Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 20 (1947)

Artikel: Beitrag zum Typenproblem der Riemannschen Flächen.

Autor: Le-Van, Thiem

DOI: https://doi.org/10.5169/seals-18063

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beitrag zum Typenproblem der Riemannschen Flächen*)

Von LE-VAN, THIEM, Zürich

§ 1. Einleitung

- 1. Jede einfach zusammenhängende, offene Riemannsche Fläche läßt sich bekanntlich eindeutig und konform auf einen Kreis $|z| < R \le \infty$ abbilden. Je nachdem $R < \infty$ oder $R = \infty$ ist, heißt sie vom hyperbolischen oder vom parabolischen Typus. Im Anschluß an die Nevanlinnasche Wertverteilungslehre hat man speziell diejenigen Flächen W_q behandelt, welche Überlagerungsflächen der Riemannschen Kugel sind und deren Windungspunkte nur über endlich vielen Grundpunkten liegen 1).
- 2. Die topologische Struktur dieser Flächen kann folgendermaßen erklärt werden:

Man ziehe durch die Grundpunkte a_1, a_2, \ldots, a_q eine geschlossene Jordan-Kurve L, welche die Riemannsche Kugel in zwei einfach zusammenhängende Gebiete G_1 und G_2 zerlegt. Denkt man sich die Fläche längs L aufgeschnitten, so zerfällt sie in endlich oder unendlich viele, untereinander kongruente Exemplare G_1 bzw. G_2 . Die Randpunkte dieser Halbblätter oder Polygone a_1, \ldots, a_q mögen Ecken, die Bogen $(a_1 a_2), \ldots, (a_q a_1)$ Seiten heißen.

Die Eckpunkte a_1, \ldots, a_q eines gegebenen Polygons G_{ν} ($\nu=1,2$) sind von dreierlei Art: 1. Windungspunkte unendlicher Ordnung, an welche unendlich viele Blätter G_1+G_2 grenzen, 2. Windungspunkte (m-1)-ter Ordnung, wo eine endliche Anzahl m>1 von Blättern G_1+G_2 zyklisch vereinigt sind, 3. uneigentliche Eckpunkte, wo die Fläche schlicht verläuft.

Um die Fläche W darzustellen, denkt man sich eine Anzahl von Kurvenpolygonen G^{μ}_{ν} ($\nu = 1, 2; \mu = 1, 2, 3...$), die mit G_{ν} topologisch

^{*)} Für das Zustandekommen der vorliegenden Abhandlung bin ich in erster Linie den Herren Prof. R. Nevanlinna und Dr. H. Wittich für die liebenswürdige Unterstützung, die sie mir während der Ausarbeitung zuteilkommen ließen, zu tiefstem Dank verpflichtet.

Meine Arbeit bei Herrn Prof. R. Nevanlinna wurde durch die Jubiläumsstiftung der Universität Zürich ermöglicht, der mein weiterer Dank gilt.

¹⁾ Am Ende der Arbeit findet sich ein ausführliches Literaturverzeichnis.

äquivalent sind und die auf ein schlichtes Gebiet, etwa die endliche z-Ebene, nebeneinander so gelagert werden, daß sie dieses Gebiet schlicht und lückenlos ausfüllen und daß zwei Polygone G_2^{μ} , G_2^{μ} dann und nur dann längs einer Seite $(a_i a_{i+1})$ zusammenhängen, wenn die zugeordneten Polygone G_1 , G_2 die entsprechende "Bildseite" gemeinsam haben.

Das entstehende Polygonnetz nennt man den Graphen der Fläche W_q . Die inneren Eckpunkte des Graphen sind entweder uneigentliche Eckpunkte, an welche 2 Polygone, oder eigentliche Eckpunkte (m-1)-ter Ordnung, an welche m Polygone G_1 und m Polygone G_2 grenzen. Die Eckpunkte unendlicher Ordnung sind Randpunkte des Graphen. Dieser Graph soll die Fläche W_q darstellen.

3. Nehmen wir nun in jedem Polygon G einen inneren Punkt, und verbinden wir diesen Knotenpunkt durch insgesamt q punktfremde Strecken $S_{12}, S_{23}, \ldots, S_{q1}$ mit den Knotenpunkten der unmittelbar angrenzenden Polygone G, so daß $S_{\nu},_{\nu+1}$ über die Seite $(a_{\nu}, a_{\nu+1})$ zu dem Knotenpunkt des an diese Seite grenzenden "Nachbarpolygons" führt, so entsteht ein System von punktfremden Strecken, das man den $Streckenkomplex^2$) von W_g nennt.

Durch den Streckenkomplex zerfällt die Ebene in Teilgebiete, sog. "Elementargebiete" der *Riemann*schen Fläche. Sie sind den Windungspunkten (eigentlichen oder uneigentlichen) der Fläche eineindeutig zugeordnet: Einem Windungspunkt (m-1)-ter Ordnung $(1 \le m \le \infty)$ entspricht ein Elementargebiet mit 2m Ecken und Seiten.

4. Diejenigen Flächen W_q , die nur über den gegebenen Stellen verzweigt sind, unterscheiden sich bei festgehaltener Zerschneidungskurve L allein durch die Verheftungsvorschrift der "Halbblätter" G. Die letztere ist durch den Komplex festgestellt. Folglich ist eine Fläche W_q durch a_1, \ldots, a_q , L und ihren Streckenkomplex eindeutig bestimmt.

Die Eigenschaften der Fläche hängen im allgemeinen von der Lage der Punkte a_1, a_2, \ldots, a_q ab. Man beweist aber: Zwei Flächen W_q mit gleichen Streckenkomplexen sind vom gleichen Typus³). Es folgt erstens daraus, daß der Typus durch den Komplex eindeutig bestimmt ist, zweitens, daß es bei der Typenbestimmung genügt, eine besondere Lage der Grundpunkte zu betrachten (vgl. Fußnote 12).

5 Es sollen nun einige "Knotenfunktionen" definiert werden, die mit dem Komplex verbunden sind und die von Wichtigkeit für die Typenfrage sind.

²⁾ A. Speiser (1), R. Nevanlinna (2), G. Elfving (1).

