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Funktionentheorie und Randwertproblem
der Diracschen Differentialgleichungen

Von Aporr KRiszTEN, Ziirich

Einleitung

Herr Rud. Fueter hat in einer Arbeit!) seine Methoden, die zur Theorie
der reguliren Funktionen einer Quaternionenvariabeln fiihrten, auf die
Diracschen Differentialgleichungen mit verschwindender Ruhmasse m
angewendet. Dies fiihrte zur Aufstellung von analogen Integralsitzen
(sie entsprechen dem 1. und 2. Cauchyschen Satz der klassischen Funk-
tionentheorie). Der zweite Integralsatz hat die Form einer Integralglei-
chung; es tritt, auBer dem Integral iiber den (zweidimensionalen) Schnitt
der gegebenen Hyperfliche mit dem charakteristischen Kegel des Auf-
punktes, noch ein solches erstreckt iliber die Wandung dieses Kegels auf.

In der vorliegenden Arbeit betrachten wir die kriftefreien Diracschen
Differentialgleichungen mit nicht-verschwindender Ruhmasse m. In ent-
sprechender Weise, wie fiir den Fall m = 0, stellen wir die beiden
Integralsitze auf, und, mit Hilfe der Hadamardschen ,,solution élémen-
taire‘‘ und unter Verwendung der Methode der ,,partie finie‘‘2) gelingt es,
die Integralgleichung im zweiten Integralsatz zu vermeiden. Der Funk-
tionswert im Aufpunkt 148t sich direkt durch die Funktionswerte auf
einer geeignet gewihlten Hyperfliche ausdriicken. Um die Berechnungen
zu vereinfachen, werden wir nicht die Funktion selbst aus ihren Rand-
werten berechnen, sondern eine Hilfsfunktion (das e-Potential) aus der
wir durch Differenzieren die Funktion sehr leicht erhalten.

Die folgende Arbeit gliedert sich in vier Kapitel, wovon die beiden
ersten vorbereitenden Charakter haben. So stellen wir im ersten Kapitel
die notwendigen Begriffe und Sétze iiber partielle Differentialgleichungen
2. Ordnung zusammen, ebenso im zweiten iiber Algebren mit einigen ein-
fachen Bemerkungen zu den Diracschen Differentialgleichungen. Im
dritten Kapitel wird die Funktionentheorie der Diracschen Gleichungen

1) Rud. Fueter, Die Funktionentheorie der Diracschen Differentialglei-

chungen, Comm. Math. Helv., vol. 16, S. 19.
2) J. Hadamard, Le Problédme de Cauchy et les Equations aux Dérivées
partielles linéaires hyperboliques (Paris, Hermann 1932).
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aufgestellt (erster und zweiter Integralsatz), und endlich wird im vierten
Kapitel das Randwertproblem dieser Differentialgleichungen gelost.
Herr Nef)? hat diese Fuetersche Methode verallgemeinert, und sie
auf hyperbolische und ultrahyperbolische Differentialgleichungen ange-
wendet. Bei der Aufstellung des 2. Integralsatzes ist er ebenfalls auf
eine Integralgleichung gestofen. Voraussichtlich werden die hier ver-
wendeten Methoden, angewendet auf die Nefschen Funktionen, zu
analogen Resultaten fiihren; mindestens im hyperbolischen Falle.

I. Partielle Differentialgleichungen zweiter Ordnung

1. Wir betrachten homogene, partielle Differentialgleichungen zwei-
ter Ordnung mit konstanten Koeffizienten ; die Gleichungen sollen von
der folgenden Form sein :

n Pu " uw | D, Ou
=— — > b u=0.)

¢ und b, sind (reelle oder komplexe) Konstante ; u ist eine (reelle oder
komplexe) Funktion der reellen Variabeln =z,,..., z,_,%). Setzen wir zur
Abkiirzung 2z = (z,,..., 2,;) und ¢ = (&,...,&,_;), so sind die

n
charakteristischen Hyperkegel von & die (r — 1)-dimensionalen Kegel :

T(2,0) = @ — &) — (@ — £)F — -+ — (g — E,)2 = O

{‘}(u) ist mormal-hyperbolisch, d. h. es tritt nur eine der zweiten Ablei-

tungen — hier diejenige nach x, — mit positivem Vorzeichen auf ; das
n ‘
bedeutet geometrisch, dafl I' den Raum in drei getrennt liegende Teile

zerlegt : Zwei innere Teile IZ">O (zo = 0) und ein duberer Teil f <0.

Die Charakteristiken spielen eine ausgezeichnete Rolle in der Hada-
mardschen Theorie ; wir wollen deshalb die Hyperflichen des Raumes
der z,,. .., z,_, beziiglich dieser charakteristischen Hyperkegel einteilen :

3) W. Nef, Funktignentheorie einer Klasse von hyperbolischen und ultra-
hyperbolischen Differentialgleichungen zweiter Ordnung, Comm. Math. Helv.,
vol. 17, S. 83. n

4) Die Indizes senkrecht iiber den betreffenden Symbolen (hier-in §) geben die Dimen-
sion des betrachteten Raumes (Variabelnzahl) an; die Indizes rechts unten (etwa ;.
dienen zur Numerierung dieser einzelnen Variabeln oder Funktionen.

5) Die betrachteten Funktionen werden nicht analytisch vorausgesetzt, doch sollen sie
»geniigend oft‘‘ stetig differenzierbar sein; so werden wir von den Losungsfunktionen
der Diracschen Gleichungen zweimalige stetige Differenzierbarkeit verlangen. Auf die
Frage der minimalen Bedingungen soll hier nicht eingegangen werden. |
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a) Eine Hyperebene heillt rdumlich orientiert, wenn sie jeden dieser
Hyperkegel in einer geschlossenen (n — 2-dimensionalen) Fliche schneidet
(eventuell in einem Punkt).

b) Ein Hyperflichenstiick heillt rdumlich orientiert, wenn dies fiir alle
ihre Tangentialhyperebenen gilt. (Die Hyperflichen sollen immer ,,ge-
niigend regulir‘‘ sein, speziell also in jedem Punkt eine eindeutig be-
stimmte Tangentialebene besitzen.)

¢) Im entgegengesetzten Falle heien die Hyperebenen und Hyper-
flachenstiicke zeitlich ortentiert.

2. In der klassischen Potentialtheorie spielt der Greensche Satz eine
grofle Rolle. Um das Analogon dieses Satzes zu erhalten, definiert man

n

n
den zu § adjungierten Differentialoperator @ :

n R2v "l 92y 2 ov
® @) = — — By, s ‘v
) oxl o o0x} kgo * ox, T o

Es gilt folgende Identitét

: » 3R, 2P,
”'3(“)““'6(”)—“5500‘+' e oz,
wobei
ou ov
B = (Ev———ax—ou)—l—bouv ,
k=1,....,n—1) .
P, = ___au v ~a—?f—u b.uv

Sei 2’ eine geschlossene, orientierbare Hyperfliche im Raume der «z,,...,
Z,_,; m, die Komponenten ihres inneren Einheitsnormalenvektors; H
bedeute das (n-dimensionale) Innere von 2, dann gilt der Greensche Satz

f’;f(”?’(“) —uG))dr = —f;-f(noPoJr- o +n,  P,_)do .

dr ist das n-dimensionale Volumenelement von H ; do das (n — 1)-dimen-
sionale Hyperflichenelement von X'

3. Um mit Hilfe dieser Formel die Losungsfunktion » von $(u) = 0
aus ihren Randwerten auf (einem geeignet gewihlten) X' zu berechnen,
miissen wir die Hilfsfunktion v geeignet wihlen :

a) v ist eine Funktion von zwei Punkten z = (z,,..., z,_;) und { =
(£os- - .» E,_4); 2 spielt die Rolle des festen Aufpunktes.
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b) v ist als Funktion des Punktes { eine Losung der adjungierten Diffe-

rentialgleichung (%(g)(v) = 0. Der obere Index ({) bedeutet Differen-
tiation nach den &,.

