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Uber die endlichen Ordnungszahlen,
zu denen nur eine Gruppe gehort

Von T. SzeLE, Szeged (Ungarn)

Es gilt folgender Satz: Zu einer Ordnungszahl n gehort dann und nur
dann nur eine (und zwar die zyklische) Gruppe, wenn (n, p(n)) = 1 ist?).

Offenbar lieBe sich dieser Satz leicht als Korollar aus einem Satz von
Rédei?) gewinnen (s. unten), wir werden aber obigen Satz sehr einfach,
nur auf folgendem Satz von Frobenius3) stiitzend beweisen : Es gibt in
jeder Gruppe von der Ordnung ab genau b Elemente, deren Ordnung in b auf-
geht, falls a quadratfrei und jeder Primfaktor von b grofer als der grofte
Primfaktor von a ist.

Der Satz von Réde: lautet so : Zu einer Ordnungszahl n gehdren dann
und nur dann nur kommutative Gruppen, wenn n von der Form

n=1pP...0,9%...95 (P1,...,q; verschiedene Primzahlen)

und zu
(Pr—1...p; —1)-(gi —1)...(¢5—1)

prim ist. Réder gewinnt diesen merkwiirdigen und allgemeineren Satz als
Nebenresultat seiner Untersuchungen iiber die endlichen nichtkommuta-
tiven Gruppen mit lauter kommutativen echten Untergruppen.

Der wesentliche Inhalt unseres Satzes ist die Behauptung, dal} eine
Gruppe mit (n, @(n)) =1 notwendig kommutativ ist. Dies ist nichts
anderes, als ein Satz von Szép?), den er ebenfalls sehr einfach, aber mit
Anwendung mehrerer Sitze der Gruppentheorie beweist.

1) Offenbar kann die Bedingung (7, ¢(r)) = 1 nur fiir quadratfreie n erfiillt sein, und
dann ist sie gleichbedeutend damit, daB3 die Anzahl der zu n primen Zahlen aus 1,...,n
selbst ein zu n primes Element dieser Folge ist.

2) Siehe die vorstehende Arbeit von L.Rédei: ,,Das ,schiefe Produkt’ in der
Gruppentheorie mit Anwendung auf die endlichen nichtkomgputativen
Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungs-
zahlen, zu denen nur kommutative Gruppen gehoéren (Satz 10).

3) Netto: Gruppen- und Substitutionentheorie (Leipzig 1908), S. 110.

1) Siehe die zweitvorstehende Arbeit von J. Szép: On finite groups which are
necessarily commutative.
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Wir beweisen zuerst, daBl jede Gruppe ® von n-ter Ordnung mit
(v, ¢(n)) =1 zyklisch ist, und zwar verwenden wir dabei eine voll-
stindige Induktion nach der Anzahl der Primfaktoren von » (denn die
Behauptung ist im Falle n = Primzahl offenbar richtig). Es sei p der
groBte Primfaktor von ». Nach obigem Satz von Frobenius (angewandt
auf den Fall b = p) gibt es in ® genau p Elemente, deren Ordnung ein
Teiler von p ist. Die Menge I dieser Elemente ist eine normale Unter-
gruppe von &, da einerseits i aus den Potenzen eines ihrer Elemente
besteht, andererseits jede Konjugierte eines Elementes (5 1) von N
wieder ein Element p-ter Ordnung ist, also zu 9t gehort. Betrachten wir
nun die Faktorgruppe /. Diese ist nach der Induktionsvoraussetzung

zyklisch, weil sie die Ordnung —% (mit weniger Primfaktoren als n) hat.

Es gibt also in ® Elemente 4, B so, dal durch
A*BY (z=10,...,p—1; y=0,..., ~—1)
P

die ganze Gruppe ® erschopft ist, und tiir die Ordnungen gilt (4) = p,
(B) =mn oder % . Im Fall (B)== ist ® in der Tat die zyklische

Gruppe {B}. Im Fall (B)= % setzen wir
B-14AB = A (1=r=p-—1).

Dann ist (wegen B? = 1)

-r n ,-g
B ?AB*=4 = A4,
d. h.
P =1 (mod p) .

Andererseits ist nach Fermat

r»-1 =1 (mod p) .

Aus (n,@(n))=1 folgt aber (%, p — 1) = 1,und soist r =1 (modp),
d.h. r = 1. Das bedeutet,dal B-'4B = A undso (4dB) =(4)(B) =
p-% = n ist, woraus & = {AB} folgt. Die Behauptung ist also be-

wiesen.
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Wir miissen noch zeigen, daB es im Falle (»,@(n))>1 auch eine
nicht-zyklische Gruppe n-ter Ordnung gibt. Da (n, p(n))>1 ist, ent-
hilt n entweder einen Teiler p? (p = Primzahl), oder ist » quadratfrei
und enthélt Primfaktoren p, ¢ mit p = 1 (mod ¢). Im ersten Fall bilden
wir das direkte Produkt aus der Abelschen Gruppe mit den Invarianten

p, p, und aus einer beliebigen Gruppe mit der Ordnung% . Die so er-

haltene Gruppe ist offenbar nichtzyklisch. Im zweiten Fall geniigt es zu
zeigen, daf} eine nicht-Abelsche Gruppe von der Ordnung pgq existiert.
Eine solche Gruppe wird bekanntlich durch die folgenden Gleichungen

definiert :
p—1

AP = Ba—=1, BUAB=Ar, r=g 1 ,

g ist eine primitive Kongruenzwurzel mod p.

(Eingegangen den 5.Januar 1947.)
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