnen nun nach den
Regeln der Matrizenmultiplikation miteinander verkniipft werden ; uns
interessieren nur die GrôBen der Form ciek. Aile dièse GrôBen liegen
wieder in 2e ; wenn wir nàmlich eine Spaltenmatrix (ek) von links mit
einer beliebigen Matrix (ct) multiplizieren, so erhalten wir wieder eine

Spaltenmatrix. Es ist somit 2e, beziiglich der Multiplikation von links,
unter £C7 und damit unter (£ invariant.

3. Die Diracschen Differentialgleichungen:
Wir betrachten 4 (réelle oder komplexe) Funktionen uh der 4 reellen

Variabeln x0, xXi x2, x3:

uh(xQ, x1} x2, x3) (h 0, 1, 2, 3)

und fassen dièse mit Hilfe von Le zu einer e-Funktion der hyperkomplexen
Variabeln

4 3

z= 2, xkck

zusammen :

w(z) J; uheh

Définition: Die e-Funktion w =f(z) heifit in einem Punkt z des vier-

dimensionalen Baumes R UnJcsregulàr, wenn

3

^ ch - w{h) + K c4 • w 0

ist. Dabei bedeutet
3 ^

eine réelle oder komplexe Zahl1*).

15) Siehe die Zurcher Dissertation: F. Bofihard, Die Cliffordschen Zahlen, ihre
Algebra und ihre Funktionentheorie. Zurich 1940.

18) £c und 2e Bind Algebren ûber dem Kôrper der komplexen Zahlen.
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4 4

w =f(z) heifit in einem (vierdimensionalen) Gebiet H des R linksregular,

wenn dies fur jeden Punkt z ans H gilt.

Setzen wir in diesen Regularitâtsbedingungen fur die Konstante

h '

so erhalten wir die Diracschen Differentialgleichungen11). Somit sehen wir,
da8 die linksregulàren e-Funktionen — immer fur diesen Wert von K —

mit den Lôsungsfunktionen der Diracschen Differentialgleichungen iden-
tisch sind.

Dièse Regularitàtsbedingung soll folgendermafien abgekûrzt werden :

Es sei
4 8 3

7") x* /» j_ /» TC

dann Ià8t sich die Bedingung der Linksregularitàt schreiben :

Dw 0

Weiter setzen wir entsprechend

es ist also

da K als konstant vorausgesetzt wurde. Dabei haben wir ohne weiteres
die Haupteinheit c0 mit 1 identifiziert. Wegen des Assoziativgesetzes in
Lc und Le (Matrizenmultiplikation) folgt fiir die linksregulàren e-Funk-
tionen :

î)(bw) (DD)w= %(w) keh g(%) 0
h Q

d. h. jede Komponente uh einer linksregulàren e-Funktion ist eine Lôsung
der Wellengleichung

âr(«) o

!') Siehe die zitierte Dissertation S. 42.
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4. Dièse linksregulâren e-Funktionen sind somit eng verknûpft mit

dem Differentialoperator gf. g ist ein partieller Differentialoperator ge-
rader Dimension. Nach den Ausfuhrungen von Kapitel I wird es ratsam
sein, zur nàchsthôheren, ungeraden Variabelnzahl tiberzugehen ; wir be-

trachten also folgende formale Verallgemeinerung des Differentialopera-

tors D : Es sei

D 2 ck —- + c4 K

#4 ist eine réelle Hilfsvariable. Da dies nur eine formale Verallgemeinerung
sein soll, treffen wir die Abmachung, da6 die von uns betrachteten e-Funk-
tionen trotzdem immer nur Funktionen der ersten vier Variabeln x0,

xl9 x2, xz sein sollen ; d. h. wir setzen fur aile Komponenten uh der
e-Funktionen

identisch in xA. Somit lâBt sich die Bedingung der Linksregularitât auch
schreiben als

Dw 0, da ja immer wU) =0 gilt.

