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Das ,,schiefe Produkt" in der Gruppentheorie
mit Anwendung auf die endlichen nichtkommutativen Gruppen

mit lauter kommutativen echten Untergruppen und die Ordnungs-

zahlen, zu denen nur kommutative Gruppen gehôren

Von L. Rédei, Szeged (Ungarn)

§ 1. Einleitung

In dieser Arbeit fûhre ich ein sehr einfaches Prinzip ein, mit dessen

Hilfe man aus einer Gruppe G und einem Ring R weitere Gruppen kon-
struieren kann. Dièse Gruppen werden im allgemeinen auch dann nicht
kommutativ sein, wenn G und R kommutativ sind, und deshalb nenne
ich jede dieser Gruppen ein schiefes Produkt von G, R. In der Tat werde
ich dreierlei Konstruktionen verwenden, entsprechend bezeichne ich das
schiefe Produkt mit GR, G(-\-)R, G(^)R, und nenne es ein schiefes
Produkt vom ersten, zweiten, dritten Typ. Jeder Typ umfaBt bei gege-
benen G, R im allgemeinen mehrere Gruppen, da sich die zu verwenden-
den Konstruktionen auf mehrere Arten ausfuhren lassen. Es wird sich

am hier zu besprechenden Beispiel zeigen, daB sich unser schiefes Produkt
sehr gut zur Darstellung gewisser (endlicher) Gruppen gebrauchen lâBt.

Es sei irgendeine Eigenschaft vorgelegt, von der wir annehmen, daB sie

unter anderem auch der Einheitsgruppe (d. h. der Gruppe mit nur einem
Elément) zukommt. Dann kônnen wir jeder endlichen Gruppe G eine
bestimmte Stufenzahl n ^ 0) beilegen, so daB n 0 ist dann und nur
dann, wenn G von der genannten Eigenschaft ist, fur ein sonstiges G soll
aber n um 1 grôBer sein als das Maximum der Stufenzahlen derjenigen
Untergruppen von G, die kleiner als G sind. Nachher sei die vorgelegte
Eigenschaft die Kommutativitât. Als Anwendung des schiefen Produktes
bestimmen wir die Gruppen 1-ter Stufe (genauer kônnte man uber
1-stufig nichtkommutative Gruppen sprechen), die also diejenigen
endlichen nichtkommutativen Gruppen sind, die lauter kommutative echte

Untergruppen haben. Dièse Gruppen sind wichtig, da jede endliche
nichtkommutative Gruppe wenigstens eine solche Untergruppe enthâlt.
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Mit ihnen haben sich Miller und Moreno1), weiter auch Schmidt2), be-

schâftigt. Sie haben bewiesen, da8 die Ordnung der Gruppen 1-ter Stufe
hôchstens durch zwei verseMedene Primzahlen teilbar ist (die Gruppen
selbst also auflôsbar sind), haben auch die vorkommenden Ordnungen
genau angegeben, aber die Struktur dieser Gruppen nicht restlos be-

stimmt, und so blieb unter anderem unbeantwortet, wie viele Gruppen
1-ter Stufe zu einer festen Ordnung gehôren3). Ich bestimme dièse Gruppen
vollstândig und entwickle ihre Eigenschaften ausfûhrlich. Fur die Ord-
nungszahlen stellt sich heraus, daB zu einer Ordnung puqv (p, q ver-
schiedene Primzahlen) hôchstens zwei Gruppen 1-ter Stufe gehôren, und
zwar genau soviel wie die Anzahl der richtigen Aussagen unter „%, v ist
die kleinste natûrliche Zahl mit q | pu— 1 bzw. p \ qv— 1". Unter 104

sind nur 12, 56, 80, 351, 992, 2025, 3875, 4352, 5103, 8125 solche Ord-
nungszahlen mit zwei Gruppen 1-ter Stufe. Zu einer Ordnung pe gehôrt
nur im Fall e^ 3 eine Gruppe 1-ter Stufe, und dann ist ihre genaue Zahl

e — 2 + I —-— wobei [x] die grôBte ganze Zahl <^ x bezeichnet.

Aile dièse Gruppen teile ich auf Grund ihrer nâheren Eigenschaften in
vier Typen ein, und zwar in den ersten Typ die Gruppen 1-ter Stufe von
einer Ordnung puqv, in die iibrigen drei Typen die 2?-Gruppen 1-ter Stufe.
In den vierten Typ gehôrt die Quaternionengruppe (von der Ordnung 8)
allein. Die Gruppen 1-ter Stufe von den drei ersten Typen' lassen sich
ûberraschend einfach und élégant als je ein schiefes Produkt OR, G (+) R,
0 + R darstellen. Das ist um so mehr zu wiirdigen, als insbesondere die

Gruppen 1-ter Stufe von dem ersten Typ als ,,abstrakte Gruppen" von
ziemlich komplizierter Struktur sind, als schiefes Produkt OR entstehen
sie aber als âuBerst einfacher Spezialfall so, daB man fur 0 und R eine

zyklische Gruppe von Primzahlpotenzordnung bzw. einen endlichen (also

kommutativen) Kôrper einsetzt (dessen Elementenzahl bekanntlich eben-
falls eine Primzahlpotenz ist). Fur die Gruppen 1-ter Stufe von dem
zweiten und dritten Typ kommt man âhnlich einfach aus, man braucht

x) O.A.Miller and H.C.Moreno, Non-abelian groups in which every subgroup
is abelian, Transactions Amer. Math. Soc. 4 (1903), 398—404.

2) O.Schmidt, Ûber Gruppen, deren sâmtliehe Teiler spezielle Gruppen sind
(russisch mit deutscher Zusammenfassung), Receuil Math, de la Soc. Math. d. Moscou 31

(1924), 367—372. Dabei wird eine endliche Gruppe ,,speziell" genannt, wenn sie ein
direktes Produkt von p-Gruppen ist. In unserer obigen Terminologie handelt es (allge-
meiner als bei uns) von den ,,1-stufig nichtspeziellen" Gruppen.

8) Die Verfasser der Arbeiten 1), 2) meinten irrtûmlich, aile Fragen ùber die Gruppen
erster Stufe restlos erledigt zu haben. Noch weniger wurden die 1-stufig nichtspeziellen
Gruppen in der Arbeit2) vollkommen bestimmt. Auf dièse Frage hoffe ich zurûckzu-
kommen.
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in allen drei Fàllen nur die allereinfachsten kommutativen Strukturen 0,
M zu Hilfe zu nehmen. Dièse Erscheinung làBt sich nach zwei Richtungen
auswerten, einerseits als Beleg fur die Brauchbarkeit des schiefen Pro-
duktes aller drei Typen, anderseits als begrûndete Hoffnung, da8 nach
den so ,,einfach" gewordenen Gruppen 1-ter Stufe sich auch die Gruppen
2-ter Stufe mit Erfolg untersuchen lassen. Es ist zu vermuten, da6 die
letztere Frage zwangslâufig zu einer Verallgemeinerung unserer schiefen
Produkte fûhren wird.

Die Resultate liber die Gruppen 1-ter Stufe haben auch zwei intéressante

Folgerungen betreffend die (endlichen) kommutativen Gruppen.
In der einen handelt es sich um einen neulich von Szép*) gewonnenen

schônen Satz, der eine hinreichende Bedingung ausspricht, damit eine
Gruppe kommutativ sei. Ich werde diesen Satz wiedergewinnen und zu-
gleich wesentlich verschârfen.

Als zweite Folgerung gebe ich aile Ordnungen an, zu denen nur kom-
mutative Gruppen gehôren. Das sind diejenigen

n px.fi)
mit verschiedenen Primzahlen px,..., qô, die zu

(Pi — i).-- (p* — i)(aî — i) • -. (35 — i)
prim sind. Nach Dirichlets Satz ûber die arithmetische Progression gibt es

zu jedem Paar i, j unendlich viele n mit der genannten Eigenschaft.
Ich teile meine Arbeit so ein: In den §§2—4 definiere ich die drei

Typen schiefes Produkt allgemein (Sâtze 1 — 3). In den §§5 — 8 gebe ich
aile Gruppen 1-ter Stufe in vier verschiedenen Formen (Sâtze 4—7) an.
Den Beweis beende ich aber erst in den §§ 9 —11, in denen ich namlich
zeige, daB aile Gruppen 1-ter Stufe unter den vorher angegebenen wirk-
lich vorkommen und verschieden sind. Im § 12 entwickle ich die Eigen-
schaften der Gruppen 1-ter Stufe ausfuhrlich. In den §§ 13, 14 beschaf-

tige ich mich mit den angektindigten zwei Folgerungen betreffend die
kommutativen Gruppen. Im § 15, der auch unmittelbar nach § 4 zu lesen

ist, verweise ich auf die Beziehungen unserer schiefen Produkte mit der
Literatur5).

4) Siehe die vorstehende Arbeit von J. Szép: On finite groupa which are necessa-
rily commutative.

5) Ich erwâhne noch, dafi ich schon im Jahre 1924 aile Gruppen erster Stufe bestimmt
habe, und erst nachher von der Arbeit von Miller und Moreno1) Kenntnis nahm. Wegen
dieser Arbeit habe ich meine Resultate nicht publiziert, zumal aus dem Grunde, dafi ich
mit meinen, damais noch komplizierten Resultaten nicht ganz zufrieden war. Erst die
Sâtze von Herrn Szép, von denen ich durch seine freundliche Mitteilung Kenntnis nahm,
haben meine Aufmerksamkeit wieder auf dièse Prage gelenkt, und so merkte ich, dafi sich
die Gruppen erster Stufe sehr durchsichtig als schiefes Produkt darstellen lassen.
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§ 2. Das schiefe Produkt G R
Die hier folgenden Vorbereitungen betreffen teils auch schon die

§§3,4. G sei eine beliebige Gruppe mit den Elementen oc, f},... und dem
Einselement e, R ein beliebiger (nicht notwendig kommutativer) Ring,
R+ die additive (kommutative) Gruppe (aller Elemente) von R. Das
Einselement in R bezeichnen wir mit 1, aber die Existenz setzen wir im
allgemeinen nicht voraus. Entsprechend den zwei Grundoperationen in
R, das sind die Multiplikation und Addition, lâfit sich G im allgemeinen
auf zwei Arten in R homomorph abbilden. Und zwar nennen wir eine
eindeutige Abbildung "ôc oder oc1 (oceG; ôc, oc! e R) von G in R (d. h. auf
eine Teilmenge von R) eine Homomorphie, wenn unbeschrànkt die
,,Homomorphieeigensehaft"

^S *j5 (1)
mit e 1, bzw.

(«/?)' «'+'/»' (2)

gilt ; im ersten Fall ist offenbar immer ôc ^ 0, im zweiten Fall braucht
das Einselement 1 nicht zu existieren und mu8 notwendig er 0 sein.
Wir nennen dièse Homomorphien multiplikativ bzw. additiv. Bekannt-
lich bilden die verschiedenen Bilder ôc bzw. od eine multiplikative bzw.
additive Gruppe in R, die beidesmal das homomorphe Bild von G ge-
nannt wird. Bezeichnet N die Gruppe der oc mit ôc 1 bzw. oc! 0, so

ist N eine normale Untergruppe von G, und die Faktorgruppe G/N ist
isomorph zu der Gruppe der a. bzw. a!. Wir nennen N den Kern der
Homomorphie. Umgekehrt wenn man irgendeine normale Untergruppe N
von G angibt, so da8 eine zu G/N isomorphe multiplikative oder additive
Gruppe H in R existiert, so làBt sich immer wenigstens eine Homomorphie

S bzw. ocf mit dem Kern N konstruieren, die G auf H abbildet.
Zu den hier und in den folgenden §§ 3, 4 zu definierenden schiefen

Produkten von G, R werden wir eine multiplikative bzw. additive bzw.
zwei additive Homomorphien zu Hilfe nehmen, so dafi also in den ent-
sprechenden (schon in der Einleitung erwàhnten) Bezeichnungen GR,
(?(+)R, G J R die Anzahl der verwendeten + "-Zeichen angibt, wie
viel additive Homomorphien zur Konstruktion benôtigt werden.

