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Beitrag zum
Typenproblem der Riemannschen Flâchen*)

Von Le-Van, Thiem, Zurich

§ 1. Einleitung
1. Jede einfach zusammenhângende, offene Riemannsche Flâche Iâ8t

sich bekanntlich eindeutig und konform auf einen Kreis | z | < 12 ^oo ab-
bilden. Je nachdem iî<oo oder R 00 ist, heiBt sie vom hyperboli-
schen oder vom parabolischen Typus. Im AnschluB an die Nevanlinna-
sche Wertverteilungslehre hat man speziell diejenigen Flâchen WQ be-

handelt, welche Ûberlagerungsflâchen der Riemanmchen Kugel sind und
deren Windungspunkte nur liber endlich vielen Grundpunkten liegen1).

2. Die topologische Struktur dieser Flâchen kann folgendermaBen
erklàrt werden :

Man ziehe durch die Grundpunkte al5a2,...,aa eine geschlossene
Jordan-Kurve L, welche die Riemannsche Kugel in zwei einfach
zusammenhangende Gebiete Gx und G2 zerlegt. Denkt man sich die Flâche
lângs L aufgeschnitten, so zerfâllt sie in endlich oder unendlich viele,
untereinander kongruente Exemplare Gx bzw. 6?2. Die Randpunkte dieser
Halbblâtter oder Polygone a1,...,aQ môgen Ecken, die Bogen
(a1a2),..., (aQai) Seiten heiBen.

Die Eckpunkte al9..., aQ eines gegebenen Polygons Gv (v 1, 2)
sind von dreierlei Art: 1. Windungspunkte unendlicher Ordnung, an
welche unendlich viele Blatter Gx -f- G2 grenzen, 2. Windungspunkte
(m— l)-ter Ordnung, wo eine endliche Anzahl m>l von Blâttern
#1 + G2 zyklisch vereinigt sind, 3. uneigentliche Eckpunkte, wo die
Flâche schlicht verlâuft.

Dm die Flâche W darzustellen, denkt man sich eine Anzahl von
Kurvenpolygonen 6?£ (v= 1,2; ^ 1,2,3...), die mit Gv topologisch

Fur das Zustandekommen der vorliegenden Abhandlung bin ich in erster Linie den
Herren Prof. R.Nevanlinna und Dr. JS.Wittich fur die liebenswurdige Unterstûtzung, die
sie noir wàhrend der Ausarbeitung zuteilkommen liefien, zu tiefstem Dank verpflichtet.

Meine Arbeit bei Herrn Prof. R.Nevanlinna wurde durch die Jubilâumsstiftung der Uni-
versitdt Zurich ermôglicht, der mein weiterer Dank gilt.

1) Am Ende der Arbeit findet sich ein ausfuhrliches Literaturverzeichnis.
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àquivalent sind und die auf ein schlichtes Gebiet, etwa die endliche
z-Ebene, nebeneinander so gelagert werden, da8 sie dièses Gebiet schlicht
und liickenlos ausfûllen und da6 zwei Polygone G%, G% dann und nur
dann lângs einer Seite (a^a^) zusammenhângen, wenn dxe zugeordneten
Polygone Gl9 G2 die entsprechende ,,Bildseite" gemeinsam haben.

Das entstehende Polygonnetz nennt man den Graphen der Flâche Wq.
Die inneren Eckpunkte des Graphen sind entweder uneigentliehe Eck-
punkte, an welche 2 Polygone, oder eigentliche Eckpunkte (m — l)-ter
Ordnung, an welche m Polygone Gx und m Polygone G2 grenzen. Die
Eckpunkte unendlicher Ordnung sind Randpunkte des Graphen. Dieser
Graph soll die Flàche Wq darstellen.

3. Nehmen wir nun in jedem Polygon G einen inneren Punkt, und ver-
binden wir diesen Knotenpunkt durch insgesamt q punktfremde Strecken
$12 > $23î- • •> $«i m^ den Knotenpunkten der unmittelbar angrenzenden
Polygone G, so daB 8V,V+1 ûber die Seite (av,av+1) zu dem Knotenpunkt
des an dièse Seite grenzenden ,,Nachbarpolygons" fiihrt, so entsteht ein
System von punktfremden Strecken, das man den Streckenkomplex2) von
Wq nennt.

