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On finite groups
which are necessarily commutative

By J. Szép, Budapest

It is known that every group of prime order is Abelian. We want to
show some further cases in which the commutativity of the group is a

conséquence of arithmetical properties of its order. Indeed, 2>i,...,pn
denoting différent primes, we hâve the foliowing

Theorem 1. Every group of order px... pn is commutative provided
that Pi =£ 1 (mod pk) for i ^ Je, i, Je 1,.. n.

With the same trouble, we prove the foliowing more gênerai

Theorem 2. Every solvable group G of an order m p*1... p*n is
commutative provided its Sylow-groups are commutative and, for i 1,..., n,
a{ < y{, yi denoting the least positive integer for which p\{ 1 (mod pk)
for some i (l,...3w).

For n 1, our assertion is trivial. Let n ^ 2 and suppose, the theorem

holds for n — 1 (instead oin).G being solvable, it has, by a theorem
of Hall1), a subgroup H of order mp~an. By hypothesis, H is commutative.

Dénote P the subgroup of order p*1 of H (which is a Sylow-group
of G), further, dénote iV^ the normalizer of P. As H Q JV, we hâve for the
order v of N :

*" \v, v | m

Decomposing G according to the modul P, P :

*) P.Hall, A characteristic property of soluble groups, Journal LondonMath.
Soc. 12 (1937), pp. 198—200.
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we dénote the number of right-side cosets of P in the terms right-hand
side by a1(=l), a2,a3,... respectively. Then we hâve

i x a,

Each at is a divisor of the order p*1 of P and the number of the terms
with ai 1 equals the index vpï*1 of P in N2), and therefore

mpî*1 vpî*1 (mod pt)

Hence — =1 (mod px). Hère the left-hand side is a power < p*n < py£

of pn, and so we hâve necessarily — 1, v m, N G. Thus we

hâve got that P is normal in G, and this holds for every Sylow-group
of <?. Since any two of thèse Sylow-groups hâve relatively prime orders,

they are commutable élément by élément3). Moreover, they are Abelian
and so the same holds for their product G, as stated.

Remark. Owing to Dirichlet's theorem, for each n, there is an infinité
set of numbers plf..., pn for which theorem 1 applies.

(Eingegangen den 5. Januar 1947.)

a) A. Speiser, Théorie der Gruppen von endlicher Ordnung, 2nd Edition
(Berlin 1937), theorems 64, 66.

8) A. Spe%8ert loc. cit., theorem 17.
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