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Das ,schiefe Produkt‘ in der Gruppentheorie

mit Anwendung auf die endlichen nichtkommutativen Gruppen
mit lauter kommutativen echten Untergruppen und die Ordnungs-
zahlen, zu denen nur kommutative Gruppen gehdren

Von L. REtpEl, Szeged (Ungarn)

§ 1. Einleitung

In dieser Arbeit fiihre ich ein sehr einfaches Prinzip ein, mit dessen
Hilfe man aus einer Gruppe G und einem Ring R weitere Gruppen kon-
struieren kann. Diese Gruppen werden im allgemeinen auch dann nicht
kommutativ sein, wenn G und R kommutativ sind, und deshalb nenne
ich jede dieser Gruppen ein schiefes Produkt von G, R. In der Tat werde
ich dreierlei Konstruktionen verwenden, entsprechend bezeichne ich das
schiefe Produkt mit GR, G(+)R, G ()R, und nenne es ein schiefes
Produkt vom ersten, zweiten, dritten Typ. Jeder Typ umfalBt bei gege-
benen (7, R im allgemeinen mehrere Gruppen, da sich die zu verwenden-
den Konstruktionen auf mehrere Arten ausfiihren lassen. Es wird sich
am hier zu besprechenden Beispiel zeigen, da@} sich unser schiefes Produkt
sehr gut zur Darstellung gewisser (endlicher) Gruppen gebrauchen 1a8t.

Es sei irgendeine Eigenschaft vorgelegt, von der wir annehmen, daB sie
unter anderem auch der Einheitsgruppe (d.h. der Gruppe mit nur einem
Element) zukommt. Dann kénnen wir jeder endlichen Gruppe G eine
bestimmte Stufenzahl n (=0) beilegen, so dal n = 0 ist dann und nur
dann, wenn @ von der genannten Eigenschaft ist, fiir ein sonstiges & soll
aber n um 1 groBer sein als das Maximum der Stufenzahlen derjenigen
Untergruppen von G, die kleiner als G sind. Nachher sei die vorgelegte
Eigenschaft die Kommutativitdt. Als Anwendung des schiefen Produktes
bestimmen wir die Gruppen 1-ter Stufe (genauer konnte man iiber
1-stufig nichtkommutative Gruppen sprechen), die also diejenigen end-
lichen nichtkommutativen Gruppen sind, die lauter kommutative echte
Untergruppen haben. Diese Gruppen sind wichtig, da jede endliche
nichtkommutative Gruppe wenigstens eine solche Untergruppe enthilt.
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Mit ihnen haben sich Miller und Moreno'), weiter auch Schmidt?), be-
schiftigt. Sie haben bewiesen, dafl die Ordnung der Gruppen 1-ter Stufe
hochstens durch zwei verschiedene Primzahlen teilbar ist (die Gruppen
selbst also auflosbar sind), haben auch die vorkommenden Ordnungen
genau angegeben, aber die Struktur dieser Gruppen nicht restlos be-
stimmt, und so blieb unter anderem unbeantwortet, wie viele Gruppen
1-ter Stufe zu einer festen Ordnung gehoren3). Ich bestimme diese Gruppen
vollstindig und entwickle ihre Eigenschaften ausfiihrlich. Fiir die Ord-
nungszahlen stellt sich heraus, daB zu einer Ordnung p*¢® (p, ¢ ver-
schiedene Primzahlen) héchstens zwei Gruppen 1-ter Stufe gehoren, und
zwar genau soviel wie die Anzahl der richtigen Aussagen unter ,u, v ist
die kleinste natiirliche Zahl mit ¢ | p*—1 bzw. p|¢?"—1“. Unter 104
sind nur 12, 56, 80, 351, 992, 2025, 3875, 4352, 5103, 8125 solche Ord-
nungszahlen mit zwei Gruppen 1-ter Stufe. Zu einer Ordnung p¢ gehort
nur im Fall e=3 eine Gruppe 1-ter Stufe, und dann ist ihre genaue Zahl

e — 2+ [e _2— 1] , wobei [z] die groBte ganze Zahl <« bezeichnet.

Alle diese Gruppen teile ich auf Grund ihrer niheren Eigenschaften in
vier Typen ein, und zwar in den ersten Typ die Gruppen 1-ter Stufe von
einer Ordnung p*q?®, in die iibrigen drei Typen die p-Gruppen 1-ter Stufe.
In den vierten Typ gehort die Quaternionengruppe (von der Ordnung 8)
allein. Die Gruppen 1-ter Stufe von den drei ersten Typen lassen sich
iiberraschend einfach und elegant als je ein schiefes Produkt GR, G (+) R,
G ()R darstellen. Das ist um so mehr zu wiirdigen, als inshesondere die
Gruppen 1-ter Stufe von dem ersten Typ als ,,abstrakte Gruppen® von
ziemlich komplizierter Struktur sind, als schiefes Produkt G R entstehen
sie aber als duBerst einfacher Spezialfall so, daBl man fiir G und R eine
zyklische Gruppe von Primzahlpotenzordnung bzw. einen endlichen (also
kommutativen) Korper einsetzt (dessen Elementenzahl bekanntlich eben-
falls eine Primzahlpotenz ist). Fiir die Gruppen l-ter Stufe von dem
zweiten und dritten Typ kommt man &hnlich einfach aus, man braucht

1) Q. A. Miller and H.C.Moreno, Non-abelian groups in which every subgroup
is abelian, Transactions Amer. Math. Soc. 4 (1903), 398—404.

2) 0.8chmidt, Uber Gruppen, deren samtliche Teiler spezielle Gruppen sind
(russisch mit deutscher Zusammenfassung), Receuil Math. de la Soc. Math. d. Moscou 31
(1924), 367—372. Dabei wird eine endliche Gruppe ,,speziell‘ genannt, wenn sie ein
direktes Produkt von p-Gruppen ist. In unserer obigen Terminologie handelt es (allge-
meiner als bei uns) von den ,,1-stufig nichtspeziellen*“ Gruppen.

3) Die Verfasser der Arbeiten 1), 2) meinten irrtiimlich, alle Fragen iiber die Gruppen
erster Stufe restlos erledigt zu haben. Noch weniger wurden die 1-stufig nichtspeziellen
Gruppen in der Arbeit?) vollkommen bestimmt. Auf diese Frage hoffe ich zuriickzu-
kommen.
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in allen drei Fillen nur die allereinfachsten kommutativen Strukturen @,
R zu Hilfe zu nehmen. Diese Erscheinung li8t sich nach zwei Richtungen
auswerten, einerseits als Beleg fiir die Brauchbarkeit des schiefen Pro-
duktes aller drei Typen, anderseits als begriindete Hoffnung, daB nach
den so ,einfach® gewordenen Gruppen 1-ter Stufe sich auch die Gruppen
2-ter Stufe mit Erfolg untersuchen lassen. Es ist zu vermuten, daf3 die
letztere Frage zwangsldufig zu einer Verallgemeinerung unserer schiefen
Produkte fithren wird.

Die Resultate iiber die Gruppen 1l-ter Stufe haben auch zwei interes-
sante Folgerungen betreffend die (endlichen) kommutativen Gruppen.

In der einen handelt es sich um einen neulich von Szép*) gewonnenen
schonen Satz, der eine hinreichende Bedingung ausspricht, damit eine
Gruppe kommutativ sei. Ich werde diesen Satz wiedergewinnen und zu-
gleich wesentlich verschérfen.

Als zweite Folgerung gebe ich alle Ordnungen an, zu denen nur kom-
mutative Gruppen gehoren. Das sind diejenigen

n=p;...0:q- . .45
mit verschiedenen Primzahlen p,,...,q;, die zu

=D —D@—1...(¢5—1)

prim sind. Nach Dirichlets Satz iiber die arithmetische Progression gibt es
zu jedem Paar ¢, j unendlich viele » mit der genannten Eigenschaft.

Ich teile meine Arbeit so ein: In den §§ 2—4 definiere ich die drei
Typen schiefes Produkt allgemein (Sétze 1—3). In den §§ 5—8 gebe ich
alle Gruppen 1-ter Stufe in vier verschiedenen Formen (Sédtze 4—7) an.
Den Beweis beende ich aber erst in den §§ 9—11, in denen ich nidmlich
zeige, dafl alle Gruppen 1-ter Stufe unter den vorher angegebenen wirk-
lich vorkommen und verschieden sind. Im § 12 entwickle ich die Eigen-
schaften der Gruppen 1-ter Stufe ausfiihrlich. In den §§ 13, 14 beschif-
tige ich mich mit den angekiindigten zwei Folgerungen betreffend die
kommutativen Gruppen. Im § 15, der auch unmittelbar nach § 4 zu lesen
ist, verweise ich auf die Beziehungen unserer schiefen Produkte mit der
Literatur®).

4) Siehe die vorstehende Arbeit von J. Szép: On finite groups which are necessa-
rily commutative.

5) Ich erwahne noch, daB ich schon im Jahre 1924 alle Gruppen erster Stufe bestimmt
habe, und erst nachher von der Arbeit von Miller und Morenol) Kenntnis nahm. Wegen
dieser Arbeit habe ich meine Resultate nicht publiziert, zumal aus dem Grunde, da@} ich
mit meinen, damals noch komplizierten Resultaten nicht ganz zufrieden war. Erst die
Sétze von Herrn Szép, von denen ich durch seine freundliche Mitteilung Kenntnis nahm,
haben meine Aufmerksamkeit wieder auf diese Frage gelenkt, und so merkte ich, daB sich
die Gruppen erster Stufe sehr durchsichtig als schiefes Produkt darstellen lassen.
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§ 2. Das schiefe Produkt G R

Die hier folgenden Vorbereitungen betreffen teils auch schon die
§§3,4. G sei eine beliebige Gruppe mit den Elementen «, §,. .. und dem
Einselement ¢, R ein beliebiger (nicht notwendig kommutativer) Ring,
R+ die additive (kommutative) Gruppe (aller Elemente) von R. Das
Einselement in R bezeichnen wir mit 1, aber die Existenz setzen wir im
allgemeinen nicht voraus. Entsprechend den zwei Grundoperationen in
R, das sind die Multiplikation und Addition, 148t sich G im allgemeinen
auf zwei Arten in R homomorph abbilden. Und zwar nennen wir eine
eindeutige Abbildung % oder o’ (x eG; %,x’ ¢ R) von Gin R (d. h. auf
eine Teilmenge von R) eine Homomorphie, wenn unbeschrinkt die
,, Jomomorphieeigenschaft*

] “B=zP o
mit ¢ = 1, bzw.

(x By =o' + p (2)

gilt ; im ersten Fall ist offenbar immer x # 0, im zweiten Fall braucht
das Einselement 1 nicht zu existieren und mull notwendig &’ = 0 sein.
Wir nennen diese Homomorphien multiplikativ bzw. additiv. Bekannt-
lich bilden die verschiedenen Bilder & bzw. «’ eine multiplikative bzw.
additive Gruppe in R, die beidesmal das homomorphe Bild von @ ge-
nannt wird. Bezeichnet N die Gruppe der « mit & = 1 bzw. &’ = 0, so
ist N eine normale Untergruppe von G, und die Faktorgruppe G/N ist
isomorph zu der Gruppe der x bzw. «’. Wir nennen N den Kern der
Homomorphie. Umgekehrt wenn man irgendeine normale Untergruppe ¥
von ( angibt, so da} eine zu G/N isomorphe multiplikative oder additive
Gruppe H in R existiert, so 148t sich immer wenigstens eine Homomor-
phie & bzw. &’ mit dem Kern N konstruieren, die G auf H abbildet.

Zu den hier und in den folgenden §§ 3, 4 zu definierenden schiefen
Produkten von G, R werden wir eine multiplikative bzw. additive bzw.
zwei additive Homomorphien zu Hilfe nehmen, so dafl also in den ent-
sprechenden (schon in der Einleitung erwidhnten) Bezeichnungen GR,
G(+)R, G(1)R die Anzahl der verwendeten ,,--"’-Zeichen angibt, wie
viel additive Homomorphien zur Konstruktion benotigt werden.