Durch den Streckenkomplex zerfâllt die Ebene in Teilgebiete, sog.
,,Elementargebieteu der Riemannschen Flâche. Sie sind den Windungs-
punkten (eigentlichen oder uneigentlichen) der Flâche eineindeutig zu-
geordnet: Einem Windungspunkt (m — l)-ter Ordnung (1 < m <oo)
entspricht ein Elementargebiet mit 2m Ecken und Seiten.

4. Diejenigen Flâchen Wq, die nur ûber den gegebenen Stellen ver-
zweigt sind, unterscheiden sich bei festgehaltener Zerschneidungskurve L
allein durch die Verheftungsvorschrift der ,,Halbblâtter" G. Die letztere
ist durch den Komplex festgestellt. Folglich ist eine Flâche Wq durch

al9..., aa, L und ihren Streckenkomplex eindeutig bestimmt.
Die Eigenschaften der Flâche hângen im allgemeinen von der Lage der

Punkte al9a2,.. .,aq ab. Man beweist aber : Zwei Flâchen Wq mit
gleichen Streckenkomplexen sind vom gleichen Typus3). Es folgt erstens
daraus, daB der Typus durch den Komplex eindeutig bestimmt ist, zwei-
tens, daB es bei der Typenbestimmung genûgt, eine besondere Lage der

Grundpunkte zu betrachten (vgl. FuBnote 12).

5 Es sollen nun einige ,,Knotenfunktionen" definiert werden, die mit
dem Komplex verbunden sind und die von Wichtigkeit fur die Typen-
frage sind.

2) A.Speiser (1), R. Nevanlinna (2), G. Elfving (1).
3) O. TeichmuLler (1).
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Man nehme ein beliebiges G0 der Polygone des Graphen G, fuge jeder
Seite von G0 das unmittelbar angrenzende Polygon G1 (erste Génération)
an, dann sâmtlichen freien Seiten der Polygone G1 wieder die unmittel-
baren Nachbarpolygone G2 (zweite Génération) usw. Wir wiederholen
dièse kranzfôrmige Erweiterung n-mai und bezeichnen mit Gn den aus
den Generationen G0, G1,..., Gn bestehenden Teil des Graphen und mit
Sn den betreffenden Teil des Komplexes.

Nun hat Sn einen ,,Rand", welcher von allen denjenigen Knoten-
punkten von Sn gebildet wird, die von dem unendlich fernen Punkte
durch keine Streckenzxige von Sn getrennt werden. Die Anzahl dieser
,,Raridknoten" Von Sn sei o(n). Weiter bezeichnen wir mit fi(n) die
Anzahl der Knotenpunkte der n-ten Génération. Es gilt offenbar :

p(n) < a(n) < 1 + ^(1) + ^(2) + • • • + p(n)

Es stellt sich die Frage, inwiefern der Typus der hier betrachteten
Flâchen WQ vom Verhalten der Funktionen o(ri) und ju(n) abhângt.
I. A. begûnstigt eine schwache ,,Verzweigtheit" der Flâche, d. h. ein lang-
sames Anwachsen jener Funktionen, den parabolischen Fall.

6. Das bis jetzt schàrfste Ergebnis in dieser Riehtung ist das

Nevanlinna-Wittich'sche Kriterium4) :

Wenv die Reihe ^ 1

.-1 <*(»)

divergiert, dann gehôrt die Floche zum parabolischen Typus.

Das Beispiel der Flâche : w eeZ zeigt, daB die Divergenz dieser Reihe
keine notwendige Bedingung fur den parabolischen Fall ist (Fig. 1).

7. Entsprechende allgemeine, hinreichende Kriterien fur den hyper-
bolischen Typus besitzt man noch nicht. Dafur sind verschiedene, fur
spezielle Fâlle giiltige Kriterien bekannt5).

Nach neueren Ergebnissen hângt der Flâchentypus, auBer von der Ver-
zweigungsstârke, noch von anderen Eigenschaften des Komplexes, wie
von ihrer Symmetrie bzw. Asymmetrie ab6).

