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Die Retardierungserscheinung bei
Potenzreihen und Ermittlung zweier Konstanten
Tauberscher Art

Von H. HADWIGER, Bern

He sel Fi)= 3 a,tv )
1

eine im Einheitskreis |¢| <1 konvergente Potenzreihe, und

a )

=148

die ihr formal zugeordnete, d. h. nicht notwendig konvergente Reihe ihrer
Koeffizienten. Es sind durchaus geldufige Tatsachen der Reihenlehre,
daf} aus der Konvergenz der Reihe (2) mit der Summe s auf das Bestehen
der Limesrelation lim F(t) — s (3)

t>1—-0

geschlossen werden kann (Abelscher Stetigkeitssatz) und unter passenden
Voraussetzungen umgekehrt aus der Giiltigkeit von (3) die Konvergenz
der Reihe (2) hervorgeht (Tauberscher Umkehrsatz). — Aber auch dann,
wenn wir keine von den oben erwidhnten Konvergenzvoraussetzungen
machen, lassen sich zwischen dem Verhalten der Funktion (1) einerseits
und demjenigen der unendlichen Reihe (2) andererseits gewisse Wechsel-
wirkungen feststellen. Eine solche Relation 148t sich in ungefdhrer Weise
wie folgt beschreiben : Zu jeder Teilsumme

8, = X a, (4)
1
der Reihe (2) gibt es einen korrespondierenden ¢-Wert, beispielsweise
1
t,=1— n (5)

so daf} sich der Funktionspunkt F(¢,) innerhalb einer nicht von n ab-
hiéngigen Entfernung vom Teilsummenpunkt s, befindet. Unter passen-
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den normierenden Voraussetzungen kann diese Distanz auch von der
Funktion unabhiingig gemacht werden. Die Funktionswerte (1) ver-
folgen die Teilsummenwerte der Reihe (2) bei geeigneter Korrespondenz
von n und ¢ (n —oo, t -1 — 0) mit einer gewissen Retardierung, eine
Erscheinung, die vor allem bei unbestimmten (etwa spiralformigen)
Divergenzverhalten ihre Augenfilligkeit hervortreten 1dBt. Die Wir-
kungsweise der Abelschen Limitierung kann gerade durch die oben er-
klirte Retardierung treffend veranschaulicht werden: Die Funktions-
werte sind gegeniiber den Teilsummen der Reihe so verspitet, daB sie die
fiir die Divergenz der Reihe charakteristischen Teilsummen nie einholen ;
der Funktionsverlauf wird wihrend des Bestrebens, die soeben erwéhnten
Teilsummen einzuholen, durch die anziehende Wirkung der noch spéteren
Reihenglieder wieder abgelenkt, so dal er schlieBlich zur Ruhe kommt.

Verfasser hat in einer kleinen Note!) vor einigen Jahren darauf hin-
gewiesen, daf} sich inbezug auf diese Retardierungserscheinungen Aus-
sagen machen lassen, die fiir beliebiges konvergentes oder divergentes
Verhalten giiltig sind, und die bekannte Sétze fiir den speziellen Fall der
Konvergenz als Korollarien enthalten.

In einer soeben vervffentlichten Abhandlung hat A. Wininer?) diese
Fragen wieder aufgegriffen und in etwas verdnderter, vor allem aber
erweiterten und vertieften Form gestaltet. Die beiden Hauptergebnisse
seiner Untersuchungen sind die folgenden :

Es bezeichne

a* = lim sup n|a,| (6)
n->0
und
1 n
o= lim sup — | ¥ va, (M
n->oo n 1

wobei fiir o* bzw. & eventuell die Symbole oo zu setzen sind, wenn die
Limeswerte im iiblichen Sinne nicht existieren; die beiden folgenden
Aussagen sind dann im trivialen Sinn richtig.