5

Wissen wir umgekehrt von einer e-Funktion, da6 Dw 0 und w{4) — 0,

so gilt auch Dw 0 ; also ist w linksregulâr.
T

Wir fuhren hier ebenfalls den konjugierten Operator D ein

"5

Mit Hilfe von D bilden wir

Somit sind die Komponenten der linksregulâren e-Funktionen Lôsungen
der (ungrad-dimensionalen) partiellen Differentialgleiehung
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III. Integralsàtze
1. Adjungiert-regulare c-Funktionen :

Unter einer c-Funktion V der hyperkomplexen Variabeln

5 4

fc=O

verstehen wir die Zusammenfassung von fùnf (reellen oder komplexen)
Funktionen Vh (h 0, 1, 2, 3, 4) der funf reellen Variabeln x0, xx, x2,

xz, x± in der Form

V F{z)= ZVhch.
A 0

Wir definieren den zu

i=o oxk
adjungierten Operator

jfc0
ebenso

T 4 9

Daraus folgt

'x~' ~ dxl dx\ dx\ dx\ dx\
'

dxt " '

also
5 5

n(E) © 18)

d. h. gleich dem adjungierten Operator (im Sinne der partiellen Differen-
5 5

tialgleichungen 2. Ordnung) von g n(D).

Définition: Die c-Funktion V F(z) heijit adjungiert-linksreguldr im

Punkte z, wenn

entsprechend adjungiert-rechtsregulàr, wenn

V E 0

18) Immer nach der in Kapitel I eingefuhrten Bezeichnung.
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5

Dabei treffen wir die folgende Abmachung. Steht der Operateur (E)
hinter der Funktion (F), auf die er angewendet werden soll, so werden
wir dies durch eine eckige Klammer andeuten :

Weiter bedeute etwa:

\vbto\ \vÈ\ w + V \È w)l

w+ V

F ist eine c-Funktion, w eine c- (oder e-) Funktion.

Hilîssatz : Die adjungiert-linksregulâren c-Funktionen V sind auch ad-
jungiert-rechtsregular ; jede, in einem einfach-zusammenhdngenden Gebiet

5

des B, adjungiert-regulàre c-Funktion V besitzt ein skalares Potential 0,
d. h. es existiert eine (réelle oder komplexe) Funktion 0 derart, dafi

5

F= E 0 und (5(0) 0

5

Umgekehrt erhalten wir so aus jeder Losung 0 von (5 (0) 0 eine adjun-
giert-regulare c-Funktion V.

Beweis : Der erste Teil des Satzes folgt sofort aus dem Lemma von II, 1,
5

angewendet auf a E und b F. Die Existenz von 0 sehen wir leicht
ein, wenn wir die Regularitâtsbedingungen ausschreiben :

dV0 dV, dV2 dV3 SVt

xx + dx0 ~ ' Bxz + dx0 ~ ' dx3
"•"

dxQ

3V, dV3 _ dV2 dV^
~dx7

~~
~dx~~ " ° ' dx ~ dx • dx0
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Dièse Gleichungen — mit Ausnahme von (1) — sind die Intégrations-
bedingungen fur die Existenz einer Funktion 0, fur die bei gegebenen Vh

gelten soll

30 30 30 30 30F F F F

5

Wegen der Gleichung (1) muB <? eine Lôsung von (5(0) 0 sein ; die
Umkehrung ist bei Verwendung der Operatorschreibweise selbstver-
stândlich, da

5 -g-

E È è
2. Der erste Integralsatz :

Wir betrachten gleichzeitig eine c-Funktion V(z) È Vhch und eine
3

e-Funktion19) w(z) Zuheh; sind beide Funktionen in einem fûnf-
5

5

dimensionalen Gebiet H und auf dessen Randhyperflâche S stetig und
stetig differenzierbar, so kônnen wir schreiben

5
H

—$Vchnhwdo

wobei nh die a^-Komponente des inneren Normalenvektors (Lange 1)
5 5 5

von Z, dr das Volumenelement von H und da das Hyperflâchenelement
5

von E ist. (Die Indizes ,,5" beziehen sich nie auf die Dimension des Ge-

bildes, sondern immer auf diejenige des betrachteten Raumes). Wir
5 4 5

setzen dZ E chnhda ; durch Summieren uber h von 0 bis 4 erhalten wir

f 2 (Vchw)<» dr= - fvdZw

H 27

Nach unserer Operatorschreibweise ist

also

2 (Fc»w)»> ^[f(1> + i) w] i f[(i) + i) »] + i[F(j3 + i)]
5

11 Zur Définition im B siehe II, 4.
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Anderseits ist

E

Indem wir VKc^w addieren und subtrahieren, erhalten wir

den umgeformten Integranden setzen wir wieder ein

f- fvdZw

5
1. Hauptsatz: Die c-Funktion V sei in einem Gebiete H und auf seinem

55

(genûgend regulâren) Bande Z adjungiert-regulâr ; entsprechend sei die
e-FunJction w dort linksregulâr. Dann gilt