Die Définition von GR ist enthalten im folgenden :

Satz 1. Es sei G eine Gruppe, R ein Ring mit Einselement, !x eine
multiplikative homomorphe Abbildung von G in R, Die Menge aller (oc, a)
(oc eG, a e R) bildet nach der Produktregel

(oc, a)(P,b) (*p,a + *b) (3)
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eine Gruppe, die voir mit GR bezeichnen und ein schiefes Produkt (vom
ersten Typ) von G,R nennen. Das Einselement ist (e, 0). Wird

A (*,a) B (0,b) (4)

gesetzt, so ist das Inverse von A

,4-1 (*-i,-*-ia), (5)

wobei ~ôi~1 das Inverse von lx in der Gruppe der <% bezeichnet; weiter ist

B-*AB (jB^ajS, ^(a - b + 56)) (6)

A^B-^AB (ortp-iap, ^-1^~1 ((« - 1) 6 - (/ï - 1) a)) (7)

Wird nâmlich (7 (y, c) gesetzt, so gilt nach (3) :

ABC (ocfi,a + âb)(y,c) (ocpy,a + ocb + xjïc)

ABC (oc, a)(Py, b + ~fic) (ot^y, a + x(b + J5c))

Beide Produkte sind wegen oc/i 5/î gleich. Offenbar gilt

(*3a)(e50) (a,a)

und wegen ôcô:""1 1 auch

(oc, a)(a""1, — S^a) (e, a — ôcâ"1») =(e, 0)

Ailes dies beweist, daB GJK eine Gruppe ist. Die ûbrigen Behauptungen
beweist man mit einfacher Rechnung, insbesondere (8) mit einem SchluB

von n auf n -\- 1.

BemerJcungen. Die Elemente A, B sind nach (3) dann und nur dann

vertausehbar, wenn

<xp poc (â - 1) 6 (/? - 1) a

ist. Sind insbesondere G und i2 kommutativ, so lautet dièse Bedingung
einfach als

229



Da dièse Bedingung nur ganz selten identisch erfûllt wird, ist es berech-

tigt, daB wir GR ein ,,schiefes" Produkt nennen.
Wegen (oc, 0)(/S, 0) (ocp, 0), (s, a)(e, b) (e, a + b) bilden die Ele-

mente (oc, 0) bzw. (e, a) je eine zu G bzw. R+ isomorpheUntergruppe von
GR. Bezeichnen wir dièse Gruppen mit (G) und (R+), so gilt auch

GB (G)(B+) (R+)(Q) (10)

wobei die zwei letzten Produkte im gewôhnlichen Sinn zu deuten sind,
d. h. das schiefe Produkt GR ist gleich dem Produkt seiner (zu G und R+

isomorphen) Untergruppen (G), (R+), und dabei kommt es auf dieReihen-
folge der Faktoren nicht an. Zum Beweis von (10) berechnen wir

(oc, 0)(e, a) (oc, ôia) (e, a)(oc, 0) (oc, a)

Indem nun oc, a die Elemente von G bzw. R durchlaufen, werden durch
(oc,~ôca) bzw. (oc, a) aile Elemente von GR in der Tat genau einmal dar-
gestellt. Insbesondere fur (oc, ôca) folgt dies nàmlich daraus, daB ôc sein
Inverses Ix,-1 hat. Hiermit ist (10) richtig.

Wegen (10) ist es bereehtigt, daB wir GR ein (schiefes) ,,Produkt" von
G, R nennen. (Es wâre vielleieht riehtiger, wenn wir GR wegen (10) ein
schiefes Produkt von G, R+ nannten, das tun wir aber deshalb nicht, da

an der Konstruktion von GR nicht nur die Addition, sondern auch die

Multiplikation in R teilnimmt.) Endlich bemerken wir hierzu noch, daB

(3) fur die ,,triviale" Abbildung ôc 1 in die ,,direkte" Multiplikation

iibergeht. Somit umfaBt das schiefe Produkt GR das bekannte direkte
Produkt von G, R+ als trivialen Spezialfall.

§ 3. Das schiefe Produkt G(+)R
Im Ring R setzen wir jetzt die Existenz des Einselementes nicht vor-

aus und definieren das schiefe Produkt G(-\-)R im folgenden:

Satz 2. Es sei G eine Gruppe, R ein Ring, oc1 eine additive homomorphe

Abbildung von G in R mit der weiteren Eigenschaft

«'/?'= 0 (11)

Die Menge aller (oc, a) (oc eG, a e JS) bildet nach der Produktregel

(oc,a)(fî,b) (oc(},a + b + oc'b) (12)

230



eine Gruppe, die wir mit G(+)R bezeichnen und ein schiefes Produkt (vom
zweiten Typ) von G, R nennen. Das Einselement ist (£,0). Wird

A (oc,a), B (j8,6) (13)

gesetzt, so ist das Inverse von A

A-i (<x~1, -a + oc'a) (14)
weiter ist

(p^ocfi, a + oc'b - 0'a) (15)

ocp, oc'b - fi'a) (16)

'a) (17)

Wird nâmlich C (y, c) gesetzt, so gilt nach (12)

ABC (*p, a + b + ocrb)(y, c) (aj8y, a + 6 + *!b + c + (ocp)' c)

Beide Produkte sind wegen (ocj$)' oc' + fif, <*'Pr 0 gleich. Offenbar

gilt
(oc,a)(e, 0) (<x,a)

und wegen des Spezialfalls oc'2 0 von (11) auch

(oc, a)(or1, —a + oc'a) (e, a — a + <x'a + <%'(—¦« + <*'«)) (e, 0).

Ailes dies beweist, daB G(+)R eine Gruppe ist. Auch die iibrigen Be-

hauptungen beweist man mit einfacher Rechnung.

Bemerkungen. Nach (12) lautet jetzt die Bedingung der Vertausch-
barkeit von A, B einfach

ocfi froc oc'b fi'a

insbesondere im Falle kommutativer G, R aber

0 (18)

Wieder gilt (oc, O){0, 0) (xfi, 0), (e, a)(e, b) (e, a + b), und so

bilden die (oc, 0) bzw. (s, a) je eine zu G und R+ isomorphe Unter-
gruppe (G) bzw. (R+), fur die dann wieder
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(G)(R+) (R+)(G) (19)
gilt. Es ist nàmlich

(oc, 0)(e, a) (oc,a + oc'a) (s, a)(oc, 0) (oc, a)

und so besagt (19), daB durch (oc, a -\- oc' a) bzw. (&, a)(a cG, a e R)
jedes Elément von G(-\-)R genau einmal dargestellt wird. Fur das
zweite ist das klar, fur das erste mùssen wir zeigen, daB x + oc'x a fur
testes oc und a genau eine Lôsung x in R hat. Eine Lôsung ist x a—ocra.

Ist aber y eine weitere Lôsung, so ist x + ocrx y + ocf y ; nach Multi-
plikation mit oc' folgt oc'x oc'y, also auch x y, womit (19) be-
wiesen ist.

Fur die «triviale" Abbildung oc' 0 ist (?(+)J? nach (12)eindirektes
Produkt. Hat R insbesondere keine Nullteiler, so folgt aus (11), daB un-
beschrànkt oc' 0 gelten muB. Also gibt zu einem, vom direkten
Produkt verschiedenen schiefen Produkt G(-\-)R nur ein Ring R mit Null-
teilern AnlaB. Bekanntlich sehlieBt dièse Einschrankung insbesondere fur
endliche Ringe nur die (endlichen) Kôrper aus.

Endlich bemerken wir, daB wenn in R das Einselement existiert, so ist
G(-{-)R nur ein Spezialfall von GR. In der Tat setzen wir ôc 1 + oc'.

Dann gilt wegen (11)

^8=1 + (<*/?)' 1 + «' + p (1 + *')(! + F) *?
also ist ~ôi eine multiplikative homomorphe Abbildung von G in R. Weiter
geht (12) wegen b + oc'b (1 + oc')b "ôcb in (3) ûber, und das beweist
die Behauptung.

§ 4t. Das schiefe Produkt G (+) R
Auch jetzt nehmen wir in R die Existenz des Einselementes nicht an

und definieren das schiefe Produkt G(^)R im folgenden :

Satz 3. Es seien G eine Gruppe, R ein Ring, oc', oc" zwei additive
homomorphe Abbildungen von G in R. Die Menge aller (oc, a) (oc e G, a e R)
bildet nach der Produktregel

(*,a)(P,b) (*p,a + b + *'pff) (20)

eine Gruppe, die wir mit G(^.)R bezeichnen und ein schiefes Produkt
(vom dritten Typ) von G, R nennen. Das Einselement ist (e, 0). Wird

A {*,<*), B (p,b) (21)

gesetzt, so ist das Inverse von A
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A"1 (or1, -a + oc'oc") (22)
weiter ist

(p~xocp, a + tt'jff" - £V) (23)

ocp, a'/?" - /?V) (24)

'«") (25)

Wird nàmlich C (y,c) gesetzt, so gilt nach (20)

AB-C (ocp,a + b + oc'fi')(y,c) {ocpy,a + b + *'/T + c + (*p)Y),
ABC (*,a)(Py,b + c + p'y") (*py,a + b + c + p'y" + a'

und so sind beide Produkte wegen (ocP)' oc' + fi, (Py)" fi' + y"
gleich. OfiEenbar gilt (oc, a)(s, 0) (oc, a) und wegen (oc-1)" —oc" auch

(oc, a)(or1, -a + oc'oc") (e, a - a + oc'oc" - oc'oc") (s, 0)

Ailes dies beweist, daB G(~l)B eine Gruppe ist. Die iibrigen Behaup-
tungen beweist man mit einfacher Rechnung.

Bemerkungen. Nach (20) lautet die Bedingung der Vertauschbarkeit
von A,B: ocP Poe, oc'fi'= fioc",

insbesondere ftir kommutative G, R :

0 (26)

Wohl gelten auch jetzt die (10) und (19) entspreehenden Zerlegungen

(27)

wobei (6?) und (B+) wieder die Menge aller (oc, 0) bzw. (e, a) bezeichnen,
und (B+) eine zu B+ isomorphe Untergruppe von G(^)B ist, aber (G)

ist diesmal im allgemeinen keine Gruppe mehr. Zunàchst folgt nâmlich
die Richtigkeit von (27) aus (oc, 0)(e, a) — (e, a)(oc, 0) (oc, a). Wegen
(e, a)(e, b) (e,a + b) ist (B+) einezu B+ isomorphe Untergruppe von
G(%)B. Endlich ist (oc, 0)(P, 0) (ocp, ocfp"), und so sehen wir, daB

(G) nur dann eine Gruppe ist, wenn tinbesehrânkt oc'fi1 0 gilt. In
diesem (uninteressanten) Falle ist G(\)B nach (20) nichts anderes als
das direkte Produkt von G,B+.
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§ 5. Die vier Typen der Gruppen 1-ter Stuîe

Unten im Satz 4 geben wir aile Gruppen 1-ter Stufe in begrifflich ein-
fachster Weise als Spezialfàlle der schiefen Produkte an (bis auf die
Quaternionengruppe). Die Konstruktionen dieser Gruppen fûhren wir
dann in den Sâtzen 5, 6, 7 in drei weiteren Formen explicit aus. Ins-
besondere drûckt Satz 7 die Gruppen 1-ter Stufe als ,,abstrakte" Gruppen
aus. Die Darstellungen in den Sâtzen 5, 6 weichen voneinander nur wenig
ab. Unter allen vier Darstellungen ist die zweite, im Satz 5 angegebene
fur die formai einfachste anzurechnen.