Es gibt zwei beste (d. h. kleinste) Konstanten v* und 7 so, dafl

lim sup |F(t)— X @a, = 1*¥o* (8)
t>1—0 n<—1/logt
und
lim sup | F(l) — X @a,| = tx (9)
t>1—-0 n<—1/log ¢

1y H. Hadwiger, Uber ein Distanztheorem bei der A-Limitierung. Commen-
tarii Math. Helv. 16, 1943/44, 209—213.
2) A. Wintner, An Tauberian theorem. Commentarii Math. Helv., dieses Heft,

pag. 216.
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ausfallt. A. Wintner gibt einen Existenzbeweis fiir diese beiden Konstan-
ten und zeigt, daB

Cst*<v (10)
und

—
l<t<3+ %—dx (11)

1

zu gelten hat, wo C die Eulersche Transzendente bezeichnet. Er hebt
auch hervor, dafl in diesen Aussagen (8) und (9) die bekannten Tauber-
schen Umkehrsitze als spezielle Fille enthalten sind, ein Verhédltnis, auf
das wir schon einleitend hinwiesen. Die beiden nicht von den Funktionen
abhéngigen, also universellen Konstanten diirfen sinngem#fl wohl als
Konstanten Tauberscher Art bezeichnet werden.

Um das Hauptergebnis der vorliegenden Note vorwegzunehmen, sollen
zundchst die beiden exakten Werte der beiden Konstanten * und =
angegeben werden : Es ist

-]

z*=0+2fe: dx = 1, 015983 ... (12)
1
und
"=C+%+2fe; de = 1,751742 ... . (13)
1

Eine Funktion, die in unserm Sinne extremal ist, so da sie in (8) das
Gleichheitszeichen beansprucht, ist

G*(t) = X crtv, (14)
1
wobei

, n+ 1=y n?;

ci":l,c;"=%;cf=5 n=2%1=0,1,2,...).

(14a)
Der Reihenanfang lautet

t2 t3 t4 t5 tﬁ tlﬁ t17
Fo=t+g—g-—gtstet tu—mw
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Eine entsprechende Funktion, fiir die in (9) das Gleichheitszeichen
notig wird, ist

G = 3 o, tv, (15)
die durch den Ansatz
G(t):(l——t)t%G*(t)—i—G*(t) (15 a)

aus der soeben erklirten Funktion (14) hervorgeht. Thr Reihenanfang
lautet

12 76t 116 8 17 $e 3547
G=2+g—g—g+5 tetzt "t~ 1w

Der Aufbau der Note gliedert sich wie folgt: In Abschnitt I wird
nachgewiesen, daf} die beiden Limesaussagen

1 n ‘
lim sup | F (1 ————) — Xa,| <ok (16)
n-»oo n 1
und
1 n
lim sup | F (1 —-———) — Na, | =100 (17)
n-> n 1 |

gelten, wobei v* und t die durch (12) und (13) vorgeschriebenen Werte
haben. — Dieses Resultat folgern wir aus Abschitzungen, die fiir jedes

einzelne n =1, 2,3,... scharf sind. Genauer: Es bezeichne
B* = sup n|a, | (18)
und
| - . 19
B Sup 7 | Z v (19)

Diese beiden Oberschranken sind durch das Symbol co zu ersetzen,
falls sie im iiblichen Sinn nicht existieren ; die folgenden Aussagen sind
in diesem Falle alle im trivialen Sinn richtig.

Wir werden zeigen : Es gibt zu jedem n eine bestmogliche Konstante
7¥, sodaB die Abschitzung fiir jede Funktion richtig ist :

<7 B*, - (20)

red) g
n 1
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und eine ebensolche Konstante z,, sodaf wieder fiir jede Funktion

1 n
‘F»(l —-—) —Xa,|<Tp (21)
n 1
gilt. Indem wir noch die Hilfszahlen
L |
C, =3 ——logn (22)
1 14
und
© 1 1\v7
D,= X ——(1————) (23)
n+1 ¥V n

einfiihren, lassen sich die Werte der beiden Konstanten wie folgt
schreiben :
Es ist

=0, + 2D, (24)