³⁾ O. Teichmüller (1).

Man nehme ein beliebiges G^0 der Polygone des Graphen G, füge jeder Seite von G^0 das unmittelbar angrenzende Polygon G^1 (erste Generation) an, dann sämtlichen freien Seiten der Polygone G^1 wieder die unmittelbaren Nachbarpolygone G^2 (zweite Generation) usw. Wir wiederholen diese kranzförmige Erweiterung n-mal und bezeichnen mit G_n den aus den Generationen G^0, G^1, \ldots, G^n bestehenden Teil des Graphen und mit S_n den betreffenden Teil des Komplexes.

Nun hat S_n einen "Rand", welcher von allen denjenigen Knotenpunkten von S_n gebildet wird, die von dem unendlich fernen Punkte durch keine Streckenzüge von S_n getrennt werden. Die Anzahl dieser "Randknoten" von S_n sei $\sigma(n)$. Weiter bezeichnen wir mit $\mu(n)$ die Anzahl der Knotenpunkte der n-ten Generation. Es gilt offenbar:

$$\mu(n) \leqslant \sigma(n) \leqslant 1 + \mu(1) + \mu(2) + \cdots + \mu(n)$$
.

Es stellt sich die Frage, inwiefern der Typus der hier betrachteten Flächen W_q vom Verhalten der Funktionen $\sigma(n)$ und $\mu(n)$ abhängt. I. A. begünstigt eine schwache "Verzweigtheit" der Fläche, d. h. ein langsames Anwachsen jener Funktionen, den parabolischen Fall.

6. Das bis jetzt schärfste Ergebnis in dieser Richtung ist das Nevanlinna-Wittich'sche Kriterium 4):

Wenn die Reihe
$$\sum_{n=1}^{\infty} \frac{1}{\sigma(n)}$$

divergiert, dann gehört die Fläche zum parabolischen Typus.

Das Beispiel der Fläche: $w = e^{e^z}$ zeigt, daß die Divergenz dieser Reihe keine notwendige Bedingung für den parabolischen Fall ist (Fig. 1).

7. Entsprechende allgemeine, hinreichende Kriterien für den hyperbolischen Typus besitzt man noch nicht. Dafür sind verschiedene, für spezielle Fälle gültige Kriterien bekannt⁵).

Nach neueren Ergebnissen hängt der Flächentypus, außer von der Verzweigungsstärke, noch von anderen Eigenschaften des Komplexes, wie von ihrer Symmetrie bzw. Asymmetrie ab ⁶).

8. Wir beschränken uns hier auf eine Klasse w_q von Flächen W_q , und werden dafür hinreichende Bedingungen zum hyperbolischen Typus aufstellen. Für die Definition von w_q sind folgende Bezeichnungen zweckmäßig:

⁴⁾ H. Wittich (2), R. Nevanlinna (5).

⁵) Kakutani (1), Teichmüller (2), Kobayaschi (3), Speiser (3), C. Blanc (2).

⁶⁾ Myberg (2), C. Blanc (4).

Jeder Knotenpunkt des Komplexes hat zwei oder $\nu > 2$ "Nachbarn". Wir sagen, er sei im ersten Falle unverzweigt, im zweiten Falle ν -fach verzweigt.

Eine unendliche Folge von benachbarten, unverzweigten Knotenpunkten nennen wir mit Speiser 7) ein logarithmisches Ende der Fläche.

Die universelle Überlagerungsfläche 8) w_q^0 der q-fach punktierten Ebene, d. h. diejenige Fläche, die über den q Grundpunkten lauter Windungspunkte unendlicher Ordnung besitzt, ist die am stärksten verzweigte aller Flächen W_q . Die Knotenpunkte ihres Komplexes sind alle q-fach verzweigt, an jeden grenzen q Elementargebiete mit unendlich vielen Ecken und Seiten an. Im Fall q=3 haben wir die von der elliptischen Modulfunktion erzeugte Fläche (Modulfläche: Fig. 2).

- 9. Definition der Flächenklasse w_q : Es handelt sich um Flächen mit nachstehenden Eigenschaften:
- a) Die Fläche besitzt nur Windungspunkte nullter oder unendlicher Ordnung.
 - b) Logarithmische Enden sind nicht vorhanden.
 - c) Die Knoten sind alle entweder unverzweigt oder q-fach verzweigt.

Der Komplex einer solchen Fläche w_q ist, abgesehen von den unverzweigten Knotepunkten, mit dem Komplex der universellen Überlagerungsfläche w_q topologisch äquivalent (Fig. 3).

Diese letztere ist bekanntlich auf den Einheitskreis konform abbildbar, und zwar so, daß die "Normalpolygone" G^n von q sich einander berührenden Orthogonalkreisbogen berandet werden. Die $q(q-1)^{k-1}$ Polygone G^k der k-ten Generation wollen wir noch mit $i=1,2,\ldots,q(q-1)^{k-1}$ numerieren.

Mit s_{ki} bezeichnen wir den Flächeninhalt des Polygons (ki), d. h. des i-ten Polygons der k-ten Generation (Fig. 4).

Einem Polygon (ki) entspricht ein Knotenpunkt des Komplexes w_q^0 und damit ein verzweigter Knotenpunkt des Komplexes w_q , den wir wieder mit (ki) bezeichnen. Mit diesem Knotenpunkt (ki) von w_q ist ein und nur ein Knotenpunkt (k-1,i') verbunden, und zwar durch einen Streckenzug, der aus einer endlichen Anzahl von abwechselnd einfachen und (q-1)-fachen Strecken besteht. Sei l_{ki} diese Streckenanzahl. Wir sagen, der zugehörige Streckenzug hat die "Länge" l_{ki} . Die Zahlenfolge l_{ki} bestimmt den Komplex eindeutig.

Wir setzen noch:
$$l_k = \underset{i=1,2...}{\operatorname{Max}} \cdot l_{ki}, \ L_k = \underset{h \leqslant k}{\operatorname{Max}} \cdot l_h$$
.

⁷) Speiser (1).

⁸⁾ R. Nevanlinna (4).