8. Wir beschrânken uns hier auf eine Klasse wQ von Flàchen Wq, und
werden dafûr hinreichende Bedingungen zum hyperbolischen Typus auf-
stellen. Flir die Définition von wq sind folgende Bezeichnungen zweck-

mâBig :

4) H.Wittich (2), B.Nevanlinna (5).
5) Kakutani (1), Teichmûller (2), Kobayaschi (3), Speiser (3), C. Blanc (2).
6) Myberg (2), O. Blanc (4).
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Jeder Knotenpunkt des Komplexes hat zwei oder v>2 ,,Nachbarn".
Wir sagen, er sei im ersten Falle unverzweigt, im zweiten Falle v-faeh

verzweigt.
Eine unendliche Folge von benachbarten, unverzweigten Knoten-

punkten nennen wir mit Speiser7) ein logarithmisehes Ende der Flâche.
Die universelle Ûberlagerungsflâche8) w\ der g-fach punktierten

Ebene, d. h. diejenige Flàche, die tiber den q Grundpunkten lauter
Windungspunkte unendlicher Ordnung besitzt, ist die am stârksten
verzweigte aller Flachen Wq. Die Knotenpunkte ihres Komplexes sind
aile g-fach verzweigt, an jeden grenzen q Efcmentargebiete mit unendlich
vielen Ecken und Seiten an. Im Fall q 3 haben wir die von der ellipti-
schen Modulfunktion erzeugte Flaehe (Modulflache : Fig. 2).

9. Définition der Flachenklasse wQ : Es handelt sich um Flachen mit
nachstehenden Eigenschaften :

a) Die Flache besitzt nur Windungspunkte militer oder unendlicher
Ordnung.

b) Logarithmische Enden sind nicht vorhanden.
c) Die Knoten sind aile entweder unverzweigt oder g-fach verzweigt.

Der Komplex einer solchen Flache wQ ist, abgesehen von den
unverzweigten Knotepunkten, mit dem Komplex der universellen tîberlage-
rungsflàche wq topologisch âquivalent (Fig. 3).

Dièse letztere ist bekanntlich auf den Einheitskreis konform abbildbar,
und zwar so, daB die 3,Normalpolygone" On von q sich einander beriïhren-
den Orthogonalkreisbogen berandet werden. Die q(q — l)^-1 Polygone
Gk der Â;-ten Génération wollen wir noch mit i 1, 2,..., q(q — l)*-1
numerieren.

Mit sM bezeichnen wir den Flàcheninhalt des Polygons (ki), d. h. des

i-ten Polygons der k-ten Génération (Fig. 4).
Einem Polygon (ki) entspricht ein Knotenpunkt des Komplexes w°q

und damit ein verzweigter Knotenpunkt des Komplexes wQ9 den wir
wieder mit (ki) bezeichnen. Mit diesem Knotenpunkt (ki) von wQ ist ein
und nur ein Knotenpunkt (k — 1, if) verbunden, und zwar durch einen

Streckenzug, der aus einer endlichen Anzahl von abwechselnd einfachen
und (q — l)-fachen Strecken besteht. Sei lki dièse Streckenanzahl. Wir
sagen, der zugehôrige Streckenzug hat die ,,Lânge" lki. Die Zahlenfolge lkt
bestimmt den Komplex eindeutig.

Wir setzen noch : lk Max • lki, Lk Max • lh
*=l,2...

7) Speiser (1).
8) R. Nevanlinna (4).
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10. Fût dièse Flâchenklasse wq hat Kobayaschi9) den folgenden Satz
bewiesen :

Satz. Konvergiert die Reihe

so ist die Floche wq vom hyperbolischen Typus.

11. In der vorliegenden Arbeit sollen folgende drei Sâtze bewiesen
werden :

%*

Satz À, Konvergiert die Reihe :

so ist die Floche wQ vom hyperbolischen Typus.

Satz B, Konvergiert die Reihe

k (q — l)K

so ist die Floche wq vom hyperbolischen Typus.

Satz C, Sei lki von i unabhângig und in k monoton woehsend. Die
Floche wq ist donn und nur dann vom hyperbolischen Typus, wenn die Reihe

1

konvergiert. n a^n'

Der zweite Teil des Satzes C ist in dem Nevanlinna-Wittichschen Krite-
rium enthalten.

12. Ofifenbar ist der Satz B eine Verschàrfung des Satzes von Kobayaschi.

Er enthâlt aber nicht den Satz À, denn man kann eine Folge von ski

mit wachsendem k angeben, die schneller als —jf Se8en nu^ s^re"

ben10). Gibt man dann den zugehôrigen Streckenztigen die ,,Lange"
(q — l)k fiir gerades q und (q — l)k -\- l fur ungerades q und den ubri-
gen Streckenzûgen die ,,Lânge" 1, so konvergiert die Reihe U Elkiski,
wàhrend die Reihe l h

divergiert.
9) Kobayaschi (3).