Wir fiihren noeh ein paar Bezeichnungen ein :

p, q sind verschiedene positive Primzahlen.
O(x) ist die Ordnung von x fur eine endliche Gruppe x oder fur ein

Gruppenelement x von endlieher Ordnung.
G(Pt,..., Pt) ist die endliche kommutative Gruppe mit den Invarian-

ten P1,..., Pt, die also notwendig Primzahlpotenzen sind, und es gilt
O(G(P1}..., Pt)) Pt... Pt. Insbesondere ist O(P) die zyklische
Gruppe von der Primzahlpotenzordnung P.

i2* ist fur einen endliehen Ring R die (multiplikative) Gruppe aller
von 0 und den Nullteilern von R verschiedenen Elemente von R, kurz die

multiplikative Gruppe von jR.
k (P) ist der endliche (kommutative) Kôrper mit P-Elementen, wobei

also P eine beliebige Primzahlpotenz ist. Bekanntlich ist k(P)+ ein

G(p,..., p) von der Ordnung P und k(P)* eine zyklische Gruppe von
der Ordnung P — 1.

R(m) ist der Restklassenring modm, d. h. der Ring der (aus den

ganzen Zahlen gebildeten) Restklassen mod m. R(m)+ ist zyklisch von
der Ordnung m, R (m)* ist von der Ordnung q> (m) und ist fur eine
Primzahlpotenz m zyklisch, wobei <p das Eulersche Zeichen bedeutet.
Insbesondere ist R(p) gleich k(p).

0 (q(mod p)) ist die Ordnung der Restklasse q (mod p) (in der Gruppe
R (p)*), d. h. die kleinste naturliche Zahl n mit qn 1 (mod p).

Nunmehr sprechen wir folgenden Satz aus :

Satz 4. Die Gruppen I4er Stufe verteilen sich auf vier Typen, von
denen die zu den ersten drei Typen gehôrenden Spezialfàlle der schiefen
Produkte GR, G(+)R bzw. G(+)R sind. In diesen ist gemeinsam, dafi
die jedesmal zu verwendenden Homomorphien 2%, ocf bzw. <xf, <x/f einen Kern
vom Index pin G haben, weiter sind die im letzten Fall zu den (x1, a" gehôrenden

Kerne verschieden. Dies vorausgeschickt, sind die vier Typen die

folgenden :
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Erster Typ. Bei gegebenen <p, q, u (u^>l)

GI(p,q,u)=GR (G G(p"), R k(q«), v O(q(modp)j) (28)

Es ist

p,q,u)) p"q* (29)

Zweiter Typ. Bei gegebenen p, u, v (u^l, v^

Gn(p,u,v) G(+)R (G G(p-), R=R(p*)) (30)
Es ist

0{Gn(p,u,v)) p"+« (31)

Dritter Typ. Bei gegebenen p, u, v (u^v^l)
GIU{p,u,v)=G(%)R (G G(p«,p«), R R(p)) (32)

Es ist
(33)

Vierter Typ. Die Quaternionengruppe von der Ordnung 8.

Dièse Gruppen hângen von der speziellen Wahl der Homomorphien <%,

ocf, ocf/ nicht ab, sondern sind durch die jedesmal angegebenen p, q, u, v ein-
deutig bestimmt und sind verschieden mit der einzigen Ausnahme, dafi die
zwei Gruppen GII(2, 1,2), GHI(2, 1, 1) von S-ter Ordnung gleich sind.
{Die so entstandene ,,lMcke" wird durch die Quaternionengruppe von der-
selben Ordnung ,,ersetzt".) Zu einer Ordnung puqv (u,v^l) gehoren also

zwei, eine oder keine Gruppen I4er Stufe, je nachdem von den Bedingungen

u 0 (^(mod q)) v 0 (q(mod p))

zwei, eine oder keine erfûllt sind. Zu einer Ordnung p? (e^ 3) gehoren e—2

bzw.\—^— Gruppen l-ter Stufe vont zweiten bzw. dritten Typ, insgesamt

re-nalso e — 2 -M —-— Gruppen.

Bemerkung. Es lâfit sich leicht zeigen, daB die Quaternionengruppe
kein schiefes Produkt ist.

Wir beweisen zuerst, daB die Gruppen (kurz) Gt, Gn, Glu existieren
und von den "â, <xr, ocrf unabhângig sind. Wir fangen es mit(?r an. Da
G G(pu) zyklisch von der Ordnung pu ist, enthàlt G eine einzige
normale Untergruppe vom Index p. Andererseits ist jR* k(qv)* zyklisch
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von der Ordnung qv — 1 (=0 (mod p)), und somit enthâlt R* eine

einzige zyklische Untergruppe p-ter Ordnung. Also existiert eine ge-
wûnsehte Homomorphie ce, zugleich auch wenigstens ein Gj. Weiter aber
ist klar, daB sich jede weitere solche Homomorphie in der Form 'ôci (p Jf ï)
annehmen lâBt. Die zugehôrigen zwei Gruppen GI, Gj bestehen aus den-
selben Elementen (oc, a) und weichen nur darin ab, daB man in ihnen
bzw. nach den Regeln (vgl. (3)).

(oc,a)(P,b)==(ocp,a + âb) (oc,a)o(p, b) (ocp,a + ^b) (34)

multipliziert. Es geniigt also, zu zeigen, daB es eine (eindeutige) Abbil-
dung 8 der Menge aller (oc, a) auf sich gibt, fur die die Homomorphie-
eigenschaft

S((oc, a) o (p, b)) S(oc, a) S(P, b) (35)

gilt, denn dann sind beide Gruppen GT, G[ isomorph. Ein solches 8 lâBt
sich durch S (oc, a) (oc1, a) angeben. Wegen p Jf i durchlâuft nàm-
lich oc1 gleichzeitig mit oc aile Elemente von G, und so ist nur noch (35) zu
beweisen. Die linke und rechte Seite ist nach (34) bzw.

S(ocp, a + **b) {(ocp)\ a + &b) (otp, a + »*b)

(oc1, a)(p\ b) (oclp\ a + àib) (oêp, a + ôPb)

Beide sind gleich, woraus die Behauptung folgt.
Der Fall von GZ1 ist sehr àhnlich. Statt des vorigen iJ* kommt jetzt

JB+ R(pv)+ in Betracht. Da dièse additive Gruppe zyklisch von der

Ordnung pv ist, so hat sie eine einzige zyklische Untergruppe p-ter
Ordnung. Eine gewiinschte Homomorphie oc1 existiert also auch jetzt, fur die
nàmlich wegen v^2 offenbarauch (11) gilt, und aile weiteren lassen sich
in der Form iocr angeben. Ailes ûbrige geht genau so wie im vorigen Fall,
mit (demselben 8 aber) dem einzigen Unterschied, daB man iiberall ioc!

statt "ôc1 einzusetzen hat, und so ist die Behauptung auch jetzt richtig.
Im Fall Gin hat G G(pu, pv) mehrere (insgesamt p + 1) normale

Untergruppen vom Index p, weiter ist R+ R(p)+ selbst von der

Ordnung p, und so existieren die gewûnschten Homomorphien ocr,oc",

zugleich also existiert auch wenigstens ein GIII. Fur das ûbrige verfahren
wir anders als in den vorigen zwei Fâllen, und zwar zeigen wir direkt, daB

Glu von der speziellen Wahl der oc', oc" unabhângig ist. Hierzu fûhren wir
eine Basis q, a fur G ein mit O(g) pu, O(a) pv. Zwei beliebige
Elemente von G lassen sich in der Form
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(i,k 0,...,p»-l; J, î 0,.. .,p" - 1) (36)

annehmen, und so erscheint die Produktregel fur GIir nach (20) in der
Form

wobei nâmlich a' i^/ + ja', fl" — ^ç7/ + î^ berucksichtigt wurde.
Der Kern der Homomorphie otr besteht aus den oc mit ocr 0, d. h.

ig7+ yoi/= 0. Da beide Homomorphien otf, ocf/ verschiedene Kerne
haben, dûrfen die Lôsungen i, j der Gleichungen iqf ~\-jaf 0, iqf!
+ jo" 0 nicht ubereinstimmen, und das hat

d
Q' o'
Q" a" (38)

zur Folge. Nunmehr setzen wir

A (Q)0), B (o,Q), C (e,d). (39)

Es ist nach (37) klar, da8

AC GA BC CB (40)

ist. Weiter ist nach (37) offenbar AiBi (Qiai, ati)t wobei aH irgendein
Elément von R ist, also nach (39) und (37) AiB^Cm (#V, au + md).
Damit haben wir gezeigt, da6 sich alleElemente von G1H in der Form
AiBWm schreiben lassen. Da insbesondere

Ak (q*, x) & {ai, y)

gilt mit irgendwelchen Elementen x, y (e R), so folgt aus (24) wegen
qo oq mit Rucksicht auf (38) :

A-*B-*Ak& (e, jk (q'<t" - afq")) (e, jkd)

Die rechte Seite ist nach (39), (37) offenbar Cjk, also ist

AkB*
Dies ergibt wegen (40)

AiBW™-AkBlCn

Dièse neue Form der Produktregel inGUI ist von <%', od! unabhângig, und
das zeigt die Richtigkeit unserer Behauptung.
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Jetzt wollen wir zeigen, da6 die Gruppen von allen vier Typen im Satz 4

von der 1-ten Stufe sind. Hier genûgt es zu zeigen, da6 aile dièse Gruppen
ein nichtvertauschbares Elementenpaar haben und durch ein beliebiges
solches Paar auch erzeugt werden. Das tun wir zuerst fur Oz. Ein
Elementenpaar

A (oc,a), B (p,b) (oc,peG(pu); a,bek(q*)) (41)

ist nach (9) dann und nur dann nichtvertauschbar, wenn

d « — 1 a
p - 1 6 (42)

ist. Dies findet sicher statt, wenn oc ein Basiselement von O(pu), also

5^1, weiter a 0, p e, also /? 1 und 6^0 ist. Betrachten
wir nunmehr ein nichtvertauschbares Paar .4,1?, wofur also (42) gilt.
Dann kann nicht <% p 1 sein. Wir diirfen annehmen, da8 eben
5 # 1 ist. Einerseits ist dann oc ein Basiselement von O(pu), anderer-
seits ist a ein Elément £>-ter Ordnung von Je (qv)*, also ôcp 1 und somit

ocp — 1

-= i- 0 (43)
oc — 1 v '

Ziehen wir jetzt den in Jc(qv) enthaltenen Primkôrper k(q) heran. In
diesem zerfâllt das Polynom

xp 1

x— 1

wegen v 0 (q (mod p)) in lauter irreduzible Faktoren v-ten Grades,
und so ist S wegen (43) ein Elément t;-ten Grades von k(qv) uber k(q).
Dies vorausgeschickt, bestimmen wir nach (7), (8) (und ocp poc,

Kommutator

Cn A~nB-1AnB

(eiK-np-m*71 - 1)6 -(p— 1)(1 +HH h^"1)»)) (w^

Die rechte Seite ist nach (42) offenbar

(e, 5-»/H(l + « + h S11"

Also ist

wobei dt "ôrxp~xd ^ 0 und von n unabhângig, weiter c S"1, also

(mit ~ôc zusammen) ein Elément v-ten Grades von k(qv) uber h (q) ist.
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Irgendein Elément (e, x) (x ^ 0) von Gj ist wegen (s, x)* — (e, qx)
(e, 0) von der Ordnung q. Das trifft fur die Cn (n — 1,..., v) offen-

bar zu. Dabei sind sie auch miteinander vertauschbar. Wir zeigen, daB
sie eine Gruppe qv~ter Ordnung erzeugen. Hierzu ist genug zu zeigen, daB
die C1,..., Cv unabhângig sind. Dièse Behauptung ist àquivalent mit
der Unabhângigkeit der Elemente

Da Cfn (e, c71'1^) und c ein Elément v-ten Grades von k(qv) uber
k(q) ist, kann

C'v**.. .Cl** (e, (ivc«-*+...+ i2c + ij d,) (e, 0)

nur fur q\in (n 1,..., v) bestehen, und das zeigt die Richtigkeit
unserer letzten Behauptung. Hiernach enthàlt die durch die Elemente A,
B erzeugte Gruppe eine Untergruppe gv-ter Ordnung. Sie enthàlt auch
das Elément A (oc, a), dessen Ordnung nach (8) eine Vielfache der
Ordnung pu von oc ist (in der Wirklichkeit ist O(A) O(oc) pu). Folg-
licherweise erzeugen A, B eine Untergruppe mit einer durch puqv teil-
baren Ordnung. Dièse Gruppe muB wegen (29) selbst Gj sein, womit die
Behauptung fur diesen Fall bewiesen ist.