Die eindeutig bestimmte Funktion, fiir welche in (20) das Gleichheits-

zeichen eintritt, ist
) v

GE) =log(1—f + 25 —, (26)

nt+1 ¥

und diejenige, fiir' welche dasselbe fiir (21) zutrifft, ist

-] tl’

Q. ¢)=log(l—t)—¢t4 2" 23 — . (27)
nt+1 Y

Auf Grund der Bemerkung, daf3

lim O, = C = 0,577215. . . O (28)
und n->oo
oo o

lim D, = f dx = 0,219383. . . (29)
7> oo € !

1
gilt, ergeben sich die Limesaussagen
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l n
lim sup | ¥ (1 ——~) — X a,| = t*p* (30)
n-> oo n 1
und
1 n
lim sup F(l——)——}:av =8 . (31)
n-»00 n 1

Endlich werden wir zeigen, da3 man in (30) und (31) rechts die Supe-
riorwerte f* und B durch die Limeswerte «* und « ersetzen darf. So
erhalten wir die zu beweisenden Relationen (16) und (17).

Im folgenden Abschnitt II wird dann durch die notwendige Durch-
rechnung gezeigt, daf3 die beiden Funktionen (14) und (15) in den Rela-
tionen (16) und (17) das Gleichheitszeichen beanspruchen. Damit ist er-
wiesen, dal die beiden Konstanten (12) und (13) fiir die genannten
Abschitzungen (16) und (17) die bestmoglichen sind.

Im letzten Abschnitt III zeigen wir dann, dal die besten Konstanten
in (8) und (9), d. h. die von A. Wintner untersuchten Konstanten mit
den bestmoglichen in (16) und (17) iibereinstimmen, also mit den Zahl-
werten (12) und (13) identisch sind. Damit haben wir das fiir diese Ab-
handlung gesteckte Ziel erreicht.

L
Wir beweisen zundchst (20). Es ist doch
n n [~ -]
F) — Ya,=— Y a(l1—t")+ Xa,t, (32)
1 1 n+1

und also im Hinblick auf (18)

n n l_tv -] tv
{F(t)—~za,, = (= +3 )b
1 1 4 n+1 ¥
oder auch
F) — X a, (z +log (1—1) +2 X 2) p*,
n+t

und somit mit Verwendung der Hilfszahlen (22) und (23)

}F(l-—-%) — Sa|s(C.+2D,) B = 2B

Die Verifikation, dafl die Funktion (26) in der soeben nachgewiesenen
Relation (20) das Gleichheitszeichen beansprucht, ist einfach, indem
man zunichst feststellt, daf fiir die Koeffizienten dieser Funktion
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1 1
@ =——, 1=v=mn; a=-—, ntl=vr<oo

gilt. — Um nun weiter auch (21) zu beweisen, fiithren wir die Hilfszahlen

1
D) S = ve, (33)

H

ein und verifizieren vorerst die Identitaten

Fi) = (1—8) X vd,t* + X d, v (34)
1 1
und
Eavzndn-i—zd,, . (35)
1 1

Man hat also
F(t) ——Ea’v:(l'—'t)zvdvtv—"’ Edvtv"'ndn"“zdv’ (36)
1 1 1 1

oder durch einfache Umformung

n

F(t) — ‘:: a, = (37)

= —nd, +2dtv+(1——t) zvd tv—-(l——t)};d (l—t;——w,v) :

n+1 n+1 1

'Mit Riicksicht auf die Abgrenzung

1—1
1—1¢

0 < —wr <y (0<t<l; »=1,2,...) (38)

und auf (19) und (33) kann nun

FO—Xa/=(1+ 22 40— Se+a—n S[}25—¢])s

n+1 ¥ n+1

oder nach einiger Umrechnung des Klammerausdrucks

(1+z tlog(l—f)+23 " yama_ )ﬂ,

n+1 Y

} (0*2“

und endlich mit Verwendung der Hilfszahlen (22) und (23)

]F(l————;’—)—z,:a,

1 1\r+!
< (Cat 2D, o2 (1—) ) A=
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geschrieben werden. Damit ist auch (21) bewiesen. Die Verifikation, daf
die Funktion (27) in (21) das Gleichheitszeichen benotigt, ergibt sich so,
da man zundchst die Feststellung macht, daBl fiir die Koeffizienten
dieser Funktion

uag,=—@+1), l=v=n; Spa=v+1, n+l=sr<oo
1 1
gilt.