10) Man nehme z. B. in jeder Génération das Polygon (k, i) kleinsten Flàcheninhalts.
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Andererseits ist der Satz B auch nicht eine Folge von A, denn falls lki
unabhângig von i ist, lki lk, so wird

h %

i i i i

M
i i i i i

MM!
Fig. 1.

Die Flâche w eeZ

Fig. 2.

Die Modulflàche w\ (q 3)

Fig. 3.

Flâche wq mit q 3

Fig. 4.

Einteilung des Einheitskreises
in Normalpolygone (Ici)

§ 2. Hilfssâtze uber schlichte und quasikonforme Âbbildungen

13. Bei der Untersuchung des Typenproblems ist es manchmal vor-
teilhaft, neben konformen Abbildungen noch allgemeinere, schlichte
Abbildungen heranzuziehen11).

Wir betrachten im folgenden ausschlieBlich jene Klasse von
Abbildungen, die eindeutig, stetig und bis auf isolierte Punkte oder Linien
stetig differenzierbar sind. Wir nennen der Kiirze halber eine solche Ab-
bildung ,,differenzierbar".

11 Fur diesen Paragraph vgl. Lawrentieff (1), Grôtsch (1), Teichmidler (1).
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14. Ein Gebiet der z-Ebene sei schlicht und differenzierbar auf der
w-Ebene abgebildet, vermôge u u(x,y), v v(x,y), mit z

w u + iv und | uxvy — uyvx | >0. Die Ausdrûcke -=—
(tz

\uxvy — w^ | stellen das Verhâltnis der Linienelemente bzw. der
Plàchenelemente dar. Wir setzen ferner

bzw.

Es gilt dann

Denn es ist

dw
~dz~

¦K-w/z —

dw

u\

dz uxvy-uxvy\ (1)

dx* + 2(uxuy + vxvy) dxdy (u2y

dx2 + dy2

und der Beweis jener Ungleichheit fuhrt auf das Problem der Bestim-

mung der Hauptachsen einer Ellipse zurùck.
Es ist ferner

K > 2 (2)wfz ^ ' V /

mit Gleichheitszeichen nur fur konforme Abbildungen.
Wenn Kwjz gleichmâBig beschrânkt ist, so sagt man, die Abbildung sei

quasikonform".
Fur umgekehrte Abbildungen hat man

rr rr (3)

ist insbesondere die Abbildung quasikonform, so ist die inverse Abbildung

auch quasikonform.
SchlieBlich gilt fur zusammengesetzte Abbildungen

(4)

Der Beweis folgt aus der Schwarzschen Ungleichung.

15. Satz 1. Ist die punktierte Ebene z ^oo auf den Einheitskreis
| w | < 1 differenzierbar und schlicht abgebildet, so divergiert das Intégral

J Kw/Z(w)dfw,
|i»l<r

wobei dfw das Flachenelement der w-Ebene bedeutet.
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Beweis. Wir kônnen annehmen, daB die Nullpunkte sich entsprechen.
Dann ist das Bild des Kreises z r < r0 eine einfache, geschlossene
Kurve des w-Gebietes, die den Punkt w 0 umgibt und deren kûrzester
Abstand vom Nullpunkt qq>0 sein môge. Ihre Lange ist also grôBer als

27T

dw
dz

Nach der Schwarz&chen Ungleichung ist

27T 2TT

rd<p

2TT 2TT 27T

I rd<p I —j— rdcp 2nr I
dw

rdcp

Division durch 2nr und Intégration nach dr von r0 bis r ergeben

logr0)
dw

dfz,

wobei dfz rdrdcp das Flàchenelement der z-Ebene ist.
Nach (1) haben wir schlieBlich

—Iogr0)< J Kwjz\uxvy-uyvx\dfz< J Kw/Z(w)dfw.

Lassen wir r ins Unendliche wachsen, so ergibt sich die Behauptung12).