Fur GIf kommen wir schnell zum Ziel. Ein beliebiges Elementenpaar
ist jetzt

und die Bedingung der Nichtvertauschbarkeit lautet nach (18) so :

d
ocr a

Dies trifït z. B. zu, wenn oc ein Basiselement von G(pu), also oc! ^ 0 und
a 0, fi e, 6=1 ist. Wenn nun A, B nichtvertauschbar sind, so

kann vor allem nicht oc1 $' 0 sein. Wir diirfen oc1 =£ 0 annehmen,
und dann ist oc ein Basiselement von G(pu). Hieraus folgt, daB /? eine
Potenz ocn von oc ist. Offenbar erzeugen A, B und -4, A~nB dieselbe

Gruppe. Dabei ist A~nB wegen /? ocn von der Form (e, x). Ersetzen
wir also B durch A~nB, was ja gestattet ist, so hat das zur Folgerung, daB

man von vornherein fi e annehmen darf. Da ef 0 und auch die
,,neuen" A, B nichtvertauschbar sind, muB oc'b ^ 0 sein. Es fâllt aber
oc! in die Untergruppe p-ter Ordnung der zyklischen Gruppe R (pv)+, und
so folgt weiter, daB b ein Basiselement von R(pv)+ ist. Nun ist nach (16)
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weiter ist wegen rf^O jedes Bildelement to' (co eG{pu)) ein Vielfaches
von d. Letzteres hat nach (17), (12) (und /? s) zur Folgerung, daB

AlBj (oc\ ia + jb + nd)

gilt, wobei n irgendeine, von i, j abhàngende ganze Zahl ist. Wegen C~n

(e, —nd) ist dann

Da oc und b je ein Basiselement von G(pu) bzw. R(pv)+ ist, erzeugt die
rechte Seite aile Elemente von Gn, woraus die Richtigkeit der Behaup-
tung folgt.

Noch leichter wird der Fall von GIn sein. Da wir oben schon gesehen
haben, daB GtI1 nichtkommutativ ist, brauchen wir nur noch zu zeigen,
daB Gnl durch jedes nichtvertauschbare Elementenpaar

erzeugt wird. Nach (26) gilt

; a,beR(p))

*'*"
¥=0

Wir drûcken a, f$ wieder in der Form (36) durch die Basis q, a von
G(pu, pv) aus. Dann ist

d==
k l

q'q"
c'a"

also auch kl 0 Hieraus folgt nach (36), daB oc, p die Gruppe

G (pu, pv) erzeugen. Nach (20) kommt also in den durch A, B erzeugten
Elementen (co, x) jedes Elément co von G(pu, pv) wenigstens einmal vor.
Da aber insbesondere (e, 0) und nach (24) auch noch

Elemente der durch A, B erzeugten TJntergruppe sind, so ist die Ordnung
dieser Gruppe >pu+v. Wegen (33) kann dann die Ordnung nur pu+v+1

sein, und das war die Behauptung.
Endlich ist die Quaternionengruppe auch von 1-ter Stufe, da sie

nichtkommutativ ist und die echten Untergruppen hôchstens von 4-ter
Ordnung sind.

Die restlichen Behauptungen des Satzes, daB er nàmlich aile Gruppen
1-ter Stufe umfaBt, und zwar jede solche nur einmal, beweisen wir
spâter.
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§ 6. Die zweite Darstellung der Gruppen 1-ter Stufe

Die Gruppen 1-ter Stufe drucken wir hier und in den §§ 7, 8 in den
Satzen 5, 6, 7 in drei weiteren Formen aus. Der voile Beweis dieser Satze
wird mit dem des Satzes 4 zusammen spâter erfolgen.

Wir haben schon bewiesen, daB die Gruppen im Satz 4 unabhângig
davon sind, wie man die zur Konstruktion notigen Homomorphien <%,

oc', (xrt wahlt. Indem wir dièse Homomorphien geeignet wâhlen, kommen
wir nach (3), (12), (20) unmittelbar zum folgenden :

Satz 5. Die ersten drei Typen Gr, Gn, Gin der Gruppen l-ter Stufe
lassen sich auch so angeben :

Erster Typ. Man nehme ein erzeugendes Elément q von G(pu) (u^l),
ein Elément r von der Ordnung p von k(qv)* (mit v 0 [q (mod2>)))
und multipliziere die

(Q\a) (i 0,...,pu- 1; a€k(q*))
nach der Regel

b) (Q^k, a + r*b) (44)

Zweiter Typ. Man behalte das vorige g und multipliziere die

(e*, a) (t O,...,p«-l; a€R(p")) ; (v^2)
nach der Regel

k, b) (£*+*, a + b + pv-Hb) (45)

Dritter Typ. Man nehme eine Basis q,ovon G(pu,pv) (u^v^l) mit
O(q) pu, O(a) pv und multipliziere die

(Qiai,a) (i=0,...,pu-l; j O,...,p" -I; a e R(p))

nach der Regel

l, b) (g^ka^1, a + b + il) (46)

wobei man das Glied il als das Elément il-l von R(p) aufzufassen hat.

§ 7. Die dritte Darstellung der Gruppen 1-ter Stuîe

Satz 6. Die vier Typen (Gr, Gn, GU1 und die Quaternionengruppe) der

Gruppen \-ter Stufe lassen sich auch so angeben :
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Erster Typ. Bei gegebenen p, q, u (u^l) bezeichne man mit W(x)

einen (gleichgilUig welchen) mod q irreduziblenFaktor von mit dem
X — A

Leitkoeffizienten 1, mit v den Grad von W(x), der (bekanntlich) durch p, q
bestimmt, und zwar v =0 (q (modp)) ist, bilde die Paare (i, f(x)) aller
ganzen Zahlen i und ganzzahligen Polynôme f(x), definiere fur sie eine
Gleichheit

(i, f(x)) (*, g(x)) (i k (mod p")9f(x) g(x) (mod q, W(x)))

und dos Produkt

(i, f(x)) {k, g(x)) (i + k, f(x) + tfg(x)) (47)

Zweiter Typ. Bei gegebenen p, u, v (u^l; v^2) bilde man die
Paare (i, j) aller ganzen Zahlen i, j, definiere fur sie eine Gleichheit

(i, j) (k,l) (i=k (mod pu) j 1 (mod pv))

und das Produkt
(i + k,j + l + p*-Hl) (48)

Dritter Typ. Bei gegebenen p, u, v (u^v^l) bilde man die Tripel
(i, j, m) aller ganzen Zahlen i, j, m, definiere fur sie eine Gleichheit

(i, j,m) (k, l, n) (i k (mod pu), j 1 (mod pv), m n (mod p))
und das Produkt

(i, j, m) (k, l, n) (i + k,j + l,m + n + il) (49)

Vierter Typ. Man bilde die Paare (i, j) aller ganzen Zahlen i, j,
definiere fur sie eine Gleichheit

(i, j) (k, l) (i k,j=l (mod 4) oder i k + 2, j l + 2 (mod 4))

und das Produkt
(i,j)(k.l) (i + k,j + (-1)H) (50)

Bezeichne namlich F den Ring der ganzen Zahlen, F(x) den Ring der
Polynôme von x ûber F, M den Modul der Elemente

qf(x) + W(x)g{x) (f(x), g(x) e F{x))

Bekanntlich ist dann k(qv) eben der Restklassenring von F(x) nach M
(das gâlte auch fur irgendein modg hreduzibles Polynom W(x) vom
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Grade v). Wir zeigen weiter, daB die Restklasse x (mod M) ein Elément
xp ip-ter Ordnung in k{qv)* ist. Da nâmlich W{x) ein Faktor von -

mod q ist, so gilt
tp i

r 0 (modq, W(x)),

d. h. (mod M). Also ist xp 1 (mod M), und somit kann die Ordnung
der Restklasse x (mod M) in k (qv)* nur p oder 1 sein. Letzteres ist un-
môglich, da dann x 1 (mod g, ^(x)) also W(x) x — 1 (mod g),
und somit tf^a;) ein mehrfaeher Faktor mod q von #p — 1 wâre, wobei
doch der Differentialquotient pxp~1 den Faktor x — 1 modg nicht ent-
hait. In der Tat ist die Restklasse x (mod M) von der Ordnung p, und
somit ein Basiselement fur die Untergruppe p-ter Ordnung von k (qv *.
Reprâsentiert man also k (qv) — wie gesagt — durch den Restklassenring
von F(x) nach M, so kann man in (44) die Restklasse x (mod if) fur r
einsetzen. Offenbar darf in (44) auch jedes qn durch n ersetzt werden, und
so entsteht die Produktregel (47), wie behauptet wurde.

Es ist klar, daB auch (48), (49) bloB andere Formen von (45), (46)
sind.

Es bleibt nur noch ùbrig, (50) zu beweisen. Die Quaternionengruppe
wird durch zwei Elemente 4-ter Ordnung A, B erzeugt, fur die auBer

A* i54 1 noch A2 B2 und B~XAB A"1 ist. Man sieht leicht,
daB allgemein

AjBl'AlBk

gilt. Dièse Produktregel stimmt im wesentlichen mit (50) ûberein, womit
Satz 6 bewiesen wurde.

§ 8. Die vierte Darstellung der Gruppen 1-ter Stufe

Satz 7. Die vier Typen (Gx, Gn, Gin und die Quaternionengruppe) der

Gruppen l-ter Stufe lassen sich dis ,,abstrakte" Gruppen durch folgende
Gleichungen definieren :

Erster Typ.

(51)

wobei p, g, u (u^l) gegeben sind, v O(q{mo&p)) ist und die cr die
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Koeffizienten eines (irreduziblen) Fahtors xv — cv_t xv~x — • • — c0 von

X — 1

wâhlt wird.)

Zweiter Typ.

wobei p, u, v (u^l, v

Dritter Typ.

Apu Bpv ^Qp^
VUUW t U j Cv j V \w £— V <—

Vierter Typ.

Bpv _ x A_1BA

^ 2) gegeben sind.

i a ri p a T>n

1) gegeben sind.

(52)

BC, (53)

jB"1 (54)

Wir beweisen diesen Satz mit Hilfe des Satzes 6.

Fur den ersten Typ sind nach Satz 6 die — 1, 0), (0, xr) (r 0,...,
v — 1) offenbar erzeugende Elemente der Gruppe Ot. Nach (47) gilt

weiter gilt (- 1, 0)(1, 0) (0, 0), d. h. (- 1, O)"1 (1,0) und somit

(- 1, 0)-i(0, af)(- 1, 0) (1, 0)(- 1, af) (0, x^)
insbesondere also mit der Bezeichnung W(x) xv — c^^-1— • • —c0

(-1, 0)-*(0, ^"^(-l, 0) (0, x*) (0, x- - W(x))

(0, cv^x*-i + • • • + c0) (0, l)c°... (0, a*-i)«-i

Mit der Bezeichnung A — (— 1, 0), jBr (0, af) entstehen aus allen
diesen eben die Gleichungen (51).

Fur den zweiten Typ sind nach Satz 6 die (— 1, 0), (0, 1) erzeugende
Elemente der Gruppe Gn. Nach (48) gilt

weiter gilt (— 1, 0)(1, 0) (0, 0), d. h. (— 1, 0)"1 (1, 0)"1 und
somit
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(_1, 0)-i(<>, 1)(-1, 0) (1, 0)(-l, 1) - (O,^-1) (0, l)^1

Mit der Bezeichnung A (— 1,0), 2? (0, 1) entstehen hieraus die
Gleichungen (52).