Die Definition von G'R ist enthalten im folgenden :

Satz 1. Ks sei G eine Gruppe, R ein Ring mit Einselement, x eine multi-
plikative homomorphe Abbildung von G in R. Die Menge aller («,a)
(x €@, a e R) bildet nach der Produktregel

(x, @) (B,6) = (xf, a + xb) (3)
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etne Gruppe, die wir mit GR bezeichnen und ein schiefes Produkt (vom
ersten Typ) von G, R nennen. Das Hinselement ist (¢, 0). Werd

A =(x,a), B=(Bb) (4)
gesetzt, so ist das Inverse von A
Al = (x7!, —xla), (5)
wobet %! das Inverse von X in der Gruppe der & bezeichnet; weiter ist
B-14B = (B'«B, (@ — b + xb)) , (6)
ATBIUAB = (a7, a7 (& — Db — (B —1a)), (7)
Ar= (0", (L +& + a2 +---+aNa) (nz0). (8)
Wird ndmlich C = (y, ¢) gesetzt, so gilt nach (3):
AB-C = (xB,a + xb)(y, ¢) = (xfy,a + &b 4 «fc) ,
A-BC = (x,a)(By, b + Bc) = (xBy,a + &(b + Be)) .
Beide Produkte sind wegen «f = & B gleich. Offenbar gilt
(v, @) (e, 0) = («, @)
und wegen xx~!= 1 auch

(x,a)(xl, —x"la) = (¢,a — xxla) = (¢, 0) .

Alles dies beweist, daBl GR eine Gruppe ist. Die iibrigen Behauptungen
beweist man mit einfacher Rechnung, insbesondere (8) mit einem Schluf3
vonn auf » + 1.

Bemerkungen. Die Elemente 4, B sind nach (3) dann und nur dann
vertauschbar, wenn

xp=fx, @EF—-Db=@F—1a

ist. Sind insbesondere G' und R kommutativ, so lautet diese Bedingung
einfach als

=0. (9)

229



Da diese Bedingung nur ganz selten identisch erfiillt wird, ist es berech-
tigt, daBl wir G R ein ,schiefes‘‘ Produkt nennen.

Wegen (x, 0)(8, 0) = (x8,0), (¢, a) (¢, b) = (¢, @ + b) bilden die Ele-
mente (x, 0) bzw. (¢, a) je eine zu G bzw. R+ isomorphe Untergruppe von
GR. Bezeichnen wir diese Gruppen mit (¢) und (R+), so gilt auch

GR = (G)(R*) = (BRY)(@) , (10)

wobei die zwei letzten Produkte im gewohnlichen Sinn zu deuten sind,
d. h. das schiefe Produkt G R ist gleich dem Produkt seiner (zu G und R+
isomorphen) Untergruppen (¢), (R+), und dabei kommt es auf die Reihen-
folge der Faktoren nicht an. Zum Beweis von (10) berechnen wir

(*,0)(¢, @) = (x, &xa) ,  (¢,a)(x, 0) = (x,0) .

Indem nun «, a die Elemente von G bzw. R durchlaufen, werden durch
(¢, xa) bzw. (x, a) alle Elemente von GR in der Tat genau einmal dar-
gestellt. Insbesondere fiir (x, xa) folgt dies ndmlich daraus, da} & sein
Inverses &x~! hat. Hiermit ist (10) richtig.

Wegen (10) ist es berechtigt, daBl wir GR ein (schiefes) ,,Produkt“ von
G, R nennen. (Es wire vielleicht richtiger, wenn wir GR wegen (10) ein
schiefes Produkt von G, R+ nannten, das tun wir aber deshalb nicht, da
an der Konstruktion von GR nicht nur die Addition, sondern auch die
Multiplikation in R teilnimmt.) Endlich bemerken wir hierzu noch, da8l
(3) fiir die ,triviale“ Abbildung & =1 in die ,direkte Multiplikation

(x,a)(B,b) = (xf,a +b)

tibergeht. Somit umfaBt das schiefe Produkt GR das bekannte direkte
Produkt von G, R+ als trivialen Spezialfall.

§ 3. Das schiefe Produkt G(+) R

Im Ring R setzen wir jetzt die Existenz des Einselementes nicht vor-
aus und definieren das schiefe Produkt G(+4)R im folgenden :

Satz 2. Es ser G eine Gruppe, R ein Ring, &' eine additive homomorphe
Abbildung von @ in R mit der weiteren Eigenschaft

B =0 . (11)
Die Menge aller (x,a)(x G, a e R) bildet nach der Produktregel
(x,a)(B,0) = (xf,a + b + «’b) (12)
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etne Gruppe, die wir mit G (+)R bezeichnen und ein schiefes Produkt (vom
zweiten Typ) von G, R nennen. Das Einselement ist (e, 0). Wird

A"—‘(O(-,a), Bz(ﬂab) (13)
geselzt, so ist das Inverse von A
Al = (671, —a + o'a) , (14)
weiter vst
B-AB = (f-'ap,a + &'b — f'a) , (15)
A1B7AB = (x 18 af,&'b — B'a) , (16)
A":(oc",na—}—(g)oc’a) . (17)

Wird ndmlich C = (y, ¢) gesetzt, so gilt nach (12)

AB-C = (xf,a+ b+ a'b)(y,c) = (xfy,a + b+ &’b + ¢ + (xp) ¢)
A-BC = (x,a)(By,b+c+p'c)= («fy,a+b+c+ p'c+ ' (b+c+p'c)).
Beide Produkte sind wegen (xf8) = &’ + B’,o/f’ = 0 gleich. Offenbar

gilt
(x,a)(e, 0) = (x, a)

und wegen des Spezialfalls «’2= 0 von (11) auch
(*,a) (o1, —a +a&'a) = (¢,a —a+a’a + &' (—a + «’a)) = (¢, 0).
Alles dies beweist, dal G (4 )R eine Gruppe ist. Auch die iibrigen Be-

hauptungen beweist man mit einfacher Rechnung.

Bemerkungen. Nach (12) lautet jetzt die Bedingung der Vertausch-
barkeit von 4, B einfach

(xﬂzﬂ“: oc’b:ﬂla,
insbesondere im Falle kommutativer G, R aber
o al
B o
Wieder gilt (x, 0)(8,0) = (x8,0), (¢,a)(e,b) = (¢,a + b), und so

bilden die (x,0) bzw. (¢,a) je eine zu G und R+ isomorphe Unter-
gruppe (@) bzw. (R*), fiir die dann wieder

0. (18)
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G(+)R = (@) (B*) = (B*)(G) (19)
gilt. Es ist ndmlich

(®,0)(e, @) = (x,a + a’a) ,  (¢,a)(x,0)=(x,a),

und so besagt (19), daB durch (x,a + «’ @) bzw. (x,a)(x €@, a € R)
jedes Element von G(+4)R genau einmal dargestellt wird. Fir das
zweite ist das klar, fiir das erste miissen wir zeigen, daBl = 4 &’z = a fiir
festes o« und @ genau eine Losung « in R hat. Eine Losung ist * = a—a'a.
Ist aber y eine weitere Losung, so ist = + o’z = y + «’y ; nach Multi-
plikation mit o’ folgt &’z = «’y, also auch z = y, womit (19) be-
wiesen ist.

Fiir die ,,triviale“ Abbildung «’ = 0 ist G(-+)R nach (12) ein direktes
Produkt. Hat R insbesondere keine Nullteiler, so folgt aus (11), daB un-
beschrinkt «’ = 0 gelten muBl. Also gibt zu einem, vom direkten Pro-
dukt verschiedenen schiefen Produkt G(-+)R nur ein Ring R mit Null-
teilern AnlaBl. Bekanntlich schlieBt diese Einschrinkung insbesondere fiir
endliche Ringe nur die (endlichen) Korper aus.

Endlich bemerken wir, da3 wenn in R das Einselement existiert, so ist
G(+)R nur ein Spezialfall von GR. In der Tat setzen wir & = 1 + «'.
Dann gilt wegen (11)

af=14+@f) =140+ =Q1+a)1+p)=%F,

also ist & eine multiplikative homomorphe Abbildung von G in R. Weiter
geht (12) wegen b + «’b = (1 + &/)b = b in (3) tiber, und das beweist
die Behauptung.

§ 4. Das schiefe Produkt G () R

Auch jetzt nehmen wir in R die Existenz des Einselementes nicht an
und definieren das schiefe Produkt G (1) R im folgenden :

Satz 3. Es seien G eine Qruppe, R ein Ring, o', o” zwer additive homo-
morphe Abbildungen von G in R. Die Menge aller (x,a) (x G, a e R)
bildet nach der Produktregel

(x,a)(B,b) = («f,a + b+ &' (20)

eine Gruppe, die wir mit G (1 )R bezeichnen und ein schiefes Produkt
(vom dritten Typ) von @, R nennen. Das Einselement ist (¢, 0). Wird

A=(x,a), B=(8,b) (21)

gesetzt, so st das Inverse von A
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A1 = (a7, —a + o'a") , (22)

wetler st
B-AB = (f-'af,a + o'’ — fla") , (23)
A-'B7IAB = (o1 axf, o'’ — B'a”) (24)
Ar = (o™, nov + (;’) & o) (25)

Wird nidmlich C = (y, ¢) gesetzt, so gilt nach (20)

AB-C = (af,a + b 4 &«'8")(y,¢) = (xBy.a + b + &'B" + ¢ + (x8)'7"),
A-BC = (x,a)(By,b + ¢+ f'y")= (xfy,a + b + ¢ + B’y + &' (By)"),

und so sind beide Produkte wegen (xf) =o'+ p', (By) = p"+ "
gleich. Offenbar gilt (x, @)(e, 0) = (x, @) und wegen (x~1)” = —o” auch

(x,a)(el, —a + «'a")=(e,a —a + o'a” —a'x”) = (¢, 0) .

Alles dies beweist, dal G (f)R eine Gruppe ist. Die iibrigen Behaup-
tungen beweist man mit einfacher Rechnung.

Bemerkungen. Nach (20) lautet die Bedingung der Vertauschbarkeit
von A,B: af = P, &'B" = p'a”,

insbesondere fiir kommutative G, R :

OC, (X”

ﬁ, .3” =0. (26)

Wohl gelten auch jetzt die (10) und (19) entsprechenden Zerlegungen
G (1) R = (@)(R*) = (BR*)(@) , (27)

wobei (@) und (R+) wieder die Menge aller (x, 0) bzw. (¢, a) bezeichnen,
und (R+) eine zu R+ isomorphe Untergruppe von G (f)R ist, aber (G)
ist diesmal im allgemeinen keine Gruppe mehr. Zuné#chst folgt ndmlich
die Richtigkeit von (27) aus (x, 0)(¢, @) = (¢, @) (x, 0) = (x, a). Wegen
(e, a)(e,b) = (e, a + b) ist (R*) eine zu R+ isomorphe Untergruppe von
G (X)R. Endlich ist («,0)(8,0) = (xf, «’f"), und so sehen wir, daf3
(@) nur dann eine Gruppe ist, wenn unbeschrinkt «’g” = 0 gilt. In
diesem (uninteressanten) Falle ist G (1 )R nach (20) nichts anderes als
das direkte Produkt von G, R+.
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§ 6. Die vier Typen der Gruppen 1-ter Stufe

Unten im Satz 4 geben wir alle Gruppen 1-ter Stufe in begrifflich ein-
fachster Weise als Spezialfille der schiefen Produkte an (bis auf die
Quaternionengruppe). Die Konstruktionen dieser Gruppen fiihren wir
dann in den Sétzen 5, 6, 7 in drei weiteren Formen explicit aus. Ins-
besondere driickt Satz 7 die Gruppen 1-ter Stufe als ,,abstrakte Gruppen
aus. Die Darstellungen in den Séitzen 5, 6 weichen voneinander nur wenig
ab. Unter allen vier Darstellungen ist die zweite, im Satz 5 angegebene
fiir die formal einfachste anzurechnen.

Wir fithren noch ein paar Bezeichnungen ein :

p, q sind verschiedene positive Primzahlen.

O(x) ist die Ordnung von z fiir eine endliche Gruppe z oder fiir ein
Gruppenelement x von endlicher Ordnung.

G(P,,..., P,) ist die endliche kommutative Gruppe mit den Invarian-
ten P,,..., P;, die also notwendig Primzahlpotenzen sind, und es gilt
O(G(Py,..., P))=P,... P,. Insbesondere ist G(P) die zyklische
Gruppe von der Primzahlpotenzordnung P.