16. Satz 2. Ist die punktierte Ebene 2^00 auf den Halbstreifen

derart abgebildet, daji zwei Randpunkte des Ç-Gebietes (£ f + irj) mit
gleichen f demselben z entsprechen, so divergiert das Intégral

fur jedes £0 < 0

12) Dieser Satz ist eine Erweiterung emes von Teichmuller (2) bewiesenen Satzes. Der
Beweis stutzt sich auf Langen- bzw. Flachènabschatzungen, die zuerst von W. Grofi,
R. Courant, spater von Grotzsch (1), L. Ahlfors (1) u. a. in den Fragen der konformen Ab-
bildungen angewandt worden smd.

Aus diesem Satz. folgt die Invananz des Typus bei quasikonformen Abbildungen und
damit die Behauptungen aus Nr. 4 (vgl. Teichmuller (2)
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Beweis. Bilden wir das £-Gebiet vermôge w eç auf den Kreis
w | < 1 ab, so muB nach Satz 1 das Intégral

J Kw/Z(w)dfw= J Kwlz{w)
dw

divergieren. Es ist nun

dfw dw 2

M*

und nach (2), (4) Kw/Z < Kw/^ • JSTç/^= 2 Jlç/ï woraus unsere Be-
hauptung folgt.

16. Es ist klar, daB bei den Sâtzen 1 und 2 die endliche z-Ebene durch
eine Riemannsche Flâche vom parabolischen Typus ersetzt werden
kônnte.

Unsere Aufgabe besteht dann im folgenden darin, Bedingungen auf-
zustellen, damit eine Abbildung der hier betrachteten Art existiert,
welche die Flâche wq auf den Einheitskreis abbildet und fur welche das

Intégral J K{w)dfw konvergiert.

Um eine solche Abbildung zu gewinnen, machen wir von der sogenann-
ten ,,Faltungsflâche" der Riemannschen Flâche wesentlich Gebrauch13).

18. Quasikonforme Abbildung der Floche wq auf ihre ,,Faltungsflacheu.

Dièse Abbildung kann man nach R. Nevanlinna13) folgendermaBen
herstellen :

Sei die Flâche wq liber der Riemannschen Kugel ausgebreitet. Wir
kônnen nach Nr. 4 annehmen, daB die Grundpunkte al9..., aq in den
Ecken eines regulâren Polygons des Âquatorialkreises liegen. Man grenze
um jeden Windungspunkt av der Flâche eine Umgebung Qv ab, welche
aus allen Flâchenpunkten besteht, deren auf der Flâche gemessener sphâ-
rischer Abstand von av klirzer als die Abstânde von den ubrigen Win-
dungspunkten ist. Qv wird von einer Anzahl von GroBkreisbogen B be-

randet, deren Punkte von mindestens zwei Windungspunkten av, a^ die
gleiche Entfernung haben. Das derart entstehende sogenannte Kobayachi-
Netz ist mit dem Streckenkomplex, abgesehen von den mehrfachen
Strecken, topologisch âquivalent.

18) Kobayaschi (1), (2); Kahutani (1); R. Nevanlinna (4).
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Unter der obigen Annahme liegen sâmtliche Ecken des Netzes iiber dem
Nord- bzw. Slidpole der Kugel.

Sei Pw ein von diesen Ecken verschiedener Punkt von B, der also zu
2 Polygonen Qv, Q^ gehôrt. Bewegt sich Pw auf B, so drehen sich die
GroBkreisbogen (avPw), (^^Pw) um gleiche Winkel und auf einem
Bogenelement | dw | ist die Zunahme jenes Winkels

dr(Pw) d arg
1 + aw
w — a

wobei fur a entweder av oder a^ zu setzen ist.
Ist Po derjenige Punkt von B, der dem Nullknotenpunkt des Kom-

plexes entsprieht und Pw ein beweglicher Punkt auf B, so haben wir in

x{Pw) J dx{P'w) > 0
PoPw

wobei P'w auf B von PQ bis Pw làuft, eine eindeutige stetige Funktion des

Netzpunktes Pw. Dièse Funktion kann man in jeden inneren Punkt der
Flâche folgendermaBen fortsetzen : Gehôrt Pw zu einem Polygon Qv, so

verlângert man den GroBkreisbogen (avPw) bis zum Punkt P'w des

Randes von Qv und setzt r(Pw) r(P^)-
Definieren wir noch durch

a(Pw) log
w — a

eine weitere Funktion von Pw, und fuhren wir die komplexe Verànder-
liche t a + i r ein, so erhalten wir als konformes Abbild der Flâche

wq eine ûber der oberen Halbebene r ^ 0 gelagerte, vielblattrige Flâche

0t, die mit Faltungen versehen ist, welche von zweierlei Art sind :

a) Faltungen, die den GroBkreisbogen entsprechen, welche die Win-
dungspunkte av mit den Ecken des zugehôrigen Polygons Qv verbinden.
Sie sind parallel zur cr-Achse und den verzweigten Knotenpunkten (kl)
des Komplexes wq eindeutig zugeordnet. Der Abstand einer solchen Fal-
tung von der a-Achse ist gleich nn, oder, nach einer Âhnlichkeitstrans-
formation gleich n, wenn der entsprechende Knotenpunkt zur n-ten
Génération gehôrt.