10. Für diese Flächenklasse w_q hat Kobayaschi 9) den folgenden Satz bewiesen :

Satz. Konvergiert die Reihe

$$\sum_{k=1}^{\infty} \frac{kL_k}{(q-1)^k}$$

so ist die Fläche w_q vom hyperbolischen Typus.

11. In der vorliegenden Arbeit sollen folgende drei Sätze bewiesen werden:

Satz A. Konvergiert die Reihe:

$$\sum_{k} \sum_{i} l_{ki} s_{ki}$$
 $(k = 1, 2, ..., \infty; i = 1, 2, ..., 3 \cdot 2^{k-1})$,

so ist die Fläche wa vom hyperbolischen Typus.

Satz B. Konvergiert die Reihe

$$\sum_{k} \frac{l_k}{(q-1)^k} ,$$

so ist die Fläche w_q vom hyperbolischen Typus.

Satz C. Sei l_{ki} von i unabhängig und in k monoton wachsend. Die Fläche w_q ist dann und nur dann vom hyperbolischen Typus, wenn die Reihe

$$\sum_{n}\frac{1}{\sigma\left(n\right)}$$

konvergiert.

Der zweite Teil des Satzes C ist in dem Nevanlinna-Wittichschen Kriterium enthalten.

12. Offenbar ist der Satz B eine Verschärfung des Satzes von Kobayaschi. Er enthält aber nicht den Satz A, denn man kann eine Folge von s_{ki} mit wachsendem k angeben, die schneller als $\frac{1}{(q-1)^k}$ gegen null streben 10). Gibt man dann den zugehörigen Streckenzügen die "Länge" $(q-1)^k$ für gerades q und $(q-1)^k+1$ für ungerades q und den übrigen Streckenzügen die "Länge" 1, so konvergiert die Reihe $\sum \sum l_{ki} s_{ki}$, während die Reihe

$$\sum_{k} \frac{l_k}{(q-1)^k} \geqslant \sum_{k} \frac{(q-1)^k}{(q-1)^k}$$

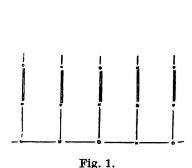
divergiert.

⁹⁾ Kobayaschi (3).

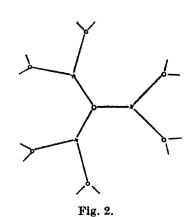
¹⁰⁾ Man nehme z. B. in jeder Generation das Polygon (k, i) kleinsten Flächeninhalts.

Andererseits ist der Satz B auch nicht eine Folge von A, denn falls l_{ki} unabhängig von i ist, $l_{ki} = l_k$, so wird

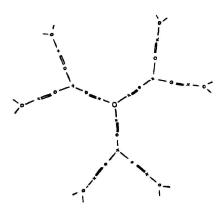
$$\sum_{k} \sum_{i} l_{ki} \, s_{ki} = \sum_{k} l_{k} \sum_{i} s_{ki} \geqslant \sum_{k} rac{l_{k}}{k^{3}} \; .$$



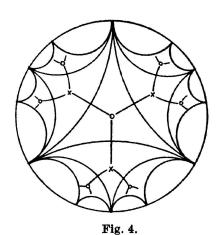
Die Fläche $w = e^{e^z}$



Die Modulfläche $w_q^0 (q=3)$



Fläche w_q mit q=3 $(l_{ki}=3)$



Einteilung des Einheitskreises in Normalpolygone (ki)

§ 2. Hilfssätze über schlichte und quasikonforme Abbildungen

13. Bei der Untersuchung des Typenproblems ist es manchmal vorteilhaft, neben konformen Abbildungen noch allgemeinere, schlichte Abbildungen heranzuziehen¹¹).

Wir betrachten im folgenden ausschließlich jene Klasse von Abbildungen, die eindeutig, stetig und bis auf isolierte Punkte oder Linien stetig differenzierbar sind. Wir nennen der Kürze halber eine solche Abbildung "differenzierbar".

¹¹) Für diesen Paragraph vgl. Lawrentieff (1), Grötsch (1), Teichmüller (1).

14. Ein Gebiet der z-Ebene sei schlicht und differenzierbar auf der w-Ebene abgebildet, vermöge $u=u(x,y),\ v=v(x,y),\ \mathrm{mit}\ z=x+iy,$ w=u+iv und $|u_xv_y-u_yv_x|>0$. Die Ausdrücke $\left|\frac{dw}{dz}\right|$ bzw. $|u_xv_y-u_yv_x|$ stellen das Verhältnis der Linienelemente bzw. der Flächenelemente dar. Wir setzen ferner

$$K_{w/z} = rac{u_x^2 + v_x^2 + u_y^2 + v_y^2}{\mid u_x v_y - u_y v_x \mid} \ .$$

Es gilt dann

$$\left|\frac{dw}{dz}\right|^2 \leqslant K_{w/z} \left| u_x v_y - u_x v_y \right| . \tag{1}$$

Denn es ist

$$\left| \frac{dw}{dz} \right|^2 = \frac{(u_x^2 + v_x^2) dx^2 + 2(u_x u_y + v_x v_y) dx dy + (u_y^2 + v_y^2) dy^2}{dx^2 + dy^2},$$

und der Beweis jener Ungleichheit führt auf das Problem der Bestimmung der Hauptachsen einer Ellipse zurück.

Es ist ferner

$$K_{w/z} \geqslant 2$$
 , (2)

mit Gleichheitszeichen nur für konforme Abbildungen.

Wenn $K_{w/z}$ gleichmäßig beschränkt ist, so sagt man, die Abbildung sei "quasikonform".

Für umgekehrte Abbildungen hat man

$$K_{z/w} = K_{w/z} ; (3)$$

ist insbesondere die Abbildung quasikonform, so ist die inverse Abbildung auch quasikonform.

Schließlich gilt für zusammengesetzte Abbildungen

$$K_{w/\zeta} \leqslant K_{w/z} \cdot K_{z/\zeta} . \tag{4}$$

Der Beweis folgt aus der Schwarzschen Ungleichung.