Indem wir uns jetzt dem Grenziibergang n —oco zuwenden, benotigen
wir die Formeln (28) und (29). Wir konnen uns auf eine kurze Erldute-
rung zu (29) beschrinken. Ausgehend von der Reihe (23) erhalten wir
zuerst die naheliegende Integraldarstellung

1
1— —

n Bn
D,= [ {50, | (39)
0
welche wir nun durch die Substitution 6 =1 — —:— i aie andere

n

Dnzfil——j——-l%)—fd:p . (40)
x

1

iibergehen lassen. Von hier aus fiihren geldufige Behandlungen zu

- <]

e= 1

1

und damit zur Konvergenzformel (29).

Im Hinblick auf (28) und (29) gehen aus den Relationen (20) und (21)
die Limesformeln (30) und (31) hervor. Um nun einzusehen, dal man
dort g* und f ersetzen darf durch «* und «, iiberlegen wir uns folgendes :
Zunichst kann man sich wohl auf den nicht trivialen Fall beschrinken,
da f* und x* bzw. f und « stets gleichzeitig existieren oder nicht. Nun
betrachten wir eine Anderung der urspriinglichen Reihe (1), welche sich
in allen GroBen #uBerlich durch einen Uberstrich kenntlich machen soll.
— Nun gibt es einmal eine Anderung, durch welche nur endlich viele
Koeffizienten a, eine nicht verschwindende Abénderung ihres Wertes
erfahren, und zwar so, das zu einem beliebigen &> 0
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sup n | a, | < lim sup n|a,| + ¢
n-> oo

ausfillt. Ferner kann man eine Anderung betrachten, durch welche nur
endlich viele Hilfszahlen d, (vgl. (33)) eine nicht verschwindende Ab-
dnderung ihres Wertes erfahren, so dafl zu einem beliebigen &> 0

sup n |d, | < lim sup n|d,| + ¢

n->»o0

wird. Nach (34), einer Relation, welche die Folge (33) mit der Funktion
(1) verbindet, ist ersichtlich, daB eine solche Anderung ebenfalls durch
eine Anderung endlich vieler Koeffizienten a, hervorgebracht werden
kann. Nach beiden oben erliuterten Anderungen wird

Pr<a*+e, f<a+e,
wobei noch zu beachten ist, da8 (vgl. hierzu (6) und (7) mit (18) und (19)

lim supn|a,|=«* und limsupnzn|d,|=«

n->»oo n->»o0

ist. — Nun bleibt aber in (30) und (31) die linke Seite bei einer der-
artigen Anderung, die sich nur auf endlich viele Glieder der Reihe (1)
erstreckt, unverdndert, aber die rechte Seite kann beliebig nahe an die-
jenige von (16) und (17) herangebracht werden. Also bestehen die Rela-
tionen (16) und (17) zu recht.

II.

Wir weisen jetzt nach, daB fiir die spezielle Funktion (14) in (16) das
Gleichheitszeichen gilt. Wir wihlen fiir ein beliebiges 4 =10,1,2,...
die Zahl

n = 2% (41)
und bilden jetzt

—— St S cF(1—) + 3 ok
1

n+1 n341 nét+1

Beachten wir nunmehr die fiir die Koeffizienten ¢} geltenden Festsetzun-
gen bei (14), so laBt sich schitzen
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| n? " né n2 — ) tv n l_ty
Imm—2%=z~+z D > ,
1 n2t1 ¥ nt1 14 ntr1 ¥ 1 14
oder auch
nd ) n2
tv 1—1tv et v n 4V
¢H—Set|zS T+ 3 238 o521t
1 nz41 ¥ 4 ns+1 ¥ 1