b) Faltungen, die den Netzbogen 1? entsprechen. Sie sind den Strecken-

zùgen (ki) (Verbindungslinien von 2 verzweigten Knotenpunkten)
eindeutig zugeordnet. Die Spur einer solchen Faltlinie auf der £-Ebene ist
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eine Kurve a /(t), kx < t ^ k2, wobei k2 — kx lki die Lange des

entsprechenden Streekenzuges bedeutet.
Die Funktion /(t) ist beschrânkt und versehwindet fur ganzzahlige r,

insbesondere fur r kx oder k2. Sie hat auch eine beschrankte Ablei-
tung ff(r), denn der Winkel, den die Faltlinie mit einer Geraden r
konstant bestimmt, ist gleich jenem durch den entsprechenden Netz-
bogen und einem GroBkreisbogen (avPJ) gebildeten Winkel und ist damit
von 0 und n verschieden.

An eine solche Faltlinie grenzen zwei ubereinanderliegende Gebiete
(T ^ /(t), kx ^ t ^ k2, der Faltungsflache. Jene Gebiete konnen wir
auf den Halbstreifen ax > 0, k± ^ xx < k2, quasikonform abbilden,
vermoge a1 a — /(t), xx r. In der Tat ist K beschrânkt

Nachdem wir aile solche Gebiete in Streifen transformiert haben, er-
halten wir eine neue Flâche, die nun mit wagrechten (parallel zur <r-Achse)
und senkrechten Faltungen versehen ist, und die wir ,,Faltungsflache" Ft
der Riemanmchen Flâche nennen. Sie besteht aus Halbstreifen, die paar-
weise an eine senkrechte Faltlinie grenzen. Jedes solche Streifenpaar ist
einem Streckenzug (ki) des Komplexes zugeordnet und hat die Breite lkt
Wir bezeichnen es auch mit (ki).

Insbesondere haben aile Streifen der Faltungsflache Ft der univer-
sellen Ûberlagerungsflache wQq die Breite 1

§ 3. Beweis des Satzes A u)

19. Es sei wq eine Riemannsche Flâche unserer Klasse. Wir bilden die
zugehorige Faltungsflache Ft auf die Faltungsflache Fto der universellen
Ûberlagerungsflache vPq ab, indem wir jeden Streifen der Breite lkt
in Ft auf die Breite 1 reduzieren, vermoge der Transformation

a0 a, r0 y— Dabei ist

Kto/t lkt + ^--<2lkt (5)
"Jet

Bei der quasikonformen Abbildung von Fto auf w\, dann von w°q auf den
Einheitskreis | w | < 1, gehen die Streifen (ki) in Orthogonalkreisbogen-
polygone sfkl uber, deren Inhalte wir ebenfalls mit skl bezeichnen wollen
(Fig-5).

14) Fur die Beweismethode vgl. Tetchmuller (2), Speiser (3)
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Es resultiert eine Abbildung von wq auf dem Kreis | w | < 1 mit

K(w) < Mlkl fur w in srkl (6)

wobei M eine endliche Konstante bedeutet.
Ware wq vom parabolischen Typus, so muBte nach Satz 1 § 2 das

Intégral
J K(w)dfw^M v si^si

w|<l * *

divergieren. Es folgt nun aus elementaren Abschatzungen

sL<mski y

wobei m eine Konstante bedeutet. Hieraus ergibt sich der

Satz A, Konvergiert die Beihe

k l

so gehdrt die Floche wq zum hyperbolischen Typus.

Die Grofien lkt und skt haben die in Nr. 9 erklarten Bedeutungen.