15. Satz 1. Ist die punktierte Ebene $z \neq \infty$ auf den Einheitskreis |w| < 1 differenzierbar und schlicht abgebildet, so divergiert das Integral

$$\int_{|w| < I} K_{w/z}(w) df_w ,$$

 $wobei \ df_w \ das \ Fl\"{a}chenelement \ der \ w\text{-}Ebene \ bedeutet.$

Beweis. Wir können annehmen, daß die Nullpunkte sich entsprechen. Dann ist das Bild des Kreises $z=r\leqslant r_0$ eine einfache, geschlossene Kurve des w-Gebietes, die den Punkt w=0 umgibt und deren kürzester Abstand vom Nullpunkt $\varrho_0>0$ sein möge. Ihre Länge ist also größer als

$$2\,\pi\,arrho_0 \leqslant \int\limits_0^{2\,\pi} \left|rac{dw}{dz}
ight| r\,darphi \;\; .$$

Nach der Schwarzschen Ungleichung ist

$$4\,\pi^2\,arrho_0^2 \leqslant \int\limits_0^{2\,\pi} r\,darphi \int\limits_0^{2\,\pi} \left|rac{dw}{dz}
ight|^2 r\,darphi = 2\,\pi\,r\!\int\limits_0^{2\,\pi} \left|rac{dw}{dz}
ight|^2 r\,darphi \;\;.$$

Division durch $2\pi r$ und Integration nach dr von r_0 bis r ergeben

$$2\pi \varrho_0^2 (\log r - \log r_0) \leqslant \int\limits_{r_0 < |z| < r} \left| \frac{dw}{dz} \right|^2 df_z$$
,

wobei $df_z=rdrd\varphi$ das Flächenelement der z-Ebene ist. Nach (1) haben wir schließlich

$$2\pi \varrho_0^2 (\log r - \log r_0) \leqslant \int_{r_0 < |z| < r} K_{w/z} |u_x v_y - u_y v_x| \, df_z < \int_{\varrho_0 < w < 1} K_{w/z}(w) \, df_w \, .$$

Lassen wir r ins Unendliche wachsen, so ergibt sich die Behauptung 12).

16. Satz 2. Ist die punktierte Ebene $z \neq \infty$ auf den Halbstreifen

$$\xi \leqslant 0$$
, $0 \leqslant \eta \leqslant 2\pi$

derart abgebildet, daß zwei Randpunkte des ζ -Gebietes ($\zeta = \xi + i\eta$) mit gleichen ξ demselben z entsprechen, so divergiert das Integral

$$\int_{\xi_0 < \xi < 0} K_{\xi/z}(\zeta) df_{\zeta}$$

 $f\ddot{u}r \ jedes \ \xi_0 < 0$.

¹²) Dieser Satz ist eine Erweiterung eines von *Teichmüller* (2) bewiesenen Satzes. Der Beweis stützt sich auf Längen- bzw. Flächenabschätzungen, die zuerst von W. Groβ, R. Courant, später von Grötzsch (1), L. Ahlfors (1) u. a. in den Fragen der konformen Abbildungen angewandt worden sind.

Aus diesem Satz folgt die Invarianz des Typus bei quasikonformen Abbildungen und damit die Behauptungen aus Nr. 4 (vgl. Teichmüller (2)).

Beweis. Bilden wir das ζ -Gebiet vermöge $w = e^{\zeta}$ auf den Kreis |w| < 1 ab, so muß nach Satz 1 das Integral

$$\int\limits_{e^{\frac{\zeta}{\xi_0}} < |w| < 1} K_{w/z}(w) \ df_w = \int\limits_{\xi_0 < \xi < 0} K_{w/z}(w) \left| \frac{dw}{d\zeta} \right|^2 df_{\zeta}$$

divergieren. Es ist nun

$$\frac{df_w}{df_{\zeta}} = \left| \frac{dw}{d\zeta} \right|^2 = |w|^2 \leqslant 1$$

und nach (2), (4) $K_{w/z} \leqslant K_{w/\zeta} \cdot K_{\zeta/z} = 2 \, K_{\zeta/z}$, woraus unsere Behauptung folgt.

16. Es ist klar, daß bei den Sätzen 1 und 2 die endliche z-Ebene durch eine *Riemann* sche Fläche vom parabolischen Typus ersetzt werden könnte.

Unsere Aufgabe besteht dann im folgenden darin, Bedingungen aufzustellen, damit eine Abbildung der hier betrachteten Art existiert, welche die Fläche w_q auf den Einheitskreis abbildet und für welche das Integral $\int\limits_{|w|<1} K(w)\,df_w$ konvergiert.

Um eine solche Abbildung zu gewinnen, machen wir von der sogenannten "Faltungsfläche" der *Riemann*schen Fläche wesentlich Gebrauch¹³).

18. Quasikonforme Abbildung der Fläche wa auf ihre "Faltungsfläche".

Diese Abbildung kann man nach R. Nevanlinna¹³) folgendermaßen herstellen:

Sei die Fläche w_q über der Riemannschen Kugel ausgebreitet. Wir können nach Nr. 4 annehmen, daß die Grundpunkte a_1, \ldots, a_q in den Ecken eines regulären Polygons des Äquatorialkreises liegen. Man grenze um jeden Windungspunkt a_ν der Fläche eine Umgebung Q_ν ab, welche aus allen Flächenpunkten besteht, deren auf der Fläche gemessener sphärischer Abstand von a_ν kürzer als die Abstände von den übrigen Windungspunkten ist. Q_ν wird von einer Anzahl von Großkreisbogen B berandet, deren Punkte von mindestens zwei Windungspunkten a_ν , a_μ die gleiche Entfernung haben. Das derart entstehende sogenannte KobayachiNetz ist mit dem Streckenkomplex, abgesehen von den mehrfachen Strecken, topologisch äquivalent.

¹³) Kobayaschi (1), (2); Kakutani (1); R. Nevanlinna (4).

Unter der obigen Annahme liegen sämtliche Ecken des Netzes über dem Nord- bzw. Südpole der Kugel.