¢) Fir z = { wird v geeignet singulir ; nach einem Satz von Le Roux
und Delassus®) ist v auf dem ganzen charakteristischen Hyperkegel

f’(z, {) = 0 des Punktes z singulér.

Das Problem, eine derartige Funktion v(z, {) zu finden, ist fiir eine
Differentialgleichung mit konstanten Koeffizienten sehr einfach zu losen.
Die gesuchte Funktion ist die ,,solution élémentaire** der Hadamardschen
Theorie. n

Wir wollen zwei Spezialfille der Gleichung & (v) = 0 untersuchen :

e o02v 02v 2v
R A
in diesem Fall ist :
1 1
L e PR n=2
[I’(z, c)] 2 [fo‘“xo)2 — (5 —x)2— - — (En-l”_xn—-l)z] e

n
eine Losung von G®(v) = 0, mit der verlangten Singularitit in z = .
n
Die entsprechende singulire Losung von & (u) = 0 ist natiirlich mit der-

n
jenigen von & identisch.

n 2 2 2
b) ®(v)=av—_av_..._i3___]{2,)=0.

o} ox} ox2_,

Wir suchen eine Losung v(z, {), die nur von

0= V-—;:(;:_C‘)= V(fo —xo)2 — (51 — 22—+~ (bpmy — Tpr)?

abhiingt ; fiir v(¢) besteht die gewohnliche Besselsche Differential-
gleichung

d2v n—1 dv

— K20 =0 .
d92+g do K29=0

8) Le Roux, Thése, Paris 1899; Delassus, Ann. Scient. Ec. Norm. Sup. 3. ser. vol. 13;
oder im erwiahnten Buch von Hadamard, S. 102.
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n
Haben wir eine n-dimensionale Losung v gefunden, so erhalten wir die

+2
(» + 2)-dimensionale Losung nv als

n
n+2 ] do
e de
Es geniigt also, die Félle » = 1; 2 zu betrachten. Uns interessieren nur
die geraden Dimensionen. Fiir n = 2:

dz'v 1 dv
——— — K2v =0,
dg? 3 e de

existiert (im wesentlichen) eine regulire und eine logarithmisch singulire
Losung ; die letztere ist die gesuchte Funktion

2
v=Jy(pK)-log o + w (w regulir).
Es ist
= % : :
Jo(x) = E W , eine Bessel’sche Funktion.

4 2
Die fiir uns wichtige Losung » erhalten wir aus » durch eine einfache
Brechnung?) :

[ K? 4
7(TP) K

4 ., [ K% & 4 .
v = - + : y’( 1 F) - log I' + reg. Funktion.
r
Es bedeutet
. & R /1%
/ —_ .

man sieht sofort, daB j eng mit der Besselschen Funktion ./, zusammen-
héangt. .

Diese Funktion v wird spédter noch eine Rolle spielen, da sie zur vier-
dimensionalen Gleichung

4 4 *?v v v v
— Gy =22 TV _ TV PV gy,
=00 =r ~ % " ~wm K

gehort. Ist K = 0, so kommen wir zum Falle a) zuriick.

") Hadamard, S.150—151.
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c) Aufler der oben definierten Differentialgleichung {}(u) = 0 wird

die folgende Differentialgleichung ‘{';(u) = 0 und ihre Adjungierte wich-
tig sein : :

5 u ’u 2u ’u o*u ou
_ _ _ _ _ 2K _Rry=—0
5 0x? o0x3 ox2 ox?2 ox2 0%, * ’
5 2P 2P PP 2d 3P oD
D) = — — - — 2K— — K29 =0.
©@) ox? ox2 ox2 o0x2 ox2 T ox,

5
Wir fiihren ® auf die Form des Falles a) zuriick durch die Substitution
D = &%y ;
fiir die Funktion v besteht folgende Differentialgleichung

o%v %v 0%v v 2v

— — — — =0 .
o2 ox? o0x2 ox? ox2

Setzen wir fiir » die schon berechnete ,,solution élémentaire“ der obigen
Gleichung ein, so erhalten wir

& eECa—1z4) eK(Ea—24)
[(50"“‘"30)2‘“" * e “‘(54—'“’4)2]8/2 [F(Z,C) ]8/2

Hier sind die beiden singuldren Loésungen von ﬁ%(u) = 0 und (% (D) =0
nicht mehr identisch ; es wechselt K in — K. Dies wird behoben, wenn
wir gleichzeitig z und { vertauschen 8).

Betrachten wir diese konstruierten, singuldren Losungen, so sehen wir,
dafl (fiir n > 3) die im Greenschen Satz auftretenden Integrale nicht
existieren. Diese Schwierigkeit wird fiir ungerade Dimensionen durch
Einfiihrung der ,,partie finte‘‘ iiberwunden.

4. ,,Partie finie?®).
a) Einfache Integrale: Wir gehen aus von dem Integral

b
1@ g

Vb — x

a

8) Siehe Hadamard, S. 243—244.
9) Hadamard, S. 184—211.
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um dieses nach b zu differentieren, miissen wir eine andere Integrations-
variable einfithren. Es gibt eine Moglichkeit, hier direkt zu differentieren :
Ist f(x) analytisch, so betrachten wir an Stelle des obigen Integrales das
halbe Schleifenintegral, erstreckt von @ um b zuriick zu a. Ist f(x) nicht
analytisch, so gehen wir folgendermafen vor: Zwar existiert der Limes

fir x gegen b von
x

[ .

nicht ; aber dafiir der Limes von
f 1@ gy f®
(b — x Vb — x

Das ist im wesentlichen die Ableitung des Integrals, wenn wir auf die
Singularitdt keine Riicksicht nehmen. Etwas allgemeiner existiert auch
der folgende Limes z — b

z

f () H(x)
f(b_x)% A sl

a

H(z) ist eine beliebige Funktion von z, die nur den beiden Bedingungen
geniigen mul :

1) H ist in x = b stetig und stetig differentierbar.

2) Es gilt H(b) = —2f(b).

Unter den obigen Bedingungen ist der Limes unabhéngig von der Wahl
der Funktion H (z). Wir fiithren die folgende Schreibweise ein

z | .

f @) CHE@) | _ f @)
‘/‘(b——:tc)a/2 s Vb —x f(bw )’ ok

a a

lim
x=b

und nennen diesen Limes ,,partie finie** des Integrales (1). Kurz gesagt
besteht diese Methode darin, gebrochen singulirel?) Glieder wegzu-
streichen.

10) Eine Funktion heifle ,,gebrochen singular‘ in # = b, wenn sie sich fur z—>b

verhalt wie 1

(b_w)p+1}

pP=0,1,2,...) .
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Diese Definition soll auf das folgende Integral ausgedehnt werden

lir bf(b f(x)m_,/z x . (p=1,2,...)

