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Beitrag zum
Typenproblem der Riemannschen Flachen®

Von LE-VaN, THIEM, Ziirich

§ 1. Einleitung

1. Jede einfach zusammenhingende, offene Riemannsche Fliche 148t
sich bekanntlich eindeutig und konform auf einen Kreis |z | < R<oco ab-
bilden. Je nachdem R<oco oder R =oo ist, heiBlt sie vom hyperboli-
schen oder vom parabolischen Typus. Im Anschlul an die Nevanlinna-
sche Wertverteilungslehre hat man speziell diejenigen Flichen W, be-
handelt, welche Uberlagerungsflichen der Riemannschen Kugel sind und
deren Windungspunkte nur iiber endlich vielen Grundpunkten liegen?).

2. Die topologische Struktur dieser Fliachen kann folgendermafen
erklirt werden :

Man ziehe durch die Grundpunkte a,,a,,...,a, eine geschlossene
Jordan-Kurve L, welche die Riemannsche Kugel in zwei einfach zu-
sammenhingende Gebiete G, und G, zerlegt. Denkt man sich die Flidche
lings L aufgeschnitten, so zerfillt sie in endlich oder unendlich viele,
untereinander kongruente Exemplare G, bzw. @,. Die Randpunkte dieser
Halbbldtter oder Polygone a,,...,a, mogen Ecken, die Bogen
(@,ay),. . .,(a,a;) Seiten heiflen.

Die Eckpunkte a,,...,a, eines gegebenen Polygons G, (» =1, 2)
sind von dreierlei Art: 1. Windungspunkte unendlicher Ordnung, an
welche unendlich viele Blidtter G, + G, grenzen, 2. Windungspunkte
(m — 1)-ter Ordnung, wo eine endliche Anzahl m>1 von Blittern
G, + G, zyklisch vereinigt sind, 3. uneigentliche Eckpunkte, wo die
Fldche schlicht verlduft.

Um die Fliche W darzustellen, denkt man sich eine Anzahl von
Kurvenpolygonen G (v =1,2; u=1,2,3...), die mit ¢, topologisch

q

*) Fir das Zustandekommen der vorliegenden Abhandlung bin ich in erster Linie den
Herren Prof. R.Nevanlinna und Dr. H. Wittich fir die liebenswiirdige Unterstiitzung, die
sie mir wihrend der Ausarbeitung zuteilkommen lieen, zu tiefstem Dank verpflichtet.

Meine Arbeit bei Herrn Prof. R. Nevanlinna wurde durch die Jubildumsstiftung der Uni-
versutdt Zurich ermoglicht, der mein weiterer Dank gilt.

1) Am Ende der Arbeit findet sich ein ausfiihrliches Literaturverzeichnis.
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dquivalent sind und die auf ein schlichtes Gebiet, etwa die endliche
z-Ebene, nebeneinander so gelagert werden, daB sie dieses Gebiet schlicht
und liickenlos ausfiillen und daB zwei Polygone GY, G4 dann und nur
dann ldngs einer Seite (@,a,.,) zusammenhéngen, wenn die zugeordneten
Polygone G,, G, die entsprechende , Bildseite” gemeinsam haben.

Das entstehende Polygonnetz nennt man den Qraphen der Fliche W ,.
Die inneren Eckpunkte des Graphen sind entweder uneigentliche Eck-
punkte, an welche 2 Polygone, oder eigentliche Eckpunkte (m — 1)-ter
Ordnung, an welche m Polygone G, und m Polygone G, grenzen. Die Eck-
punkte unendlicher Ordnung sind Randpunkte des Graphen. Dieser
Graph soll die Fliche W, darstellen.

3. Nehmen wir nun in jedem Polygon @ einen inneren Punkt, und ver-
binden wir diesen Knotenpunkt durch insgesamt ¢ punktfremde Strecken
8125 8s35. . ., 84 mit den Knotenpunkten der unmittelbar angrenzenden
Polygone G, so daf} 8,,,., liber die Seite (a,,a,,,) zu dem Knotenpunkt
des an diese Seite grenzenden , Nachbarpolygons® fiihrt, so entsteht ein
System von punktfremden Strecken, das man den Streckenkomplex?) von
W, nennt.

Durch den Streckenkomplex zerfdllt die Ebene in Teilgebiete, sog.
,Hlementargebiete” der Riemannschen Fliche. Sie sind den Windungs-
punkten (eigentlichen oder uneigentlichen) der Fliche eineindeutig zu-
geordnet : Einem Windungspunkt (m — 1)-ter Ordnung (1 < m <<oo)
entspricht ein Elementargebiet mit 2m Ecken und Seiten.