Sei P_w ein von diesen Ecken verschiedener Punkt von B, der also zu 2 Polygonen Q_v , Q_μ gehört. Bewegt sich P_w auf B, so drehen sich die Großkreisbogen $(a_v P_w)$, $(a_\mu P_w)$ um gleiche Winkel und auf einem Bogenelement |dw| ist die Zunahme jenes Winkels

$$d\tau(P_w) = \left| d \arg \frac{1 + \overline{a}w}{w - a} \right| ,$$

wobei für a entweder a_{ν} oder a_{μ} zu setzen ist.

Ist P_0 derjenige Punkt von B, der dem Nullknotenpunkt des Komplexes entspricht und P_w ein beweglicher Punkt auf B, so haben wir in

$$\tau(P_w) = \int_{P_0 P_w} d\tau(P_w') \geqslant 0 ,$$

wobei P'_w auf B von P_0 bis P_w läuft, eine eindeutige stetige Funktion des Netzpunktes P_w . Diese Funktion kann man in jeden inneren Punkt der Fläche folgendermaßen fortsetzen: Gehört P_w zu einem Polygon Q_v , so verlängert man den Großkreisbogen $(a_v P_w)$ bis zum Punkt P'_w des Randes von Q_v und setzt $\tau(P_w) = \tau(P'_w)$.

Definieren wir noch durch

$$\sigma(P_w) = \log \left| \frac{1 + \overline{a}w}{w - a} \right|$$

eine weitere Funktion von P_w , und führen wir die komplexe Veränderliche $t=\sigma+i~\tau$ ein, so erhalten wir als konformes Abbild der Fläche w_q eine über der oberen Halbebene $\tau\geqslant 0$ gelagerte, vielblättrige Fläche Φ_t , die mit Faltungen versehen ist, welche von zweierlei Art sind:

- a) Faltungen, die den Großkreisbogen entsprechen, welche die Windungspunkte a_{ν} mit den Ecken des zugehörigen Polygons Q_{ν} verbinden. Sie sind parallel zur σ -Achse und den verzweigten Knotenpunkten (ki) des Komplexes w_q eindeutig zugeordnet. Der Abstand einer solchen Faltung von der σ -Achse ist gleich $n\pi$, oder, nach einer Ähnlichkeitstransformation gleich n, wenn der entsprechende Knotenpunkt zur n-ten Generation gehört.
- b) Faltungen, die den Netzbogen B entsprechen. Sie sind den Streckenzügen (ki) (Verbindungslinien von 2 verzweigten Knotenpunkten) eindeutig zugeordnet. Die Spur einer solchen Faltlinie auf der t-Ebene ist

eine Kurve $\sigma = f(\tau)$, $k_1 \leqslant \tau \leqslant k_2$, wobei $k_2 - k_1 = l_{ki}$ die Länge des entsprechenden Streckenzuges bedeutet.

Die Funktion $f(\tau)$ ist beschränkt und verschwindet für ganzzahlige τ , insbesondere für $\tau=k_1$ oder k_2 . Sie hat auch eine beschränkte Ableitung $f'(\tau)$, denn der Winkel, den die Faltlinie mit einer Geraden $\tau=$ konstant bestimmt, ist gleich jenem durch den entsprechenden Netzbogen und einem Großkreisbogen $(a_{\nu}P_{\omega})$ gebildeten Winkel und ist damit von 0 und π verschieden.

An eine solche Faltlinie grenzen zwei übereinanderliegende Gebiete $\sigma \geqslant f(\tau), \ k_1 \leqslant \tau \leqslant k_2$, der Faltungsfläche. Jene Gebiete können wir auf den Halbstreifen $\sigma_1 \geqslant 0$, $k_1 \leqslant \tau_1 \leqslant k_2$, quasikonform abbilden, vermöge $\sigma_1 = \sigma - f(\tau), \ \tau_1 = \tau$. In der Tat ist K beschränkt

$$K_{t_1/t} = 2 + f'^2(\tau)$$
.

Nachdem wir alle solche Gebiete in Streifen transformiert haben, erhalten wir eine neue Fläche, die nun mit wagrechten (parallel zur σ -Achse) und senkrechten Faltungen versehen ist, und die wir "Faltungsfläche" F_t der Riemannschen Fläche nennen. Sie besteht aus Halbstreifen, die paarweise an eine senkrechte Faltlinie grenzen. Jedes solche Streifenpaar ist einem Streckenzug (ki) des Komplexes zugeordnet und hat die Breite l_{ki} . Wir bezeichnen es auch mit (ki).

Insbesondere haben alle Streifen der Faltungsfläche F_{t_0} der universellen Überlagerungsfläche w_q^0 die Breite 1.

§ 3. Beweis des Satzes A 14)

19. Es sei w_q eine Riemannsche Fläche unserer Klasse. Wir bilden die zugehörige Faltungsfläche F_t auf die Faltungsfläche F_{t_0} der universellen Überlagerungsfläche w_q^0 ab, indem wir jeden Streifen der Breite l_{ki} in F_t auf die Breite 1 reduzieren, vermöge der Transformation $\sigma_0 = \sigma$, $\tau_0 = \frac{1}{l_{ki}}$. Dabei ist

$$K_{t_0/t} = l_{ki} + \frac{1}{l_{ki}} \leqslant 2 \, l_{ki} \quad . \tag{5}$$

Bei der quasikonformen Abbildung von F_{t_0} auf w_q^0 , dann von w_q^0 auf den Einheitskreis |w| < 1, gehen die Streifen (ki) in Orthogonalkreisbogenpolygone s'_{ki} über, deren Inhalte wir ebenfalls mit s'_{ki} bezeichnen wollen (Fig. 5).

¹⁴⁾ Für die Beweismethode vgl. Teichmüller (2), Speiser (3).

Es resultiert eine Abbildung von w_q auf dem Kreis |w| < 1 mit

$$K(w) \leqslant M l_{ki} \quad \text{für } w \text{ in } s'_{ki} ,$$
 (6)

wobei M eine endliche Konstante bedeutet.

