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On Tauber’s Theorem

By AvureL WINTNER, Baltimore

It seems to be a general principle that theorems which are ,,Tauberian‘
in the sense of Hardy and Littlewood are mere corollaries of universal
inequalities, which are valid for arbitrary (rather than just for conver-
gent) series and contain, therefore, absolute constants. In the present
note the corresponding refinement of Tauber’s own theorem [3] will be
deduced.

Tauber’s theorem states that, in order that a series a, + @, 4--- be
convergent, its (A4)-summability and the Cauchy-Kronecker condition
: a,+- -+ na, = o(n) (1)

are not only necessary but sufficient as well. This will be refined as
follows :

There exists an absolute constant, v, having the property that

(- -]
limsup,Za,,r"——— Y a, <tlmsup|la,+---+ na,|/n
r—>1-0 | n=1 n—~1/logr fn—> oo
holds for every power series,
: oo
f= X a,m, (2)
n=1

which converges for r<<1.

It is understood that the lim sup can be co on either side of the ine-
quality which, however, is then trivial.

A corollary is that, if the Cauchy-Kronecker condition is assumed, then,
since the expression on the right of the inequality becomes 0, the devia-
tion of the function (2) from the [— 1/log r]-th partial sum of the series
a, + a, +--- must tend to 0 as »r -1 — 0, whether the series a;, +
a, +--- be convergent or divergent. Since Tauber’s theorem assumes
for (2) the existence of a limit f(1 — 0), it is equivalent to the first of the
two cases of this corollary.

Another corollary is that if (1) is relaxed to
a+---+ na, =0(n), (3)
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the asymptotic behavior of the partial sums of a, + a, +--- can be ob-
tained from that of the function (2)as »r -1 — 0:

}x;a,,zf(e—llx)—{—O(l) as & —> oo (4)

(needless to say, (3) implies the convergence of (2) for r<1).

The full content of the theorem is that, if ¢ and O denote the greatest
lower bounds of the constants, ¢ 4+ ¢ and C + &, which are admissible
as factors absorbed in the O of (3) and in the O of (4), respectively, then

C< e, (5)

where 7 is an absolute constant. For the latter, the proof of the theorem
will supply only the estimate

<3+ cfx"le"‘“'dx (<341 . (6)
1

The integral occurring in (6) will be obtained from an expression connec-
ted with the harmonic series, X n~1, whereas the 3 will result from three
dependent sources (hence, very roughly), as 1+ 1+ 1, one of the
latter being supplied by the fact that, as easily verified by differentiation,

0<z1(l —e?)<l i O<z<l. (7)

The determination of the true value of = (that is, of the least absolute
constant) seems to be hard. The lower estimate

>1, (8)

which is quite far from the upper estimate (6), is trivial. In fact, if
a, = (—1)*, then

z x
| X na,|/z—>3% and ¥ a,=—34+3%;
n=1 n=1
so that, since (2) becomes — f(r)/r = (1 + r)~1— 1, the inequality (5)
gives

which is (8).
There exists an absolute constant, say =*, having the property that

lim sup | f(r) — ¥ @,| = v*limsup|na,| (9)

r—>1—-0 n<-—1/logr n—>00
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holds for every power series (2) which is convergent for r <1. In fact, if
7 and t* have their least values, then

<1, (10)
since v* belongs to the restriction
na, = 0(1) (11)

in the same way as v belongs to (3), a generalization of (11). The existence
of 7* (which, in view of (10), is implied by the existence of 7) has been
pointed out by Hadwiger [1] (actually, he considers another constant,
for which he proves the estimate

0.4858...< p=< 1.0160. .. , (12)

and for which the inequality
e=t* (13)
is clear from the definitions). .
Needless to say, what the existence of z* reduces to absolute terms is
that particular case of Tauber’s theorem according to which the o-form
of Littlewood’s condition (11), that is, the strengthening of (1) to

na, =o(l) , (14)

is sufficient for the convergence of an (4)-summable series a, + a, +- - -.
Thus it is clear that the existence of 7*, in contrast to the existence of 7,
does not imply Tauber’s theorem ; simply because (1), hence (3), is
necessary, but (11), hence (14), is not necessary, for the convergence of

a, + ay +---
Tauber’s own proof [3] of the sufficiency of the necessary condition (1)
(in order that an (A4)-summable series a, 4 a, +--- be convergent)

first establishes the sufficiency of condition (14), which is not a necessary
condition, and then passes from (14) to the true condition, (1), by addi-
tional steps. This detour to the final theorem is followed by all the text-
books consulted (Hobson, Knopp, Landau, Widder), even though it just
complicates the proof of Tauker’s theorem. A shorter approach can be
read off from a paper of Hardy [2], appearing some time ago. Hardy is
concerned in [2] with a Laplace integral, which he writes as a Lebesgue
integral, but his proof, which avoids the detour just mentioned, is valid,
of course, for Stieltjes integrals as well, and so for power series (or
Dirichlet series) also. This possibility of avoiding the detour, and thus
simplifying the traditional approach, will be utilized in the following
proof.
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Let . .
x(z) = X a, snd B(x)= X na, , (15)

n=1

where x is a continuous variable (the summations are thought to be
arrested at n ={[x]). If r=-¢e*, then r -1 — 0 goes over into
8 - -+ 0, and the series (2) becomes the integral .