$VdZw=0
5
2

Dabei bedeutet dZ È nh ch do ; do ist das (vierdimensionale) Hyper-

flàchenelement von S und nh die xh-Komponente der innern Einheitsnor-
5

malen von E.
5 5

Beweis : Es ist D w V E 0, nach der obigen Formel ist der Satz
bewiesen.

3. Der zweite Integralsatz :

Im Hilfssatz (III, 1) haben wir bewiesen, da6 jede adjungiert regulàre
c-Funktion ein skalares Potential, d. h. eine Darstellung der folgenden
Porm besitzt :

_
V È& mit ©(0) 0

Um aus dem ersten Integralsatz den zweiten zu erhalten, mûssen wir fur
F eine geeignete Funktion einsetzen. Wir stellen uns das einfachere Pro-
blem, das zugehôrige 0 zu suchen ; es liegt nahe, als 0 die „solution

23 Commentarii Mathematici Helvetici



5

élémentaire* ' von (5(0) 0 zu wâhlen. Dièse wurde im Kapitel I, 3 b
berechnet :

8/2 f l»/2 *

Daraus erhalten wir die Funktion F als

Wir wollen F nicht explizit berechnen ; wir werden sehen, da6 dies nicht

nôtig ist.
5

F wird auf F gebrochen singular ; somit wâhlen wir folgendes fûnf-
dimensionales Integrationsgebiet fur den ersten Integralsatz : Wir gehen

4

aus von einer râumlich orientierten Hyperflâche Z (also einer dreidimen-
4 4

sionalen Flâche im B); £ sei genugend regulâr. Wir betrachten aile
4 4 4 4

Punkte z, deren charakteristischer Hyperkegel F(z, f) (d. h. dessen einer
4 4

Ast, es sei derjenige mit S0>xQ) mit Z, oder einem Teil von Z, eine
4 4

geschlossene Hyperflache im R bildet. Den Bereich dieser Punkte z
4 4

nennen wir -B. Durch jeden Punkt von Z legen wir eine Gerade parallel
4

zur a;4-Axe, d. h. wir erweitern den R durch die zu ihm senkrechte Bich-
5 5

tung xé zu einem R. Auf dièse Art erhalten wir eine Hyperflache Z, die

natûrlich ebenfalls regulâr20) und raumlich orientiert ist. Entsprechend
5 4 5 4

gehen wir zu dem charakteristischen Hyperkegel F(z9 ç) der Punkte z
4 4

ûber ; der Aufpunkt z soll also im R verbleiben :

4 4 5

Es ist klar, daB die obige Eigenschaft der Punkte z in B bezuglich Z
5

und F erhalten bleibt.

*°) Bedingungen I, 4 b, p — 2.
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Wir kônnen jetzt die vierdimensionale, geschlossene Hyperflâche im
5

JR definieren, die wir zur Aufstellung des ersten Integralsatzes verwenden

wollen : Die Hyperflâche setzt sich zusammen aus demjenigen Teil des
4 4 ^45charakteristischen Hyperkegels von z aus B: F(z, £) 0 (d. h. dessen

5

Ast $0>xQ), der mit einem Teil von Z eine geschlossene Hyperflâche
5 4 5

bildet, und aus diesem Teil von Z. Der singulâre Punkt z auf F mu8
durch eine benachbarte, regulâre Hyperflâche (t) ausgeschnitten werden.

44 4

Weiter setzen wir voraus, dafi die e-Funktion w(Ç) in B und auf Z
linksregulâr ist ; nach der ublichen Verallgemeinerung also auch im

5 5

funfdimensionalen Innern der durch F und Z gebildeten, geschlossenen
5

Hyperflâche, ebenso auf diesen beiden Hyperflachen im E.