R* ist fir einen endlichen Ring R die (multiplikative) Gruppe aller
von 0 und den Nullteilern von R verschiedenen Elemente von R, kurz die
multiplikative Gruppe von R.

k(P) ist der endliche (kommutative) Kérper mit P-Elementen, wobei
also P eine beliebige Primzahlpotenz ist. Bekanntlich ist £ (P)+ ein
G(p,...,p) von der Ordnung P und k(P)* eine zyklische Gruppe von
der Ordnung P — 1.

R(m) ist der Restklassenring mod m, d. h. der Ring der (aus den
ganzen Zahlen gebildeten) Restklassen mod m. R(m)* ist zyklisch von
der Ordnung m, R(m)* ist von der Ordnung ¢ (m) und ist fiir eine Prim-
zahlpotenz m zyklisch, wobei ¢ das Eulersche Zeichen bedeutet. Ins-
besondere ist R(p) gleich k(p).

O (¢ (mod p)) ist die Ordnung der Restklasse ¢ (mod p) (in der Gruppe
R (p)*), d. h. die kleinste natiirliche Zahl » mit ¢*» =1 (mod p).

Nunmehr sprechen wir folgenden Satz aus :

Satz 4. Die Gruppen 1l-ter Stufe verteilen sich auf vier Typen, von
denen die zu den ersten drei Typen gehiorenden Spezialfille der schiefen
Produkte GR, G (+)R bzw. G (1) R sind. In diesen ist gemeinsam, daf
die jedesmal zu verwendenden Homomorphien &, o’ bzw. o', o” einen Kern
vom Index p in G haben, weiter sind die im letzten Fall zu den o, &” gehoren-
den Kerne verschieden. Dies vorausgeschickt, sind die vier Typen die
folgenden :
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Erster Typ. Ber gegebenen p, q, u (u=1) _
G;(p,q,u) =GR (G =G (p*), R=k(g"), v= 0(g(mod p))) . (28)

Es st
0(G;(p. g, %) = p g” . (29)

Zweiter Typ. Bet gegebenen p, w, v (u =1, v=2)

GII(p’ u, U) = G(+)R (G - G(pu)’ R = R(pv)) . (30)
Es st

O(Gyy(p, w,v)) = p*+v . (31)

Dritter Typ. Bev gegebenen p, u, v  (u=v=1)

Grr(p,w,v) =G(L)R (G =G@p* p"), R=R(p)). (32
Es st
O (G (P, w,v)) = prtvott (33)

Yierter Typ. Die Quaternionengruppe von der Ordnung 8.

Diese Gruppen hingen von der speziellen Wahl der Homomorphien o,
o', o” nicht ab, sondern sind durch die jedesmal angegebenen p, q, w, v ein-
deutig besttmmt und sind verschieden mit der evnzigen Ausnahme, daf die
zwet Gruppen G;;(2,1,2), G4;;(2,1,1) von 8-ter Ordnung gleich sind.
(Dre so entstandene ,,Liicke” wird durch die Quaternionengruppe von der-
selben Ordnung ,ersetzt”.) Zu evner Ordnung p*q® (w,v=1) gehdren also
zwet, eine oder keine Gruppen 1-ter Stufe, je nachdem von den Bedingungen

u=0(p(modg)), v=0(g(mod p))

2wei, etne oder keine erfillt sind. Zu einer Ordnung p¢ (e = 3) gehoren e—2

bzw. [_e___—_}] Gruppen 1-ter Stufe vom zweiten bzw. dritten Typ, insgesamt

2
akoe—2+[e;1

] Gruppen.

Bemerkung. Es 1aBt sich leicht zeigen, dafl die Quaternionengruppe
kein schiefes Produkt ist.

Wir beweisen zuerst, dal die Gruppen (kurz) G;, G;;, G existieren
und von den x, &', «” unabhingig sind. Wir fangen es mit G; an. Da
G = Q(p*) zyklisch von der Ordnung p* ist, enthélt ¢ eine einzige nor-
male Untergruppe vom Index p. Andererseits ist R* = k(g¢%)* zyklisch
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von der Ordnung ¢° — 1 (= 0(mod p)), und somit enthéilt R* eine
einzige zyklische Untergruppe p-ter Ordnung. Also existiert eine ge-
wiinschte Homomorphie «, zugleich auch wenigstens ein G;. Weiter aber
ist klar, daB sich jede weitere solche Homomorphie in der Form % (p £ ¢)
annehmen l4Bt. Die zugehorigen zwei Gruppen G;, G bestehen aus den-
selben Elementen (x, @) und weichen nur darin ab, daB man in ihnen
bzw. nach den Regeln (vgl. (3)).

(%, @)(B,b) = (aB,a + ab) , (x,8)0(B,b)=(xf,a+ x’b) (34)

multipliziert. Es geniigt also, zu zeigen, dal es eine (eindeutige) Abbil-
dung S der Menge aller («, a) auf sich gibt, fiir die die Homomorphie-
eigenschaft

8((x, a)o(B,b)) = S(x,a)S(B,b) (35)

gilt, denn dann sind beide Gruppen @,, G; isomorph. Ein solches § 148t
sich durch S(x, @) = (4%, @) angeben. Wegen p { ¢ durchlduft nim-
lich «* gleichzeitig mit « alle Elemente von ¢, und so ist nur noch (35) zu
beweisen. Die linke und rechte Seite ist nach (34) bzw.

S(xf,a + xtb) = ((«f)*, @ + a'd) = (&'f', a +a'b) ,
(of, @) (%, b) = (&*f, @ + i) = (&*f°, a + «’D) .

Beide sind gleich, woraus die Behauptung folgt.

Der Fall von G, ist sehr dhnlich. Statt des vorigen R* kommt jetzt
R+ = R(p®)* in Betracht. Da diese additive Gruppe zyklisch von der
Ordnung p° ist, so hat sie eine einzige zyklische Untergruppe p-ter Ord-
nung. Eine gewiinschte Homomorphie «’ existiert also auch jetzt, fiir die
namlich wegen v =2 offenbar auch (11) gilt, und alle weiteren lassen sich
in der Form ix’ angeben. Alles iibrige geht genau so wie im vorigen Fall,
mit (demselben S aber) dem einzigen Unterschied, dafl man iiberall ¢o’
statt a’ einzusetzen hat, und so ist die Behauptung auch jetzt richtig.

Im Fall G;;; hat G = G(p*, p®) mehrere (insgesamt p 4- 1) normale
Untergruppen vom Index p, weiter ist R+ = R (p)* selbst von derOrd-
nung p, und so existieren die gewiinschten Homomorphien «’,«”, zu-
gleich also existiert auch wenigstens ein G;;;. Fiir das iibrige verfahren
wir anders als in den vorigen zwei Fillen, und zwar zeigen wir direkt, daf3
G, ;; von der speziellen Wahl der «’, «” unabhéngig ist. Hierzu fiithren wir
eine Basis p, ¢ fiir @ ein mit O(p) = p*, O(o) = p®. Zwei beliebige Ele-
 mente von @ lassen sich in der Form
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x = p'd?, B = o (,k=0,...,p*—1;4,l=0,...,p* —1) (36)

annehmen, und so erscheint die Produktregel fiir &;;; nach (20) in der
Form

(¢%0?,a)(g*a?,b) = (o™**oi+, @ + b 4 (i0" + jo') (ko" + 10”)) , (37)

wobei ndmlich o' = ip" + jo', B" = ko” + lo” Dberiicksichtigt wurde.
Der Kern der Homomorphie «’ besteht aus den « mit «’ = 0, d. h.
10’ + jo'’ = 0. Da beide Homomorphien «’, «” verschiedene Kerne
haben, diirfen die Losungen %, j der Gleichungen 7o’ + jo’ = 0, 0"
+ jo” = 0 nicht iibereinstimmen, und das hat

! /

d = Z,, | #0 (38)
zur Folge. Nunmehr setzen wir
A = (p,0), B = (0,0), C = (&,d) . (39)
Es ist nach (37) klar, daB3
AC =0CA , BC =(CB (40)

ist. Weiter ist nach (37) offenbar 4B/ = (¢%0’, a,,;), wobei a,; irgendein
Element von R ist, also nach (39) und (37) A‘BiC™ = (¢'d?, a,; + md).
Damit haben wir gezeigt, dafl sich alle Elemente von G;;; in der Form
A? Bi U™ gchreiben lassen. Da insbesondere

Akz(Qk, x) ) Bi:(gi} y)

gilt mit irgendwelchen Elementen z, y (e R), so folgt aus (24) wegen
oo = op mit Riicksicht auf (38):

A-*B-IAkBI = (g, jk (¢'d” — o’0")) = (e, jkd) .
Die rechte Seite ist nach (39), (37) offenbar C7*, also ist

A*Bi = BiAkCi* .
Dies ergibt wegen (40)
AiBiOm. Ak BIO" — Ai+k Bi+lQm+n—ik

Diese neue Form der Produktregel in G;;; ist von &, «” unabhéngig, und
das zeigt die Richtigkeit unserer Behauptung.
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Jetzt wollen wir zeigen, daf die Gruppen von allen vier Typen im Satz 4
von der 1-ten Stufe sind. Hier geniigt es zu zeigen, daB alle diese Gruppen
ein nichtvertauschbares Elementenpaar haben und durch ein beliebiges
solches Paar auch erzeugt werden. Das tun wir zuerst fiir G;. Ein Ele-
mentenpaar

A= (x,a), B = (B,b) (¢, BeG(PY); a,bek(q?)) (41)
ist nach (9) dann und nur dann nichtvertauschbar, wenn

x—1 a

B—1 b
ist. Dies findet sicher statt, wenn « ein Basiselement von G (p*), also
% #1, weiter a =0, B=2¢, also f=1 und b = 0 ist. Betrachten
wir nunmehr ein nichtvertauschbares Paar 4, B, wofir also (42) gilt.
Dann kann nicht %= f =1 sein. Wir diirfen annehmen, daB eben
a # 1 ist. Einerseits ist dann « ein Basiselement von G(p*), anderer-
seits ist « ein Element p-ter Ordnung von k(¢%)*, also &? = 1 und somit

d = # 0 (42)

[7 — |

Ziehen wir jetzt den in k(¢’) enthaltenen Primkorper k(q) heran. In

diesem zerfillt das Polynom
x? —1

x— 1

wegen v =0 (¢ (mod p)) in lauter irreduzible Faktoren v-ten Grades,
und so ist o wegen (43) ein Element v-ten Grades von k(¢®) iiber k(q).
Dies vorausgeschickt, bestimmen wir nach (7), (8) (und «p = f«,
a® = &") den Kommutator

0, = A"B-14"B =
(e, @@ — Db —B— DA+ T+ -+ &N a)) @20) .

Die rechte Seite ist nach (42) offenbar

(e, "B (14 & +---+ " 1)d) .
Also ist
Cn= (e, (™ +---+c+1)dy),

wobei d, = x1f-1d # 0 und von n unabhingig, weiter ¢ = x~!, also
(mit & zusammen) ein Element v-ten Grades von k(q?) iiber k(g) ist.
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Irgendein Element (¢, x) (z £ 0) von G, ist wegen (e, z)? = (¢, qx)
= (¢, 0) von der Ordnung ¢. Das trifft fiir die C, (r = 1,..., v) offen-
bar zu. Dabei sind sie auch miteinander vertauschbar. Wir zeigen, daf}
sie eine Gruppe ¢°-ter Ordnung erzeugen. Hierzu ist genug zu zeigen, dafl
die C,,...,C, unabhingig sind. Diese Behauptung ist dquivalent mit
der Unabhéangigkeit der Elemente

C,=0C,, C.=0,01 (n=2,...v).

Da O = (¢, c®'d,) und c ein Element v-ten Grades von X(g®) iiber
k(q) ist, kann

CL55. .01 = (e iye= -+ e + i) dy) = (&, 0)

nur fir ¢|¢, (n=1,...,v) bestehen, und das zeigt die Richtigkeit
unserer letzten Behauptung. Hiernach enthilt die durch die Elemente A4,
B erzeugte Gruppe eine Untergruppe ¢°-ter Ordnung. Sie enthilt auch
das Element A4 = (x,a), dessen Ordnung nach (8) eine Vielfache der
Ordnung p* von « ist (in der Wirklichkeit ist O(4) = O(x) = p*). Folg-
licherweise erzeugen A4, B eine Untergruppe mit einer durch p“q® teil-
baren Ordnung. Diese Gruppe mufl wegen (29) selbst G, sein, womit die
Behauptung fiir diesen Fall bewiesen ist.