Ftir den dritten Typ sind nach Satz 6 die (—1,0,0), (0, 1,0),
(0,0,1) erzeugende Elemente der Gruppe OIU. Nach (49) gilt

l,0)) p*, O((0,0, l)) p
(-1,0, 0)(0, 0, 1) (0, 0, 1)(- 1, 0, 0)

(0,l,0)(0,0,l) (0,0,l)(0, 1,0)

weiter gilt (-1, 0, 0)(l, 0, 0) (0, 0, 0), d. h. (-1,0, 0)"1 (1, 0, 0)
und somit

(- 1, 0, 0)-M0, 1, 0)(- 1, 0, 0) (1,0, 0) (-1,1,0)
(O,l,l) (O,l,O)(O,O, 1)

Mit der Bezeichnung 4 (— 1, 0, 0), B (0, 1, 0), C (0, 0, 1)
entstehen hieraus die Gleichungen (53).

In diesen drei Pàllen reichen die Gleichungen (51), (52), (53) augen-
scheinlich auch aus, um die betreffenden Gruppen zu definieren.

Fur den vierten Typ haben wir schon erwâhnt, daB (54) die Quater-
nionengruppe definiert. Satz 7 ist richtig.

Bemerkungen. Ohne Zweifel spiegelt Satz 4 die wahre Natur der
Gruppen 1-ter Stufe am klarsten, wogegen die ,,expliziten" Darstellungen
in den Sàtzen 5,6,7 naturlich auch ihren Vorteil haben. Insbesondere ist
die ,,abstrakte" Form von Oj im Satz 7 den tibrigen Darstellungen gegen-
ûber sehr kompliziert, von der unmittelbar nicht mehr abzulesen ist,
daB es sich in der Wirklichkeit um ein schiefes Produkt handelt. Eben
darin erblicken wir die Brauchbarkeit des ,,schiefen Produktes", daB man
mit seiner Hilfe z. B. das Gleichungssystem (51) in der einzigen Glei-
chung (3) zusammenfassen kann. Miller und Moreno1) und auch Schmidt2)
haben die Oz in der Form (51) angegeben, haben aber die Exponenten
c0,..., cv_x nicht bestimmt.

§ 9. Die Auflôsbarkeit der Gruppen 1-ter Stufe

Von nun an bezeichne Ox eine beliebige Gruppe 1-ter Stufe. Im vor-
liegenden und in den folgenden §§ 10, 11 bringen wir den Beweis des
Satzes 4 zum SchluB, indem wir zeigen, daB aile Ox unter den im Satz 4
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angefûhrten Gruppen wirklich vorkommen und letztere verschieden sind.
Als ersten Schritt beweisen wir hier, da6 jedes G± auflôsbar ist.

Hierzu zeigen wir zuerst, daB Gx nicht einfach ist. Bezeichne H eine
maximale Untergruppe6) und A ein Elément von G1 auBerhalb H. Da
0(0^ weder 1 noch eine Primzahl ist, existiert H (und mit ihm auch A),
und es ist O(H) > 1. Ist A^HA H, so ist H normal, und dann sind
wir fertig. Es sei deshalb A~XHA ^ H ; bezeichne D den Durchschnitt
beider Gruppen. Da dièse kommutativ sind und (?1 erzeugen, so ist D
eine normale Untergruppe von ihnen, also auch von Gx. Im Falle 0 (D) > 1

sind wir fertig. Es steht also nur noch der Fall aus, daB H mit keinem
Elément auBerhalb H vertauschbar ist und mit keiner Konjugierten ein
Elément auBer 1 (dem Einselement) gemein hat. Nach Frobenius7) bilden
dann die Elemente von Gx auBerhalb von H und seiner Konjugierten mit
1 zusammen eine (echte) normale Untergruppe von G1. Wir haben be-
wiesen, daB Gx nicht einfach ist.

Bezeichne N eine echte normale Untergruppe von G1 von maximaler
Ordnung. Dann ist GJN einfach und somit nicht von der 1-ten Stufe.
Von hôherer Stufe kann GJN auch nicht sein, denn dann hàtte es und
mit ihm auch Gx eine nichtkommutative Untergruppe, das unmôglich ist.
Folglich ist GJN kommutativ und einfach, also von Primzahlordnung.
Andererseits ist N kommutativ, also auflôsbar. Beide ergeben die Rich-
tigkeit der Behauptung, daB Gt auflôsbar ist.

§ 10. Die Gruppen 1-ter Stufe, die keinep-Gruppen sind

Vorlâufig betrachten wir eine beliebige Gruppe Gx von der 1-ten Stufe.
Das Zentrum und die Kommutatorgruppe bezeichnen wir mit Z bzw. K.
Sind A, B irgendwelche nichtvertauschbare Elemente von Gx, so ist
offenbar Gx {A, B}8). Setzen wir

C B-^A-^BA (55)

Offenbar ist dann und nur dann AC GA, BC GB, wenn G e Z ist.
Ist dies der Fall, so folgt aus (55) BC A~XBA, && A^&A,
BiQkj — A~kB^A k. Hieraus sieht man folgendes ein :

6) Maximal nennen wir eine Untergruppe XL von einer Gruppe ©, wenn VL ^ © und es
zwischen XI und © keine weitere Gruppe gibt.

7) Siehe z. B. A. Speiser, Théorie der Gruppen von endlicher Ordnung, 3. AufL,
Berlin 1937, S. 202, Satz 180.

8) Wir verstehen darunter die Gruppe, die durch die eingeklammerten Elemente erzeugt
wird.
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Ist in (55) C eZ, so ist

Cik _ B-kA-iBkAi (56)

also auch {C} K Q Z
Sind A, B wieder beliebige niehtvertauschbare Elemente von Gx, so

kann man sie durch je eine passende Potenz ersetzen, so da8 die Nicht-
vertauschbarkeit erhalten bleibt und dabei O(A), 0(B) Potenzen von
Primzahlen p, q sind, und auch APB BAP, ABq BqA gilt (hier
brauchen p, q nicht verschieden zu sein).

Im vorliegenden Paragraphen wollen wir beweisen, daB jede Gruppe 6?!,

die keine 2>-Gruppe (d. h. 0(G1) keine Primzahlpotenz) ist, im Satz 4

genau einmal vorkommt.
Wir betrachten eine solche Gruppe Gx und zeigen zuerst, daB K keine

Untergruppe von Z ist. Wenn nàmlich KQZ ist, so wàhlen wir ein Ele-
mentenpaar A, B wie eben vordem. Fur C in (55) gilt dann C € K, also
C cZ, und so ist jetzt (56) in Geltung. Dies ergibt wegen APB BAP,
AB*= B*A offenbar C* C« 1, woraus 0(C) p= q folgt. Da
0{A), 0(B), 0(C) aile die Potenzen derselben Primzahl p sind, ist Gx

wegen C e K und (56) eine p-Gruppe. Dieser Widerspruch beweist die
Behauptung.

Nunmehr bezeichne JV eine normale Untergruppe von Ot von einem
Primzahlindex p, die wegen der Auflôsbarkeit von Gx sicher existiert.
Bezeichne A ein Elément von Gt auBerhalb N und von Primzahlpotenz-
ordnung. Da Ap e N ist, muB

O(A) pu (u^l) (57)

sein. Da weiter N kommutativ und G {N,A} ist, muB N ein mit A
nicht vertauschbares Elément B haben. Dabei sei B von minimaler Ord-

nung, woraus gleich folgt, daB 0(B) die Potenz einer Primzahl q ist (von
der wir erst spater beweisen, daB sie ^=.p ist). Wir zeigen, daB

O(B) q (58)

ist. Hierzu nehmen wir C in (55) zu Hilfe. Da B e N und N normal ist,
ist auch C e N. Andererseits ist N kommutativ, und so ist wegen BC

A~XBA offenbar BqCq A~1BqA. Wegen der Minimaleigenschaft von
B ist ABq BqA, und so folgt Cq 1, 0(C) q. Endlich kann G

mit A nicht vertauschbar sein, denn dann folgte nach dem SchluB bei

(56), daB K QZ ist, und wir haben doch bewiesen, daB das nicht gilt.
Nach diesem hat C aile Eigenschaften, die wir von jB verlangt haben,
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darunter auch (q — )O(C)^O(B), und so muB hier wegen der Minimal -

eigenschaft von B das Zeichen „=" gelten. Damit haben wir (58) be-
wiesen.

Wir setzen
B% A^BAi (i 0, 1,... (59)

Es ist BteN, insbesondere Bo= B. Nach (58) ist

O(Bt) q (i 0,l,...) (60)
Aus (59) folgt

B%+, A-*B^L* (t,? 0, 1,...) (61)

Wegen Ap c N ergibt sich hieraus

Bt B, (i j(modp)). (62)

Aile Bt erzeugen eine Untergruppe No von N. Wir wàhlen B so, da6
das kleinste v mit

^0={JB0,...,^_1} (63)

môglichst klein ausfallt. Wegen (40) ist sicher

l^v^p (64)

weiter mu8 Bv e No, d. h. eine Gleichung

l (65)

gelten.
Die Bo,..., Bv_1 mùssen unabhangig sein, denn sonst wâre fiir ein

vf(<v) Bv, € Nf0, wobei N'o {Bo,..., Bv,_^) ist. Hieraus folgt nach

(61) Bv,+1 e {!?!,.. Bv,}, also Bv,+1 e Nf0, und mit wiederholtem
SchluB Bv,, Bv,+l9 Bv,+2,... e Nf0, d. h. N'0 N0. Dies widerspricht
der Minimaleigenschaft von v, womit die Behauptung bewiesen ist.

Hieraus folgt nach (63)
q« (66)

Dabei ist JV^ ein G(q,..., q) (die Anzahl dieser q ist v).
Im folgenden verwenden wir Polynôme f(x),W(x),... der Unbe-

stimmten x mit ganzen Koeffizienten, die wir aber als Elemente des Prim-
kôrpers k(q) auffassen, so daB also 0, 1,2,..., g — 1 aile verschiedenen
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Elemente und zwei ganze Zahlen i, j mit i j (mod q) gleiche Elemente
von k (q) bezeichnen. Nach dieser Vereinbarung sind f(x), W(x)9...
Polynôme liber k(q).

Ist nun „f(x) anxn -\ h«0

irgendein solches Polynom, so setzen wir

Hierdurch haben wir jedem f(x) ein Elément der Gruppe JV0 zugeordnet,
und dièse Zuordnung ist eindeutig, denn zu gleichen Polynomen gehôrt
nach (60) dasselbe Elément von No. Umgekehrt ist klar, daB jedes
Elément von No (sogar mehrmals) unter den (f(x)) vorkommt.

Insbesondere setzen wir

W(x) x" + c^x»'1 +. - + c0 (67)
Nach (65) gilt

1 (68)

Weiter ist nach (62) J^jB"1 1, also

(xp - 1) 1 (69)

Wegen der Kommutativitât von NQ ist

{f{x) + g{x))=(f{x))(g(x)). (70)

Offenbar gelten noch

(0)=l, (- /(*)) (/(x))~i (71)
und allgemeiner

(cf(x))=(f(x)Y (c 0,±l,...), (72)

die sich auch aus (70) ableiten lassen. Endlich ergibt (61) leicht

A~*(f(x)) Ai (x*f(x)) (» 0,l,...), (73)

und so gilt nach (71) auch

Q(x))r*A-<(f{x))A*={(xi-l)f(x)) (t 0,l,...), (74)

insbesondere

(f{x)y-iA-i(j(x))A ((x - l)f(x)) (75)
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Aus (68), (73) folgt (xixF(x)) 1, und weiter hieraus nach (72)
und (70)

(f(x)W(x))=l (76)

Andererseits folgt aus der Unabhàngigkeit der J30,..., Bv_x, da8 die
Polynôme f(x) vom Grade ^v — 1 lauter verschiedene (/(#)) dar-
stellen. Also ist dann und nur dann (f(x)) (g(x)), wenn

f(x)=g(x) (modW). (77)
Wir beweisen

W(x) ^(x- l)v (78)

Nehmen wir hierzu W(x) (x — l)v an. Fur ein beliebiges Elément
D=D0 in No setzen wir D^1=D~1A~1DlA (i=0, 1,...). Allgemein ist
Dt mit A dann und nur dann vertauschbar, wenn Dt+1 1 ist, weiter
sind aile Dt in No, also miteinander vertauschbar. Wir betrachten zuerst
den Fall v^2 und setzen insbesondere Do ((x — l)v~2). Nach (75)
ist dann Dx ((x - l)"-1) ^ 1, D2 ((x - l)v) 1. Nach der vor-
ausgeschickten Bemerkung und dem SchluB bei (56) (angewendet auf den
Fall B Do, 0 A) folgt, dafi (G {il,D0}, {JDJ =)ZçZ ist.Da
dies aber nicht gilt, ist (78) fur v^ 2 bewiesen. Im ùbriggebliebenen Fall
v 1 setzen wir Do (1) Bo. Nach (75) ist dann Dx — {x — 1) 1,
d. h. jB0(= J5) mit ^4 vertauschbar. Da dies falsch ist, so ist (78) in allen
Fàllen richtig.