4. Diejenigen Flichen W, die nur iiber den gegebenen Stellen ver-
zweigt sind, unterscheiden sich bei festgehaltener Zerschneidungskurve L
allein durch die Verheftungsvorschrift der ,, Halbblitter” @. Die letztere
ist durch den Komplex festgestellt. Folglich ist eine Fliche W, durch
ay,...,a,, L und ihren Streckenkomplex eindeutig bestimmt.

Die Eigenschaften der Fliche héngen im allgemeinen von der Lage der
Punkte a,,a,,...,a, ab. Man beweist aber: Zwei Flichen W, mit
gleichen Streckenkomplexen sind vom gleichen Typus?). Es folgt erstens
daraus, da der Typus durch den Komplex eindeutig bestimmt ist, zwei-
tens, dafl es bei der Typenbestimmung geniigt, eine besondere Lage der
Grundpunkte zu betrachten (vgl. FuBinote 12).

5 Es sollen nun einige ,, Knotenfunktionen definiert werden, die mit
dem Komplex verbunden sind und die von Wichtigkeit fiir die Typen-
frage sind.

2) A. Speiser (1), R. Nevanlinna (2), G. Elfving (1).
3) 0. Teichmiiller (1).
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Man nehme ein beliebiges G° der Polygone des Graphen G, fiige jeder
Seite von G° das unmittelbar angrenzende Polygon G' (erste Generation)
an, dann simtlichen freien Seiten der Polygone G wieder die unmittel-
baren Nachbarpolygone G? (zweite Generation) usw. Wir wiederholen
diese kranzférmige Erweiterung »-mal und bezeichnen mit @, den aus
den Generationen G°, G*,. .., G" bestehenden Teil des Graphen und mit
S, den betreffenden Teil des Komplexes.

Nun hat 8§, einen ,Rand“, welcher von allen denjenigen Knoten-
punkten von S, gebildet wird, die von dem unendlich fernen Punkte
durch keine Streckenziige von §, getrennt werden. Die Anzahl dieser
,Randknoten“ von 8§, sei o(n). Weiter bezeichnen wir mit u(n) die
Anzahl der Knotenpunkte der n-ten Generation. Es gilt offenbar :

pn) <o) <1+ p(l) + u(@) +-- -+ u) .

Es stellt sich die Frage, inwiefern der Typus der hier betrachteten
Flichen W, vom Verhalten der Funktionen o(n) und wu(n) abhingt.
I. A. begiinstigt eine schwache ,,Verzweigtheit* der Fliche, d. h. ein lang-
sames Anwachsen jener Funktionen, den parabolischen Fall.

6. Das bis jetzt schirfste Ergebnis in dieser Richtung ist das
Nevanlinna-Wittich’sche Kriterium 4) :

Wenn die Reihe i 1
>

n=1 G(n)
dwvergiert, dann gehort die Fliche zum parabolischen Typus.

Das Beispiel der Fldche : w = e zeigt, daBl die Divergenz dieser Reihe
keine notwendige Bedingung fiir den parabolischen Fall ist (Fig.1).

7. Entsprechende allgemeine, hinreichende Kriterien fiir den hyper-
bolischen Typus besitzt man noch nicht. Dafiir sind verschiedene, fiir
spezielle Fille giiltige Kriterien bekannt ®).

Nach neueren Ergebnissen hiingt der Flichentypus, auller von der Ver-
zweigungsstidrke, noch von anderen Eigenschaften des Komplexes, wie
von ihrer Symmetrie bzw. Asymmetrie ab ¢).

8. Wir beschréinken uns hier auf eine Klasse w, von Flichen W, und
werden dafiir hinreichende Bedingungen zum hyperbolischen Typus auf-
stellen. Fiir die Definition von w, sind folgende Bezeichnungen zweck-
méBig :

4) H.Wittich (2), R.Nevanlinna (5).

5) Kakutani (1), Teichmiiller (2), Kobayaschi (3), Speiser (3), C. Blanc (2).
%) Myberg (2), C. Blanc (4).
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Jeder Knotenpunkt des Komplexes hat zwei oder »>2 , Nachbarn®.
Wir sagen, er sei im ersten Falle unverzweigt, im zweiten Falle »-fach
verzweigt.

Eine unendliche Folge von benachbarten, unverzweigten Knoten-
punkten nennen wir mit Speiser ?) ein logarithmisches Ende der Fliche.