Wäre w_q vom parabolischen Typus, so müßte nach Satz 1 § 2 das Integral

$$\int\limits_{|w|<1} K(w) df_w \leqslant M \sum\limits_{k} \sum\limits_{i} l_{ki} s'_{ki}$$

divergieren. Es folgt nun aus elementaren Abschätzungen

$$s'_{ki} < m s_{ki}$$
 ,

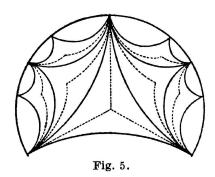
wobei m eine Konstante bedeutet. Hieraus ergibt sich der

Satz A. Konvergiert die Reihe

$$\sum_{k} \sum_{i} l_{ki} s_{ki} ,$$

so gehört die Fläche w_{q} zum hyperbolischen Typus.

Die Größen l_{ki} und s_{ki} haben die in Nr. 9 erklärten Bedeutungen.



Die Polygone s_{ki} und s'_{ki} (punktierter Rand)

§ 4. Beweis des Satzes B 15)

20. Im folgenden setzen wir der Bequemlichkeit halber q=3. Die nachstehenden Ausführungen lassen sich ohne weiteres auf den Fall q>3 übertragen.

Um den Hauptgedanken der Beweisführung besser hervortreten zu lassen, wollen wir zuerst einige einfache Transformationen zusammenstellen.

¹⁵) Für die Beweismethode vgl. Kakutani (1), Kobayaschi (3).

Transformation I. Abbildung des Dreieckes mit den kartesischen Eckpunktskoordinaten $(0,0),\ (b,0),\ (0,b)$ der t-Ebene $(t=\sigma+i\tau)$ auf das Dreieck $(0,0),\ (1,\frac{1}{2}),\ (1,0)$ der w-Ebene (w=u+iv) vermöge $u=\frac{\sigma+\tau}{b},\ v=\frac{\sigma}{2\,b}$. Dabei ist

$$K_{t/w} \leqslant \frac{9}{2} . (7)$$

Transformation II. Abbildung des Viereckes (Trapezoids) (c, 0), (0, c), (0, c + d), (c + d, 0) auf das Viereck (0, 1), (0, 0), (1, 0), $(1, \frac{1}{2})$, vermöge $u = \frac{\sigma + \tau - c}{d}$, $v = \frac{\sigma}{c + du} \left(1 - \frac{u}{2}\right)$. Hier ist

$$K_{t/w} \leqslant 9\left(\frac{c+du}{d} + \frac{d}{c+du}\right)$$
 (8)

Bei diesen Transformationen ist die Randzuordnung linear.

21. Wir kommen zum Beweis des Satzes B. Für q=3 stimmt die universelle Überlagerungsfläche w_q^0 mit der Modulfläche überein. Seien F_{t_0} und F_t die Faltungsflächen der Fläche w_q^0 bzw. der Fläche w_q .

Wie beim Beweis des Satzes A bilden wir zunächst F_t auf F_{t_0} (quasi-konform) ab (Nr. 19). Auf den Streifen (ki) der k-ter Generation von F_{t_0} gilt wegen (5)

$$K_{t/t_0} \leqslant 2 \cdot l_{ki} \leqslant 2 \cdot l_k , \qquad (9)$$

wo l_{ki} und l_k wie in Nr. 9 definiert sind.

Die Menge aller Punkte $\tau_0 + \sigma_0 = k$ $(k \ge 1)$ der über der t_0 -Ebene gelagerten Faltungsfläche F_{t_0} bildet eine aus geradlinigen Strecken zusammengesetzte, geschlossene Kurve C_k (Fig. 6). Sei D_k das zwischen C_k und C_{k+1} liegende "Ringgebiet". D_k wird durch die Faltungen in Teilgebiete zerlegt, auf welche wir nun die Transformationen I bzw. II ausüben. Diese Teilgebiete sind:

- 1) $3 \cdot 2^k$ Dreiecken, welche dem in der Transformation I betrachteten Dreieck kongruent sind, wenn wir b = 1 setzen. Nach (7) ist $K_{t_0/w_0} \leqslant \frac{9}{2}$.
- 2) $3 \cdot 2^k$ Vierecke (Trapezoide) von der in der Transformation II geschilderten Art mit d = 1, $1 \le c \le k$. Für $3 \cdot 2^{k-m}$ von diesen Vierecken (m = 1, 2, ..., k) ist der zugehörige Wert von c gleich m, so daß für sie gilt nach (8), da $u_0 \le 1$, d = 1 ist,

$$K_{t_0/w_0} \leqslant 27 \cdot m . \tag{10}$$

Nachdem wir die Dreiecke und Vierecke auf diese Weise deformiert haben, verheften wir sie nach der Art und Weise wie sie auf D_k nebeneinanderliegen zu einem Rechteck S_k^0 der w_0 -Ebene zusammen 16). S_k^0 hat die Breite 1 und die Höhe $3 \cdot 2^k$. Auf S_k^0 üben wir die (konforme) Transformation $w = \frac{\pi}{3 \cdot 2^k} w_0$ aus, die zu einem Rechteck S_k der w-Ebene mit der Breite $\frac{\pi}{3 \cdot 2^k}$ und der Höhe π führt. Schließlich werden alle $S_k(k=1,2,\ldots,\infty)$ zu einem Rechteck S_w der w-Ebene 16) verheftet, dessen Breite endlich und gleich $\sum_{k=1}^{\infty} \frac{1}{3 \cdot 2^k}$ ist.

Es folgt eine Abbildung der Fläche w_q auf den in Satz 2 § 2 Nr. 16 betrachteten Streifen, mit

$$K(w) < M \cdot K_{t/t_0} \cdot K_{t_0/w_0} , \qquad (11)$$

wobei K_{t/t_0} und K_{t_0/w_0} den Ungleichungen (9) bzw. (10) genügen. Wäre nun die Fläche vom parabolischen Typus, so müßte nach Satz 2 Nr. 16 das Integral $\int_{S_w} K(w) df_w$ divergieren. Es gilt aber

$$\int_{S_{w}} K(w) df_{w} = \sum_{k=1}^{\infty} \int_{S_{k}} K(w) df_{w}
\leq M \cdot \sum_{S_{k}} \int_{K_{t/t_{0}}} K_{t_{0}/w_{0}} df_{w} \leq M \sum_{k=1}^{\infty} L_{k+1} \int_{S_{k}} K_{t_{0}/w_{0}} df_{w} ,$$
(12)

denn das "Ringgebiet" D_k von F_{t_0} enthält nur Punkte der Streifen der k+1 ersten Generationen, so daß, nach (9), auf D_k gilt

$$K_{t/t_0} < 2 \max_{h \leq k+1} \cdot l_h = 2 L_{k+1}$$
.