Da nun weiter einerseits

® 1
n.2+17< nt(l—t) ’ (42)
und andererseits
A -
by <n(l—1i) (43)
1
ist, schlieBt man auf
n2 ol A4 9
|G*(t)—- F>E g (-2 X () —
i nty1 ¥ n (1"‘“t)

und somit auf

1 n
a*(l_w)_;cg
1

n2

2 2
>C'n3+ 2Dn2'——-*7‘{——%—2— .

Mit Anwendung der Limesrelationen (28) und (29) gewinnen wir nunmehr

a* (l—ni) Ec

lim sup = T¥

A-> oo

’

wo 7* die Konstante (12) bezeichnet. Beachte indessen, da3 die » in der
obenstehenden Limesformel Funktionen von A sind ; da aber fiir 4 —-oo
die n? eine Teilfolge der natiirlichen Zahlen m durchlaufen, gilt offen-
sichtlich erst recht

m
lim sup | G* (l—i) — X
m-> oo m 1

Da im vorliegenden Fall «* = 1 ist, kommt in der letzten Beziehung
wegen der Giiltigkeit von (16) nur das Gleichheitszeichen in Betracht.
Damit ist das Gewiinschte gezeigt.

Ferner haben wir nachzuweisen, dafl die Funktion (15) in der Rela-
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tion (17) das Gleichheitszeichen beansprucht. Ein Vergleich der Funk-

tionalbeziehung (15a) mit der Identitidt (34) lehrt uns, dafl offenbar
c*=d=—~—-1——§vc (44)
" " oan4+1) TV

sein wird. Die Koeffizienten ¢} der Funktion (14) sind also identisch mit

den den Koeffizienten c, der Funktion (15) gemdfB (33) zugeordneten

Hilfszahlen d,,.

Es sei nun n wieder eine Zahl der Form (41). Identifizieren wir in der
Zerlegungsformel (37) F(t) mit G (), n mit n?, unterteilen aber die
Summation von 1 bis n? bei n und ebenso diejenige von 72 4+ 1 bis oo
bei n4 (daB die d,, mit den ¢ identisch sind, wurde bereits oben erwihnt),
so erhalten wir folgende Zerlegungsformel (lies dreizeilig)

Glt) — S 6= —ntch +(1—1) 3 wertr+
1

n2+1
ni oo

+(1-—~t)}:vc '+ ekt X c¥er—
net41 n241 né4-1

—(1—1) z o (L:‘t_”__vtv) C(1—t) X o (ll:tv——vt") .

n+1 ¢

Beachten wir nun die fiir die Koeffizienten ¢* geltenden Festsetzungen
bei (14a), so kann man wie folgt schitzen

’%-—}:c 21+0-93e+3s P haon s > (=)
1 n241 nn+1 n+1 V4 1—¢
=g sr—5 T _1-y S, (=7 —0r)

nét1 né+1 T v \1—¢
oder auch
© ¢ 1 (1—¢

G(t)-—w =1+1-nxser+3x + 01— 3 ( e

n2+1 nz41 ¥V v \1—1¢

—2(1—1) Sy ———2(1——t) z (ll:tv——vtV).

né41 né+1

Beriicksichtigen wir jetzt (42) und andererseits noch (38) sowie

1—p <t (45)

né+1
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so ergibt sich

@m—i%
1_-t+2t"”+1+z — +log (1—1) +2 s fi~2t"‘ 2 on(l—1).
n2y1 ¥ n (1_t)

SchlieBlich folgt

'G(l———ﬂl——) Zc
1)"‘ 2 2

+Cpu+ 2D, —2 (1..-—

n2

1 1\t

n2

n2 n

H

und mit nochmaliger Verwendung der Limesbeziehungen (28) und (29)

hmsuplG(l—-%l—) }:c =T,

A>oo )

wo 7 die Konstante (13) bezeichnet. Aus demselben Grund, wie er bereits
im vorstehenden Beweis erortert wurde, gilt erst recht

1 m
ofi-1) -2,

Da nun im vorliegenden Fall, wie ein Vergleich von (7) und (44) erhellt

lim sup

m-—> oo

=T .