Die universelle Uberlagerungsfliche ®) w) der g-fach punktierten
Ebene, d. h. diejenige Fldche, die iiber den ¢ Grundpunkten lauter
Windungspunkte unendlicher Ordnung besitzt, ist die am stédrksten
verzweigte aller Flichen W ,. Die Knotenpunkte ihres Komplexes sind
alle g-fach verzweigt, an jeden grenzen ¢ Elementargebiete mit unendlich
vielen Ecken und Seiten an. Im Fall ¢ = 3 haben wir die von der ellipti-
schen Modulfunktion erzeugte Fliache (Modulfliche : Fig. 2).

9. Definition der Flichenklasse w,: Es handelt sich um Fldchen mit
nachstehenden Eigenschaften :

a) Die Fliche besitzt nur Windungspunkte nullter oder unendlicher
Ordnung.

b) Logarithmische Enden sind nicht vorhanden.

c¢) Die Knoten sind alle entweder unverzweigt oder ¢g-fach verzweigt.

Der Komplex einer solchen Flidche w, ist, abgesehen von den unver-
zweigten Knotepunkten, mit dem Komplex der universellen Uberlage-
rungsfliche w, topologisch dquivalent (Fig. 3).

Diese letztere ist bekanntlich auf den Einheitskreis konform abbildbar,
und zwar so, daf} die ,,Normalpolygone“ G" von g sich einander beriihren-
den Orthogonalkreisbogen berandet werden. Die ¢(g¢ — 1)*—! Polygone
G* der k-ten Generation wollen wir noch mit ¢ =1, 2,...,¢q(qg — 1)k
numerieren.

Mit s,,; bezeichnen wir den Fldcheninhalt des Polygons (k¢), d. h. des
t-ten Polygons der k-ten Generation (Fig. 4).

Einem Polygon (ki) entspricht ein Knotenpunkt des Komplexes w)
und damit ein verzweigter Knotenpunkt des Komplexes w,, den wir
wieder mit (k¢) bezeichnen. Mit diesem Knotenpunkt (k¢) von w, ist ein
und nur ein Knotenpunkt (¢ — 1,4’) verbunden, und zwar durch einen
Streckenzug, der aus einer endlichen Anzahl von abwechselnd einfachen
und (¢ — 1)-fachen Strecken besteht. Sei [, diese Streckenanzahl. Wir
sagen, der zugehorige Streckenzug hat die , Lénge [, ;. Die Zahlenfolge [,
bestimmt den Komplex eindeutig.

Wir setzen noch: I, = Max - I,,, L, = Max-1,.
i=1,2... h<k

7) Speiser (1).
8) R. Nevanlinna (4).
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10. Fiir diese Flichenklasse w, hat Kobayaschi ?) den folgenden Satz
bewiesen :

Satz. Konvergiert die Rethe

o kL,
151 (@ — 1)*

80 18t die Fliche w, vom hyperbolischen Typus.

11. In der vorliegenden Arbeit sollen folgende drei Sitze bewiesen
werden :

*
-

Satz A. Konvergiert die Reihe :
S 3 LSy (k=1,2,...00; t=1,2,...,38.2k-1)
ki

8o st die Fliche w, vom hyperbolischen Typus.
Satz B. Konvergiert die Reihe

L,
T @—1F

so st die Fliache w, vom hyperbolischen Typus.

Satz C. Set I, von © unabhingig und in k monoton wachsend. Die
Fliche w  ist dann und nur dann vom hyperbolischen Typus, wenn die Reihe

1
=

n o(n)

konvergiert.

Der zweite Teil des Satzes C ist in dem Nevanlinna-Wittichschen Krite-
rium enthalten.

12. Offenbar ist der Satz B eine Verschirfung des Satzes von Kobaya-
schi. Er enthilt aber nicht den Satz A, denn man kann eine Folge von s,

mit wachsendem k angeben, die schneller als gegen null stre-

1
(g—1)*
ben). Gibt man dann den zugehorigen Streckenziigen die ,Linge*
(9 — 1)* fiir gerades ¢ und (¢ — 1)* + 1 fiir ungerades ¢ und den iibri-
gen Streckenziigen die , Lénge“ 1, so konvergiert die Reihe Z' 2’ LeiSues
wiahrend die Reihe

I,
SRSy

(g — 1)
W=1F = = @=1)*

divergiert.

%) Kobayaschi (3).
10) Man nehme z. B. in jeder Generation das Polygon (k, ¢) kleinsten Flacheninhalts.
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Andererseits ist der Satz B auch nicht eine Folge von A, denn falls [,
unabhingig von ¢ ist, I,; =1,, so wird
l

> Elkiskizzlkzski>2“k_3_'
i k i 3

k

e
iiiiill )3"\_

]
>/\ \

Fig. 1. Fig. 2.