Definition : Die partie finie des obigen Integrals ist, wenn f(z) in
x = b p-mal differenzierbar ist, gleich dem Limes der folgenden Summe

z

b
/(@) H (x) f () .
f(b _— x)?+1/2 d + (b —_ x)l’—llz = f (_b_ — m)IH“l/z d ’

a a

lim
z=b

es bedeutet H (x) eine beliebige Funktion, die die Bedingungen erfiillt :

1) Der betrachtete Limes existiert.
2) H ist in x = b p-mal stetig differenzierbar.

Die, bis auf die obigen Bedingungen, beliebige Wahl der Funktion
H (z) hat auf den Grenzwert keinen EinfluB}, da die erste der beiden Be-
dingungen H(b), H'(b),..., H®-V(b) festlegt. H(x) kann sich also
(wegen 2) nur um eine Funktion dndern, die (b — x)? als Faktor ent-
hilt ; aber im Limes verschwinden alle diese Glieder.

Differentiation nach b : Es gilt1!)

%— ' e dx=—(2’+%)

(b — z)p+ e

b
f ()
[ 5 e

a

3

Das Glied, das wir durch differenzieren nach der obern Grenze b erhalten,
fillt weg, da es gebrochen singulir ist ; solche Glieder streichen wir aber
weg.

Es sollen — als Beispiel — einige derartige Integrale betrachtet wer-
den ; Integrale, auf die wir bei den Berechnungen des zweiten Integral-
satzes stoflen werden.

Es sei

Uy
I, = f __du (es wird u, > Va vorausgesetzt) ;
(u? — a)rt'/2
Va

alle I, kéonnen wir aus I, herleiten

11y Hadamard, S. 194.
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IV e
Es ist
Uy
du u -+ Vu:—a
I, — f T e log — VEI = —1loga -+ log (u, +Vui—a).
Va
Das ergibt
i, 1 1 —1 1 1
da 2¢ u,;+Vui—a 2Vui—a 20 2(u, Vui—a+u®—a) ’

a1, 1 u1+2]/u1—-a

da*  2a 4l/ul—a (fu,ll/u1 a—l—ul~—a)2

Wir wollen nur die Integrale I, und I, berechnen ; dies geniigt fiir unsere
Zwecke

du dl, 1 1
I].: = 2 =2 T e -
V“a (u? — a)’? da @ u, l/uﬁ——a, +ut—a
7= jl__@?____édzl"_.l_s_?.__ u, +2Vul—a
’ J w*—a) 3 da °® ( @@ Vu—a@wVui—a-+ui—a)|

Als zweites Beispiel betrachten wir

+Va

ehu . i f )
f @—ud)*2du d 0 Va, — u2 ’
a

—~Va -

12) Hadamard, S. 206—207.
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damit ist das Problem auf die Auswertung eines gewthnlichen Integrals
zuriickgefiibrt, das wir durch Reihenentwicklung von e** leicht berechnen
konnen. Wir brauchen nur die geraden Potenzen zu betrachten, d. h.
Integrale der Form

+Va

utn (en—1)(2n—3)...5-3
j: Va——u fl/l——xzdx— 2" n! "

~Va

Eingesetzt erhalten wir

+Va \ 22
eru b nan 12
-“'—;:-————du =4 _ 3 ._._a) .
f Va — u? ,.go 227 (1 1)2 *1 (4 ’
—Va

7 ist die in I, 3b definierte Funktion, wie der Vergleich der beiden Reihen-
entwicklungen sofort zeigt. Fiir das betrachtete Integral ergibt sich somit

+Va

eru d A2 A2
e A

—Va

b) Mehrfache Integrale : Wir fiihren die mehrfachen Integrale auf ein-
fache, sukzessive Integrationen zuriick. Es sei

%, Y, 2)
[l e

ein gewisses, dreidimensionales Integral ; es soll nun die Fliche G = 0
ein Teil der (oder die ganze) Begrenzung des Integrationsgebietes 7' sein.
Wesentlich ist dabei vorausgesetzt, dafl dieser Teil von G = 0 keine
singulidren Punkte enthélt ; d. h. es darf nicht vorkommen, daf gleich-
zeitig alle ersten partiellen Ableitungen von ¢ in einem Punkt von G = 0
verschwinden. {\

2

Wir wollen voraussetzen, daf —aa—f—nirgends b}

|

auf G = 0 verschwindet und weiter, dal} i
jede Parallele zur z-Axe G = 0 in einem |
einzigen Punkt z = 2z, schneidet ; und zwar R | R
unter einem nicht-verschuwindenden Winkel. _i

S

~N

- -
-
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In diesem Fall konnen wir schreiben G = @, (z — z,). Vorldufig sei auch
noch vorausgesetzt, daf3 die an die Fliche G = 0 anstoBenden Teile R
der Randfliche von 7 einen Zylinder parallel der z-Axe bilden. Jetzt
definieren wir

] z
/ /
fffmdﬂ?d@/dZ'—"f dxdy ‘/‘Wdz
T 21

Z

/
:ffdx dy f Gi7+1/a(z__zl)l7+l/2 dz .

31

Damit dieser Grenzwert existiert, miissen wir weiter voraussetzen, daf3
G p-mal stetig nach z, y und 2z partiell differenzierbar ist ; in der Um-
gebung von G = 0. Ebenso fir f(z, v, 2).

Eine andere Definition, die zu demselben Resultat fiihrt, ist die fol-
gende : Die Umgebung 7', von G = 0 werde vom Integrationsgebiet 7'
durch eine Fliche (7)

G=vy(z,9,2,¢)

abgetrennt (siehe Fig.). y, mitsamt den partiellen Ableitungen bis zur
p-ten Ordnung, muBl dabei gleichmdBig mit ¢ gegen Null konvergieren ;
also die Flache (7) gegen die Fliche G = 0. Das verbleibende Stiick T,
von T enthilt keine singuliren Punkte des Integranden mehr ; somit
existiert das Integral iiber 7',, nicht aber dessen Limes fiir ¢ — 0. Doch
148t sich die Konvergenz erreichen, indem wir einen Ausdruck der Form

H(8) L H0+H18—l— o« ¢ +Hp_1£p—1

P =T (H; Ortsfunktionen)

addieren.

Dadurch sind die Funktionen H,,..., H, , vollstindig bestimmt.
Diese neue Definition enthilt die erste gegebene Definition??) und ist un-
abhéngig von der Wahl der Koordinatenaxen relativ zur Fliche G = 0.

Wir wollen die notwendigen und hinreichenden Bedingungen fiir die
Fliche G = 0 aufschreiben :

1) G = 0 ist regulir ; jede Koordinate — als Funktion der anderen —
hat stetige partielle Ableitungen bis zur p-ten Ordnung.

13) Hadamard, S. 197.
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2) Jeder an G = 0 anstoBlende Teil R der Begrenzung hat dieselben
Eigenschaften.

3) G = 0 und die anstoBenden Teile der Begrenzung beriihren sich in
keinem Punkte der Schnittkurve.

Besitzt G = 0 einen singuldren Punkt z, so miissen wir diesen durch
ein kleines Flidchenstiick X' ausschneiden. Dabei muf3 der Radiusvektor
mitsamt seinen p-ersten Ableitungen nach den Parametern der Fliche im
Limes X gegen z verschwinden. Der Limes (wenn er existiert) ist unter
diesen Voraussetzungen unabhingig von der speziell gewdhlten Fliche X'.

Differentiation nach einem Parameter : Tritt der Parameter in ¢ auf, so
kénnen wir das Glied, das wir in der Ableitung dadurch erhalten, weg-
streichen ; wir diirfen dies ja auch bei den einfachen Integralen tun, und
auf diese haben wir die mehrfache Integrale zuriickgefiihrt.