& = lim sup (n + 1) | ¢ | = lim (1+ )zl

n>» o >0

ist, kommt wegen der Giiltigkeit von (17) nur das Gleichheitszeichen in
Betracht. Damit ist auch hier das Gewiinschte gezeigt.

IIL.

Endlich wollen wir nachweisen, da3 die beiden Limeswerte auf der
linken Seite von (8) und (9) fiir die fiir uns in Betracht fallenden Ver-
héltnisse mit denjenigen von (16) und (17) iibereinstimmen.

Damit ist natiirlich gezeigt, dal die beiden bestmoglichen Konstanten
auf der rechten Seite von (8) und (9) mit denjenigen von (16) und (17)
iibereinstimmen.
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Wir kénnen uns nidmlich auf den Fall beschrinken, wo die Ober-
schranke (19), ndmlich

n

> va,

1

1
B = sup P (46)

endlich ist ; andernfalls wiren auch g* (vgl. (18)) und « (vgl. (7)) sowie
o* (vgl. (6)) nicht endlich, so daB alle vier Aussagen (8), (9), (16), (17)
in trivialer Weise richtig werden.

Wir beweisen di¢ folgende Hilfsaussage: Es sei 0 < n<&<1, dann
gilt

@ — Fl | <725 (6~ . (47)

In der Tat: Es ist doch zunichst (n<@ <§):
F(&) — F(n) = F' () (§ —n) .
Nun verifiziert man leicht, daf3
F'(p) = (1 —¢) if? (%vav) ¢
gesetzt werden kann, so da@} sich

P'(@)| S B —9) Sln+ Dot

|F(p)| < p2—2,

l1—9¢
oder also
P 0| <t
ergibt, womit die gewiinschte Hilfsaussage (47) verifiziert ist.
Es sei nun weiter e <t<1 und §=¢, n= 1———?;}(2; , wobei

n() = [— lolgt]

bedeutet; hier bezeichne [z] die gréBte ganze Zahl, die nicht groéfer
als z ist (GauBlsches Klammersymbol). Es ist demnach

1

1
— 1= g <nO = — oy

log ¢

’
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1
insbesondere also % (f) = 1; da ferner — ——1— < log t ist, wird e "® <,

n(t) —

somit 1 -——n%)—<t und also 0 < 9 < & sein.

Nach der Hilfsaussage (47) hat man demnach

Fit)—F (1_—%)‘<%(t—1 —n%)—)=2ﬁ(~—1 (1 :)n(t))

nun ist aber

1—1¢ 1—1
— — —_ << ——
1+1¢ logt < (1 t)n(t) = logt ,
und mit Riicksicht auf
1 —1¢
‘"‘—lo—g‘i‘“"l—l‘o(l“"t)

schlieBt man auf die Limesrelation

Iim (1 —H)n(@t)=1 .

t>1-0

Dies bedeutet nun, daf3

lim

t>1—-0

F(t)——F(l——-n—l(B—)]=O

sein wird. Daraus folgert man

1 n(t)
P1-5g) —Ta|;

= lim sup
t>1-0

lim sup
t>1-0

F(t)“ Eav

n(t)
70— 3

Da nun aber die ganzzahlige Funktion = (f) fiir e — ¢{— 1 alle ganzen
Zahlen n=1,2,3,... durchlauft, hat man offenbar

= lim sup
n—->»oo

lim sup I F(t) — by a,

t->1—0 n<—1/logt

F(l-——-?li—) —‘2::0»

Damit ist die noch nachzuweisende Gleichheit aufgewiesen.

(Eingegangen den 2. April 1947).
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