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On finite groups
which are necessarily commutative

By J. Sztp, Budapest

It is known that every group of prime order is Abelian. We want to
show some further cases in which the commutativity of the group is a
consequence of arithmetical properties of its order. Indeed, p,,..., p,
denoting different primes, we have the following

Theorem 1. Every group of order p,...p, s commutative provided
that p,= 1 (mod p,) for ¢ #k, 1,k=1,...,n.

With the same trouble, we prove the following more general

Theorem 2. Every solvable group G of an order m = p§*...p%" is com-
mutative provided its Sylow-groups are commutative and, for t = 1,..., n,
x; <y, ¥: denoting the least positive integer for which pli =1 (mod p,)
for some k = (1,...,n).

For » = 1, our assertion is trivial. Let n =2 and suppose, the theo-
rem holds for » — 1 (instead of n). G being solvable, it has, by a theorem
of Hall'), a subgroup H of order mp, *“*. By hypothesis, H is commuta-
tive. Denote P the subgroup of order p{* of H (which is a Sylow-group
of @), further, denote N the normalizer of P. As H Z N, we have for the
order » of NV :

mp,**|v, v|m.
Decomposing G according to the modul P, P:

G=P+ PA,P+ PA,P+-.. ,

1) P.Hall, A characteristic property of soluble groups, Journal London Math.
Soc. 12 (1937), pp. 198—200.
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we denote the number of right-side cosets of P in the terms right-hand
side by a,(=1), a,,a,,... respectively. Then we have

mp = X a; .

Each a, is a divisor of the order pi* of P and the number of the terms
with a, = 1 equals the index »p;* of P in N2), and therefore

mpy* = vpp™ (mod p,) .

Hence —7—’:— = 1 (mod p,). Here the left-hand side is a power = p;" < p"
of p,, and so we have necessarily _’r_nv_: 1, v=m, N =G. Thus we

have got that P is normal in G, and this holds for every Sylow-group
of G. Since any two of these Sylow-groups have relatively prime orders.
they are commutable element by element?3). Moreover, they are Abelian
and so the same holds for their product G, as stated.

Remark. Owing to Dirichlet’s theorem, for each n, there is an infinite
set of numbers p,,..., p, for which theorem 1 applies.

(Eingegangen den 5. Januar 1947.)

2) A, Speiser, Theorie der Gruppen von endlicher Ordnung, 2nd Edition
(Berlin 1937), theorems 64, 66.

3) A. Speiser, loc. cit., theorem 17.
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