Fiir @;; kommen wir schnell zum Ziel. Ein beliebiges Elementenpaar
ist jetzt

A=(x,a), B=(,b (xBG(®"); a,beR(p)

und die Bedingung der Nichtvertauschbarkeit lautet nach (18) so:

o a

B b
Dies trifft z. B. zu, wenn « ein Basiselement von G (p¥), also &’ % 0 und
a=0, f=¢, b=1 ist. Wenn nun 4, B nichtvertauschbar sind, so
kann vor allem nicht &’ = p’ = 0 sein. Wir diirfen &’ # 0 annehmen,
und dann ist & ein Basiselement von G (p*). Hieraus folgt, daBl § eine
Potenz o™ von « ist. Offenbar erzeugen 4, B und 4, A—"B dieselbe
Gruppe. Dabei ist A—"B wegen f = x" von der Form (e, z). Ersetzen
wir also B durch A—"B, was ja gestattet ist, so hat das zur Folgerung, daf
man von vornherein g = ¢ annehmen darf. Da ¢ = 0 und auch die
,heuen“ A, B nichtvertauschbar sind, mul «’d = 0 sein. Es fillt aber
o’ in die Untergruppe p-ter Ordnung der zyklischen Gruppe R(p®)*, und
so folgt weiter, dal b ein Basiselement von R(p®)*+ ist. Nun ist nach (16)

O = A-\B-4B = (¢, d) ,

d — £0 .
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weiter ist wegen d = 0 jedes Bildelement o’ (w € G(p*)) ein Vielfaches
von d. Letzteres hat nach (17), (12) (und g = ¢) zur Folgerung, daf3

AiBl = (&%, ta + jb 4+ nd)

gilt, wobei » irgendeine, von ¢, j abhingende ganze Zahl ist. Wegen C—
= (e, —nd) ist dann
AtBiC—" = (o, 1a + jb) .

Da « und b je ein Basiselement von G (p*) bzw. R(p?)* ist, erzeugt die
rechte Seite alle Elemente von G;;, woraus die Richtigkeit der Behaup-
tung folgt.

Noch leichter wird der Fall von G;;; sein. Da wir oben schon gesehen
bhaben, dal G;;; nichtkommutativ ist, brauchen wir nur noch zu zeigen,
daB G;;; durch jedes nichtvertauschbare Elementenpaar

A= (x,a), B=(8,b) (x,BeG(p*, p*); a,beR(p))
erzeugt wird. Nach (26) gilt
d =

OC, 0‘//

ﬂ, ﬂ”
Wir driicken «, § wieder in der Form (36) durch die Basis p, ¢ von
G(p*, p*) aus. Dann ist

£0 .

r v

g— |t ol g +gd") (i jlee)
ICQ’—‘—ZO‘I kQ”-*—lO'” kl / // ’
also auch l \ # 0 . Hieraus folgt nach (36), daB «, § die Gruppe

G (p*, p¥) erzeugen. Nach (20) kommt also in den durch 4, B erzeugten
Elementen (w, x) jedes Element w von G'(p*, p¥) wenigstens einmal vor.
Da aber insbesondere (¢, 0) und nach (24) auch noch

A-1B-14B = (¢, d)

Elemente der durch 4, B erzeugten Untergruppe sind, so ist die Ordnung
dieser Gruppe >p*tv. Wegen (33) kann dann die Ordnung nur p»+v+!
sein, und das war die Behauptung.

Endlich ist die Quaternionengruppe auch von 1-ter Stufe, da sie nicht-
kommutativ ist und die echten Untergruppen hochstens von 4-ter Ord-
nung sind.

Die restlichen Behauptungen des Satzes, daB er ndmlich alle Gruppen
1-ter Stufe umfafit, und zwar jede solche nur einmal, beweisen wir
spéater.

240



§ 6. Die zweite Darstellung der Gruppen 1-ter Stufe

Die Gruppen l-ter Stufe driicken wir hier und in den §§ 7, 8 in den
Sédtzen 5, 6, 7 in drei weiteren Formen aus. Der volle Beweis dieser Satze
wird mit dem des Satzes 4 zusammen spéter erfolgen.

Wir haben schon bewiesen, dafl die Gruppen im Satz 4 unabhingig
davon sind, wie man die zur Konstruktion notigen Homomorphien &,
o, o” withlt. Indem wir diese Homomorphien geeignet wihlen, kommen
wir nach (3), (12), (20) unmittelbar zum folgenden :

Satz 5. Die ersten drei Typen G;, G;;, G;r; der Gruppen 1-ter Stufe
lassen sich auch so angeben :

Erster Typ. Man nehme ein erzeugendes Element ¢ von G (p*) (u=1),
ein Element r von der Ordnung p von k(g°)* (mz't v=0 (g (mod p)))
und multipliziere dve

(0%, a) (1=0,....,p*—1; ack(g)

nach der Regel
(0%, a)(g*, b) = (¢***, a + D) . (44)

Zweiter Typ. Man behalte das vorige o und multipliziere dre

(*,a) (1=0,....,p*—1; aeR(pY)) ; (v=2)

nach der Regel
(0%, @) (¢*, b) = (¢***,a + b + p*~14d) . (45)

Dritter Typ. Man nehme eine Basis o, o von G(p*, p*) (u=v=1) mit
O(p) = p*, O(o) = p* und multipliziere die

(%7, a) (=0,....,p%—1; j=0,...,p" — 1; aeR(p)

nach der Regel
(0'd’, a)(e¥ o, b) = (¢*Foi*, a + b +1il) | (46)

wobet man das Qlied il als das Element i1-1 von R (p) aufzufassen hat.

§ 7. Die dritte Darstellung der Gruppen 1-ter Stufe

Satz 6. Die vier Typen (G;, G;;, G und die Quaternionengruppe) der
Gruppen 1-ter Stufe lassen sich auch so angeben :
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Erster Typ. Bei gegebenen p, q, w (u=1) bezeichne man mit W¥(x)

R

etnen (gleichgiltig welchen) mod q irreduziblen Faktor von xx 1

Leitkoeffizienten 1, mit v den Grad von ¥ (z), der (bekanntlich) durch p, q
bestimmt, und zwar v =0 (q (mod p)) ist, bilde die Paare (3, f(z)) aller
ganzen Zahlen © und ganzzahligen Polynome f(x), definiere fiir sie eine
Gleichheit

(i, f(®) = (k,9(x)) (i =k(modp¥),f(x) =g(x) (modg, ¥(x)))
und das Produkt
@, H®) (k, g(2x)) = (¢ + &, f(x) + 2ig(2)) . (47)

mit dem

Zweiter Typ. Ber gegebenen p, w, v (u=1; v=2) bilde man die
Paare (v, j) aller ganzen Zahlen 1, j, definiere fitr sie eine Gleichheit

(t,7) = (k,0) (¢ =k (mod p¥) , j =1 (mod p?))
und das Produkt
Nk D)=0+Fk,j+ 1+ p1l) . (48)
Dritter Typ. Be: gegebenen p, u, v (u=v=1) bilde man die Tripel
(¢, 7, m) aller ganzen Zahlen i, j, m, definiere fiir sie eine Qleichhent
(¢,7,m) = (k,1,n) (¢ = k (mod p¥), j = I (mod p®), m = n (mod p))
und das Produkt
(6,7, m) (e, 1, m) = (i + b, j + L,m + n + i) . (49)

Vierter Typ. Man bilde die Paare (t,7) aller ganzen Zahlen i, 7,
definiere fiir sie eine Qleichheit

(6,7) =(k,l) (=k,j=1(mod4) oder i =k + 2, =1+ 2 (mod 4))

und das Produkt . . . ,
€ NE D= (E+k 5+ (=17). (50)

Bezeichne nédmlich I" den Ring der ganzen Zahlen, I'(x) den Ring der
Polynome von z iiber I', M den Modul der Elemente

qf(x) + ¥ (x)g(x) (f(x), g(x) e I'(x)) .

Bekanntlich ist dann k(g®) eben der Restklassenring von I'(z) nach M
(das gélte auch fiir irgendein modg irreduzibles Polynom ¥(z) vom
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Grade v). Wir zeigen weiter, daf3 die Restklasse x (mod M) ein Element
x?— 1
z—1

p-ter Ordnung in k(q®)* ist. Da ndmlich ¥(z) ein Faktor von
mod ¢ ist, so gilt

z? — 1

T = (modg, ¥(x)),
d. h. (mod M). Alsoist z? =1 (mod M), und somit kann die Ordnung
der Restklasse x (mod M) in k(g®)* nur p oder 1 sein. Letzteres ist un-
moglich, da dann x =1 (mod ¢, ¥(x)) also ¥(x) =2 — 1 (modg),
und somit ¥ (x) ein mehrfacher Faktor mod ¢ von x? — 1 wire, wobei
doch der Differentialquotient pa?-! den Faktor # — 1 modg nicht ent-
hilt. In der Tat ist die Restklasse # (mod M) von der Ordnung p, und
somit ein Basiselement fiir die Untergruppe p-ter Ordnung von k(g?)*.
Reprisentiert man also k(¢?) — wie gesagt — durch den Restklassenring
von I'(x) nach M, so kann man in (44) die Restklasse z (mod M) fir
einsetzen. Offenbar darf in (44) auch jedes g™ durch = ersetzt werden, und
so entsteht die Produktregel (47), wie behauptet wurde. :

Es ist klar, da auch (48), (49) blo8 andere Formen von (45), (46)
sind.

Es bleibt nur noch iibrig, (50) zu beweisen. Die Quaternionengruppe
wird durch zwei Elemente 4-ter Ordnung A4, B erzeugt, fiir die auller
A= B*=1 noch A42= B? und B14AB = A~ ist. Man sieht leicht,
daf} allgemein

AiBi. A'Bk — Ai+(-1il Bi+k

gilt. Diese Produktregel stimmt im wesentlichen mit (50) liberein, womit
Satz 6 bewiesen wurde.

§ 8. Die vierte Darstellung der Gruppen 1-ter Stufe

Satz 7. Die vier Typen (G;, G1, G und die Quaternionengruppe) der
Gruppen 1-ter Stufe lassen sich als ,,abstrakte Gruppen durch folgende
Qleichungen definieren :

Erster Typ.
Ar*=Bl=B{=...=B%,=1, B, B,=B,B, (0=sr<s=sv—1),
AB.A =1B,, (r=20,...,v—2), (51)

A-'B, A = B%...B%

wobes p, q, w (w=1) gegeben sind, v =0 (¢(mod p)) ist und die c, die
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Koeffizienten eines (irreduziblen) Faktors xz* — c,_, 2! —...—c¢c, von
x? — 1

—1
wahlt wird.)

mod ¢ Uliefern. (Es tst gleichgiiltig, welcher dieser Faktoren ge-

Zweiter Typ.
AP* = Bp? =1 | A-1BA = Bur*™! | (52)

wobei p, w, v (=1, v=2) gegeben sind.

Dritter Typ.
Ar* = Bp* =(C? =1, AC=CA, BC =CB, A'BA = BC, (53)

wobei p, u, v (u=v=1) gegeben sind.

Vierter Typ.
A*=1, A*= B2, A'BA = B, (54)

Wir beweisen diesen Satz mit Hilfe des Satzes 6.
Fiir den ersten Typ sind nach Satz 6 die (—1,0), (0,2") (r=0,...,
v — 1) offenbar erzeugende Elemente der Gruppe G;. Nach (47) gilt

O((—1,0)=p*, O0((0,2))=gq, (0,27(0,z*) = (0, 2°)(0, a") ,
weiter gilt (—1,0)(1,0) = (0,0), d. h. (—1,0)"! = (1, 0) und somit
(—=1,0)71(0, 2")(—1, 0) = (1, 0)(— 1, ") = (0, &™) ,
insbesondere also mit der Bezeichnung ¥(x) = 2% — ¢,_;2"1—- .- —¢
(—1,0)"1(0, z*-1)(—1, 0) = (0, 2%) = (0, 2 — P(x)) =

= (0, ¢y 21 4+ -4 ¢g) = (0, 1)%...(0, ¥ 1)1 |

Mit der Bezeichnung 4 = (—1,0), B, = (0,2") entstehen aus allen
diesen eben die Gleichungen (51).