Fig 5

Die Polygone skz und s'kl (punktierter Rand)

§ 4. Beweis des Satzes B 15)

20. Im folgenden setzen wir der Bequemlichkeit halber q 3. Die
nachstehenden Ausfuhrungen lassen sich ohne weiteres auf den Fall q > 3

ubertragen
Um den Hauptgedanken der Beweisfuhrung besser hervortreten zu

lassen, wollen wir zuerst einige einfache Transformationen zusammen-
stellen.

16) Fur die Beweismethode vgl KaktUani (1), Kobayaschi (3)
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Transformation I. Abbildung des Dreieekes mit den kartesischen
Eckpunktskoordinaten (0, 0), (6, 0), (0, b) der £-Ebene (t a + ir)
auf das Dreieck (0,0), (1,J), (1,0) der w-Ebene (w u + iv) ver-

môge u —r—, v -£j- Dabei ist

Ktlw < ^ • W

Transformation II. Abbildung des Viereckes (Trapezoids) (c, 0),

(0,c), (0,c + d), (c + d,O) auf das Viereck (0, 1), (0,0), (1,0),

(1, £), vermôge u= ° + }" °
v -^^ {l ~ y) ' Hier ist

Bei diesen Transformationen ist die Randzuordnung linear.

21. Wir kommen zum Beweis des Satzes B. Fur q 3 stimmt die
universelle Ûberlagerungsflàche w°q mit der Modulflâche ûberein. Seien

FtQ und Ft die Faltungsflâchen der Flàche w\ bzw. der Flâche wq.
Wie beim Beweis des Satzes A bilden wir zunàchst Ft auf Fto (quasi-

konform) ab (Nr. 19). Auf den Streifen (ki) der &-ter Génération von
Ft gilt wesen (5)

wo Z^^. und lk wie in Nr. 9 definiert sind.
Die Menge aller Punkte r0 + a0 k (k > 1) der iiber der ^O-Ebene

gelagerten Faltungsflàche Fto bildet eine aus geradlinigen Strecken zu-
sammengesetzte, geschlossene Kurve Ck (Fig.6). Sei Dk das zwischen Ck
und Ck+1 liegende ,,Binggebiet". Dk wird durch die Faltungen in Teil-
gebiete zerlegt, auf welche wir nun die Transformationen I bzw. II aus-
ûben. Dièse Teilgebiete sind :

1) 3-2fc Dreiecken, welche dem in der Transformation I betrachteten
9

Dreieck kongruent sind, wenn wir 6 1 setzen. Nach (7) ist Kto/wo ^ « •

2) 3 • 2k Vierecke (Trapezoide) von der in der Transformation II ge-
schilderten Art mit d l, l<c<i. Fur 3 • 2k-m von diesen Vier-
ecken (m 1, 2,..., k) ist der zugehôrige Wert von c gleich m, so da8
fur sie gilt nach (8), da u0 < 1, d 1 ist,

*«./„.< 27-m (10)
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Nachdem wir die Dreiecke und Vierecke auf dièse Weise deformiert
haben, verheften wir sie nach der Art und Weise wie sie auf Dk nebenein-
anderliegen zu einem Rechteck 8% der wo-Ebene zusammen16). S% hat die
Breite 1 und die Hôhe 3-2*\ Auf S% ûben wir die (konforme) Transfor-

HT

mation w o _. wQ aus, die zu einem Rechteck 8k der w-Ebene mit

der Breite
fc

und der Hôhe n fuhrt. SchlieBlich werden aile

Sk(k= 1, 2,.. ,oo) zu einem Rechteck 8W der w-Ebene16) verheftet,
oo idessen Breite endlich und gleich J£ ô~~p ^*

Es folgt eine Abbildung der Flâche wq auf den in Satz 2 § 2 Nr. 16 be-
trachteten Streifen, mit

K(w)<M.Ktlh.Kt<s/Wo, (11)

wobei KtjtQ und KtoyWo den Ungleichungen (9) bzw. (10) geniigen.
Wâre nun die Flâche vom parabolischen Typus, so mûBte nach Satz 2

Nr. 16 das Intégral §K(w)dfw divergieren. Es gilt aber

$K(w)dfa= i $K(w)dfw

< Jf • X J KtlH.KHlw,dfw ^M Z Lk+l J KulwJfw
S*; **1 Sjt

denn das ,,Ringgebiet" Dk von Fto enthàlt nur Punkte der Streifen der
k + 1 ersten Generationen, so daB, nach (9), auf Dk gilt