Wir betrachten eine Integralformel (etwa die Greensche Formel) der

Art
£ =141 -

Der Integrand unter dem Doppelintegral (eventuell auch im dreifachen
Integral) sei von der Form
fl,y,2)
Gp"l'% ’

Setzt sich S zusammen aus einer Fliche R und einem reguliren Teil der
Fliche G = 0 (siehe Figur), so wollen wir ¢ = 0 durch die Fliche (7):
G = y(z, y, 2, ¢) ausschneiden ; die Berandung bestehe nun aus B, und
(z), das Innere sei 7';,. Esist:

=i

Die Integrale iiber R, und 7', unterscheiden sich also nur um eine Grofe,
die in ¢ (fiir ¢ = 0, d.h. (v) = @) gebrochen singulir wird. Lassen wir
() gegen G konvergieren (¢ — 0), so geht die urspriingliche Integral-
formel in die folgende iiber :

[0 =717

in welcher das Integral iiber G' = 0 nicht mehr auftritt4).

18) Hadamard, S. 204—205.
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5. Principe de descente.
Es sei gegeben eine Losungsfunktion » der Gleichung
o*u 2u

o §:~-3— § ~——+cu-—0

Ly

& () =

dann ist ¥ — formal — auch Losung von

n-+1 n azu au
= — by — =0 .
B =F) - 55 +bug
Dabei definieren wir: u(xgy,..., ,_;, z,) =u(Zg,..., Z,_;); also ist u
auf allen Parallelen zur x,-Axe konstant. ntl

Umgekehrt liefern uns die Losungen der Gleichung & (u) = 0, fiir

die axu =0 gilt, genau alle Lésungen von $(u) = 0.

Il. Algebren; die Diracschen Gleichungen

1. Wir fihren die Cliffordschen Zahlen c,, ¢,, ¢,, ¢;, ¢, ein. Thre Multi-
plikationstafel ist definiert durch :

CoCi = CxCop=C;, ; Ch=2¢ (£k=0,1,2,3,4);

Ckci=———ci6k (k,i21,2, 3,4; i#k).

Wir definieren die konjugierten GroBen c¢,, ¢,, ¢y, €5, €, als:
Co:———CO, Cl=—01, 02:""‘62, 03:‘—‘03, 042—"’64.

Diese Cliffordschen Zahlen bilden ein Linearsystem £, einer Algebra €,
mit den Basiselementen c¢,,...,¢,, €1C,...,C3C4, €1C3Cq,..., C3C5C4,
€1C5C3C,.

Es sei a = ay¢y + a,¢, + ay¢, + a;¢;, + a,¢, eine GroBe aus £, mit
reellen oder komplexen a,, dann ist die Norm von a

n(a) =aa =aa=al —a —a? —a} —al .
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Man verifiziert leicht, daB die Matrizen

1000 00 0-i 00 0-1
o100\ [o0o0-io0 0010\,
““loo10/’ Noiool’* |\ 0100]’
0001 i 00 0 100 0

0 0-i 0 1000

o_[000i). (o100

i 000 0 0-1 0

0=i 0 0 00 0-1

eine Darstellung dieser Cliffordschen Zahlen bilden. Damit ist automa-
tisch bewiesen, daBl die Algebra € assoziativ ist.
Wir wollen einen einfachen Hilfssatz iiber die GroBen aus £, beweisen.

Lemma: Es seien

4 4
a=XYac,; b= 3Ib.c, (ax,b, beliebig komplex),
k=1

k=0

dann folgt aus der Gleichung

ab =0 auch die Gleichung ba =0 .

4 4
.BGWE’I:S.‘ ab == 60 2 akbk + 2 Cick(aibk - akbi) + E Ck (aobk + akbo) y
k=0 k=1

i<k

4 4
ba = c, kZ a;b, + X c;e(bja, — bya,) + k}: ¢ (bo; + bray) .
=0 =1

1<k

Da die auftretenden hyperkomplexen Grofen linear unabhingig sind,
miissen nach Voraussetzung alle Koeffizienten des ersten Ausdrucks, also

auch der zweite Ausdruck ba, verschwinden.
Mit Hilfe des Linearsystems {, konnen wir die Punkte des reellen fiinf-

5
dimensionalen Raumes R darstellen als

2 = :Vj Z3C (z, reelle Zahlen).
=0
4
Ebenso durch die GroBen c,,...,c; diejenigen des reellen R:

2 = > z,¢, (2, reelle Zahlen).
2=0
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- 2. Aufler L, fiihren wir ein zweites Linearsystem £, der hyperkom-
plexen GroBen e,, e, ¢;, ¢; ein?%). Wir definieren die ¢, durch die Matrix-
darstellung :

1000 0000 0000 0000
0000 1000 0000 0000
0000 ““{ooo00]” 2 l1000)” ®* {0000
0000 0000 0000 1000

Die Groflen ¢; aus £, und die GroBen e, aus £, konnen nun nach den
Regeln der Matrizenmultiplikation miteinander verkniipft werden ; uns
interessieren nur die Grofen der Form c.e,. Alle diese GroBen liegen
wieder in £,; wenn wir nimlich eine Spaltenmatrix (e,) von links mit
einer beliebigen Matrix (c,) multiplizieren, so erhalten wir wieder eine
Spaltenmatrix. Es ist somit £,, beziiglich der Multiplikation von links,
unter £,, und damit unter € invariant.

3. Dre Diracschen Differentialgleichungen :
Wir betrachten 4 (reelle oder komplexe) Funktionen u, der 4 reellen
Variabeln z,, z,, z,, z;:

uh(xﬂ’ xl’ x2’ xa) (h - 03 1: 2’ 3)

und fassen diese mit Hilfe von L, zu einer e-Funktion der hyperkomplexen
Variabeln

k=0
zusammen :
4 3
wR) = X uze,
h=0

Definition: Die e-Funktion w = f (3) heift in einem Punkt 2 des vier-

. L] ‘ i .
dimensionalen Raumes R linksregulir, wenn

3
e, - w® +K.c,-w=0
h=0

ist. Dabei bedeutet s ou
k

(h) —
wh = 3 e 3
k=0 Ly

?

und K ist eine reelle oder komplexe Zahl®).

15) Siehe die Ziircher Dissertation: P. Bofhard, Die Cliffordschen Zahlen, ihre
Algebra und ihre Funktionentheorie. Zirich 1940.

16) £ und £, sind Algebren iiber dem Korper der komplexen Zahlen.
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4 4
w=f (2) heift in esnem (vierdimensionalen) Gebiet H des R linksregulir,

4
wenn dies fir jeden Punkt z aus H gilt.

Setzen wir in diesen Regularititsbedingungen fiir die Konstante

m-cC

K=1. 5

so erhalten wir die Diracschen Differentialgleichungen'?). Somit sehen wir,
daB die linksreguldren e-Funktionen — immer fiir diesen Wert von K —
mit den Losungsfunktionen der Diracschen Differentialgleichungen iden-
tisch sind.

Diese Regularitdtsbedingung soll folgendermaflen abgekiirzt werden :
Es sei

dann 148t sich die Bedingung der Linksregularitit schreiben :

4
Dw=0.

Weiter setzen wir entsprechend

) _
+ ¢ K

es ist also
2 52 52 2 32

4 4 4
n(D) 8= %2 " ko

— K2,

da K als konstant vorausgesetzt wurde. Dabei haben wir ohne weiteres
die Haupteinheit ¢, mit 1 identifiziert. Wegen des Assoziativgesetzes in
L, und L, (Matrizenmultiplikation) folgt fiir die linksreguldren e-Funk-
tionen :

.&ﬁw=®5w=%wn7§%®m=w,

d. h. jede Komponente u, einer linksregulidren e-Funktion ist eine Losung
der Wellengleichung

Fw) =0 .