F(s) = fe*rdx(x) (s>0) , (16)
0
where F'(s) denotes f(e—*), the function «(x) is 0 when 0< x <1, and

pla) = ftdx(t) , (17)
by (15). It can, of course, be assumed that
a(x) = (1 + 0) = 0, hence f(x) =8(1 +0)=0,if 0=z<1. (18)

It is clear from (15) that the theorem to be proved, that italicized after
(1), is equivalent to the assertion that

limsup | F(s) —x(s™)| S<zlimsup|f(z)]|/x . (19)
8—>+0 &—>»00

Actually, only (18), (17) and the convergence of (16) for s>0 will be
used in the proof of (19); so that the existence of some absolute constant
will be proved for the case of Laplace-Stieltjes integrals also (but this is
not of course the point, every ,,generalization‘‘ of this kind being auto-
matic indeed).

First, (17) and (18) show that (16) can be written in the form

F(s) = _Ofox“l e~ df(x) ,

1

where $>0. In view of (18), and since
erd(xle~%%) = — (72 4 sx~1)dx ,

a partial integration of this integral gives

o0

F(s) = fx2B(x)e*=dx 4 sA(s) , (20)
1
if A(s) is an abbreviation for

A(s) = j‘ox"lﬂ (x)e—*zdx . (20,)
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On the other hand, again by partial integration,

1/s

1/s
Jam1dp(z) = sp(Us) — p(1) + [o*p(e)da .

1

In view of (17) and (18), this relation can be written in the form
1/
x(1fs) = sB(1fs) + [ a2(a)d .
1

If this is subtracted from (20), it follows that

F(s) — a(1s) = 84 (s) + B(s) — D(s) — s(s) , (21)
where
B(s) = ?x-zﬂ(w) e *dx (22)
and e
D(s) =1i’4.x—2ﬁ(w)(l — e ) dx . (23)
It is seen from (21) that, if
lin:fup | B(z) | = (24)

is assumed to have the value 1, both (19) and (6) will be proved if it is
shown that, on the one hand, the upper limit, as s — 4 0, of none of the
three functions

(25,) s|B(1fs)|;  (25)) s|A(s)|;  (255) |D(s)|
can exceed 1, and, on the other hand,
lim sup | B(s) | < [zledx . (26)
8—>+0 1

But the assumption that the value of (24) is 1 does not involve a loss of
generality. For, if (19) is true when (24) has the value 1, then, for reasons
of distributivity, (19) is true if (24) has any value distinct from 0 and oo,
and so, again for reasons of distributivity, if (24) has any value distinct
from oo ; and (19) is trivial if (24) is co. Accordingly, it can be assumed
that (24) is 1, i. e., that there belongs to every ¢>0 an R such that

[f(x)| <(l+¢e)z if xz>R=R,. (27)
Ad (25,). The upper limit, as s - + 0, of (25), is (24), which is 1.
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Ad (25,). According to (27), the contribution of the range R <z <o
to the integral (20,) is majorized by

(1 4 &) Te—mdx<(1 + ¢) j?e—”dx = (14 ¢)/s .
R 0

Since s times the contribution of the complementary range, 0< < R,
where R = R,, tends to 0 as s — -+ 0 when ¢ is fixed, it follows that
the upper limit of (25,) cannot exceed 1 + ¢ and is, therefore, not

greater than 1.
Ad (25;). Tt is clear from (23) and (7) that

1/s 1/s

D) | < Jo | fo) [swdz =5 a1 | p(a) | do .

Hence, from (27),

1/s

R
| D(s) |<s [Mdx +sf(1+¢e)dx if 1s>R,
i R

where M and R depend on ¢ only. Consequently, the upper limit of (25,),
as s — 4+ 0, cannot exceed that of

1/s 1/s

31!(1+e)dx<86[(1+e)dx=1+e
and is, therefore, not greater than 1.
Ad (26). According to (22) and (27),
| B(s) [<1;‘°x—2(1 +e)zedxr if O<s<l/R, .

Hence, in order to prove (26), it is sufficient to ascertain the inequality

[ -} o0
limsup [a-le*vder < fale?da .
g—>+0 1]s i

But this inequality actually is an equality, since the value of the integral
on the left is independent of s.
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It remains undecided whether or not the (best values of the) absolute
constants 7, t* remain the same if they apply to arbitrary Laplace inte-
grals (16), rather than just to power series (2), and whether the sign of
equality does or does not hold in (10) (in either case). Even the estimate
%=1, corresponding to the trivial inequality (8), is problematic. All
that is clear is that t* cannot be less than

X
lim (X n! — log ) = 0.57...

Z—>00 n=1

(in either case). In fact, if na, = 1, then the power series (2) becomes
—log(l — r), and so, if » in (9) is replaced by e-1/%,

z
lim sup | log(1 — e 1/%) + > n- 1| 7% .
Z—> 00 n=1

On the other hand,

lim |log(l — e /%) —(—log z) | = lim log(l1 — &) =1logl1 =0 .

ZT—>» } £—>0

Clearly, the last three formula lines imply that *=0.57... .

(Eingegangen den 5. Dezember 1946.)
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