Ferner ist

— "3T2FI dfWo

Die Dreiecke und Trapezoide von S% haben je einen Flâcheninhalt
kleiner als 1, so daB

M,
sl

16) Die hier ausgeûbten Verheftungen gelingen oline weiteres, weil die Randzuordnung
bei den Transformationen I, II linear war (Nr. 20).
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wobei die Summe ûber aile Dreiecke und Trapezoide von 8k zu erstrecken
ist. GemâB (10) gilt weiter

Je

und schlieBlich gemâB (12)

2k 2k

Nun ist aber

** 2k 2k+l

und damit haben wir den
I

Satz B. Konvergiert die Beihe ]£ -j, so gehort die Floche wq fiir q 3

zum hyperbolischen Typus. *=1

Die GrôBe lk hat die in Nr.9 erklârte Bedeutung. Fur q>3 ist dièse

hReihe durch
(q-l)k zu ersetzen.

XX
XX

XX
Fig. 6.

Spur auf der <0-Ebene von Ck, Gk+1 und Dk

§ 5. Beweis des Satzes C

22. Es ist zu erwarten, dafi gleichzeitig notwendige und hinreichende
Eoiterien fur einen bestimmten Flâchentypus aufgestellt werden kônnten,
wenn wir den Streckenkomplex hinreichend einschrânkenden Symmetrie-
bedingungen unterwerfen wiirden. Dies wird durch den Satz C bestàtigt.

Wir setzen also voraus, der Komplex der Flàche sei ,,symmetrisch",
d. h. lki sei unabhàngig von i, lki lk. Es sei ferner

nk h + h H Mfc •

284



Hier sind die Knoten einer bestimmten Génération entweder aile un-
verzweigt oder aile verzweigt. ,,Verzweigt" sind die %-ten Generationen.

23. Wir beweisen zunâchst das folgende

Lemma. Ist die Flache wq mit q 3 im obigen Sinne symmetrisch und
Jconvergieren die Reihen

V Jl^H V loglk
£ 2* lk ' h 2* '

so gehôrt sie zum hyperbolischen Typus.

Beweis. Die waagrechten Faltungen der Flache Ft liegen jetzt nur
liber den Geraden r nk (k 1, 2,... Wir betrachten das zwischen
den geschlossenen Kurven Cnk und Cnk+i (vgl. Nr. 21) liegende ,,Ring-
gebiet" Drk • Dfk wird durch die Faltungen in Teilgebiete zerlegt, und
zwar in

1) 3-2fc Dreiecke von der in der Transformation I betrachteten Art :

2) 3 • 2k Trapezoide von der in der Transformation II betrachteten Art
mit d — lk+i, 1 ^ c < nk, so daB gemàB (8), da uQ < 1 ist,

Nach den Transformationen I und II verheften wir die Dreiecke und
Trapezoide wie in Nr.21 zu einem Rechteck S% der wo-Ebene5 das dann

vermôge w ——^ w0 auf das Rechteck 8k der w-Ebene abgebildet wird.

Wir fiigen schlieBlich aile Sk zu einem einzigen Rechteck Sw zusammen.
Bei der Abbildung von wq auf Sw ist K(w) < M'Kt!Wo, wobei KtfWQ

der Ungleichung (13) genûgt. Es folgt

^^¥yJlt>fm (14)

Da dfWo duQdvQ ist, so gilt nach (13)
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SehlieBlieh wird gemâfi (14)

Wâre die Flaehe vom parabolischen Typus, so muBte die rechte Seite
nach Satz 2, § 2, divergieren. Hieraus ergibt sich das Lemma.

24. Wenn speziell lk in Je monoton wachsend ist, so wird nk ^klk,
und die Reihe J£ -^ -A ist konvergent. Die zweite Reihe £ -—-^ fâllt
aber bei den ,,symmetrischen" Komplexen, bis auf einen konstanten Fak-

tor, mit der Nevanlinna-Wittichschen Reihe y\—y-r (Nr. 6) zusammen.

Damit haben wir den

Satz C. Sei lki unabhangig von i und in k monoton wachsend. Die
Flâche wq ist dann und nur dann vom hyperbolischen Typus, wenn die Reihe

n=i a(n)
konvergiert.

Die Randknotenanzahl a(n) und die GrôBen lki haben die in Nr.5
bzw. Nr. 9 angegebene Bedeutung.

(Eingegangen den 4. Februar 1947.)
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