17) Siehe die zitierte Dissertation S. 42.
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4. Diese linksreguliren e-Funktionen sind somit eng verkniipft mit

dem Differentialoperator 34. '{7} ist ein partieller Differentialoperator ge-
rader Dimension. Nach den Ausfithrungen von Kapitel I wird es ratsam
sein, zur nédchsthoheren, ungeraden Variabelnzahl iiberzugehen ; wir be-
trachten also folgende formale Verallgemeinerung des Differentialopera-

tors 14): Es sei

5

=§ +C4 ’

z, ist eine reelle Hilfsvariable. Da dies nur eine formale Verallgemeinerung
sein soll, treffen wir die Abmachung, daf3 die von uns betrachteten e-Funk-
tionen trotzdem immer nur Funktionen der ersten vier Variabeln =,
Z,, ,, ¥; sein sollen; d. h. wir setzen fiir alle Komponenten u, der
e-Funktionen

Up(To, Zy5 Xy, Xy, Ty) = U(Ty, Xy, Tp, Xg)

identisch in x,. Somit 148t sich die Bedingung der Linksregularitit auch
schreiben als

-
B4

Dw =10, dajaimmer w'¥ =0 gilt.

5
Wissen wir umgekehrt von einer e-Funktion, dal Dw = 0 und w® =0,

4
so gilt auch Dw = 0; also ist w linksregulir.

5
Wir fiihren hier ebenfalls den konjugierten Operator D ein

5 4 _ 0
D= c¢— +c¢,K

k=0 0%,

Mit Hilfe von 13 bilden wir

2 2 2 2 2 !
@ @@ * ) &

5 5
Dy=DD = — — — —
n([D) ox2  0x} 02l Ox;  Ox} oz,

Somit sind die Komponenten der linksreguliren e-Funktionen Losungen
der (ungrad-dimensionalen) partiellen Differentialgleichung

§(u)=0 .
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1. Integralsatze
1. Adjungrert-reguldre c-Funktionen :

Unter einer c-Funktion V der hyperkomplexen Variabeln
5 4
2= 3 X,C
k=0

verstehen wir die Zusammenfassung von fiinf (reellen oder komplexen)
Funktionen V, (h =0, 1, 2, 3, 4) der fiinf reellen Variabeln z,, z,, z,,
%y, , in der Form

5 4
V=F@z)= X V,c, .

h=0

Wir definieren den zu

adjungierten Operator

k=0 k
ebenso
P—vs sk
et ’EO Gk ”a—x_k -_ 04 .
Daraus folgt
5 5 5 02 02 02 02 02 0
EY=FKF = - — o~ e 2K — — K2 |
" (H) ox2 022 02 o0x2  0ad + 0z,
also
5 5
n(l)=06, %

d. h. gleich dem adjungierten Operator (im Sinne der partiellen Differen-
5 5
tialgleichungen 2. Ordnung) von & = n(D).
Definition: Die c-Funktion V = F (2) heifit adjungiert-linksreguldr 1m

Punkte g, wenn X
EV=0;

entsprechend adjungiert-rechtsreguldr, wenn

5
VE=0.

18) Immer nach der in Kapitel I eingefiihrten Bezeichnung.

3560



5

Dabei treffen wir die folgende Abmachung. Steht der Operateur (E)
hinter der Funktion (V), auf die er angewendet werden soll, so werden
wir dies durch eine eckige Klammer andeuten :

[Vﬁ)]:—: Ty, — Vo K .
h

=0

Weiter bedeute etwa :

[Vﬁw] - [VE5] w4V [é w] -

E Vi ¢, — V%Kiw-}- Vg Echw(h)___c4sz ;

V ist eine c-Funktion, w eine ¢- (oder e-) Funktion.

Hilfssatz : Die adjungiert-linksreguliren c-Funktionen V sind auch ad-
jungeert-rechtsregulir ; jede, in etnem einfach-zusammenhingenden Gebiet
5
des R, adjungiert-regulire c-Funktion V besitzt ein skalares Potential P,
d. h. es existiert eine (reelle oder komplexe) Funktion @ derart, daf

V—E® und G(® =0.

5
Umgekehrt erhalten wir so aus jeder Losung @ von ® (D) = 0 eine adjun-
giert-requldre c-Funktion V.

Bewess : Der erste Teil des Satzes folgt sofort aus dem Lemma von 1T, 1,

5
angewendet auf ¢ = E und b =V. Die Existenz von @ sehen wir leicht
ein, wenn wir die Regularitidtsbedingungen ausschreiben :

oV, v, o oV, v,

oz, 0x, 3x2_8x3 84+KV4*—0; (1)
o fine e B oo, Bt
ZZ._W+KV4_0,2V 3Z+KV4_0 32 aV+KIa—~0.
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Diese Gleichungen — mit Ausnahme von (1) — sind die Integrations-
bedingungen fiir die Existenz einer Funktion @, fiir die bei gegebenen ¥V,
gelten soll

oD oD oD 0P od
e O Tl Y T m, T T am T TG

Wegen der Gleichung (1) muBl @ eine Losung von (55') (@) = 0 sein; die
Umkebrung ist bei Verwendung der Operatorschreibweise selbstver-
standlich, da

5

5 5
EE=6 .
2. Der erste Integralsatz :

4
Wir betrachten gleichzeitig eine c-Funktion V(g) = X V,c, und eine
h=0

e-Funktion?®) w(z) = 2:' uye,; sind beide Funktionen in einem fiinf-
h=0 5

5
dimensionalen Gebiet H und auf dessen Randhyperfliche X stetig und
stetig differenzierbar, so kénnen wir schreiben
J Veyw)y® dr = — Ve, m,w do |
B 3
wobei x, die z,-Komponente des inneren Normalenvektors (Linge = 1)

5 5
von 2, dr das Volumenelement von H und do das Hyperflichenelement

5
von X ist. (Die Indizes ,,5‘ beziehen sich nie auf die Dimension des Ge-
bildes, sondern immer auf diejenige des betrachteten Raumes). Wir

5 4
setzen dZ = X chnhdg' ; durch Summieren iiber » von 0 bis 4 erhalten wir
h=0
4 5
3t (Ve, w)™ dr — _.fV iZw .
h=0

5
H

Nach unserer Operatorschreibweise ist

4 5 5
also

3 (Vchw)‘h’z%[V(D—i— B ] %V[D+ E)w] +%[V(D+ E)]

5
19) Zur Definition im R siehe II, 4.
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Anderseits ist
5

5 5
D:%(D—I‘E) +-K64 ’
5 5 5
E=1D+E)— Ke, .
Indem wir VKc,w addieren und subtrahieren, erhalten wir
4 5 5
3 (Ve,w)® = V[D w] + [VE] w ;
h=0

den umgeformten Integranden setzen wir wieder ein
5 5
f% V[Dw] —|—[VE]w
u

5
1. Hauptsatz: Die c-Funktion V ser in esmem Gebiete H und auf seinem

drz-——-—deZ%w .
5

d

5
(geniigend reguldren) Rande X' adjungrert-regulir ; entsprechend ser die
e-Funktion w dort linksreguldr. Dann gilt

[VdzZw=o0.
5

b

5 4
Dabei bedeutet dZ = X m, c, do : do ist das (vierdimenstonale) Hyper-
h=0

flichenelement von X und =, die x,-Komponente der innern Hinheitsnor-
) h po
5
malen von X.