Nach (69), (71) ist {pcP - 1) (0)(=l). Hieraus folgt nach (77)

W(x) | a?» — 1 (79)
Dies ergibt vor allem

P * 9 •

Denn im Fall p q wàre (79) nichts anderes als W(x) \ (x — l)3, und
das ist ein Widerspruch mit (78).

Nunmehr zeigen wir, da8 W(x) irreduzibel ist. Sonst gibt es nâmlich
nach (78) eine Zerlegung

W{x) W{x)f(x) (x-lJf ¥'(x))

wobei rechts die Faktoren nichtkonstant sind und den Leitkoeffizienten 1

haben. Dann ist W(x) Jf (x — 1) f(x), und das bedeutet nach (75), dafi
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das Elément B' — (f(x)) mit A nicht vertauschbar ist. Dabei ist
(B'eN0) O(B') q. Setzen wir andererseits

B[ A-*VA* (*«/(*)) (» 0, 1,...

und berechnen nach (72) und (70) :

Da aber offenbar vr <v und sonst B' ein mit 2? gleichberechtigtes
Elément ist, so sind wir mit der Minimaleigenschaft von v zu einem Wider-
spruch gekommen. Dies beweist die Irreduzibilitat von W(x).

Hieraus und aus (78), (79) folgt sogleich auch

W(x)
— 1

X — 1
(81)

Wie sehon erwâhnt, sind wegen (80) aile irreduziblen Faktoren der
reehten Seite von (81) vom Grade

v O (q(modp)) (82)

Da G±= {A,B} {^4,^} ist, und No aus allen Elementen (/(#))
besteht, so folgt aus (73), da6 sich aile Elemente von Gx in der Form
Ai(f(x)) schreiben lassen. Wegen (57) und (77) geniigt es, wenn man i
auf 0,..., pu — 1 und f(x) auf die Polynôme vom Grade ^v — 1

beschrânkt. Die verbliebenen puqv Elemente Ai(f(x)) miissen auch
schon aile verschiedenen Elemente von G± sein, denn Gx enthâlt die

Untergruppen {A}, No von der Ordnung pu bzw. qv, muB also wenig-
stens puqv Elemente enthalten.

Aus (73) folgt, daB in Gx die Produktregel

A*(f(z)) • Ai(g(x)) AW(tff(x) + g(x)) (83)

gilt. Wir schreiben jetzt (i, f(x)) fiir Ai(f(x)). Die Bedingung (77) ist
dann fiir dièse neue Schreibweise àquivalent mit folgender ,,Gleichheits-
definition" :

(i,f(x))={j,9(x)) (i j(modp%f(x)=g(x)(modq,W(x))). (84)
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Dabei haben wir nâmlich berucksichtigt, daB /(#), g(x), W(x) in (77)
Polynôme mit ganzen Koeffizienten sind, die man als Elemente in k(q)
aufzufassen hat. Das kommt aber auf dasselbe hinaus, dafi man die ganz-
zahligen Polynôme einfach modg betrachtet, und so lieB sich (77) mit
f(x) g(x) (modg, ^(x)) ersetzen. Selbst (83) schreibt sich jetzt so

(i, /(*)) (j>9(*)) (i + h *' ?(*) + /(*)) •

Bekanntlich geht jede Grappe in eine gleiche Grappe iiber, wenn man in
ihr die ,,transponierte" Multiplikation a o b ba statt ab anwendet.
Dann gilt

(i, f(x)) o (,', g(x)) (,\ g(x)) (i, f(x)) (j + i, xtg(x) + f(x))

Dies ist nichts anderes als (47). Mit Riicksicht auf (84), (82), (81) und auf
die Irreduzibilitât von W(x) haben wir bewiesen, daB jede Gruppe O1

von der 1-ten Stufe, die keine ^-Grappe ist, unter den Gruppen Gx (des
Satzes 6, also auch) des Satzes 4 wirklich vorkommt.

DaB nun dièse Gruppen Oz auch wirklich verschieden sind, ergibt sich
sehr leicht. Wir haben nâmlich schon im § 5 bei (35) bewiesen, daB

GI G1(p,q,u) nur von p, q, u abhàngt (d. h. von der Homomorphie S

unabhângig ist). Hieraus folgt nach (28), daB im Satz 4 zu einer Ordnung
puqv (u, v^l) nur dann zwei Gruppen angegeben werden, wenn gegen-
seitig v O (g(mod^) u — O (p(mod q) ist. Es kann nicht u
v= 1 sein, und so dûrfen wir u>\ annehmen. Die erste der ent-
sprechenden zwei Gruppen Gz(p,q, u), GI(q,p,v) enthàlt nach (57)
eine Sylow-Gruppe G(pu) und eine Sylow-Gruppe von der Form
@(Qy - - - un(i der Ordnung qv. Entsprechend enthàlt Gj(q, p, v) eine

Sylow-Gruppe G(p,..., p). Da wegen u>\ G(pu) und G(p,..., p)
sicher verschieden und andererseits die zur selben Ordnung gehôrenden
Sylow-Gruppen einer Gruppe konjugiert sind, ist klar, daB die Gruppen
Gj(p,q,u), Gj(q,p,v) verschieden sind.

§ 11. Diep-Gruppen 1-ter Stufe

Wir betrachten jetzt den noch ûbriggebliebenen Fall, in dem die an-
gegebene Gruppe Gx von der 1-ten Stufe zugleich eine p-Gruppe ist, um
zu zeigen, daB Gx auch dann unter den Gruppen des Satzes 4 genau ein-
mal vorkommt (mit der genannten Ausnahme Gxx (2,1,2) Gni (2,1,1)).

Zuerst zeigen wir, daB
K a Z (85)
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ist. Da Gx eine nichtzyklische ^-Gtruppe ist, so enthâlt sie zwei ver-
schiedene normale Untergruppen Nl9 N2 vom Index p9). Die Faktor-
gruppen G1/Nt (i ¦= 1. 2) sind kommutativ, und hierausfolgt KQNlyN2y
also KQN, wobei N den Durchschnitt von Nt und N2 bezeichnet.
Andererseits ist Gx {N1. N2}, woraus wegen der Kommutativitât von
Nt, N2 f©lgt, daB die Elemente von N mit allen Elementen von Ox ver-
tauschbar sind, d. h. NQZ ist. Mit dem vorigen zusammen ergibt das
den Beweis von (85).

Sind A, B irgend zwei nichtvertauschbare Elemente von (?l3 und wird

C B-^A-^BA (86)

gesetzt, so gilt wegen (85) C eZ, und dies hat nach (56) zur Folge, dafi

&Ak - AkBtC*k (87)
und

K {C} (88)

ist. Zugieich folgt aus Gt {A,B}, dafi sich aile Elemente von Gx in der
Form AiBjCm schreiben lassen, und nach (87) gilt

Cm • AkBl Cn Ai+kBJ+l Cm+n+ik (89)

Durch vollstândige Induktion folgt hieraus noch

(4*#Cw)n Aot&W1"**^** (90)

zunâchst fur n^:Q, dann aber auch fur jedes n. Wir setzen

pu, O(B) pv (u,v^l) (91)

und wâhlen A,B fest so, dafi 0(A)0(B), d. h. auch u + v minimal
ausfâllt. Dann ist APB BAP, und so ist nach (87) Cp 1, also

O(C) p. (92)

Jetzt schliefien wir den Fall aus, dafi Gx die Quaternionengruppe ist.
Dann zeigen wir, dafi {A}, {B} nach geeigneter Wahl von A, B kein
gemeinsames Elément aufier 1 haben. Sonst besteht namlich eine Glei-
chung

A**' B*v'* (0<ur<u; 0<vf<v;p Jf z) (93)

9) Siehe z. B. A. Speiser, 1. c. S. 70, Satz 84.
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Aus Symmetriegrunden durfen wir u'<Lvr annehmen. Wir setzen

Âf A&-*9'"*'* (94)
Nach (90), (93) ist dann

-(pu')p9'-u'*
A'p*'=C K2 J

(95)

Wegen (94) sind A', B nicht vertauschbar, und so folgt aus der Minimal-
eigenschaft von u + v, daB

O(A')^O(A) (96)

ist. Dies ergibt wegen uf<u und (91) O(Ar)>pu', also ist die rechte
Seite von (95) =£ 1 und wegen (92) der Exponent von C nicht durch p
teilbar.

Hieraus folgt
p 2, u' v' 1 (97)

und wegen (92) auch
A'2 C (98)

4- Nach (96) ist also 0(4)^4. Andererseits ist
wegen (93) u^2, d. h. wegen (91) 0(^4)^4, und so mu8 O(A) 4 sein.

Nach (97), (93) ist dann A2 B2, O(B) 4. Wenn also unsere Behaup-
tung falsch ist, so mussen irgend zwei nichtvertauschbare Elemente 4-ter
Ordnung von Gx gleiches Quadrat haben. Da auch A;, B ein solches Paar
ist, so folgt aus (98) B2 C, also nach (86) B2 B^A^BA, A^BA

J5"1. Wir erkennen, daB Gt {A, B} die Quaternionengruppe ist, da
wir aber diesen Fall ausgeschlossen haben, so ist die Behauptung richtig.

Hieraus folgt nach (91), daB aile AlBj (i 0,..., pu — 1 ; j 0,...,
pv — 1) verschieden sind. Andererseits — wenn man hierzu auch (92)

berûcksichtigt — lassen sich nach obiger Bemerkung aile Elemente von
Ox in der Form

(i=0,... }pu- 1 ; ?=0,.. .,p*—l ; m=0,.. .,p - 1) (99)

schreiben. Folglich ist

O(GX) pu+v oder pw+v+1 (100)

je nachdem es unter den Elementen (99) auch gleiche gibt oder sie aile
verschieden sind. Wir betrachten beide Fâlle gesondert.

