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Uber die endlichen Ordnungszahlen,
zu denen nur eine Gruppe gehôrt
Von T. Szele, Szeged (Ungarn)

Es gilt folgender Satz Zu einer Ordnungszahl n gehort dann und nur
dann nur eine (und zwar die zyklische) Gruppe, wenn (n, <p(n)) 1 ist1).

Offenbar lieBe sich dieser Satz leicht als Korollar aus einem Satz von
Rédei2) gewinnen (s. unten), wir werden aber obigen Satz sehr einfach,
nur auf folgendem Satz von Frobenius*) stutzend beweisen : Es gibt in
jeder Gruppe von der Ordnung ab genau b Elemente, deren Ordnung in b auf-
geht, falls a quadratfrei und jeder Primfaktor von b grdfier als der grdfite
Primfaktor von a ist.

Der Satz von Rédei lautet so : Zu einer Ordnungszahl n gehoren dann
und nur dann nur kommutative Gruppen, wenn n von der Form

n Pi- • -V% <Zi- • -Q2) (Pi>• • • > Q.J verschiedene Primzahlen)
und zu

prim ist. Rédei gewinnt diesen merkwurdigen und allgemeineren Satz als
Nebenresultat seiner Untersuchungen uber die endlichen nichtkommuta-
tiven Gruppen mit lauter kommutativen echten Untergruppen.

Der wesentliche Inhalt unseres Satzes ist die Behauptung, daB eine

Gruppe mit (n, cp(n)) 1 notwendig kommutativ ist. Dies ist nichts
anderes, als ein Satz von Szép*), den er ebenfalls sehr einfach, aber mit
Anwendung mehrerer Sâtze der Gruppentheorie beweist.

x) Oiïenbar kann die Bedmgung (n, q>(n)) — 1 nur fur quadratfreie n erfullt sem, und
dann ist sie gleichbedeutend damit, dai3 die Anzahl der zu n primen Zahlen aus 1, n
selbst ein zu n primes Elément dieser Folge ist

2) Siehe die vorstehende Arbeit von L JRedei ,,Das ,,schiefe Produkt" in der
Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen
Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen,

zu denen nur kommutative Gruppen gehoren (Satz 10).

3) Netto Gruppen- und Substitutionentheorie (Leipzig 1908), S. 110.

4) Siehe die zweitvorstehende Arbeit von J. Szép • On fmite groups which are
necessarily commutative.
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Wir beweisen zuerst, daB jede Gruppe © von n-ter Ordnung mit
(n, cp(n)) — 1 zykliseh ist, und zwar verwenden wir dabei eine voll-
stàndige Induktion nach der Anzahl der Primfaktoren von n (denn die
Behauptung ist im Falle n Primzahl offenbar richtig). Es sei p der
grôBte Primfaktor von n. Nach obigem Satz von Frobenius (angewandt
auf den Fall 6 p) gibt es in © genau p Elemente, deren Ordnung ein
Teiler von p ist. Die Menge 91 dieser Elemente ist eine normale Unter-
gruppe von ©, da einerseits 9t aus den Potenzen eines ihrer Elemente
besteht, andererseits jede Konjugierte eines Elementes (^= l) von 31

wieder ein Elément p-ter Ordnung ist, also zu 31 gehôrt. Betrachten wir
nun die Faktorgruppe ®/9î. Dièse ist nach der Induktionsvoraussetzung

zykliseh, weil sie die Ordnung— (mit weniger Primfaktoren als n) hat.

Es gibt also in © Elemente A, B so, daB durch

die ganze Gruppe © erschôpft ist, und iur die Ordnungen gilt (A) p,

(B) n oder — Im Fall (B) n ist © in der Tat die zyklische

Gruppe {JS}. Im Fall (B) — setzen wir

Dann ist (wegen Bp 1)
n

B p ABP A A
d.h.

n

rp 1 (mod p)

Andererseits ist nach Fermât

r?-1 1 (mod p)

Aus (n,<p(n))= 1 folgt aber —, p — 11= l,undsoist r l (modp),

d. h. r 1. Das bedeutet, daB B~XAB A und so (AB) (A) (B)

p— n istj woraus © {AB} folgt. Die Behauptung ist also be-

wiesen.
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Wir mûssen noch zeigen, da8 es im Falle (n, (p(n))>l auch eine

nicht-zyklische Gruppe n-ter Ordnung gibt. Da {n, <p(n))>1 ist, ent-
hâlt n entweder einen Teiler p2 (p — Primzahl), oder ist n quadratfrei
und enthàlt Primfaktoren p, q mit p 1 (mod q). Im ersten Fall bilden
wir das direkte Produkt aus der Abelschen Gruppe mit den Invarianten

p, p, und aus einer beliebigen Gruppe mit der Ordnung—^ Die so er-

haltene Gruppe ist offenbar nichtzyklisch. Im zweiten Fall genugt es zu
zeigen, daB eine nicht-Abelsche Gruppe von der Ordnung pq existiert.
Eine solche Gruppe wird bekanntlich durch die folgenden Gleichungen
definiert :

Ar, r g '

g ist eine primitive Kongruenzwurzel mod p.

(Eingegangen den 5. Januar 1947.)
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