5 5
Beweis: Esist Dw = V E = 0, nach der obigen Formel ist der Satz
bewiesen.

3. Der zweite Integralsatz :

Im Hilfssatz (II1, 1) haben wir bewiesen, dafl jede adjungiert regulire
c-Funktion ein skalares Potential, d. h. eine Darstellung der folgenden
Form besitzt :

V_E® mit G@=0.
Um aus dem ersten Integralsatz den zweiten zu erhalten, miissen wir fiir

V eine geeignete Funktion einsetzen. Wir stellen uns das einfachere Pro-
blem, das zugehorige @ zu suchen ; es liegt nahe, als @ die ,,solution
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5
élémentaire’“ von ® (®) = 0 zu wihlen. Diese wurde im Kapitel I, 3b
berechnet :
5 5 eK(gd_zi) eK(§4—-x4)
Q(z’c): 5 5 5 1% 3y °
[P(z’ 5)] [(Eo—xo)z“(fl‘“ N (54“‘5"4)2]

Daraus erhalten wir die Funktion V als

V=E90 .
Wir wollen V nicht explizit berechnen ; wir werden sehen, daB3 dies nicht
notig ist. X
V wird auf I" gebrochen singuldr ; somit wihlen wir folgendes fiinf-
dimensionales Integrationsgebiet fiir den ersten Integralsatz : Wir gehen

aus von einer riumlich orientierten Hyperfliche jt‘ (also einer dreidimen-
sionalen Fliche im f‘é); 5] sei geniigend reguldr. Wir betrachten alle
Punkte é, deren charakteristischer Hyperkegel f (é, f‘ ) (d. h. dessen einer
Ast, es sei derjenige mit &,>x,) mit ﬁ’ , oder einem Teil von 24' , eine
geschlossene Hyperfliche im I% bildet. Den Bereich dieser Punkte z
nennen wir B‘" Durch jeden Punkt von b legen wir eine Gerade parallel

4
zur z,-Axe, d. h. wir erweitern den R durch die zu ihm senkrechte Rich-

5 5
tung x, zu einem R. Auf diese Art erhalten wir eine Hyperfliche 2, die

natiirlich ebenfalls regulédr??) und rdumlich orientiert ist. Entsprechend
5
gehen wir zu dem charakteristischen Hyperkegel I’ (2, f ) der Punkte 2
4
iiber ; der Aufpunkt 2 soll also im R verbleiben :

151(;,2) = (fo—xo)z“‘“(él*“%)z”‘(52”‘“3’2)2"“(53”‘333)2—“52 = 0.

4 5
Es ist klar, da8 die obige Eigenschaft der Punkte zin B beziiglich 2
und 15" erhalten bleibt.

20) Bedingungen I, 4 b, p = 2.
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Wir konnen jetzt die vierdimensionale, geschlossene Hyperfliche im

5
R definieren, die wir zur Aufstellung des ersten Integralsatzes verwenden
wollen : Die Hyperfliche setzt sich zusammen aus demjenigen Teil des

4 5
charakteristischen Hyperkegels von z aus B: F(;, f) = 0 (d. h. dessen
5
Ast &,>z,), der mit einem Teil von 2 eine geschlossene Hyperfliche

5 5
bildet, und aus diesem Teil von 2. Der singulire Punkt 2 auf I" muB
durch eine benachbarte, reguldre Hyperfliche (7) ausgeschnitten werden.

4 4 4
Weiter setzen wir voraus, dafl die e-Funktion w({) in B und auf X
linksreguldr ist ; nach der iiblichen Verallgemeinerung also auch im

5 5
fiinfdimensionalen Innern der durch I" und X gebildeten, geschlossenen
Hyperfliche, ebenso auf diesen beiden Hyperflichen im R.

-
Das gewohnliche Integral iiber diese Berandung, mit V = E @ als
Integranden, existiert nicht ; hingegen seine ,,partie finie* :

j~ V-dé-w::O.

5 5
S+ I+ (7)

5

Das Integral iiber die Wandung des charakteristischen Hyperkegels I
fillt nun automatisch weg, da der Integrand gebrochen singuldr ist?!).

Damit erhalten wir :
5 5
fV~dZ-w:-— _ fV.dz.w .
g

()

Unser Ziel ist es, (t) gegen 2 konvergieren zu lassen ; es ist klar, daf3 der
Limes der linken Seite existiert und eindeutig — also unabhéngig von
dem speziell gewdhlten (7)22) — ist. Der Einfachheit halber wihlen wir

5
deshalb als (7) denjenigen Teil einer Hyperkugel (im R) um é, der inner-
5
halb des betrachteten Astes von I" liegt. Wir diirfen den Radius nicht zu

5
groll wihlen, damit (7) mit 2 keine Punkte gemein hat 23).

21) Beweis: Siehe I, 4b.
22) Bedingungen fiir die Hyperflache (7): I, 4b.
23) Berechnung fiir allgemeines (7): Hadamard, 8. 220—227.
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Wir fithren auf diesem Hyperkugelteil geeignete Koordinaten ein :

Eg — Ty =1-CO8 ¢, O<t1<%—
& — %y =r-sini,-sin i, " n
— 5 <t< g
&, — X, = r-sin t;-cos #,-8in I,
7 7
—5 ShSs g
&y — x5 = r-sin ;- cos t,-cos t,-sin £,
& — xy, = r-sint,-cos ty,-cos ;- cos I, 0 <¢t, < 2n

Das Hyperflichenelement von () ist :
do = r*-sin3¢,-cos? t,- cos t,-dt, - dt,-dt,-dt, .
Da die x, die Komponenten der inneren Normalen der betrachteten

Hyperfliche sind (also auf (z) von 2 weggerichtet), gilt :

5 4
4 C__.z
Enkck:_ ’
k=0 r

Somit :
5 5 4 .
dZ = (¢ — z)-73-sin3 ¢, - cos? t,- cos t,-dt, - dt,- dt;-dt, .

Betrachten wir weiter die Funktion

(S I Y

b7

ohne diesen Ausdruck vollstindig zu berechnen, sehen wir, daB er sich
zusammensetzt aus Gliedern proportional —* und solchen proportional
r-3. Im Grenzwert r — 0 geben nur die Glieder proportional r—* einen

L

5
Beitrag, da dZ proportional 7* ist. Diese Glieder sind
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Damit nimmt der Integrand die folgende Form an

722 (E—%y) [ (£52,) C1+(Ex=5) Cot(E5-25) Ca+E4€4]

.sin3 ¢, - cos2 ¢, - cos £, -
r2. (cos 2t,)": 1 2 ts

—3

Lt - dty- diy-dty - K50 w(0)
Auf ({) gilt ,,im Wesentlichen*

3-eK§4-'w(Z') = 3-w(;) :

,,Jm Wesentlichen‘‘ bedeutet, die vernachléssigten Groflen und deren
Ableitungen nach den ¢,,...,%, bis zur zweiten Ordnung verschwinden
gleichzeitig mit . Somit hat diese Vernachlidssigung fiir das Integral iiber
(r) im Limes keinen Einflu. Machen wir diese Vernachlédssigung, so
sehen wir, da} die Integration nach ¢,, {;, und ¢, simtliche Glieder, die im
obigen Integranden auftreten, zum Verschwinden bringt, mit Ausnahme
des ersten 72 im Zahler ; wir erhalten

™
4 3
sind ¢,

— 62
& (cos 2t,)":

dt, - w(;) .