Die Fliche w = e Die Modulfliche w, (g = 3)

3
\ ey
- sl "‘-*.\o/*/' N
) !
)
|
/N
VA
. ;/ :-.
Fig. 3. Fig. 4.
Fliche w, mit ¢=3 Einteilung des Einheitskreises
(lei = 3) in Normalpolygone (k1)

§ 2. Hilfssiitze iiber schlichte und quasikonforme Abbildungen

13. Bei der Untersuchung des Typenproblems ist es manchmal vor-
teilhaft, neben konformen Abbildungen noch allgemeinere, schlichte Ab-
bildungen heranzuziehen?).

Wir betrachten im folgenden ausschlieBlich jene Klasse von Abbil-
dungen, die eindeutig, stetig und bis auf isolierte Punkte oder Linien
stetig differenzierbar sind. Wir nennen der Kiirze halber eine solche Ab-
bildung ,,differenzierbar®.

11) Fiir diesen Paragraph vgl. Lawrentieff (1), Grotsch (1), Teichmuller (1).
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14. Ein Gebiet der z-Ebene sei schlicht und differenzierbar auf der
w-Ebene abgebildet, vermoge v = u(z,y), v = v(z,y), mit z = -}y,
w=u-+tv und |u,v, — u,v,|>0. Die Ausdriicke )%\ bzw.

| v, — uw,v,| stellen das Verhiltnis der Linienelemente bzw. der
Flichenelemente dar. Wir setzen ferner

2 2 2 2
Uy, + Y + Uy + v,

K'w/z:
| Ug Uy — Uy Uy I
Es gilt dann
dw 2
\_(E' <-Kw/z‘um'vy_um”w| ° (l)

Denn es ist

dwlt (o) dat + 2(u,u, + 0,0, dody + (Wl + v3) dy?
dz | dx? + dy? ’

und der Beweis jener Ungleichheit fiihrt auf das Problem der Bestim-
mung der Hauptachsen einer Ellipse zuriick.

Es ist ferner
Kw/z 2 2 b (2)

mit Gleichheitszeichen nur fiir konforme Abbildungen.

Wenn K, , gleichméBig beschrinkt ist, so sagt man, die Abbildung sei
»quastkonform*.

Fiir umgekehrte Abbildungen hat man

Kz,/w = Kw/z ; (3)

ist insbesondere die Abbildung quasikonform, so ist die inverse Abbil-
dung auch quasikonform.
Schlieflich gilt fiir zusammengesetzte Abbildungen

Kw/i_; < Kw/z'Kz/§ . (4)
Der Beweis folgt aus der Schwarzschen Ungleichung.

15. Satz 1. Ist die punktierte Ebene z oo auf den Einheitskreis
| w| <1 differenzierbar und schlicht abgebildet, so divergiert das Integral

! Kw/z(w) dfw ]

lwi<<I

wober df, das Flichenelement der w-Ebene bedeutet.
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Beweis. Wir konnen annehmen, dal die Nullpunkte sich entsprechen.
Dann ist das Bild des Kreises z = r < r, eine einfache, geschlossene
Kurve des w-Gebietes, die den Punkt w = 0 umgibt und deren kiirzester
Abstand vom Nullpunkt g,>0 sein moge. Ihre Linge ist also groBer als

Nach der Schwarzschen Ungleichung ist

27 2 2w
4 | |2 2
4n293<1rd¢f5d—w rd(p:=27crf(€il—%;) rde .
0 0 0

7

Division durch 2zr und Integration nach dr von r, bis » ergeben

2agillogr —logrg < [ |92

ro<<|z|l<r

wobei df, = rdrdp das Flachenelement der z-Ebene ist.
Nach (1) haben wir schliefllich

27!9(2)(10g7’——10g70)< f Kw/zluwvu“uvaldfz< f Kw/z(w)dfw°

ro<<l|zl<<r Go<w<l1
Lassen wir r ins Unendliche wachsen, so ergibt sich die Behauptung).

16. Satz 2. Ist die punktierte Ebene z oo auf den Halbstreifen
<0, 0<n<2n

derart abgebildet, daf3 zwei Randpunkte des (-Gebietes ({ = & + in) mit
gleichen & demselben z entsprechen, so divergiert das Integral

j. K?/z(c) dfé

fo<<éE<O

fir jedes £,<O .

12) Dieser Satz ist eine Erweiterung eines von Teichmiiller (2) bewiesenen Satzes. Der
Beweis stiitzt sich auf Langen- bzw. Flachénabschatzungen, die zuerst von W. Grog,
R. Courant, spater von Grdtzsch (1), L. Ahlfors (1) u. a. in den Fragen der konformen Ab-
bildungen angewandt worden sind.