Fiir den zweiten Typ sind nach Satz 6 die (—1,0), (0, 1) erzeugende
Elemente der Gruppe G;;. Nach (48) gilt

0((_130)):27“9 0((0:1)):pv ’

weiter gilt (—1,0)(1,0)=(0,0), d.h. (—1,0)*= (1,0)! und
somit
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(—“ 1, O)-l(()’ 1)(_17 0) = (1, O)("_la 1) = (O: p”_l) = (0) l)pv—l .

Mit der Bezeichnung 4 = (—1,0), B = (0,1) entstehen hieraus die
Gleichungen (52).

Fir den dritten Typ sind nach Satz 6 die (—1,0,0), (0,1,0),
(0,0, 1) erzeugende Elemente der Gruppe G;;,. Nach (49) gilt

0((—1,0,0) =p", 0((0,1,0)=p", 0((0,0,1))=p,
(—1,0,0)(0,0,1) =(0,0,1)(—1,0,0) ,
(0,1,0)(0,0,1) =(0,0,1)(0,1,0) ,

weiter gilt (—1,0,0)(1,0,0) = (0,0,0),d. h. (—1,0,0)1 = (1,0, 0)
und somit

(—1,0,0)1(0,1,0)(—1,0,0)=(1,0,0) (—1,1,0) =
=(0,1,1)=(0,1,0)(0,0,1) .

Mit der Bezeichnung 4 =(—1,0,0), B=(0,1,0), C = (0, 0, 1) ent-
stehen hieraus die Gleichungen (53).

In diesen drei Fillen reichen die Gleichungen (51), (52), (53) augen-
scheinlich auch aus, um die betreffenden Gruppen zu definieren.

Fiir den vierten Typ haben wir schon erwihnt, dal (54) die Quater-

nionengruppe definiert. Satz 7 ist richtig.

Bemerkungen. Ohne Zweifel spiegelt Satz 4 die wahre Natur der
Gruppen 1-ter Stufe am klarsten, wogegen die ,,expliziten“ Darstellungen
in den Sitzen 5, 6, 7 natiirlich auch ihren Vorteil haben. Insbesondere ist
die ,,abstrakte” Form von @; im Satz 7 den iibrigen Darstellungen gegen-
iiber sehr kompliziert, von der unmittelbar nicht mehr abzulesen ist,
daB es sich in der Wirklichkeit um ein schiefes Produkt handelt. Eben
darin erblicken wir die Brauchbarkeit des ,,schiefen Produktes®, dal man
mit seiner Hilfe z. B. das Gleichungssystem (51) in der einzigen Glei-
chung (3) zusammenfassen kann. Miller und Moreno!) und auch Schmidt?)
haben die @; in der Form (51) angegeben, haben aber die Exponenten

Cos- - +» C,_y hicht bestimmt.

§ 9. Die Auflosbarkeit der Gruppen 1-ter Stufe

Von nun an bezeichne @, eine beliebige Gruppe l-ter Stufe. Im vor-

liegenden und in den folgenden §§ 10, 11 bringen wir den Beweis des
Satzes 4 zum SchluB, indem wir zeigen, dafl alle ¢, unter den im Satz 4
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angefiihrten Gruppen wirklich vorkommen und letztere verschieden sind.
Als ersten Schritt beweisen wir hier, dafl jedes G, auflosbar ist.

Hierzu zeigen wir zuerst, daB ¢, nicht einfach ist. Bezeichne H eine
maximale Untergruppe®) und 4 ein Element von G, auBerhalb H. Da
O(@,) weder 1 noch eine Primzahl ist, existiert H (und mit ihm auch 4),
und es ist O(H)>1. Ist A-'HA = H, so ist H normal, und dann sind
wir fertig. Es sei deshalb A-'HA s H; bezeichne D den Durchschnitt
beider Gruppen. Da diese kommutativ sind und G, erzeugen, so ist D
eine normale Untergruppe von ihnen, also auch von @, . Im Falle O (D) >1
sind wir fertig. Es steht also nur noch der Fall aus, da H mit keinem
Element aulerhalb H vertauschbar ist und mit keiner Konjugierten ein
Element aufler 1 (dem Einselement) gemein hat. Nach Frobenius 7) bilden
dann die Elemente von G, aulerhalb von H und seiner Konjugierten mit
1 zusammen eine (echte) normale Untergruppe von G,. Wir haben be-
wiesen, dal G, nicht einfach ist.

Bezeichne N eine echte normale Untergruppe von ; von maximaler
Ordnung. Dann ist G,/N einfach und somit nicht von der 1-ten Stufe.
Von hoherer Stufe kann G,/N auch nicht sein, denn dann hitte es und
mit ihm auch G, eine nichtkommutative Untergruppe, das unmoglich ist.
Folglich ist G,/N kommutativ und einfach, also von Primzahlordnung.
Andererseits ist N kommutativ, also auflosbar. Beide ergeben die Rich-
tigkeit der Behauptung, dal G, auflosbar ist.

§ 10. Die Gruppen 1-ter Stufe, die keine p-Gruppen sind

Vorldufig betrachten wir eine beliebige Gruppe G, von der 1-ten Stufe.
Das Zentrum und die Kommutatorgruppe bezeichnen wir mit Z bzw. K.
Sind 4, B irgendwelche nichtvertauschbare Elemente von @,, so ist
offenbar G, = {4, B}?%). Setzen wir

C = B-14-'BA . (55)

Offenbar ist dann und nur dann AC = CA4, BC = CB, wenn C e¢Z ist.
Ist dies der Fall, so folgt aus (65) BC = A-'BA, Bi(" = A—1BA,
BiC¥ = A-kBiA*. Hieraus sieht man folgendes ein:

8) Maximal nennen wir eine Untergruppe ! von einer Gruppe ®, wenn U ;2 ® und es
zwischen Y und ® keine weitere Gruppe gibt.

7) Siehe z. B. A. Speiser, Theorie der Gruppen von endlicher Ordnung, 3. Aufl..
Berlin 1937, S. 202, Satz 180.

8) Wir verstehen darunter die Gruppe, die durch die eingeklammerten Elemente erzeugt
wird.
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Ist in (65) C eZ, so ist
C'k = B-*A-1BkA47 , (56)

alsoauch {}=KCZ.

Sind 4, B wieder beliebige nichtvertauschbare Elemente von G,, so
kann man sie durch je eine passende Potenz ersetzen, so daf3 die Nicht-
vertauschbarkeit erhalten bleibt und dabei O(4), O(B) Potenzen von
Primzahlen p, g sind, und auch A?B = BA?, ABY1= B4 gilt (hier
brauchen p, ¢ nicht verschieden zu sein).

Im vorliegenden Paragraphen wollen wir beweisen, daf3 jede Gruppe G,,
die keine p-Gruppe (d. h. O(G,) keine Primzahlpotenz) ist, im Satz 4
genau einmal vorkommt.

Wir betrachten eine solche Gruppe G, und zeigen zuerst, da K keine
Untergruppe von Z ist. Wenn nidmlich KCZ ist, so wihlen wir ein Ele-
mentenpaar A, B wie eben vordem. Fiir C' in (55) gilt dann C ¢ K, also
C €Z, und so ist jetzt (56) in Geltung. Dies ergibt wegen A?B = BA?,
AB?= B4 offenbar C? = (%=1, woraus O(C) = p = ¢q folgt. Da
O(A4), O(B), O(C) alle die Potenzen derselben Primzahl p sind, ist G,
wegen C e K und (56) eine p-Gruppe. Dieser Widerspruch beweist die
Behauptung.

Nunmehr bezeichne N eine normale Untergruppe von G, von einem
Primzahlindex p, die wegen der Auflosbarkeit von G, sicher existiert.
Bezeichne 4 ein Element von ¢, aulerhalb N und von Primzahlpotenz-
ordnung. Da 4?7 e N ist, mul}

oMd)=p* (u2]) (87)

sein. Da weiter N kommutativ und G = {N,A4} ist, muB N ein mit 4
nicht vertauschbares Element B haben. Dabei sei B von minimaler Ord-
nung, woraus gleich folgt, dal O(B) die Potenz einer Primzahl g ist (von
der wir erst spiter beweisen, daf} sie 7 p ist). Wir zeigen, daBl

O(B) = q (58)

ist. Hierzu nehmen wir C in (55) zu Hilfe. Da B ¢ N und N normal ist,
ist auch C ¢ N. Andererseits ist N kommutativ, und so ist wegen BC
= A-1BA offenbar B1C'?= A—1B94. Wegen der Minimaleigenschaft von
Bist AB?= B4, und so folgt C?=1, O(C) = ¢q. Endlich kann C
mit A nicht vertauschbar sein, denn dann folgte nach dem SchluB3 bei
(56), daBB K & Z ist, und wir haben doch bewiesen, dafl das nicht gilt.
Nach diesem hat C alle Eigenschaften, die wir von B verlangt haben,
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darunter auch (¢ =) 0(C)<0O(B), und so mul} hier wegen der Minimal-
eigenschaft von B das Zeichen ,,=% gelten. Damit haben wir (58) be-
wiesen.
Wir setzen
B, = A—*BA" (t=0,1,...). (59)

Es ist B, e N, insbesondere B, = B. Nach (58) ist

O(B,) = q (¢=0,1,...). (60)
Aus (59) folgt
B, ;= A—"BA* (¢,5=0,1,...) . (61)

Wegen AP ¢ N ergibt sich hieraus
B, = B, (z =4 (mod p)) . (62)

Alle B, erzeugen eine Untergruppe N, von N. Wir wihlen B so, da8
das kleinste v mit
Ny = {B,,..., Bv—l} (63)

moglichst klein ausfillt. Wegen (40) ist sicher
1<v<p , (64)
weiter mu8 B, e N,, d.h. eine Gleichung

B,Bi*1...By =1 (65)
gelten.

Die B,,..., B,_; miissen unabhéingig sein, denn sonst wire fiir ein
v'(<v) B, €N, wobei N = {B,,..., B,,_;} ist. Hieraus folgt nach
(61) B, ., €{B,,..., B,}, also B, e¢N;,, und mit wiederholtem
SchluB B,,, By,;, Byiss--- €Ny, d.h. Ny= N,. Dies widerspricht
der Minimaleigenschaft von v, womit die Behauptung bewiesen ist.

Hieraus folgt nach (63)

O(Ng) =4¢q" . (66)

Dabei ist N, ein G(q,...,q) (die Anzahl dieser ¢ ist v).

Im folgenden verwenden wir Polynome f(x), ¥(x),... der Unbe-
stimmten x mit ganzen Koeffizienten, die wir aber als Elemente des Prim-
korpers k(q) auffassen,sodaflalso 0,1,2,...,¢9 — 1 alle verschiedenen
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Elemente und zwei ganze Zahlen 7, j mit ¢ = 4 (mod q) gleiche Elemente
von k(g) bezeichnen. Nach dieser Vereinbarung sind f(z), ¥(x),...
Polynome iiber k(q).

Ist nun

f(2) = a,an + -+ g,
irgendein solches Polynom, so setzen wir

(f(x)) = Ban...B% .