Es sei u = V2 cost,, dann ist der Integrand

1 u2 — 2
— s 5 cdu .
2V2 (ur—1)"

Eingesetzt in das Integral :

— 37:2 f;(uz__l% - @ 1)5/ gdu w(z

__ 3a®

ZIla_l u = V3) — Lia=1,u,— V) w() .

Bedeutung von I, und I,: Siehe I, 4a. Der Ausdruck in der Klammer
2
hat den Wert — K—g——— Somit erhalten wir als endgiiltiges Resultat fiir

den Limes r =0: — 4n2w(z), und damit die Formel

w(é’)z—_?ly—iz— f[l%@q)]d%w(f) .

5
by
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3. Damit ist das Problem, die e-Funktion w(z4) aus ihren Rand-

werten auf }‘i' zu berechnen, gelost. Es tritt aber eine Hilfsvariable &, auf,
die nichts mit der betrachteten Funktion w zu tun hat ; diese Variable &,
soll noch weggeschafft werden. Berechnen wir V explizit, so erhalten wir
sehr komplizierte Ausdriicke und Rechnungen, wir schlagen deshalb
einen andern Weg ein.

Es gilt 1_‘,;;(;) D — — 'E(z) b |

wie man sofort aus der Form von @ ableitet. @ ist die einzige von z ab-
hingige GroBe unter dem Integralzeichen, d. h.

(Do o] azwdy= — [ Do dazwd) | .

Weiter kénnen wir schreiben

5 5 5 5 4 5 5 4
f[pm D dZ w(C)] — | D@ ch(z,C) dZ w(l)
5 5
b b
Es tritt nur noch @ unter dem Integralzeichen auf, somit eriibrigt es sich,

die Funktion V zu berechnen.
Fiihren wir die e-Funktion

—1 4 5 5 5
r@ = 77| [o.bazwb
2

ein, so laBt sich die gegebene linksregulére e-Funktion w(é) darstellen als

wé) ~b p(z) . %)

4 5
#) Genauer miissen wir hier statt z die entsprechenden Punkte z betrachten, die Ab-

4 5
leitung bilden und dann wieder z statt z setzen.

%) Um die Richtigkeit dieser Gleichung zu beweisen, kann man so vorgehen: Wir
5
wéhlen auch als Aufpunkt einen Punkt z; geometrisch ist aber vollkommen klar, daB die
5 5
8o erhaltenen e-Funktionen p(z) und w(z) nicht von z, abhéngen, also ist
5 5 4 4
Dp(z) = Dp(z) -
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Da die Funktion p(é) fiir die linksregulidren e-Funktionen eine dhnliche
Rolle spielt wie das skalare Potential @ fiir die reguldren c-Funktionen,

wollen wir p(g:) e-Potential der linksreguliren e-Funktionen w(é) nen-

nen. Es geniigt jetzt p(g) zu berechnen, um w(é‘:) durch seine Rand-
4

werte auf 2’ darzustellen.

Unser Ziel ist es, nach der Hilfsvariabeln &, zu integrieren. Betrachten
wir den Integranden, so sehen wir, daf} einzig @ von &, abhingt : Bei

5 5
w(¢) ist die &-Unabhéngigkeit klar ; wegen der speziellen Wahl von X
{Zylinder parallel zur z,-Axe) gilt

5 4

5
denn es ist #, = 0, und dZ also unabhiingig von &,. Es ist nun nicht
ohne weiteres moglich, nach &, zu integrieren, da die Parallelen zur

x,-Axe Ii nicht tiiberall unter einem nicht-verschwindenden Winkel
schneiden (I, 3b). Wir teilen deshalb )3' in der folgenden Weise in zwei
Teilgebiete > und 3"

Im 142 betrachten wir, auller dem charakteristischen Hyperkegel (1‘:')
ﬁ(é, f) = 0, noch eine weitere Hyperfliche (ﬁ’)f’(é, Z‘) =19 (y sehr

4
klein, positiv). Wir schneiden diese beiden Hyperflichen mit 2'; es seien
die (zweidimensionalen) Schnitte '

I'x=8; Fx3)=T.

Durch die Punkte von 7' legen wir jetzt Parallele zur x,-Axe; damit
erhalten wir einen (dreidimensionalen) Zylinder (7), dessen Mantellinien
parallel zur z,-Axe sind, und dessen (zweidimensionale) ,,Leitkurve‘ auf

5
Zt' T ist. (z) zerlegt 25' , d. h. den Teil im Innern von I, so in zwei Teile
251! "und 257 ” daB die Parallelen zur z,-Axe durch die Punkte des einen der-

5 5
selben — es sei dies 2’ — I unter nicht-verschwindenden Winkel
schneiden.
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Es ist

f@(éfc) iZ w(t) = f¢<z b aZwd) + fmz b dzwd

2,//

5 5
das Integral iiber X’ werde mit f’, dasjenige iiber 2”7 mit f” bezeichnet.
Nach I, 4a erhalten wir fiir f’:

+VA

K,y 44 4 4
f i 64 s d&, déW(f) = — %Kzfj’ ({if I’(z,C))déw(C)

= —VI’ 3

In dieser Form koénnen wir fiir f/ den Limes 7 — 8, also 247’ — 247

5
durchfiihren. Um das Integral iiber X" auszuwerten, fiihren wir neue
Koordinaten ein :

1. In 8§ (Schnitt von f’ und f.' ) : Die beiden (beliebigen) Parameter
ﬂ 1> ﬂZ'
4 4
2.In 2": B;, B, und I

5
3. In 3: By, By, I' und &,.
Es wird jetzt

d%= d&, d; i‘ ¢y, (da auf j“,n‘; = 0) ,
E=0

do — dg, dp, al A (4 ist die Funktionaldeterminante um zu den

4
neuen Parametern auf 3}’ iiberzugehen).

Wir setzen
4
azZ 3
dSy = = df, dp, 4 X ¢ 7.
ar k=0
und

dZ — dé, dT" ds, .

5
Wie schon bemerkt, konnen wir in 2” nicht direkt nach &, integrieren,

hingegen nach ﬁ, d. h. wir integrieren lings Kurven [: (8, = const.,
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5 5
f. = const., &, = const.), die je einen Punkt von I' auf 2 mit einem

5
Punkt von (r) verbinden und I" unter einem ntcht-verschwindenden Winkel
schneiden 26).
Wir schreiben zur Abkiirzung

a8y w(l) = F(py, fu, T

Zuerst integrieren wir lings der Kurven {:

Y v 4
4 4
al’ 4 9eKé oF ar
“T"'—"_dfaing‘ F(ﬂnﬁz: F) = ——_—T/: +26K§‘ 4 4
(r—e&)* I'r— £2 or VF—— £
&1 &1 &1

Das zweite Glied (das Integral) verschwindet im Limes y — &, d. h.
im Limes, den wir berechnen wollen: 7' — 8. Im ersten Glied haben wir
den singulidren Beitrag der Grenze & wegzustreichen (gebrochene Singu-
laritdat ; ,,partie finie*“), Somit erhalten wir

+Vy
_2 d§ ;
ffl/y—— g

unter dieser Form kann nach £, integriert werden, das ergibt (I, 4a)

/= —2= 7(—K;~'y)F :

Hier konnen wir den Grenziibergang y — 0 ausfiithren. Es gilt j(0) = 1;
also erhalten wir

4 K2 . K2 4 4 4 1
pR)=5—[7 (TF) dZ w(l) — —2;fd8yw
3
4
Damit ist das Problem, w (é‘) aus seinen Randwerten auf X zu berechnen,

4
gelost, da wir w als w(%) e Dp(g) erhalten.