Aus diesem Satz folgt die Invarianz des Typus bei quasikonformen Abbildungen und
damit die Behauptungen aus Nr. 4 (vgl. Teichmiiller (2) ).
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Beweis. Bilden wir das (-Gebiet vermoge w = ¢ auf den Kreis
| w|<1 ab, so muB nach Satz 1 das Integral

f Kw/z(w) dfw= f Kw/z('w) fl—? 2df€

e§°<lw|<1 Eo<<é<oO

divergieren. Es ist nun

dfw _l_dg
dfe — | d¢

2
=|w[*<1

und nach (2),(4) K,,,< K, - K;,=2K,,,, woraus unsere Be-
hauptung folgt.

16. KEsist klar, daB} bei den Satzen 1 und 2 die endliche z-Ebene durch
eine Riemannsche Fliche vom parabolischen Typus ersetzt werden
konnte.

Unsere Aufgabe besteht dann im folgenden darin, Bedingungen auf-
zustellen, damit eine Abbildung der hier betrachteten Art existiert,
welche die Fliache w, auf den Einheitskreis abbildet und fiir welche das
Integral | K (w)df, konvergiert.

|w|<1
Um eine solche Abbildung zu gewinnen, machen wir von der sogenann-
ten ,,Faltungsfliche“ der Riemannschen Fliche wesentlich Gebrauch?3).

18. Quasikonforme Abbildung der Fliche w, auf thre ,, Faltungsfliche®.

Diese Abbildung kann man nach R.Nevanlinna!?) folgendermafen
herstellen :

Sei die Fliche w, iiber der Riemannschen Kugel ausgebreitet. Wir
kénnen nach Nr. 4 annehmen, dal die Grundpunkte a,,...,a, in den
Ecken eines reguliren Polygons des Aquatorialkreises liegen. Man grenze
um jeden Windungspunkt a, der Fliche eine Umgebung @, ab, welche
aus allen Flichenpunkten besteht, deren auf der Flidche gemessener sphé-
rischer Abstand von a, kiirzer als die Abstdnde von den iibrigen Win-
dungspunkten ist. ¢, wird von einer Anzahl von GroBkreisbogen B be-
randet, deren Punkte von mindestens zwei Windungspunkten a,, a”' die
gleiche Entfernung haben. Das derart entstehende sogenannte Kobayachi-
Netz ist mit dem Streckenkomplex, abgesehen von den mehrfachen
Strecken, topologisch dquivalent.

13) Kobayaschi (1), (2); Kakutani (1); R. Nevanlinna (4).
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Unter der obigen Annahme liegen sémtliche Ecken des Netzes iiber dem
Nord- bzw. Siidpole der Kugel.
Sei P, ein von diesen Ecken verschiedener Punkt von B, der also zu
2 Polygonen @,, @, gehort. Bewegt sich P, auf B, so drehen sich die
Grolkreisbogen (a,P,), (@,P,) um gleiche Winkel und auf einem
Bogenelement |dw | ist die Zunahme jenes Winkels
1+ aw

dr(Pe) = |darg E22 ]

wobei fiir @ entweder a, oder a, zu setzen ist.
Ist P, derjenige Punkt von B, der dem Nullknotenpunkt des Kom-
plexes entspricht und P, ein beweglicher Punkt auf B, so haben wir in

©(P,)= [ dv(P,) >0,
Po Pw
wobei P, auf B von P, bis P, lduft, eine eindeutige stetige Funktion des
Netzpunktes P, . Diese Funktion kann man in jeden inneren Punkt der
Fldche folgendermaflen fortsetzen : Gehoért P,, zu einem Polygon @,, so
verlingert man den GroBkreisbogen (a,P,) bis zum Punkt P, des
Randes von @, und setzt ©(P,) = 7(P,).
Definieren wir noch durch

eine weitere Funktion von P,, und fiithren wir die komplexe Verinder-
liche t = o + ¢ T ein, so erhalten wir als konformes Abbild der Flidche
w, eine iiber der oberen Halbebene 7 > 0 gelagerte, vielblidttrige Flidche
®,, die mit Faltungen versehen ist, welche von zweierlei Art sind :

a) Faltungen, die den GroBkreisbogen entsprechen, welche die Win-
dungspunkte a, mit den Ecken des zugehorigen Polygons @, verbinden.
Sie sind parallel zur o-Achse und den verzweigten Knotenpunkten (k<)
des Komplexes w, eindeutig zugeordnet. Der Abstand einer solchen Fal-
tung von der o-Achse ist gleich n, oder, nach einer Ahnlichkeitstrans-
formation gleich n, wenn der entsprechende Knotenpunkt zur n-ten
Generation gehort.

b) Faltungen, die den Netzbogen B entsprechen. Sie sind den Strecken-
ziigen (k¢) (Verbindungslinien von 2 verzweigten Knotenpunkten) ein-
deutig zugeordnet. Die Spur einer solchen Faltlinie auf der ¢-Ebene ist
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eine Kurve o = f(7), k;, < v < k,, wobei k, — k, =1,, die Linge des
entsprechenden Streckenzuges bedeutet.