Ferner ist

$$df_w = \left(rac{\pi}{3\cdot 2^k}
ight)^2 \! df_{w_0} \ .$$

Die Dreiecke und Trapezoide von S_k^0 haben je einen Flächeninhalt kleiner als 1, so daß

$$\int\limits_{S_k} K_{t_0/w_0} df_w = \left(\frac{\pi}{3 \cdot 2^k}\right)^2 \int\limits_{S_k^0} K_{t_0/w_0} df_{w_0} \leqslant M_1 \left(\frac{1}{2^k}\right)^2 \sum\limits_{S_k^0} K_{t_0/w_0} ,$$

¹⁶) Die hier ausgeübten Verheftungen gelingen ohne weiteres, weil die Randzuordnung bei den Transformationen I, II linear war (Nr. 20).

wobei die Summe über alle Dreiecke und Trapezoide von S_k zu erstrecken ist. Gemäß (10) gilt weiter

$$\sum_{S_{k}^{0}} K_{t_{0}/w_{0}} \leqslant 27 \cdot \sum_{m=1}^{k} 3 \cdot 2^{k-m} \cdot m \leqslant M_{2} 2^{k}$$

und schließlich gemäß (12)

$$\int_{S_w} K(w) df_w < M_3 \sum_{k=1}^{\infty} \frac{L_{k+1}}{2^k} = 2 M_3 \sum_{k=2}^{\infty} \frac{L_k}{2^k}.$$

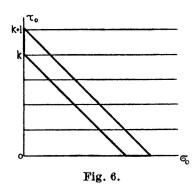
Nun ist aber

$$\sum \frac{L_k}{2^k} \leqslant \sum \frac{l_1 + l_2 + \cdots + l_k}{2^k} = \sum l_k \left(\frac{1}{2^k} + \frac{1}{2^{k+1}} + \cdots \right) = 2 \sum \frac{l_k}{2^k}$$

und damit haben wir den

Satz B. Konvergiert die Reihe $\sum\limits_{k=1}^{\infty} rac{l_k}{2^k}$, so gehört die Fläche w_q für q=3 zum hyperbolischen Typus.

Die Größe l_k hat die in Nr. 9 erklärte Bedeutung. Für q>3 ist diese Reihe durch $\sum \frac{l_k}{(q-1)^k}$ zu ersetzen.



Spur auf der t_0 -Ebene von C_k , C_{k+1} und D_k

§ 5. Beweis des Satzes C

22. Es ist zu erwarten, daß gleichzeitig notwendige und hinreichende Kriterien für einen bestimmten Flächentypus aufgestellt werden könnten, wenn wir den Streckenkomplex hinreichend einschränkenden Symmetriebedingungen unterwerfen würden. Dies wird durch den Satz C bestätigt.

Wir setzen also voraus, der Komplex der Fläche sei "symmetrisch", d. h. l_{ki} sei unabhängig von i, $l_{ki} = l_k$. Es sei ferner

$$n_k = l_1 + l_2 + \cdots + l_k .$$

Hier sind die Knoten einer bestimmten Generation entweder alle unverzweigt oder alle verzweigt. "Verzweigt" sind die n_k -ten Generationen.

23. Wir beweisen zunächst das folgende

Lemma. Ist die Fläche w_q mit q=3 im obigen Sinne symmetrisch und konvergieren die Reihen

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \frac{n_{\kappa}}{l_k} , \qquad \sum_{k=1}^{\infty} \frac{\log l_k}{2^k} ,$$

so gehört sie zum hyperbolischen Typus.

Beweis. Die waagrechten Faltungen der Fläche F_t liegen jetzt nur über den Geraden $\tau=n_k$ $(k=1,2,\ldots)$. Wir betrachten das zwischen den geschlossenen Kurven C_{n_k} und $C_{n_{k+1}}$ (vgl. Nr.21) liegende "Ringgebiet" $D_k'\cdot D_k'$ wird durch die Faltungen in Teilgebiete zerlegt, und zwar in

- 1) $3 \cdot 2^k$ Dreiecke von der in der Transformation I betrachteten Art : $b = 1_k$.
- 2) $3 \cdot 2^k$ Trapezoide von der in der Transformation II betrachteten Art mit $d = l_{k+i}$, $1 \leqslant c \leqslant n_k$, so daß gemäß (8), da $u_0 \leqslant 1$ ist,

$$K_{t/w_0} < 9\left(\frac{n_{k+1}}{l_{k+1}} + \frac{l_{k+1}}{1 + l_{k+1}u_0}\right) \tag{13}$$

Nach den Transformationen I und II verheften wir die Dreiecke und Trapezoide wie in Nr. 21 zu einem Rechteck S_k^0 der w_0 -Ebene, das dann vermöge $w = \frac{\pi}{3 \cdot 2^k} w_0$ auf das Rechteck S_k der w-Ebene abgebildet wird.

Wir fügen schließlich alle S_k zu einem einzigen Rechteck S_w zusammen.

Bei der Abbildung von w_q auf S_w ist $K(w) \leqslant M \cdot K_{t/w_0}$, wobei K_{t/w_0} der Ungleichung (13) genügt. Es folgt

$$\int_{S_w} K(w) df_w < M \sum_{k=1}^{\infty} \int_{S_k} K_{t/w_0} df_w < M \sum_{k=1}^{\infty} \left(\frac{\pi}{3 \cdot 2^k} \right)^2 \int_{S_k^0} K_{t/w_0} df_{w_0} . \quad (14)$$

Da $df_{w_0} = du_0 dv_0$ ist, so gilt nach (13)

Schließlich wird gemäß (14)

$$\int_{S_{-n}} K(w) df_w < M\left(\sum_{k=1}^{\infty} \frac{1}{2^k} \frac{n_{k+1}}{l_{k+1}} + \sum_{k=1}^{\infty} \frac{\log l_{k+1}}{2^k}\right) = 2 \cdot M\left(\sum_{k=2}^{\infty} \frac{1}{2^k} \frac{n_k}{l_k} + \sum_{k=2}^{\infty} \frac{\log l_k}{2^k}\right).$$

Wäre die Fläche vom parabolischen Typus, so müßte die rechte Seite nach Satz 2, § 2, divergieren. Hieraus ergibt sich das Lemma.