Im ersten Fall liefert (100) mit m 0 schon aile verschiedenen Ele-
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mente von Ol9 also mu8 C von der Form AlBî sein. Wegen G *Z muB
hier p | iyj sein, und wegen (91), (92) sogar p11-11 i,pv~x \ j gelten. Wir
setzen

C Av^bB**-1* (p | pu-1x, pv-1y) (101)

und zeigen, daB man durch passende Wahl von A, B erreichen kann, da8

p\ x oder p\ y ist, d. h. C in {A} oder {B} gehôrt.
Ist nâmlich p Jf x,y, so mu6 vor allem u, v^2 sein. Wegen

Symmetriegrûnde diirfen wir u^v(^2) annehmen. Bestimmen wir
z aus

yz x (moàp) (102)
und setzen

B'^A^'B (103)

Da A, Bf nichtvertauschbar sind, mu8 0{B')^0(B) sein. Andererseits
ist nach (90), (91) und (103) wegen v^2, B'*>v 1, d. h. O(B')^pv
O(B). Folglich ist O(Br) O(B), und da A, B1 nichtvertauschbar sind,
so durfen wir von vornherein B1 statt B nehmen. Dabei bleibt C nach
(86), (103) ungeândert. Nach (90), (103), (102) und (101) ist

gfpv-ly _ QQ \ 2 J

Ist der zweite. Paktor rechts gleich 1, so ist die Behauptung richtig. Im
ûbriggebliebenen Fall muB wegen (92) p 2, u v 2 sein. Dann ist
O(A) O(B) 4 und nach (101) C A2B2 B*A\ also nach (86)

^ B*A\ A~1B=B*A. Dies ergibt

Wir haben ein mit A nichtvertauschbares Elément A~XB von 2-ter Ord-

nung gefunden. Dieser Widerspruch beweist die Behauptung.
Da nach (88) {C} nur von Ot abhângt, so kônnen wir nach Vertau-

schung von A, B erreichen, daB eben C e {B} ist. Ersetzen wir dann A
durch eine passende Potenz von ihm, so wird C B***"1, und nach (86)

Zugleich muB v ^ 2 sein, und so haben wir fur diesen Fall gefunden, daB

Ot die durch (52) definierte Grappe ist.
Im ûbriggebliebenen zweiten Fall von (100) ist C nicht von der Form

AiBK Das bleibt auch dann erhalten, wenn A,B vertauscht werden,
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denn sonst muBte wieder der vorige Fall entstehen, was unmôglich ist.
Durch dièse Vertauschung kônnen wir immer u ^ v erreichen. Wir haben

gewonnen, daB G1 im vorliegenden Fall eine durch (53) definierte Gruppe
ist. Das hat den Beweis beendet, daB die Gruppen von den vier Typen im
Satz 4 aile Gruppen 1-ter Stufe erschôpfen.

Jetzt endlieh bringen wir den Beweis des Satzes 4 (mithin aueh der
Satze 5, 6, 7) zum SchluB, indem wir zeigen, daB auch die dort angegebe-
nen ^-Gruppen 1-ter Stufe verschieden sind, abgesehen von der genann-
ten Ausnahme Gn{2, 1,2) GT1I(2, 1,1).

Zuerst zeigen wir die Gleichheit dieser zwei Gruppen 8-ter Ordnung.
Sie lassen sich bzw. durch

A* jB4 1 BA AB*
A* J52 C2 1 AG CA BG CB, BA ABC

definieren. Setzen wir fur die letztere Gruppe Bx AB. Dann ist B\
ABAB G, woraus folgt

B\ 1 BXA ABA AABC AB\

Dièse zwei Gleichungen und A2 1 beweisen, daB beide Gruppen
gleich sind.

Im folgenden dûrfen wir Glr(2, 1, 2) ausschlieBen, und so beweisen

wir, daB die ûbriggebliebenen Gruppen wirklich verschieden sind. Das
zeigen wir vor allem fur zwei Gruppen, die verschiedenen Typen ange-
hôren. Hierzu betrachten wir eine beliebige dieser Gruppen Gx und be-
zeichnen mit P das Minimum des Produktes der Ordnungen zweier
erzeugender (d. h. nichtvertauschbarer) Elemente. Aus (91), (100) und
den darauffolgenden sehen wir, daB P O(G^ oder P <O(G1) ist, je
nachdem G1 GII oder G1 GIII; weiter ist P>O(G1), wenn Gx die
Quaternionengruppe ist (dann gilt nâmlich P 16, O(G^) 8). Das
beweist unsere letzte Behauptung.

Wir miissen noch zeigen, daB aile Gruppen Gn(p,u, v) und des-

gleichen auch aile Gruppen Gni(p, u, v) untereinander verschieden sind.
Nehmen wir zuerst Gn(p, u, v) ==Gn(p, u', vr) an. Wegen der Gleichheit

der Ordnungen muB vor allem u + v u1 + v1 sein. Wenn wir
auch noch v v' zeigen, so sind wir mit dem Beweis fur diesen Fall
fertig. Hierzu nehmen wir fur die Gruppe Gn(p, u, v) wieder das Ele-

mentenpaar A, B in (91) zu Hilfe. Wiegezeigt worden ist, ist dann K
{BpV~x}. Andererseits sind die AiB1 aile Gruppenelemente. Die pv-te
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Potenz ist nach (90) wegen v^ 2 eine Potenz von ^4, aiso kein erzeugen-
des Elément von K. Folglich ist v invariant durch Gn(p,u,v) be-

stimmt, woraus v v' folgt, wie behauptet wurde.
Zweitens nehmen wir GIII(p, u, v) Gln(p,u', vr) an. Wie eher folgt

u -^ v ur -\- v'. Andererseits ist pu nach (90) wegen u^>v ^ 1 das
Maximum der Ordnungen der Elemente von GIU(p,u,v)f ausgenom-
men wenn p 2, u 1 ist. In diesem Ausnahmefall ist u v u!
vf 1 unmittelbar klar, sonst aber folgt zuerst pu pu', u uF, also
auch v v1. Dies beendet unseren Beweis.

§ 12. Weitere Eigenschaften der Gruppen 1-ter Stufe

Im folgenden Satz 8 stellen wir die strukturellen Eigenschaften
der Gruppen 1-ter Stufe zusammen. Es wird am bequemsten, wenn
wir dabei die Gruppen GI(p,q,u) in ihrer drittenDarstellung (Satz 6),
die ubrigen aber als abstrakte Gruppen (Satz 4) annehmen. Bei den

Gruppen GIT(p,u, v) vergrôBern wir den Parameter v um 1, werden
also Gn(p, u, v + 1) betrachten. Dann wird dièse Gruppe und die
Gruppe GT1I (p,u,v) von gleicher Ordnung.

AuBer den bisherigen Bezeichnungen Z Zentrum), K Kommu-
tatorgruppe), O(x) ,,Ordnung") bezeichne noch v{x) die Anzahl der

Konjugierten eines Gruppenelementes x, N eine echte normale Unter-
gruppe, U eine maximale Untergruppe. Da in unserem Falle aile U kom-
mutativ sind, werden durch die Angabe aller U auch schon sâmtliche
Untergruppen bekannt.

Satz 8. Die Gruppen l-ter Stufe (mit Ausnahme der Quaternionen-
gruppe) sind die folgenden :

ErsterTyp. G1 GI{p, qfu)(u^l). Es ist 0{GI) puqv mit v

O(q(modp)). Bezeichne W(x) einen (gleichgultig welchen) modq irredu-
xp jziblen Faktor von — Die Elemente vonGz sind die Paare (i,f(x))x — i

(i ganzeZahl, f(x) Polynom mit ganzen Koeffizienten), wobei i und f(x) nur
modpu bzw. mod(q,W(x)) zu berûcksichtigen sind. Die Produktregel
lautet:

(i, H*)) 0\ g(*)) {i + h f(x) + **g(x))
Es gilt

insbesondere

{pi,pf{x))

17 Commentarii Mathematici Helvetici

(pi, 0)
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Fard

0{A)
v(A)

as Elément A

,*<
pu

o

i
(modg

pu-u'q

p

ist

pu'i' IPÏi')
0 (modq,W(x))

pu-u'
1

K bestehen ans den Elementen (pi,O) bzw. (O,f(x)), sie haben

nur das Einselement (0,0) gemeinsam, es ist 0(Z) p"*1, 0{K) qv.

Die 8ylow-Gruppen sind K und die qv konjugierten zyklischen Gruppen
{(iyf(x))} (p Jf i) von der Ordnung pu. Letztere enthalten Z,

Die N sind aile Z' und KZf (Zf Q Z).

Die U sind die zyklischen Sylow-Gruppen und ZK; letztere Gruppe hat
die Ordnung pw~xqv und die Invarianten p™*1, q,..., q.

Ein erzeugendes Elementenpaar ist (1,0), (0, 1) {die Ordnung ist pu
bzw. q), jedes weitere gleichberechtigte Paar ist (n, a(x)), (0, b(x) wobei

p Jf n, b(x)^ÈO (mod g, W(x)) ist. Entsprechend sind aile Automorphis-
men:

(<./(*))'= (ni,a{x) yr/ +6

Die Faktorgruppe OxjZ ist ein Gz(p,q, 1) (ohne Zentrum).

ZweiterTyp. G1I GII(p,u,v + 1) (u,v^l). Esist O(GU) pu+v+1.
Als abstrakte Gruppe besteht G1T aus den Elementen AiBi mit 0(A) pu,
0(B) pv+1 und der Produktregel

Es gilt

und O(AiB^) ist dos grôfiere von 0(A% 0(&).
Es ist Z {A»,Bp}, K {B*v} mit 0(Z) p"+v-\ 0(K) p,

KQZ. Die Elemente aujierhalb Z haben je p Konjugierte.

Die U sind die Gruppen zwischen Z und Gu, d.h. {ABl,Bv}
(i 0,..., p — 1) und {A*,B}. Es ist 0(U) pu+v und die Anzahl
der U gleich p + 1.
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Die N sind die Z1 (Q Z) und die Untergruppen von U, die K enthalten.
Insbesondere ist jedes U ein N.

Aile dem A, B gleichberechtigten (erzeugenden) Elementenpaare sind
A«BP, AyB* mit

p\oc-l, p^\pup, pu\p^y (u=£v+l),
ô ocô — /?y =£ 0 (mod p) {u v + 1)

ausgenommen den folgenden Fail :

2 Jf oc, 2 | y, 2 Jf ô {u v + 1 2, p 2).

Entsprechend sind aile Automorphismen :

(A* JSV ^a* + yt'JB^ + Sî' + 2)t'(a^(2) + yM2)+^^)

Dritter Typ. G1I1 OIII(p, u,v) (u^v^l). Es ist 0{0ln) p«+«+i.
^4fo abstrakteGruppe besteht Oin ans den Elementen AiBWm mit O (A)=pu,
O(B) pv, 0{C) p und der Produktregel

AiBWm-AkBlCn A
Es gilt

(A1 BJCmf=AniBniCnm+(*)iJ

Wie auch schon im Batz 4 erwâhnt, ist O11I(2, 1, 1) gleich OII(2,1,2).
Im folgenden schliefien wir GHI(2, 1,1) aus.

O(AiB^Cm) ist dos grô/ite von O(A% O(Bi),O(C).
Es ist Z={A*>,Bp,C}, K={C} mit O (Z) p«+*-i, O (K) p,

K Ç= Z. Die Elemente auflerhalb Z haben je p Konjugierte.

Die U sind die Gruppen zwischen Z und GU1, d. h. {AB*, BP,C}
(t O,...,p— 1) und {Ap,B,C}. Es ist O(U) pu+v und die An-
zahl der U gleich p + 1.

Fur die N gilt ailes wôrtlich wie im Fail Gn.
Die A, B sind Erzeugende. Aile gleichberechtigten Paare sind A^B^C^,

AyBhCv mit
p Jf oc, pu~v\ y, p\ ô (u>v)
p Jf ocô — ^y (u=v)
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Entsprechend sind aile Automorphismen

(A* Bj Cm) Aai + 7J B?i + 8J Q{0Lh&)v*(i)y
Dieser Satz ist teils eine Wiederholung voriger Tatsachen, teils eine

Reihe einfacher rechnerischer Folgerungen, deren Beweis wir uns er-
sparen dûrfen.

Bemerkung. Aus diesem Satz entnehmen wir, daB eine endliche kom-
mutative Gruppe dann und nur dann in wenigstens einer Gruppe 1-ter
Stufe enthalten ist, wenn sieeinG(pr), G(pr,ps), G(pr,ps,p), G(p,p,.. .,p)
oder G(p,p,.. ,,p,qr) ist, wobei im letzteren die Anzahl der Invarianten
p hôehstens nur O(p(modq)) sein darf. Es ist auffallend, wie wenig
Typen der (kommutativen) Gruppen durch die Gruppen 1-ter Stufe um-
faBt werden.