26) Dies ist moglich, da 7y sehr klein gewiahlt werden soll, siehe auch Hadamard, S 295.
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2. Hauptsatz: Es seien gegeben ern Bereich 1§ des 1?2 und ewne raumlich
ortentierte Hyperfliche 3.7 , dve den folgenden Bedingungen gewiigen : Ist z
ein Punkt aus é, so liegt das Innere und die Oberfliche des charakterists-
schen Hyperkegels (beziiglich der Gleichung ‘{’;(u) = 0) f dieses Punktes 2
(genauer, dessen entsprechender Teil zwischen f’ und der Spitze é) ganz in é

Ist dann w(z) eine in B und auf Z.' lmksregulare e-Funktion, so gilt fir
jeden Punkt 2 aus B ) T .
w(z) = Dp(z) ,
wobei die e-Funktion — das e- Potential von w — sich folgendermafen aus

den Randwerten von w auf )3' berechnen lift :
s K2 K2 4 P
@) = 5 [7 (T 1) 42 )—_fdsyw@

Es bedeutet hierin :
1. S den (2-dvm.) Schnitt von 14" mat f’
2. Z’ das von P (z ) = 0 ausgeschnittene Stiick der Hyperfliche 2 .
3. dZ das gerichtete Hyperflichenelement von 2 =

4 4 3
k=0

(dd" H yperflichenelement von .f.' , T, x,-Komponente der innern Normalen
4
bezuglich B).
4. d8, das gerichtete (2-dimensionale) Flichenelement auf dem Schnitt S

4

as, =% .3
r = ‘——;‘ . 2 ck Ty
afr k=0

Damit ist der zweite Integralsatz aufgestellt, und wir sind nunmehr in
der Lage, eine gegebene linksregulire e-Funktion aus ihren Randwerten
auf einer rdumlich orientierten Flidche zu berechnen. Die in der end-
giiltigen Formel auftretenden Funktionen kommen auch in der ,,solution
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élémentaire“ der Differentialgleichung (é (v) = 0 vor. Das ist ein Spezial-
fall eines allgemeinen Satzes?27).

Bis jetzt sind wir immer von einer gegebenen, linksregulidren e-Funktion
ausgegangen, im nichsten Kapitel werden wir die Randwerte auf einer

4
Hyperfliche X vorgeben und nach der Existenz einer linksreguldren

4
e-Funktion, die auf X' diese Randwerte annimmt, fragen.

IV. Das Randwertproblem der linksregularen e-Funktionen;
die Randwerte des e-Potentials

3. Hauptsatz: Es sei gegeben eine (geniigend reguldre) raumlich orien-

trerte Hyperfliche 24' : é sev der wn 111, 3 definierte Bereich der Punkte z.

Weiter seien auf )"j' vier (reelle oder komplexe) Funktionen r, (%4, %,, %3, ;)

(h=0, 1, 2, 3) gegeben. Dann existiert in % genaw eine linksreguldire

4
e-Funktion w(g), die auf X die Randwerte

4 3
w(z) =X 1,6,
h=0
annimmt.
Die e-Funktion w(é) lapt sich in der folgenden Weise aus den gegebenen

4
Randwerten r, auf X berechnen :

Es ser
s K2 , (K? & s 3 1 3
pl =g [1 (1) a2 Sne—g [as, B ne
S S
dann st

4 ry 4
wR)=Dp(z) .
Bezeichnungen, siehe 2. Hauptsatz.

Bewezts :

4
1. Es kann hochstens eine Losung w(z) mit diesen Randwerten auf

4
2 geben ; hitten wir zwei solche Funktionen w und w,, so wiirde fiir

37) Hadamard, S.311.
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beide der 2. Hauptsatz gelten beziiglich derselben Randhyperfliche und

3 4
mit denselben Randwerten X'r,e, auf 2. Somit sehen wir, dafl w =w,
h=0

sein miillte.

2. Wir bilden mit den gegebenen Randwerten 7, die e-Funktion

3 4
2 r,e,, die nur auf X' definiert ist. Nun gehen wir in derselben Weise,
h=0 5

wie in III, 3 zu einer Hyperfliche X iiber und bilden die e-Funktion

5 4 1 5 5 5 3
p)=pR)=— fd’(z,é“) aZ X e ;
h=0

4 n?
5
b
5
es gilt natiirlich —%—)— =0; @ und dZ sollen die bekannte Bedeutung
4

haben.
Wir behaupten, daf3

w@®) =w@E) =D @) =D o

die verlangten Eigenschaften hat. Auch w, wie p, ist von x, unabhéingig.

w ist linksreguldr ; unter dem Integral ist nur @ von 2 abhéngig, somit
gilt

14 4 5 5 7 5 5 5 5 5 3
h=0

4 72
5
b
5 5 5 5 5
Esist DD = § (siehe II, 4); die ,,solution élémentaire’« @D(z, {) ist
5

als Funktion von z eine Losung der Differentialgleichung & (P) = 0,
also verschwindet der Integrand, und es gilt :

4 . v
d. h. w(z) ist linksregulér.
Ebenso einfach erledigt sich das Randwertproblem ; es ist

dmw(z) = f[l%'@) qb(é,é)].dé.ﬁrheh . (Siehe III, 3).
‘5? h=0
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4
Lassen wir nun z gegen X streben, so ist das Integral auf der rechten Seite
beinahe dasselbe wie dasjenige iiber (z) (ILI, 3); nur lassen wir hier 2

4
gegen X konvergieren und nicht umgekehrt, weiter ist noch die Normalen-
richtung umgekehrt. Das dndert — bis auf das Vorzeichen — nichts an

4
den dortigen Berechnungen, da ja X und die Funktionen r, geniigend

regulidr vorausgesetzt werden. Damit erhalten wir

4 3

47% lim w(z) = 4% X re, ,
4 4 h=0
z>2

und der 3. Hauptsatz ist bewiesen. Im letzten Teil des Beweises wurde

4
wesentlich vorausgesetzt, dafl X rdumlich orientiert ist, fiir zeitlich orien-
tierte Hyperflichen sind diese Berechnungen im allgemeinen nicht giiltig.

Wir wollen auch noch die Randwerte des e-Potentials p(é) studieren :
hieriiber gibt vollstindig Aufschlul} der

4. Hauptsatz: Jede Komponente des e- Potentials p(;) 18t eine Losungs-

Junktion von .

&(u) =0 .

4
Auf der betrachteten Fliche X verschwindet das e- Potential, und seine ersten
Ableitungen sind durch die Bedingungen

5 p (g) = kéorh €n (auf 24)
verkniipft ; die Funktionen r, sind die Randwerte der entsprechenden Kom-
ponenten der linksreguliren e-Funktion w(g), dive durch p(é‘) erzeugt wird.
Beweis: Der erste Teil des Satzes ist klar; zweitens sind die Rand-

werte von p(g) null, da

4 4
®~r3 und dZ~r sindfir z— 3.

4 4 3
DaB drittens auf ¥ Dp(z4) = X r,e, gilt, haben wir beim Beweis des
h=0
3. Hauptsatzes eingesehen.

(Eingegangen den 20. Mérz 1947.)
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