Die Funktion f(t) ist beschrinkt und verschwindet fiir ganzzahlige 7,
ingbesondere fiir T = k, oder k,. Sie hat auch eine beschrinkte Ablei-
tung f'(v), denn der Winkel, den die Faltlinie mit einer Geraden 7 =
konstant bestimmt, ist gleich jenem durch den entsprechenden Netz-
bogen und einem GroBkreisbogen (a, P,) gebildeten Winkel und ist damit
von 0 und 7 verschieden.

An eine solche Faltlinie grenzen zwei iibereinanderliegende Gebiete
o = f(r), k, <t <k, der Faltungsfliche. Jene Gebiete konnen wir
auf den Halbstreifen o, > 0, k; < 1, <k,, quasikonform abbilden,
vermoge o, = 0 — f(t), T, = 7. In der Tat ist K beschrinkt

Ktl/t =2+ f’Z(T) .

Nachdem wir alle solche Gebiete in Streifen transformiert haben, er-
halten wir eine neue Flidche, die nun mit wagrechten (parallel zur o-Achse)
und senkrechten Faltungen versehen ist, und die wir ,, Faltungsfliche“ F,
der Riemannschen Fldche nennen. Sie besteht aus Halbstreifen, die paar-
weise an eine senkrechte Faltlinie grenzen. Jedes solche Streifenpaar ist
einem Streckenzug (k7) des Komplexes zugeordnet und hat die Breite [,,.
Wir bezeichnen es auch mit (k¢).

Insbesondere haben alle Streifen der Faltungsfliche F, der univer-
sellen Uberlagerungsfliche w? die Breite 1.

§ 3. Beweis des Satzes A 14)

19. Es sei w, eine Riemannsche Fliche unserer Klasse. Wir bilden die
zugehorige Faltungsfliche F, auf die Faltungsfliche F, der universellen
Uberlagerungsfliche w) ab, indem wir jeden Streifen der Breite I,
in F, auf die Breite 1 reduzieren, vermdge der Transformation

1 5 4
Oy = 0, Tyg= T Dabei ist

1
K= b + T < 2l - (5)

Bei der quasikonformen Abbildung von F, auf w), dann von w) auf den
Einheitskreis | w | <1, gehen die Streifen (k¢) in Orthogonalkreisbogen-
polygone s;,; iiber, deren Inhalte wir ebenfalls mit s;; bezeichnen wollen
(Fig. 5).

14) Fiir die Beweismethode vgl. Teichmailler (2), Spetser (3).
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Es resultiert eine Abbildung von w, auf dem Kreis | w|<<1 mit
Kw) < Ml,;, firwins, , (6)

wobei M eine endliche Konstante bedeutet.
Wire w, vom parabolischen Typus, so miite nach Satz 1 § 2 das
Integral
Kwydf, <M X X 1.8,
PR

jwi<1

divergieren. Es folgt nun aus elementaren Abschitzungen
81y < MSpy
wobei m eine Konstante bedeutet. Hieraus ergibt sich der
Satz A. Konvergiert die Reihe
S 3 baSe
ki
8o gehort die Fliche w, zum hyperbolischen Typus.
Die GroBlen /,; und s,, haben die in Nr. 9 erkldrten Bedeutungen.

Fig. 5.

Die Polygone s,; und s;; (punktierter Rand)

§ 4. Beweis des Satzes B %)

20. Im folgenden setzen wir der Bequemlichkeit halber ¢ = 3. Die
nachstehenden Ausfiihrungen lassen sich ohne weiteres auf den Fall ¢ >3
iibertragen.

Um den Hauptgedanken der Beweisfithrung besser hervortreten zu
lassen, wollen wir zuerst einige einfache Transformationen zusammen-
stellen.