- 24. Wenn speziell l_k in k monoton wachsend ist, so wird $n_k \leqslant k l_k$, und die Reihe $\sum \frac{1}{2^k} \frac{n_k}{l_k}$ ist konvergent. Die zweite Reihe $\sum \frac{\log l_k}{2^k}$ fällt aber bei den "symmetrischen" Komplexen, bis auf einen konstanten Faktor, mit der Nevanlinna-Wittichschen Reihe $\sum \frac{1}{\sigma(n)}$ (Nr. 6) zusammen. Damit haben wir den
- Satz C. Sei l_{ki} unabhängig von i und in k monoton wachsend. Die Fläche w_q ist dann und nur dann vom hyperbolischen Typus, wenn die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{\sigma(n)}$$

konvergiert.

Die Randknotenanzahl $\sigma(n)$ und die Größen l_{ki} haben die in Nr.5 bzw. Nr. 9 angegebene Bedeutung.

(Eingegangen den 4. Februar 1947.)

LITERATURVERZEICHNIS

- Ahlfors, L.: (1) Über eine in der neueren Wertverteilungstheorie betrachteten Klasse transzendenter Funktion. Acta Math. 58 (1932).
 - (2) Zur Bestimmung des Typus einer Riemannschen Fläche. Comment. math. Helv. 3 (1931).
 - (3) Sur le type d'une surface de Riemann. C. R. Ac. Sc. Paris 201 (1935).
- Blanc, C.: (1) Les surfaces de Riemann des fonctions méromorphes. Comment. math. Helv. 9 (1937).
 - (2) Les demi-surfaces de Riemann. Application au problème du type. Ebenda 10 (1938).
- Drape, E.: (1) Über die Darstellung Riemannscher Flächen durch Streckenkomplexe. Deutsche Math. 3 (1938).

- Elfving, G.: (1) Über eine Klasse von Riemannschen Flächen und ihre Uniformisierung. Acta soc. sc. Fenn. N. S. 2 (1934).
 - (2) Über Riemannsche Flächen und Annäherung von meromorphen Funktionen. 8. Congr. Math. scand. Stockholm (1934).
- Garwick, J. v.: (1) Über das Typenproblem. Arch. Math. Nat. 43 (1940).
- Grötzsch: (1) Ber. Sächs. Acad. 80-84 (1928-1933).
- Kakutani, S.: (1) Applications of the theory of pseudo-regular functions to the type-problem of Riemann surfaces. Jap. J. Math. 13 (1936).
- Kobayaschi, Z.: (1) Theorems on the conformal representations of Riemann surfaces. Sc. Rep. Tokyo Bunr. Daig. Sec. A Nr. 39 (1936).
 - (2) Ein Satz über ein Problem von Herrn Speiser. Ebenda (1935).
 - (3) On the Kakutani's theory of the Riemann surfaces. Nr. 76 ebenda (1940).
- Laasonen, P.: (1) Zum Typenproblem der Riemannschen Flächen. Ann. Acad. sc. Fenn. S. A. 11 (1942).
 - (2) Beiträge zur Theorie der fuchsoiden Gruppen und zum Typenproblem der Riemannschen Flächen. Ebenda 25 (1944).
- Lawrentieff: (1) Sur les surfaces de Riemann. Recueil Math. Moscou (1935).
- Myrberg, P. J.: Über die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen Fläche. Acta Math. 61 (1933).
 - (2) Über die Bestimmung des Typus einer Riemannschen Fläche. Ann. Acad. sc. Fenn. A 45 (1935).
- Nevanlinna, R.: (1) Über die Riemannsche Fläche einer analytischen Funktion. Verh. int. Math. Kongreß I Zürich (1932).
 - (2) Ein Satz über die konforme Abbildung von Riemannschen Flächen. Comment. Math. Helv. 5 (1932).
 - (3) Über Riemannsche Flächen mit endlich vielen Windungspunkten. Acta Math. 58 (1932).
 - (4) Eindeutige analytische Funktionen. Berlin: Springer (1936).
 - (5) Ein Satz über offene Riemannsche Flächen. Ann. Acad. sc. Fenn. 54 (1940).
- Speiser, A.: (1) Über Riemannsche Flächen. Comment. Math. Helv. 2 (1930).
 - (2) Über beschränkte automorphe Funktionen. Ebenda 4 (1932).
 - (3) Riemannsche Fläche vom hyperbolischen Typus. Ebenda 10 (1938).
- Teichmüller, O.: (1) Eine Anwendung quasikonformer Abbildungen auf das Typenproblem. Deutsche Math. 2 (1937).
 - (2) Untersuchung über konforme und quasikonforme Abbildungen. Ebenda 3 (1938).
- Ullrich, E.: (1) Zum Umkehrproblem der Wertverteilungslehre. Nachr. Ges. Wiss. Göttingen N. F. 1 Nr. 9 (1936).
 - (2) Flächenbau und Wertverteilung. 9. Congr. Math. scand. (1939).
 - (3) The Problem of the type for a certain class of Riemann surfaces. Duke math. J. 5 (1939).
- Wagner, H.: (1) Über eine Klasse Riemannscher Flächen mit endlich vielen nur logarithmischen Windungspunkten. J. reine u. angew. Math. 175 (1936).
- Wittich, H.: (1) Ein Kriterium zur Bestimmung des Typus Riemannscher Flächen. Mh. Math. Phys. 44 (1936).
 - (2) Über die konforme Abbildung einer Klasse Riemannscher Flächen. Math. Z. 45 (1939).