Unter allen Gruppen 1-ter Stufe sind die Gz(p,q,u) und vor allem
insbesondere die Gj(p,q,l) am interessantesten. Letztere Gruppe ist
von der Ordnung pqv mit v O(q(modp)), aile Gruppenelemente
(=£1) sind von Primzahlordnung, irgend zwei Sylow-Gruppen sind gleich
oder fremd, es gibt unter ihnen insgesamt qv Gruppen G(p) und eine

Gruppe G(q,...,q) von der Ordnung qv.
Wir haben gesehen, daB allgemein die GI GI(p,q,v) im engsten

Zusammenhang mit den endlichen Kôrpern stehen. In âhnlich starker
Beziehung sind die p-Gruppen 1-ter Stufe und bekanntlich auch die
endlichen kommutativen Gruppen mit den Restklassenringen. Das lâBt ver-
muten, daB sieh aueh weitere Gruppen mit Hilfe endlicher Kôrper und
Restklassenringe (eventuell sonstiger endlicher Ringe) gut beschreiben
lassen.

§ 13. Die Yerschârfung des Satzes von Szép

Bezeichne n in diesem und dem folgenden Paragraphen eine naturliche
Zahl. Wir zerlegen sie in paarweise teilerfremde Primzahlpotenzfaktoren :

und definieren
0(n) ^(P,-!)...^-!)

mit der Ergânzung <2>(1) 1. Enthâlt n keine mehrfachen Primfak-
toren, so fàllt &(n) mit der Eulerschen Funktion q>(n) zusammen.
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Als einfache Anwendung des Satzes 4 beweisen wir folgenden
Satz 9. Wenn fur eine Gruppe G von der Ordnung n jedes 0 (d) (d | n)

zu n prim ist, und aile Sylow-Gruppen von G kommutativ sind, so ist G

selbst kommutativ. Enihalt n hôchstens nur zweifache Primfaktoren, so folgt
die Kommutativitât von G schon aus der einzigen Bedingung, dafi 0 (n) zu
n prim ist.

Diesen Satz fand und bewies SzépA) unter der weiteren Annahme, dafi
G auflôsbar ist. Dièse Forderung ist in seinem Beweise wesentlich. Wenn
aber insbesondere n quadratfrei ist, so ist die Auflôsbarkeit von selbst

erfiillt, und so ist Satz 9 fur diesen Fall nicht allgemeiner als der von
Szép.

Zum Beweis nehmen wir an, daB G nicht kommutativ ist. Dann ist G

von positiver Stufe und enthàlt somit eine Untergruppe G± von 1-ter
Stufe und einer Ordnung d(d\ n). Wegen der Annahme ist Gx keine
^-Gruppe, und so folgt aus Satz 4 d puqv (u, v^ 1 ; p ^ q) mit
p | qv — 1 oder q \ pu — 1. Dann ist 0(d) zu n nicht prim, und dieser

Widerspruch beweist die erste Hâlfte von Satz 9. Die zweite Hâlfte ist
auch richtig, da zu den Ordnungen p, p2 nur kommutative Gruppen ge-
hôren, und jetzt jedes 0(d) (d\n) ein Teiler von 0(n) ist.

§ 14. Die Ordnungen, zu denen nur kommutative Gruppen gehôren

Satz 10. Aile Tvatûrlichen Zahlen n, fur die es nur kommutative Gruppen
n-ter Ordnung gibt, sind diejenigen, die hôchstens nur zweifache Primfaktoren

enthalten und zu 0(n) prim sind.

Dieser Satz ist die Umkehrung der zweiten Hâlfte von Satz 9, deshalb

geniigt es, zu beweisen, daB es wenigstens eine nichtkommutative Gruppe
n-ter Ordnung gibt, wenn eine Primzahl p vorhanden ist, flir die pz \ n
oder p\n,0(ri) ist. Im zweiten Fall gibt es eine Primzahl q(^p) mit
q | n, p | q — 1 oder q2 \ n, p \ q2 — 1. In allen Fâllen gibt es nach
Satz 4 eine nichtkommutative Gruppe bzw. von der Ordnung d pz,

pq, pq2, und dabei ist jedesmal d\n. Dann gibt es offenbar eine
nichtkommutative Gruppe auch von der w-ten Ordnung. Satz 10 ist richtig.

§ 15. SchluBbemerkungen

Es wàre vorteilhafter gewesen, das Produkt in GR statt (3) durch

(oc,a)(p,b) (ocp,pa + h) (104)

zu definieren, denn dann gilt (a, a) (<%, 0)(e? a). (Nach (3) gilt weniger
élégant (oc, a) (e, a)(oc, 0).) Natûrlich weichen (3) und (104) nur

261



formai ab. Eine andere Variante wâre, wenn man (a, oc) statt (oc, a)
nimmt, und man nach

(a,«)(6,0) (a + S6,aj8) (105)

multipliziert. (Dann gilt (a, oc) (a, e)(0, oc).)

Nach einer mûndlichen Bemerkung von Herrn B.v.Sz.Nagy braucht
man bei der Définition von GR nur die Moduleigenschaft von R zu for-
dern, so daB man G als Operatorenbereich fiir R auffaBt. Das erlaubt,
daB man R multiplikativ schreibt und (als weitere wesentliche Verall-
gemeinerung) keine Kommutativitàt mehr fordert. Das fûhrt zu folgender
Définition. Es seien G, H zwei (multiplikative) Gruppen mit den Ele-
menten oc, (3,... bzw. a, 6,..., und dabei sei das Produkt oc a erklârt
so, daB oca ein Elément von H ist und unbeschrânkt

oc(ab) ocaocb ocpa oc(pa) ea a

gilt, wobei e dasEinselement von G ist. Dann bilden die Paare (oc, a) mit
der Produktregel

(oc, a)(p, 6) («/8, a-ocb) (106)

eine Gruppe, die wir das (verallgemeinerte) schiefe Produkt GH nennen
kônnen.

Murray und Neumann10) verwenden in einem interessanten Spezial-
fall eine mit unserem schiefen Produkt identische Konstruktion, um mit
geistvoller Leiehtigkeit abzâhlbare Gruppen anzugeben, in denen jede
Klasse konjugierter Elemente (auBer der Klasse von 1) unendlich ist,
gleichzeitig wird die Existenz soleher Gruppen zum ersten Mâle ausge-
wiesen. Dazu nehmen sie eine beliebige abzâhlbare Gruppe G, die Menge
M aller endlichen Teilmengen von G, definieren in M eine Addition so,
daB ftir irgend zwei Elemente a, b von M die Summe a + b die Menge
derjenigen Elemente von a und b bedeutet, die nur in a oder b (aber nicht
in beiden) vorkommen — dann ist M eine ebenfalls abzâhlbare, kommu-
tative Gruppe, in der aile Elemente (^ 1) von der 2-ten Ordnung sind —

und setzen
{<x,a)(p9b) (*p9 fia + b) (oc, /S eG; a, b e M)

wobei pa die gewôhnliche ,,Gruppenelement mal Komplex"-Multiplika-
tion bedeutet, also G als Operatorenbereich fur M aufgefaBt wird. Dann

10) F. J. Murray and J. v. Neumann : On rings of operators IV, Annals of Math. 44
(1943), 716—808, insbesondere S. 796—797.
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ist dièses schiefe Produkt GM eine gewiinschte Gruppe (wie auch die
Ausgangsgruppe G gewâhlt wurde). Der einfachste Fall tritt ein, wenn G

(unendlich) zyklisch ist, aber auch dann stiinde man vor einer schweren

Aufgabe, wollte man GM auf andere Weise, nicht als schiefes Produkt
definieren.

Merkwûrdig ist es, wie unser Gz(p,q,u) G(pu)k(qv) und dièses GM
von Murray und Neumann als zwei extrême Fâlle vonnichtkommutativen
Gruppen einander gegeniiberstehen. Das erste ist nàmlich eine (endliche)
Gruppe, die am ,,schwâchsten" nichtkommutativ ist, das zweite ist da-

gegen eine (unendliche) ,,sehr stark" nichtkommutative Gruppe. In der
Tat, das schiefe Produkt (vom ersten Typ) ist fâhig, sehr verschieden-

artige Gruppen zu reprâsentieren.
Murray und Neumann bemerken liber ihr Beispiel GM, daB es ,,die

einfachste Kombination von G und M ist, abgesehen vom direkten Produkt".
Obige Verallgemeinerung von GR enthâlt das schiefe Produkt G(-\-)R

vom zweiten Typ als Spezialfall (was jetzt schon ofifenbar auch aus der
Bemerkung im § 3 folgt). Um dies unmittelbar einzusehen, definiere man
nâmlich oca a + oc'a, wobei die oc wieder als Operatoren anzusehen
sind.

Auch G(+)R làBt sich wie folgt verallgemeinern. Hierzu schreiben
wir (20) in der Form

6) (*p, a + b + ocfir)

wobei fi' (wie bisher) eine additive homomorphe Abbildung von G in R,
dagegen oc in einem Produkt ocx (x c R) als Operator aufzufassen ist mit
oc(x + y) ocx + ocy, otfix ocx + ftx. Dann ist von R wieder nur die

Moduleigenschaft zu fordern. Schreibt man R als multiplikative (kom-
mutative) Gruppe H, so lautet die Produktregel

(*,a)(M) (*jM6-«?) (107)

wobei /8 eine (multiplikative) homomorphe Abbildung von G in H und oc

in einem Produkt ocx(xeH) ein Operator ist mit oc(xy) ocx ocy,
ocfix — ocx-fix. (Dann mufi ocnx ocxn (ocx)n ex= ocl 1 gelten,
wobei 1 das Einselement von H ist.)

Noch allgemeiner multipliziere man statt (107) nach der Regel

tp) (108)

wobei Ca pin H ist, fordere Assoziativitât, die mit

O^Oa^Y Ca^C^v (109)
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gleichkommt, und schreibe auch vor, da6 CE e
das Einselement von H ist.

Dann bilden die (oc,a) eine Gruppe. Dièse ist im wesentlichen ein Spezial-
fall der Erweiterung von H mit der Faktorgruppe G im Sinne von
O.Schreier11), in der nâmlich H im Zentrum ist, und die Ca a ein ,,Fak-
torsystem" bilden. Dièse ,,zentrale" Erweiterung verwendet Eckmann12)
in der Topologie. Einen weiteren Zusammenhang mit der Algebra findet
man bei Witt13) und Teichmulleru).

Dièse Beruhrungen unserer schiefen Produkte mit den hier angefuhr-
ten Arbeiten wurden mir erst bekannt, als ich meine Arbeit schon fertig
hatte. Ûbrigens haben dièse Arbeiten mit den Gruppen 1-ter Stufe nichts
gemein und ermoglichen eine Verkurzung unserer Arbeit nicht.

Verwendet man, wie oben besprochen, eine Operatorenkonstruktion, so

tritt fur unsere Gruppen Oj, GII, Gin die prinzipielle Vereinfachung ein,
dafi sie bzw. als ein (verallgemeinertes) schiefes Produkt G(pu)G(qv),
G(pu)G(pv), G(pu,pv)G(p) erscheinen, indem man den ersten Faktor
passend zu einem Operatorenbereich fur den zweiten Faktor macht (aber
im dritten Fall ist auch die Verwendung einer Homomorphie notig). In
der Tat bleibt aber die auf der ursprunglichen Définition der schiefen
Produkte (§§ 2—4) beruhende Konstruktion im Satz 4 die einfachste,
wobei eben die Ringeigenschaft des zweiten Faktors weit ausgenutzt
wurde.

(Eingegangen den 5. Januar 1947.)

u) Siehe z B H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig und Berlin
1937, S. 89.

12) B.Eckmann, Der Cohomologie-Rmg einer behebigen Gruppe, dièse Com-
mentarn 18 (1945/46), S 232—282 Hier auf S. 238 sind die zweiten Gheder beider Seiten
von (2) miteinander zu vertauschen Nach dieser Berichtigung kommt man un wesent
lichen zu obigem (109).

18) E. Witt, Der Existenzsatz fur abelseheFunktionenkorper, Journ. f d. reine
u. angew. Math. 173 (1935), 43—51

U)O Tetchmuller, Ûber die sogenannte nichtkommutative GaloiseheThéorie
und die Relation £*,/x,7r £x,/av,tt £*

t7T £x,jx, v?r £Xft,v,?r. Deutsche Math. 5

(1940), 138 bis 149.
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