Das gewohnliche Intégral uber dièse Berandung, mit V E 0 als

Integranden, existiert nicht ; hingegen seine „partie finie" :

f
5

Das Intégral uber die Wandung des charakteristischen Hyperkegels F
fâllt nun automatisch weg, da der Integrand gebrochen singular ist21).
Damit erhalten wir :

fv-dZ -w =- ~ fv-dZw

Unser Ziel ist es, (r) gegen z konvergieren zu lassen ; es ist klar, da6 der
Limes der linken Seite existiert und eindeutig — also unabhângig von
dem speziell gewâhlten (r)22) — ist. Der Einfachheit halber wahlen wir

5 4
deshalb als (t) denjenigen Teil einer Hyperkugel (im jB) um z, der inner-

5

halb des betrachteten Astes von F liegt. Wir dûrfen den Radius nicht zu
5

groB wâhlen, damit (r) mit Z keine Punkte gemein hat23).

21) Beweis: Siehe I, 4b.
22) Bedingungen fur die Hyperflâche (r): I, 4b.
88) Berechnung fur allgememes (t): Hadamard, S. 220—227.
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Wir fiihren auf diesem Hyperkugelteil geeignete Koordinaten ein :

£ x __ r. cos ^ q ^ f <^ n

^ — Xl r-sin ^-sin t2
71 ^ ^ 71

YS" ^ f2 ^ *^"

71 ^ ^71
Y<^ ^

— o:3 r • sin £x • cos ^2 * °os ^3 • sin

— a;4 r-sin

Das Hyperflachenelement von (t) ist :

do r* - sin3 tx • cos212 • cos f3 • dtx • rf^2 # ^3 * ^4 •

Da die nk die Komponenten der inneren Normalen der betrachteten

Hyperflâche sind (also auf (r) von z weggerichtet), gilt :

Somit :

5 4

554dZ (f — 2;)r3-sin3^1-cos2^2*cos tz-

5 }S/2

Betrachten wir weiter die Funktion

V E(Q 0 * 0

ohne diesen Ausdruck vollstândig zu berechnen, sehen wir, daB er sich
zusammensetzt aus Gliedern proportional r~4 und solchen proportional
r~3. Im Grenzwert r -> 0 geben nur die Glieder proportional r~4 einen

5

Beitrag, da dZ proportional r4 ist. Dièse Glieder sind

5 4

_ 3 eKi. C-*
5 4 5 /8/2
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Damit nimmt der Integrand die folgende Form an

• sin3 tx ' cos212 • cos tz

5

5 4

(0 3-

Auf (£) gilt ,,im Wesentlichen'(

3 eKii • w

,,Im Wesentlichen** bedeutet, die vernachlàssigten GrôBen und deren

Ableitungen nach den tt,..., £4 bis zur zweiten Ordnung verschwinden
gleichzeitig mit r. Somit hat dièse Vernachlàssigung fur das Intégral liber
(t) im Limes keinen EinfluB. Maehen wir dièse Vernachlàssigung, so
sehen wir, daB die Intégration nach t2, tz und t^ sâmtliche Glieder, die im
obigen Integranden auftreten, zum Verschwinden bringt, mit Ausnahme
des ersten r2 im Zâhler ; wir erhalten

f m38111'

(cos
dtx • w(z)

Es sei u Y% cos tx, dann ist der Integrand

1 u2- 2

~~2VT '
(u2 - 1)5/2

'

Eingesetzt in das Intégral :

V2 J \(u2 — !)*!'< - l)6/2
du w(z)

V2 /1(a=l, ttl== V2) -.I2(a=l,u1= Y2) w(z)

Bedeutung von Ix und 72 : Siehe I, 4 a. Der Ausdruck in der Klammer
1^2. 4

hat den Wert Somit erhalten wir als endgûltiges Résultat fur
S

den Limes r 0 : — 4:tz2w(z), und damit die Formel

wlz)
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3. Damit ist das Problem, die e-Funktion w(z) aus ihren Rand-
4

werten auf S zu berechnen, gelôst. Es tritt aber eine Hilfsvariable f4 auf,
die nichts mit der betrachteten Funktion w zu tun hat ; dièse Variable f4

soll noch weggeschafft werden. Berechnen wir V explizit, so erhalten wir
sehr komplizierte Ausdrucke und Rechnungen, wir schlagen deshalb
einen andern Weg ein.