15) Fiir die Beweismethode vgl. Kakutani (1), Kobayaschi (3).
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Transformation I. Abbildung des Dreieckes mit den kartesischen
Eckpunktskoordinaten (0,0), (b, 0), (0,b) der ¢{-Ebene (ft =0 + ¢7)
auf das Dreieck (0,0), (1,3}), (1,0) der w-Ebene (w = u + 7v) ver-
moge u____a—l-)l—r’ vz—;—. Dabei ist

9

Ky <5 - (7)

Transformation II. Abbildung des Viereckes (Trapezoids) (c, 0),
(0,¢), (0,c+d), (c+d,0) auf das Viereck (0,1), (0,0), (1,0),

(1, 3), vermoge uz—q—%:—_—c, P = c—:du (l—g—). Hier ist

e ) )

K‘/"’gg( i tordu

Bei diesen Transformationen ist die Randzuordnung linear.

21. Wir kommen zum Beweis des Satzes B. Fir ¢ = 3 stimmt die
universelle Uberlagerungsfliche w? mit der Modulfliche iiberein. Seien
F, und F, die Faltungsflichen der Fliche w) bzw. der Fliche w,.

Wie beim Beweis des Satzes A bilden wir zunéchst F; auf F, (quasi-
konform) ab (Nr.19). Auf den Streifen (k) der k-ter Generation von

F,, gilt wegen (5)
’ Ky <2-hy <20, (9)

wo l,; und [, wie in Nr.9 definiert sind.

Die Menge aller Punkte 7, 4+ o, =%k (k > 1) der iiber der {,-Ebene
gelagerten Faltungsfliche F', bildet eine aus geradlinigen Strecken zu-
sammengesetzte, geschlossene Kurve C, (Fig.6). Sei D, das zwischen C,
und C,,, liegende ,Ringgebiet”. D, wird durch die Faltungen in Teil-
gebiete zerlegt, auf welche wir nun die Transformationen I bzw. II aus-
iiben. Diese Teilgebiete sind :

1) 3.2*% Dreiecken, welche dem in der Transformation I betrachteten
Dreieck kongruent sind, wenn wir b =1 setzen. Nach (7) ist K, ,,, <g .
2) 3.2k Vierecke (Trapezoide) von der in der Transformation II ge-
schilderten Art mit d =1, 1 <c¢ < k. Fir 3-2%m™ vyon diesen Vier-
ecken (m =1, 2,..., k) ist der zugehorige Wert von ¢ gleich m, so daf3

fiir sie gilt nach (8),da wu, <1, d =1 ist,

KtO/w() < 27'm . (10)
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Nachdem wir die Dreiecke und Vierecke auf diese Weise deformiert
haben, verheften wir sie nach der Art und Weise wie sie auf D, nebenein-
anderliegen zu einem Rechteck S} der w,-Ebene zusammen %). S} hat die
Breite 1 und die Hohe 3-2%, Auf §) iiben wir die (konforme) Transfor-

mation w = 3 2k

der Breite 3 2k und der Hohe =z fithrt. SchlieBlich werden alle

S,(k=1,2,...,00) zu einem Rechteck S, der w-Ebene'®) verheftet,

w, aus, die zu einem Rechteck S, der w-Ebene mit

dessen Breite endlich und gleich E 1 3ok ist.

Es folgt eine Abbildung der Flache w, auf den in Satz 2 § 2 Nr. 16 be-
trachteten Streifen, mit

Kw)<M-K,, -K (11)

to/ wo 2
wobei K,, und K,,, den Ungleichungen (9) bzw. (10) geniigen.
Wire nun die Flidche vom parabolischen Typus, so miifite nach Satz 2
Nr.16 das Integral [ K (w)df, divergieren. Es gilt aber
Sw

| K (w) df, = 2 | K (w) df ,
Sw =1 S (12)

SMU- 3Ky Kppyu,dfo SM X Ly § Koy 9o s
Sk k=1 Sk

denn das ,,Ringgebiet“ D, von F, enthilt nur Punkte der Streifen der
k + 1 ersten Generationen, so daB, nach (9), auf D, gilt

Ky, <2Max - I, = 2Ly, -
h<k+1
Ferner ist

i = (575 ) Wu -

Die Dreiecke und Trapezoide von S; haben je einen Flicheninhalt
kleiner als 1, so daf3

1 \2
f 'Kto/wodfw = ( 3. 2]0) f‘Kto/wodfwo ( 2Ic) Z Kto/wo ’
Sk

0
Ic Sk

18) Die hier ausgeiibten Verheftungen gelingen ohne weiteres, weil die Randzuordnung
bei den Transformationen I, II linear war (Nr. 20).
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wobei die Summe iiber alle Dreiecke und Trapezoide von S, zu erstrecken
ist. Gemdf (10) gilt weiter

k
S K, <2703 3-26mom < M, 2%
0

und schliellich gemif (12)

> L
fK(w)df,,,<M E Lin _ oy, 3 i
S k=2
Nun ist aber
L, bt b4+ 11 I,
2—277<E ok =Zlk(~2;+2k+1 —i—--')=22—27c

und damit haben wir den

Satz B. Konvergiert die Rethe 2 , 80 gehort dive Fliche w, filr =3
zum hyperbolischen Typus. k=1

Die GroBe I, hat die in Nr.9 erklirte Bedeutung. Fiir ¢ >3 ist diese

Reihe durch ¥ b

m zu ersetzen.