Hierdurch haben wir jedem f(x) ein Element der Gruppe N, zugeordnet,

und diese Zuordnung ist eindeutig, denn zu gleichen Polynomen gehort

nach (60) dasselbe Element von N,. Umgekehrt ist klar, da jedes Ele-

ment von N, (sogar mehrmals) unter den (f(x)) vorkommt.
Insbesondere setzen wir

F(x) = 2° + cpqa® 1+ -4 ¢ - (67)
Nach (65) gilt
(P(x))=1. (68)
Weiter ist nach (62) B,B;'= 1, also
(? — 1)=1. (69)

Wegen der Kommutativitit von N, ist

(f(@) + g(x)) = (f())(9(2)) . (70)
Offenbar gelten noch
0)=1, (— f(@) = (f(=))? (71)
und allgemeiner
(cf(@)=(f(x) (c=0,41,...), (72)
die sich auch aus (70) ableiten lassen. Endlich ergibt (61) leicht
A~ (f(z)) At = (2°f(x)) (2=0,1,...), (73)
und so gilt nach (71) auch
(f@) A= (f(x)A* = ((=° — Df(x)) (¢=0,1,...), (74)
insbesondere
(f() 2471 (f(2))4 = ((z — Df(2)) . (75)
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Aus (68), (73) folgt (2*¥(x)) =1, und weiter hieraus nach (72)
und (70)
(@ ¥ () =1. (76)

Andererseits folgt aus der Unabhingigkeit der B,,..., B,_,, daf} die
Polynome f(x) vom Grade =wv — 1 lauter verschiedene (f(x)) dar-
stellen. Also ist dann und nur dann (f(x)) = (9(x)), wenn

f(x) = g(x) (mod ¥(x)) . (77)
Wir beweisen
F(x) #(x —1)° . (78)

Nehmen wir hierzu ¥(x) = (x — 1)* an. Fiir ein beliebiges Element
D=D, in N,setzen wir D, ,=D;'4-1D; A (+=0, 1,...). Allgemein ist
D; mit A dann und nur dann vertauschbar, wenn D, , = 1 ist, weiter
sind alle D, in N,, also miteinander vertauschbar. Wir betrachten zuerst
den Fall v=2 und setzen insbesondere D, = ((# — 1)*~2). Nach (75)
ist dann D, = ((# — 1)*!) # 1, D, = ((z — 1)?) = 1. Nach der vor-
ausgeschickten Bemerkung und dem SchluB bei (56) (angewendet auf den
Fall B = D,, C = D,) folgt,daBl (¢ = {4,D,}, {D,} =) K S Z ist. Da
dies aber nicht gilt, ist (78) fiir v=2 bewiesen. Im iibriggebliebenen Fall
v = 1 setzen wir Dy = (1) = B,. Nach (75)ist dann D, = (x — 1) =1,
d. h. By(= B) mit A vertauschbar. Da dies falsch ist, so ist (78) in allen
Fillen richtig.
Nach (69), (71) ist («®» — 1) = (0) (=1). Hieraus folgt nach (77)

Y(x)|a? — 1 . (79)
Dies ergibt vor allem
PFq. (80)

Denn im Fall p = q wére (79) nichts anderes als ¥Y(z)|(x — 1)¢, und
das ist ein Widerspruch mit (78).

Nunmehr zeigen wir, dal ¥(«x) irreduzibel ist. Sonst gibt es namlich
nach (78) eine Zerlegung

P(z)=¥'(x)f(x) (z—14 ¥'(2)),

wobei rechts die Faktoren nichtkonstant sind und den Leitkoeffizienten 1
haben. Dann ist ¥(x) /' (x — 1) f(x), und das bedeutet nach (75), daB
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das Element B’ = (f(x)) mit 4 nicht vertauschbar ist. Dabei ist
(B’ e Ny) O(B’)=gq. Setzen wir andererseits

V(x) = a" + ¢;p_ &1 4.+ ¢ ,
B} = A'B'A' = (aif(x)) (t=0,1,...)

und berechnen nach (72) und (70):

B, B, ... By o= (" f@)) (& f(2)) 7 .. .(f @))% =
= (P @) f(@)=(¥P@))=1 .

Da aber offenbar v’ <» und sonst B’ ein mit B gleichberechtigtes Ele-
ment ist, so sind wir mit der Minimaleigenschaft von v zu einem Wider-
spruch gekommen. Dies beweist die Irreduzibilitit von ¥(x).

Hieraus und aus (78), (79) folgt sogleich auch

P — 1
x—1

Y (x)

(81)

Wie schon erwihnt, sind wegen (80) alle irreduziblen Faktoren der
rechten Seite von (81) vom Grade

v = 0 (g(mod p)) . (82)

Da @, = {4,B} = {4,N,} ist, und N, aus allen Elementen (f())
besteht, so folgt aus (73), da sich alle Elemente von @, in der Form
At (f(x)) schreiben lassen. Wegen (57) und (77) geniigt es, wenn man 4
auf 0,...,p* —1 und f(x) auf die Polynome vom Grade =v — 1
beschrinkt. Die verbliebenen p*q® Elemente A?(f(x)) miissen auch
schon alle verschiedenen Elemente von ¢, sein, denn G, enthilt die
Untergruppen {4}, N, von der Ordnung p* bzw. ¢*, muB} also wenig-
stens p“q® Elemente enthalten.

Aus (73) folgt, daB in G, die Produktregel

At (f(x)) - 47 (g (2)) = A (a7f(2) + g()) (83)

gilt. Wir schreiben jetzt (i, f(x)) fiir A*(f(x)). Die Bedingung (77) ist
dann fiir diese neue Schreibweise dquivalent mit folgender ,,Gleichheits-
definition® :

(i, f(@)= (1, 9(=) (i =] (mod p¥), f(z) = g(=) (mod g, ¥())) . (84)
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Dabei haben wir ndmlich beriicksichtigt, daBl f(z), g(x), ¥Y(x) in (77)
Polynome mit ganzen Koeffizienten sind, die man als Elemente in k(q)
aufzufassen hat. Das kommt aber auf dasselbe hinaus, dal man die ganz-
zahligen Polynome einfach modg betrachtet, und so lie} sich (77) mit
f(z) = g(x) (mod g, ¥(x)) ersetzen. Selbst (83) schreibt sich jetzt so

(@, 1) (G, 9@) = (E+ 7,27 g(2) + f(2)) .

Bekanntlich geht jede Gruppe in eine gleiche Gruppe iiber, wenn man in
ihr die ,transponierte” Multiplikation a b = ba statt ab anwendet.
Dann gilt

(i, f(x)) o (4, 9(2)) = (j, 9(2)) (G, f(2)) = (j + ¢, 2%g(2) + f(2)) =
= (i + 7, f(2) + 2'g()) .

Dies ist nichts anderes als (47). Mit Riicksicht auf (84), (82), (81) und auf
die Irreduzibilitdit von ¥W(x) haben wir bewiesen, dafl jede Gruppe G,
von der 1-ten Stufe, die keine p-Gruppe ist, unter den Gruppen G; (des
Satzes 6, also auch) des Satzes 4 wirklich vorkommt.

Daf} nun diese Gruppen G; auch wirklich verschieden sind, ergibt sich
sehr leicht. Wir haben nédmlich schon im § 5 bei (35) bewiesen, da@3
G, =G, (p, q,u) nur von p, ¢, u abhéingt (d. h. von der Homomorphie
unabhingig ist). Hieraus folgt nach (28), daBl im Satz 4 zu einer Ordnung
p*q® (w,v=1) nur dann zwei Gruppen angegeben werden, wenn gegen-
seitig v =0 (¢(modp)), v =0 (p(modgq)) ist. Es kann nicht u =
v =1 sein, und so diirfen wir #>1 annehmen. Die erste der ent-
sprechenden zwei Gruppen G;(p,q,u), G;(q, p,v) enthilt nach (57)
eine Sylow-Gruppe G(p*) und eine Sylow-Gruppe von der Form
G(q,...,q) und der Ordnung ¢*. Entsprechend enthélt G,(q, p, v) eine
Sylow-Gruppe G(p,...,p). Da wegen u>1 G(p¥) und G(p,..., D)
sicher verschieden und andererseits die zur selben Ordnung gehorenden
Sylow-Gruppen einer Gruppe konjugiert sind, ist klar, daB3 die Gruppen
G;(p,q,u), G;(q, p,v) verschieden sind.

§ 11. Die p-Gruppen 1-ter Stufe

Wir betrachten jetzt den noch iibriggebliebenen Fall, in dem die an-
gegebene Gruppe G, von der 1-ten Stufe zugleich eine p-Gruppe ist, um
zu zeigen, daBl G, auch dann unter den Gruppen des Satzes 4 genau ein-
mal vorkommt (mit der genannten Ausnahme G;;(2,1,2)=6G,;;(2,1,1)).

Zuerst zeigen wir, daf3 Kcz (85)
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ist. Da (/; eine nichtzyklische p-Gruppe ist, so enthélt sie zwei ver-
schiedene normale Untergruppen N,, N, vom Index p?®). Die Faktor-
gruppen G,/N, (i = 1, 2) sind kommutativ, und hieraus folgt KC N,,N,,
also KS N, wobei N den Durchschnitt von N, und N, bezeichnet.
Andererseits ist G, = {N,, N,}, woraus wegen der Kommutativitit von
N,, N, felgt, dal die Elemente von N mit allen Elementen von G, ver-
tauschbar sind. d. h. NEZ ist. Mit dem vorigen zusammen ergibt das
den Beweis von (85).

Sind A4, B irgend zwei nichtvertauschbare Elemente von G,, und wird

C = B*A'BA (86)
gesetzt, so gilt wegen (85) C €Z, und dies hat nach (56) zur Folge, dafl

BiAk = A*BiCik (87)
und
K = {C} (88)

ist. Zugleich folgt aus G, = {4, B}, daB sich alle Elemente von G, in der
Form A*BiC™ schreiben lassen, und nach (87) gilt

AiBi Cm. A¥BICn = Ai+kBi+l Qmntik (89)

Durch vollstindige Induktion folgt hieraus noch

nm+(g)i7‘

(A*BiCm)» = A™B™(C (90)
zunichst fiir » =0, dann aber auch fiir jedes n. Wir setzen
0(4) = p*, O(B) = p® (w,v=1) (91)

und wihlen 4, B fest so, da O(A4)0O(B), d. h. auch % + v minimal
ausfillt. Dann ist A?PB = BA?, und so ist nach (87) C? =1, also

O(C)=p . | (92)

Jetzt schlieBen wir den Fall aus, daBl G, die Quaternionengruppe ist.
Dann zeigen wir, dal {4}, {B} nach geeigneter Wahl von 4, B kein
gemeinsames Element aufler 1 haben. Sonst besteht ndmlich eine Glei-

chu
e AP = BrY':  (0<u/<u; O<v'<v;p £ 2) . (93)

%) Siehe z. B. A. Speiser, 1 c. S. 70, Satz 84.
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Aus Symmetriegriinden diirfen wir #»'<v’ annehmen. Wir setzen

A'= AB?""e (94)
Nach (90), (93) ist dann

4 P!
-(57)

A'PY = ( : ' (95)

Wegen (94) sind A’, B nicht vertauschbar, und so folgt aus der Minimal-
eigenschaft von « + v, daB
0(A4')=0(4) (96)

ist. Dies ergibt wegen u'< % und (91) O(4’)>p*', also ist die rechte
Seite von (95) #1 und wegen (92) der Exponent von C nicht durch p
teilbar.
Hieraus folgt
p=2, u=vV=1, (97)
und wegen (92) auch
A”? =C (98)

At =1, O(4’)= 4. Nach (96) ist also O(4)<4. Andererseits ist
wegen (93) u=2, d. h. wegen (91) O(A4)=4, und so muBl O(4) = 4 sein.
Nach (97), (93) ist dann 4% = B2, O(B) = 4. Wenn also unsere Behaup-
tung falsch ist, so miissen irgend zwei nichtvertauschbare Elemente 4-ter
Ordnung von G, gleiches Quadrat haben. Da auch A’, B ein solches Paar
ist, so folgt aus (98) B2 = C, also nach (86) B*> = B-'4A-1BA, A'BA
= B~1. Wir erkennen, dafl G, = {4,B} die Quaternionengruppe ist, da
wir aber diesen Fall ausgeschlossen haben, so ist die Behauptung richtig.

Hieraus folgt nach (91), dal alle 4*B ¢+ =0,...,p*—1; j=0,...,
p® — 1) verschieden sind. Andererseits — wenn man hierzu auch (92)
beriicksichtigt — lassen sich nach obiger Bemerkung alle Elemente von
@, in der Form

A*BiC™ (1=0,...,p*—1;j=0,...,p°—1;m=0,...,p — 1) (99)
schreiben. Folglich ist
0(G,) = p*t* oder putv+l | (100)

je nachdem es unter den Elementen (99) auch gleiche gibt oder sie alle
verschieden sind. Wir betrachten beide Fille gesondert.
Im ersten Fall liefert (100) mit m = 0 schon alle verschiedenen Ele-
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mente von G, also mufl C von der Form A:B/ sein. Wegen C €Z muf
hier p|¢,7 sein, und wegen (91), (92) sogar p*'|e,p® 1|5 gelten. Wir
setzen

C = Av*ie proy (p| p*—tz, p*y) (101)

und zeigen, dafl man durch passende Wahl von 4, B erreichen kann, dag
plx oder p|y ist,d. h. Cin {4} oder {B} gehort.