Es gnt Ira 0 _ £w 0

wie man sofort aus der Form von 0 ableitet. 0 ist die einzige von z ab-

hàngige GrôBe unter dem Integralzeichen, d. h.

dZw(l)= ~- 24

Weiter kônnen wir schreiben

C r
J [

5

0dZw
5 î / 0(z,Ç)dZw(Ç)

Es tritt nur noch 0 unter dem Integralzeichen auf, somit erubrigt es sich,
die Funktion V zu berechnen.

Fûhren wir die e-Funktion

f 0(1,1) dZw(l)
5
2

ein, so laBt sich die gegebene linksregulâre e-Funktion w (z) darstellen als

(z) ¦ 2S)WKZ)

4 5

24) Genauer mûssen wir hier statt z die entsprechenden Punkfce z betrachten, die Ab-
4 5

leitung bilden und dann wieder z statt z setzen.

•*) Um die Richtigkeit dieser Gleichung zu beweisen, kann man so vorgehen: Wir
5

wâhlen auch als Aufpunkt einen Punkt z ; geometrisch ist aber vollkommen klar, dafi die
5 5

so erhaltenen e-Funktionen p(z) und w(z) nicht von a?4 abhàngen, also ist
"i* 5 7 4

Dp (z) Dp(z)
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Da die Funktion p(z) fur die linksregulàren e-Funktionen eine âhnliche

Rolle spielt wie das skalare Potential 0 fur die regulâren e-Funktionen,

wollen wir p(z) e-Potential der linksregulàren e-Funktionen w(z) nen-
4 4

nen. Es genûgt jetzt p(z) zu berechnen, um w(z) durch seine Rand-
4

werte auf Z darzustellen.

Unser Ziel ist es, nach der Hilfsvariabeln f4 zu integrieren. Betraehten

wir den Integranden, so sehen wir, daB einzig 0 von f4 abhângt : Bei
5 5

w(Ç) ist die £4-Unabhangigkeit klar ; wegen der speziellen Wahl von Z
(Zylinder parallel zur x4-Axe) gilt

4

dZ d|4 dZ ;

5

denn es ist tz4 0, und dZ also unabhàngig von |4. Es ist nun nieht
ohne weiteres môglich, naeh |4 zu integrieren, da die Parallelen zur

5

^4-Axe F nicht uberall unter einem nicht-verschwindenden Winkel
5

schneiden (I, 3 b). Wir teilen deshalb 2 in der folgenden Weise in zwei

Teilgebiete 2; und Z" :

4 4

Im R betraehten wir, auBer dem eharakteristischen Hyperkegel (F)
4 4 4 4 4 4 4

r(z, f) 0, noch eine weitere Hyperflàche (F)F(z, £) y (y sehr
4

klein, positiv). Wir schneiden dièse beiden Hyperflâchen mit Z; es seien

die (zweidimensionalen) Schnitte

(Fx£) S ; (fxi) T

Durch die Punkte von T legen wir jetzt Parallèle zur #4-Axe ; damit
erhalten wir einen (dreidimensionalen) Zylinder (t), dessen Mantellinien

parallel zur #4-Axe sind, und dessen (zweidimensionale) ,,Leitkurve" auf
4 5 5

Z T ist. (r) zerlegt 27, d. h. den Teil im Innern von F, so in zwei Teile
5 5

Z' und Z", daB die Parallelen zur #4-Axe durch die Punkte des einen der-
5 5

selben — es sei dies Zf — F unter nicht-verschwindenden Winkel
schneiden.
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Es ist

dZw(l) z,l) dZw(l) f<P(z,l) dZw(l) ;

das Intégral uber Z" werde mit /;, dasjenige uber Ërr mit f/; bezeichnet.
Nach I, 4 a erhalten wir fur// :

J Lirco-s}
4 4

In dieser Form kônnen wir fur ff den Limes T -> S, also Zf -> S
5

durchfuhren. Um das Intégral uber Eff auszuwerten, fuhren wir neue
Koordinaten ein :

4 4

1. In S (Schnitt von F und E) : Die beiden (beliebigen) Parameter

2. In i": 019 fit und Â

3. In i": fil9 p%9 /und |4.

Es wird jetzt

dZ (da auf 0)

dpx dpg dF- A (A ist die Funktionaldeterminante um zu den
4

neuen Parametern auf ]£ff uberzugehen).

dSY -^- dp1

dr

Wir setzen

und

Wie schon bemerkt, konnen wir in S" nicht direkt nach £4 integrieren,
4

hingegen nach /*, d. h. wir integrieren langs Kurven l: (Px= const.,
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5 5

/?2 const., £4 const.), die je einen Punkt von F auf E mit einem
5

Punkt von (r) verbinden und F unter einem nicht-verschwindenden Winkel
schneiden26).