.:;\
N
AN
AN
NN\

Fig. 6.
Spur auf der #,-Ebene von C,,C,:, und D,

%

§ 5. Beweis des Satzes C
22. Es ist zu erwarten, dafl gleichzeitig notwendige und hinreichende
Kiriterien fiir einen bestimmten Flachentypus aufgestellt werden konnten,
wenn wir den Streckenkomplex hinreichend einschrinkenden Symmetrie-
bedingungen unterwerfen wiirden. Dies wird durch den Satz C bestétigt.
Wir setzen also voraus, der Komplex der Flidche sei ,symmetrisch®,
d. h. I, sei unabhéngig von ¢, [,; = [,. Es sei ferner

Neg=1Ub+lL+--+1
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Hier sind die Knoten einer bestimmten Generation entweder alle un-
verzweigt oder alle verzweigt. ,,Verzweigt sind die n,-ten Generationen.

23. Wir beweisen zuniéichst das folgende

Lemma. Istdie Fliche w, mit ¢ = 3 tm obigen Sinne symmetrisch und
konvergieren die Reihen

k§1—2—k-l—k—, - 287

so gehort sie zum hyperbolischen Typus.

Beweis. Die waagrechten Faltungen der Fliche F', liegen jetzt nur
iiber den Geraden = mn, (k= 1, 2,...). Wir betrachten das zwischen
den geschlossenen Kurven C,, und C,,  ~ (vgl. Nr.21) liegende ,Ring-
gebiet“ Dy - D, wird durch die Faltungen in Teilgebiete zerlegt, und
zwar in ~

1) 3.2% Dreiecke von der in der Transformation I betrachteten Art :
b=1,.

2) 3-2k Trapezoide von der in der Transformation II betrachteten Art
mit d =10,,,, 1 <c<n,, sodall gemidf (8), da u, <1 ist,

Np41 li+a
Kt/w°< ? ( Lo T 1+ lk+1’“o) (13)

Nach den Transformationen I und II verheften wir die Dreiecke und
Trapezoide wie in Nr.21 zu einem Rechteck Sy der w,-Ebene, das dann

vermoge w = g’y‘zz’k’ w, auf das Rechteck S, der w-Ebene abgebildet wird.

Wir fiigen schlieflich alle S} zu einem einzigen Rechteck S, zusammen.
Bei der Abbildung von w, auf 8, ist K(w) < M-K,,, , wobei K,

der Ungleichung (13) geniigt. Es folgt
» © 2
(K@ <2 3 [y dfe <A 2 (575) [Kipudr, - (9
k=1

Sw Sk S,:

Da df, = dugdv, ist, so gilt nach (13)

nk+1 Ui i [ Pe+1
fKt,wO dfwo<9fdvof( e uo) dug < 27.2 (ZM +loglk+1).
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SchlieBlich wird gemid8 (14)

© 1n © Jogl © 1 9 ® Jogl
fK(w)dfw<M( iy 3 ) — 2 (3 5 T+ 22,
k

= 2k leyn k=1 2k oy fryr

Wire die Fliche vom parabolischen Typus, so miifite die rechte Seite
nach Satz 2, § 2, divergieren. Hieraus ergibt sich das Lemma.

24. Wenn speziell 7, in k£ monoton wachsend ist, so wird =, < kl,,

ok
aber bei den ,,symmetrischen®“ Komplexen, bis auf einen konstanten Fak-

und die Reihe -517; —’—;1& ist konvergent. Die zweite Reihe > 1°8% g1t
k

tor, mit der Nevanlinna-Wittichschen Reihe 2—(;?1,;',—)- (Nr. 6) zusammen.

Damit haben wir den

Satz C. Sei 1,; unabhingig von ¢ und in k monoton wachsend. Die
Fliche w, ist dann und nur dann vom hyperbolischen Typus, wenn die Reihe

hod 1

X

n=1 0 (n)

konvergrert.

Die Randknotenanzahl o(n) und die GroBlen [,; haben die in Nr.5
bzw. Nr. 9 angegebene Bedeutung.

(Eingegangen den 4. Februar 1047.)
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