Ist nidmlich p ¥ z,y, so muB vor allem u,v=2 sein. Wegen
Symmetriegriinde diirfen wir #=v(=2) annehmen. Bestimmen wir
z aus

¥z = = (mod p) (102)
und setzen
B’ = A»""zB | (103)

Da A, B’ nichtvertauschbar sind, mul O(B’)=0(B) sein. Andererseits
ist nach (90), (91) und (103) wegen v=2, B’?* =1,d.h. O(B)<p® =
O(B). Folglich ist O(B’) = O(B), und da 4, B’ nichtvertauschbar sind,
so diirfen wir von vornherein B’ statt B nehmen. Dabei bleibt C nach
(86), (103) ungedndert. Nach (90), (103), (102) und (101) ist

(pD;I 2/) pu—v 2

B'»v = (OC

Ist der zweite Faktor rechts gleich 1, so ist die Behauptung richtig. Im
iibriggebliebenen Fall mufl wegen (92) p = 2, u = v = 2 sein. Dann ist
0(A4) =0(B) = 4 und nach (101) C = A%*B%? = B%?4?2, also nach (86)
B14A-1BA = B%?A2, A-'B = B34. Dies ergibt

(A-1B)? = A'B-B*4 =1 .

Wir haben ein mit 4 nichtvertauschbares Element A—1B von 2-ter Ord-
nung gefunden. Dieser Widerspruch beweist die Behauptung.

Da nach (88) {C} nur von @, abhingt, so konnen wir nach Vertau-
schung von 4, B erreichen, dafl eben C ¢ {B} ist. Ersetzen wir dann 4
durch eine passende Potenz von ihm, so wird C = B?*?, und nach (86)

A-'BA = B»"7 |

Zugleich muB3 v=2 sein, und so haben wir fiir diesen Fall gefunden, daf3
G, die durch (52) definierte Gruppe ist.

Im iibriggebliebenen zweiten Fall von (100) ist C nicht von der Form
AtBi. Das bleibt auch dann erhalten, wenn A4, B vertauscht werden,
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denn sonst miiflte wieder der vorige Fall entstehen, was unmoglich ist.
Durch diese Vertauschung konnen wir immer % =v erreichen. Wir haben
gewonnen, dafl ¢/, im vorliegenden Fall eine durch (53) definierte Gruppe
ist. Das hat den Beweis beendet, dal die Gruppen von den vier Typen im
Satz 4 alle Gruppen 1-ter Stufe erschopfen.

Jetzt endlich bringen wir den Beweis des Satzes 4 (mithin auch der
Sédtze 5, 6, 7) zum Schluf, indem wir zeigen, daB auch die dort angegebe-
nen p-Gruppen 1-ter Stufe verschieden sind, abgesehen von der genann-
ten Ausnahme G,;(2,1,2)=G;;;(2,1,1).

Zuerst zeigen wir die Gleichheit dieser zwei Gruppen 8-ter Ordnung.
Sie lassen sich bzw. durch

Abe= P ], BA = AB? |
A*=B*=(C*=1, AC=C4, BC=CB, BA= ABC

definieren. Setzen wir fiir die letztere Gruppe B, = AB. Dannist B =
= ABAB = C, woraus folgt

B*=1, BA=ABA= AABC = AB? .

Diese zwei Gleichungen und A2 =1 beweisen, dal beide Gruppen
gleich sind.

Im folgenden diirfen wir G,;(2, 1, 2) ausschlieBen, und so beweisen
wir, daB3 die iibriggebliebenen Gruppen wirklich verschieden sind. Das
zeigen wir vor allem fiir zwei Gruppen, die verschiedenen Typen ange-
horen. Hierzu betrachten wir eine beliebige dieser Gruppen G, und be-
zeichnen mit P das Minimum des Produktes der Ordnungen zweier
erzeugender (d.h. nichtvertauschbarer) Elemente. Aus (91), (100) und
den darauffolgenden sehen wir, dall P = O(G,) oder P <O(G,) ist, je
nachdem G,=G;; oder G,=G;;;; weiter ist P>0(¢,), wenn @G, die
Quaternionengruppe ist (dann gilt ndmlich P = 16, O(G,) = 8). Das
beweist unsere letzte Behauptung.

Wir miissen noch zeigen, dal alle Gruppen G,;(p,u,v) und des-
gleichen auch alle Gruppen G;;;(p, », v) untereinander verschieden sind.
Nehmen wir zuerst G,;(p, u,v) =G;(p, w,v") an. Wegen der Gleich-
heit der Ordnungen muB vor allem % + v=wu'4 v’ sein. Wenn wir
auch noch v = v’ zeigen, so sind wir mit dem Beweis fiir diesen Fall
fertig. Hierzu nehmen wir fiir die Gruppe G;;(p, u,v) wieder das Ele-
mentenpaar 4, B in (91) zu Hilfe. Wie gezeigt worden ist, ist dann K=
{BP**}. Andererseits sind die 4B’ alle Gruppenelemente. Die p’-te
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Potenz ist nach (90) wegen v=2 eine Potenz von 4, also kein erzeugen-
des Element von K. Folglich ist » invariant durch G;;(p, u, v) Dbe-
stimmt, woraus v = v’ folgt, wie behauptet wurde.

Zweitens nehmen wir G;;;(p, u, v) =G (p, 4, v') an. Wie eher folgt
w -+ v=u' 4 v'. Andererseits ist p* nach (90) wegen w=v =1 das
Maximum der Ordnungen der Elemente von G;;;(p,u,v), ausgenom-
men wenn p = 2, % = 1 ist. In diesem Ausnahmefallist 4 = v = v’ =
v/ = 1 unmittelbar klar, sonst aber folgt zuerst p*=p*’, w =1/, also
auch v = »’. Dies beendet unseren Beweis.

§ 12. Weitere Eigenschaften der Gruppen 1-ter Stufe

Im folgenden Satz 8 stellen wir die strukturellen Eigenschaften
der Gruppen l-ter Stufe zusammen. Es wird am bequemsten, wenn
wir dabei die Gruppen G;(p, g, u) in ihrer dritten Darstellung (Satz 6),
die iibrigen aber als abstrakte Gruppen (Satz 4) annehmen. Bei den
Gruppen G;;(p, w,v) vergroBern wir den Parameter » um 1, werden
also Gy, (p,w,v + 1) betrachten. Dann wird diese Gruppe und die
Gruppe G;;; (p, u,v) von gleicher Ordnung.

AuBler den bisherigen Bezeichnungen Z (= Zentrum), K (= Kommu-
tatorgruppe), O(x) (= ,,Ordnung“) bezeichne noch »(z) die Anzahl der
Konjugierten eines Gruppenelementes x, N eine echte normale Unter-
gruppe, U eine maximale Untergruppe. Da in unserem Falle alle U kom-
mutativ sind, werden durch die Angabe aller U auch schon simtliche
Untergruppen bekannt.

Satz 8. Die Gruppen l-ter Stufe (mit Ausnahme der Quaternionen-
gruppe) sind die folgenden :

Erster Typ. G, =G;(p,q,w)(u=1). Esist O(G;) = p*q® mit v =
O (¢(modp)). Bezeichne W (x) einen (gleichgiiltig welchen) modq irredu-

ziblen Faktor von ‘f::ll . Die Elemente von G sind die Paare (i,f(z))
(¢ ganze Zahl, f(x) Polynom mit ganzen Koeffizienten), wobei ¢ und f(x) nur

mod p* bzw. mod(q, ¥(x)) zu beriicksichtigen sind. Die Produkiregel
lautet : _ ) o ,
(5, f(®) (7, 9(2)) = (@ + 7, f(x) + =ig()) .

Es qilt
'

(i 1@y =(ni. L =T iw) @z,

s

insbesondere

) = |0 v )
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Fir das Element A = (i, f(x)) ist

p i i=p¥id (W'>0;p &)
f(z) == 0 (mod ¢, P(x)) f(x) = 0 (mod ¢, ¥(x))
o4) | p* P g p
v(d) | ¢° | P 1

Z und K bestehen aus den Elementen (pi,O; bzw. (0,f(x)), sie haben
nur das Einselement (0,0) gemeinsam, es ist O(Z) = p*1, O(K) = q°.

Die Sylow-Gruppen sind K und die q° konjugierten zyklischen Gruppen
{(2,{(2))} (p £ ©) von der Ordnung p*. Leiztere enthalten Z.

Die N sind alle Z' und KZ' (Z' < Z).

Die U sind die zyklischen Sylow-Gruppen und ZK ; letztere Gruppe hat
die Ordnung p*1q® und die Invarianten p*1,q,...,q.

Ein erzeugendes Elementenpaar ist (1,0), (0,1) (die Ordnung ist p*
bzw. q), jedes weitere gleichberechtigte Paar ist (n, a(x)), (0,b(x)), wobei
p 4 n, b(x)=£0 (mod g, ¥(x)) ist. Entsprechend sind alle Automorphis-

men .
ni

(:0@) = (ni, a@) S5 + @) -

Die Faktorgruppe G;/Z ist ein G (p,q, 1) (ohne Zentrum).

Zweiter Typ' GII = GII (p>ua” + 1) (uav = 1)- Esist O(GII) = p“*”“.
Als abstrakte Gruppe besteht G, ; aus den Elementen A*Bi mit O(4) = p*,
O (B) = p*** und der Produktregel

AtBi. A Bt = Ai+k Bi+l+pvik
Es gilt

nj+p%(%y)ii

(AiBiyr = A™B

und O(A*B’) ist das grifere von O(A%), O(BY).

Es ist Z = {A?»,Br}, K = {B*°} mit O(Z) = p*t*1, O(K) = p,
KCZ. Die Elemente auferhalb Z haben je p Konjugierte.

Die U sind die Gruppen zwischen Z wund G;;, d.h. {AB', Br}
(t=0,...,p— 1) und {47,B}. Esist O(U) = p**+* und die Anzahl
der U gleich p + 1.
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Die N sind die Z' (S Z) und die Untergruppen von U, die K enthalten.
Insbesondere ist jedes U ein N .

Alle dem A, B gleichberechtigten (erzeugenden) Elementenpaare sind
A*BB, AvB® mit
plo—1, p*|puf, p*[p**ty  (w#v+1),
0 =ud — By==0 (mod p) (u=v+1)

ausgenommen den folgenden Fall :

24, 2|y,246 u=v+1=2, p=2).
Entsprechend sind alle Automorphismen :

ai4yi

B 5i+o0(x8 (8) +75 (§) +8vii) .

4'B) =4

Dritter Typ. G;;, =G;;;(p, u,v) (u=v=1). Esist O(G;;;) = p*+otl
Als abstrakte Gruppe besteht Gy, aus den Elementen A*BiC™mit O(4)=p*,
O(B) = p®, O(C) = p und der Produktregel

ATBiCm. AkBIOn — Ai+kBiti(Qm+n+ik
Es gqilt

(Ai B:i Om)n= Ani anon'm+(2i)ii .

Wie auch schon im Satz 4 erwihnt, ist G;;;(2,1, 1) gleich G;;(2,1,2).
Im folgenden schliefen wir G;;;(2,1,1) aus.

O(A4* B C™) st das gropte von O(4%), O(B7), O(0).

Es ist Z= {47, B?,(C}, K= {C} mit O(Z) = p*t*1, O(K) =p,
K € Z. Die Elemente auferhalb Z haben je p Konjugierte.

Die U sind die Gruppen zwischen Z und G;;;, d. h. {ABt, B?,(C}
(¢=0,....,p— 1) und {47, B,C}. Es ist O(U) = p*** und die An-
zahl der U gleich p + 1.

Fir die N gilt alles wortlich wie vm Fall G ;.

Die A, B sind Erzeugende. Alle gleichberechtigten Paare sind A*BBOH,
A? B3CY mat
pA o, ply, pld  (u>v),
pAad— By (u="0) .
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Entsprechend sind alle Automorphismen

4’ B Om)/ _ qitri pitsi O(d&—ﬂ?)m+a6(g)+y8(§)+5?i7‘.

Dieser Satz ist teils eine Wiederholung voriger Tatsachen, teils eine
Reihe einfacher rechnerischer Folgerungen, deren Beweis wir uns er-
sparen diirfen.

Bemerkung. Aus diesem Satz entnehmen wir, dal eine endliche kom-
mutative Gruppe dann und nur dann in wenigstens einer Gruppe 1-ter
Stufe enthalten ist, wenn sie ein G (p”), G (p", p*), G (p", p%,p), G(p,p,...,D)
oder G(p,p,...,p,q") ist, wobei im letzteren die Anzahl der Invarianten
p hochstens nur O (p(modg)) sein darf. Es ist auffallend, wie wenig
Typen der (kommutativen) Gruppen durch die Gruppen 1-ter Stufe um-
fafit werden.