Wir schreiben zur Abkûrzung

Zuerst integrieren wir lângs der Kurven l :

/4 * 4

dF * 2e **F I dF dF
1/4 fl/4(r-H)^ yr-ft J sr ]/r_i

Das zweite Glied (das Intégral) verschwindet im Limes y -+£1, d. h.
im Limes, den wir berechnen wollen : T -> 8. Im ersten Glied haben wir
den singulâren Beitrag der Grenze t-\ wegzustreichen (gebrochene Singu-
laritât ; „partie finie"), Somit erhalten wir

r -
-w

unter dieser Form kann nach f4 integriert werden, das ergibt (I, 4 a)

Hier kônnen wir den Grenzûbergang y -» 0 ausfuhren. Es gilt ^'(0) 1 ;

also erhalten wir

JT2 4 \ C

4 4

Damit ist das Problem, w(z) aus seinen Randwerten auf E zu berechnen,
4 ^4gelôst, da wir w als w(z) Dp(z) erhalten.

26) Dies ist môglich, da y sehr klein gewàhlt werden soll, siehe auch Hadamard, S 295.
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4 4

2. Hauptsatz : Es seien gegeben ein Bereich B des B und eine ràumlich
4 4

orientierte Hyperflâche Z, die den folgenden Bedingungen genugen: Ist z
4

ein Punkt aus B, so liegt das Innere und die Oberflâche des charakteristi-
4 4 4

schen Hyperkegels (bezûglich der Gleichung 2f (u) — 0) r dièses Punktes z
4 4 4

(genauer, dessen entsprechender Teil zwischen Z und der Spitze z) ganz in B.
4 4 4

Ist dann w (z) eine in B und auf Z linksregulàre e-Funktion, so gilt fur
4 4

jeden Punkt z aus B : -7 4 4 4

w(z) Dp(z)

wobei die e-Funktion — das e-Potential von w — sich folgendermafien aus
4

den Bandwerten von w auf U berechnen lâ/it :

Es bedeutet hierin :
4 4

1. S den (2-dim.) Schnitt von F mit S.
4 4 4 4 4

2. Z das von F (z, f) 0 ausgeschnittene Stûck der Hyperflâche Z.
4

^
4

3. dZ das gerichtete Hyperflâchenelement von Z :

4 4 3

dZ — da •

4 4

(da Hyperflâchenelement von Z, nk xk-Komponente der innern Normalen
4

bezilglich B).

4. dSy das gerichtete (2-dimensionale) Flâchenelement auf dem Schnitt S

4 g

d8r —- • 2 ck nh
dF *=o

Damit ist der zweite Integralsatz aufgestellt, und wir sind nunmehr in
der Lage, eine gegebene linksregulàre e-Funktion aus ihren Randwerten
auf einer ràumlich orientierten Flâche zu berechnen. Die in der end-

gûltigen Formel auftretenden Funktionen kommen auch in der ,,solution
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élémentaire* ' der Differentialgleichung ®(v) — 0 vor. Das ist ein Spezial-
fall eines allgemeinen Satzes27).

Bis jetzt sind wir immer von einer gegebenen, linksregulàren e-Funktion
ausgegangen, im nàchsten Kapitel werden wir die Randwerte auf einer

4

Hyperflâche Z vorgeben und nach der Existenz einer linksregulàren
4

e-Funktion, die auf Z dièse Randwerte annimmt, fragen.

IV. Das Randwertproblem der linksregulàren e-Funktionen;
die Randwerte des e-Potentials

3. Hauptsatz: Es sei gegeben eine (genûgend regulàre) râumlich orien-
4 4 4

tierte Hyperflâche Z. B sei der in III, 3 definierte Bereich der Punkte z.
4

Weiter seien auf Z vier (réelle oder komplexe) Funktionen rh (x0, xlt x2, xz)
4

(h 0, 1, 2, 3) gegeben. Dann existiert in B genau eine linksregulare
4 4

e-Funktion w(z), die auf Z die Randwerte

w(z) £ rh eh

annimmt.

Die e-Funktion w(z) lafit sich in der folgenden Weise aus den gegebenen
4

Randwerten rh auf Z berechnen:
Es sei

à /(r2/*//£r2 4\43 \ C
»<*> Tiff (-Tr) dZ &>»-&f

4 „2 S

dann ist
4 T 4

w (z) D p (z)

Bezeichnungen, siehe 2. Hauptsatz.

Beweis :
4

1. Es kann hôchstens eine Lôsung w(z) mit diesen Randwerten auf
4

Z geben; hatten wir zwei solehe Funktionen w und wx, so wurde fur

») Hadamard, S. 311.
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beide der 2. Hauptsatz gelten beziiglich derselben Randhyperflâche und
3 4

mit denselben Randwerten Erheh auf E. Somit sehen wir, dafi w =wx
sein mûBte.

2. Wir bilden mit den gegebenen Randwerten rh die e-Funktion
3 4

2Jrheh, die nur auf E definiert ist. Nun gehen wir in derselben Weise,
A=0 5

wie in III, 3 zu einer Hyperflâche È iiber und bilden die e-Funktion

p(z) p(z) - Ç 5 5 5

/ 0(z,C) dZ

dp 5

es gilt naturlich -~— 0 ; 0 und dZ sollen die bekannte Bedeutung

haben.
Wir behaupten, da8

5 4 T 5 T 4
w(z) w(z) — D p(z) D p(z)

die verlangten Eigenschaften hat. Auch w, wie p, ist von x± unabhângig.

w ist linksregular ; unter dem Intégral ist nur 0 von z abhàngig, somit

gilt:
4 4 5 5 1

Dw{z) =Dw(z) — --—s-4:7l2

/T5
A=0

rhe?i •

5 5 5 5 5

Es ist D D 5 (siehe II, 4) ; die „solution élémentaire' ' 0(2:, C) ist
5 #

5

als Funktion von z eine Lôsung der Differentialgleichung gU) (0) 0,
also verschwindet der Integrand, und es gilt :

Dw{z) 0

d. h. w(z) ist linksregular.
Ebenso einfach erledigt sich das Randwertproblem ; es ist

4

w(z) 0(zz,l)^ (Siehe 111,3).
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4 4

Lassen wir nun z gegen Z streben, so ist das Intégral auf der reehten Seite

beinahe dasselbe wie dasjenige liber (r) (III, 3) ; mir lassen wir hier z
4

gegen Z konvergieren und nicht umgekehrt, weiter ist noch die Normalen-
richtung umgekehrt. Das ândert — bis auf das Vorzeichen — nichts an

4

den dortigen Berechnungen, da ja Z und die Funktionen rh gentigend
regulàr vorausgesetzt werden. Damit erhalten wir

4tt2 lim w(z) 4jr2 ]£rheh
4 4 A=0

und der 3. Hauptsatz ist bewiesen. Im letzten Teil des Beweises wurde
4

wesentlich vorausgesetzt, da6 Z râumlich orientiert ist, fur zeitlich orien-
tierte Hyperflâchen sind dièse Berechnungen im allgemeinen nicht giiltig.

Wir wollen auch noch die Randwerte des e-Potentials p (z) studieren :

hierùber gibt vollstândig AufschluB der

4. Hauptsatz: Jede Komponente des e-Potentials p(z) ist eine Lôsungs-
funktion von 4

3f(«0 o

4

Auf der betrachteten Flâche Z verschwindet das e-Potential, und seine ersten

Ableitungen sind durch die Bedingungen

î)p(z) krheh (auf £)

verknilpft ; die Funktionen rh sind die Randwerte der entsprechenden Kom-

ponenten der linksregulâren e-Funktion w(z), die durch p(z) erzeugtwird.

Beweis : Der erste Teil des Satzes ist klar ; zweitens sind die Randwerte

von p (z) null, da
4 4 4

0 ~ r~3 und dZ ~ r4 sind fur z -> Z

4 7 4 3

Da8 drittens auf Z Dp(z) Zrheh gilt, haben wir beim Beweis des

3. Hauptsatzes eingesehen.

(Eingegangen den 20. Mârz 1947.)
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