Unter allen Gruppen 1-ter Stufe sind die G,(p, ¢, %) und vor allem
insbesondere die G (p,q,1) am interessantesten. Letztere Gruppe ist
von der Ordnung pg® mit v = O(g(modp)), alle Gruppenelemente
(1) sind von Primzahlordnung, irgend zwei Sylow-Gruppen sind gleich
oder fremd, es gibt unter ihnen insgesamt ¢* Gruppen G(p) und eine
Gruppe G(g,...,9) von der Ordnung g¢°.

Wir haben gesehen, dafl allgemein die G; =G;(p,q,v) im engsten
Zusammenhang mit den endlichen Kérpern stehen. In dhnlich starker
Beziehung sind die p-Gruppen 1-ter Stufe und bekanntlich auch die end-
lichen kommutativen Gruppen mit den Restklassenringen. Das 148t ver-
muten, daBl sich auch weitere Gruppen mit Hilfe endlicher Kérper und
Restklassenringe (eventuell sonstiger endlicher Ringe) gut beschreiben
lassen.

§ 13. Die Verschiirfung des Satzes von Szép
Bezeichne n in diesem und dem folgenden Paragraphen eine natiirliche

Zahl. Wir zerlegen sie in paarweise teilerfremde Primzahlpotenzfaktoren :

n=DPFP... P
und definieren
dn) =L, —1)...(P,— 1)

mit der Erginzung @&(1) = 1. Enthélt » keine mehrfachen Primfak-
toren, so fillt @(n) mit der Eulerschen Funktion ¢(n) zusammen.

260



Als einfache Anwendung des Satzes 4 beweisen wir folgenden

Satz 9. Wenn fir eine Gruppe G von der Ordnung n jedes @ (d) (d| n)
zu n prim ist, und alle Sylow-Gruppen von G kommutativ sind, so ist G
selbst kommutativ. Enthdlt n hochstens nur zweifache Primfaktoren, so folgt
die Kommutativitit von G schon aus der einzigen Bedingung, daff @ (n) zu
n prim ist.

Diesen Satz fand und bewies Szép*) unter der weiteren Annahme, da@
G auflosbar ist. Diese Forderung ist in seinem Beweise wesentlich. Wenn
aber insbesondere n quadratfrei ist, so ist die Auflosbarkeit von selbst
erfiillt, und so ist Satz 9 fiir diesen Fall nicht allgemeiner als der von
Szép.

Zum Beweis nehmen wir an, da3 G nicht kommutativ ist. Dann ist @
von positiver Stufe und enthédlt somit eine Untergruppe G, von 1-ter
Stufe und einer Ordnung d(d|n). Wegen der Annahme ist G, keine
p-Gruppe, und so folgt aus Satz 4 d = p*q® (u,v=1;p #¢q) mit
plqg® — 1 oder g|p* — 1. Dann ist @(d) zu n nicht prim, und dieser
Widerspruch beweist die erste Hélfte von Satz 9. Die zweite Hélfte ist
auch richtig, da zu den Ordnungen p, p? nur kommutative Gruppen ge-
horen, und jetzt jedes @(d) (d| n) ein Teiler von @(n) ist.

§ 14. Die Ordnungen, zu denen nur kommutative Gruppen gehoéren

Satz 10. Alle natiirlichen Zahlen n , fir die es nur kommutative Gruppen
n-ter Ordnung gibt, sind diejenigen, die hichstens nur zweifache Primfak-
toren enthalten und zu @(n) prim sind.

Dieser Satz ist die Umkehrung der zweiten Hélfte von Satz 9, deshalb
geniigt es, zu beweisen, dall es wenigstens eine nichtkommutative Gruppe
n-ter Ordnung gibt, wenn eine Primzahl p vorhanden ist, fiir die 2| n
oder p|n, ®(n) ist. Im zweiten Fall gibt es eine Primzahl ¢ (s p) mit
g|ln, plg—1 oder ¢*|n, p|¢* — 1. In allen Fillen gibt es nach
Satz 4 eine nichtkommutative Gruppe bzw. von der Ordnung d = p?3,
pq, pq?, und dabei ist jedesmal d| 7. Dann gibt es offenbar eine nicht-
kommutative Gruppe auch von der n-ten Ordnung. Satz 10 ist richtig.

§ 15. SchluBbemerkungen
Es wire vorteilhafter gewesen, das Produkt in GR statt (3) durch
(x,@)(B,b) = («B, Ba + b) (104)

zu definieren, denn dann gilt («, @) = («, 0) (¢, a). (Nach (3) gilt weniger
elegant (x,a) = (¢, a)(x, 0).) Natiirlich weichen (3) und (104) nur

261



formal ab. Eine andere Variante wire, wenn man (a,«) statt (x, a)
nimmt, und man nach

(@,x) (b, B) = (a + xb,xp) (105)

multipliziert. (Dann gilt (a,«) = (a, £)(0, «).)

Nach einer miindlichen Bemerkung von Herrn B.v.Sz. Nagy braucht
man bei der Definition von GR nur die Moduleigenschaft von R zu for-
dern, so dal man G als Operatorenbereich fiir R auffaflt. Das erlaubt,
dall man R multiplikativ schreibt und (als weitere wesentliche Verall-
gemeinerung) keine Kommutativitédt mehr fordert. Das fiihrt zu folgender
Definition. Es seien G, H zwei (multiplikative) Gruppen mit den Ele-
menten «,f,... bzw. a,b,..., und dabei sei das Produkt xa erklirt
80, daB xa ein Element von H ist und unbeschrinkt

x(ab) =aa-ab, afa=o(fa), ca=a

gilt, wobei ¢ das Einselement von G ist. Dann bilden die Paare (x, @) mit
der Produktregel

(x,a)(B,b) =(xp,a-ob) (106)

eine Gruppe, die wir das (verallgemeinerte) schiefe Produkt GH nennen
kénnen.

Murray und Neumann!®) verwenden in einem interessanten Spezial-
fall eine mit unserem schiefen Produkt identische Konstruktion, um mit
geistvoller Leichtigkeit abzdhlbare Gruppen anzugeben, in denen jede
Klasse konjugierter Elemente (auBler der Klasse von 1) unendlich ist,
gleichzeitig wird die Existenz solcher Gruppen zum ersten Male ausge-
wiesen. Dazu nehmen sie eine beliebige abzéhlbare Gruppe G, die Menge
M aller endlichen Teilmengen von G, definieren in M eine Addition so,
daB fiir irgend zwei Elemente ¢, b von M die Summe a4 & die Menge
derjenigen Elemente von a und b bedeutet, die nur in @ oder & (aber nicht
in beiden) vorkommen — dann ist M eine ebenfalls abzdhlbare, kommu-
tative Gruppe, in der alle Elemente (1) von der 2-ten Ordnung sind —
und setzen

(x,a)(B,b) = (xf,fa+0b) (x,fecCG;a,beM),

wobei Ba die gewohnliche ,,Gruppenelement mal Komplex“- Multiplika-
tion bedeutet, also G als Operatorenbereich fir M aufgefalt wird. Dann

10) . J. Murray and J. v. Neumann : On rings of operators IV, Annals of Math. 44
(1943), 716—808, insbesondere S. 796—797.
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ist dieses schiefe Produkt GM eine gewiinschte Gruppe (wie auch die
Ausgangsgruppe G gewihlt wurde). Der einfachste Fall tritt ein, wenn G
(unendlich) zyklisch ist, aber auch dann stiinde man vor einer schweren
Aufgabe, wollte man GM auf andere Weise, nicht als schiefes Produkt
definieren.

Merkwiirdig ist es, wie unser GQ,;(p, ¢, ) = G(p*) k(q*) und dieses GM
von Murray und Neumann als zwei extreme Félle von nichtkommutativen
Gruppen einander gegeniiberstehen. Das erste ist nimlich eine (endliche)
Gruppe, die am ,schwichsten® nichtkommutativ ist, das zweite ist da-
gegen eine (unendliche) ,sehr stark® nichtkommutative Gruppe. In der
Tat, das schiefe Produkt (vom ersten Typ) ist fihig, sehr verschieden-
artige Gruppen zu reprisentieren.

Murray und Neumann bemerken iiber ihr Beispiel GM , daB es ,,die ein-
fachste Kombination von G und M ist, abgesehen vom direkten Produkt®.

Obige Verallgemeinerung von G R enthélt das schiefe Produkt G'(+)R
vom zweiten Typ als Spezialfall (was jetzt schon offenbar auch aus der
Bemerkung im § 3 folgt). Um dies unmittelbar einzusehen, definiere man
ndmlich xa = a 4+ &«’a, wobei die x wieder als Operatoren anzusehen
sind.

Auch G(f)R laBt sich wie folgt verallgemeinern. Hierzu schreiben
wir (20) in der Form

(Ot,a)(ﬂ,b) :(06/3,@+b +0“ﬂ,) s

wobei g’ (wie bisher) eine additive homomorphe Abbildung von G in R,
dagegen « in einem Produkt «x (x ¢ R) als Operator aufzufassen ist mit
x(x+ y) =o0x + oy, afx = oz + fz. Dann ist von R wieder nur die
Moduleigenschaft zu fordern. Schreibt man R als multiplikative (kom-
mutative) Gruppe H, so lautet die Produktregel

(o, a)(B,b) = (xB,ab-aB) , (107)

wobei B eine (multiplikative) homomorphe Abbildung von @ in H und «
in einem Produkt «xz(x ¢ H) ein Operator ist mit «x(zxy) =az-ay,
afpr=oz-fzr. (Dann muB a”r =" = (xx)*, ex=onl=1 gelten,
wobei 1 das Einselement von H ist.)

Noch allgemeiner multipliziere man statt (107) nach der Regel

(0"7a)(ﬂ7b) z(aﬂ’a’boa,p) ’ (108)
wobei C, gin H ist, fordere Assoziativitit, die mit
Cu,p Cup,y = Cu,py Cp.y (109)
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gleichkommt, und schreibe auch vor, daB , , das Einselement von H ist.
Dann bilden die (x,a) eine Gruppe. Diese ist im wesentlichen ein Spezial-
fall der Erweiterung von H mit der Faktorgruppe G im Sinne von
O.Schreier?), in der nédmlich H im Zentrum ist, und die C, g ein , Fak-
torsystem‘ bilden. Diese ,,zentrale“ Erweiterung verwendet Eckmann1?)
in der Topologie. Einen weiteren Zusammenhang mit der Algebra findet
man bei Witt13) und Teichmiiller14).

Diese Beriihrungen unserer schiefen Produkte mit den hier angefiihr-
ten Arbeiten wurden mir erst bekannt, als ich meine Arbeit schon fertig
hatte. Ubrigens haben diese Arbeiten mit den Gruppen 1-ter Stufe nichts
gemein und ermoglichen eine Verkiirzung unserer Arbeit nicht.

Verwendet man, wie oben besprochen, eine Operatorenkonstruktion, so
tritt fiir unsere Gruppen G;,G;;,G,;;; die prinzipielle Vereinfachung ein,
dafl sie bzw. als ein (verallgemeinertes) schiefes Produkt G (p%)G(q?),
G (p*)G(p®), Q(p*p°®)G(p) erscheinen, indem man den ersten Faktor
passend zu einem Operatorenbereich fiir den zweiten Faktor macht (aber
im dritten Fall ist auch die Verwendung einer Homomorphie notig). In
der Tat bleibt aber die auf der urspriinglichen Definition der schiefen
Produkte (§§ 2—4) beruhende Konstruktion im Satz 4 die einfachste,
wobei eben die Ringeigenschaft des zweiten Faktors weit ausgenutzt
wurde.

(Eingegangen den 5.Januar 1947.)

11) Siehe z. B. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig und Berlin
1937, S. 89.

13) B.Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, diese Com-
mentarii 18 (1945/46), S. 232—282. Hier auf S. 238 sind die zweiten Glieder beider Seiten
von (2) miteinander zu vertauschen. Nach dieser Berichtigung kommt man im wesent-
lichen zu obigem (109).

13) g. Witt, Der Existenzsatz fiir abelscheFunktionenkérper, Journ. f. d. reine
u. angew. Math. 173 (1935), 43—51.

1) Q. Teichmiiller, Uber diesogenannte nichtkommutative GaloischeTheorie
und die Relation & u 7 &a py,n g =&\, p, v Exp,v,m. Deutsche Math. 5

B,
(1940) , 138 bis 149.
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