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Les groupes linéaires finis sans points fixes

Par GEOrGES VINCENT, Lausanne

Introduction

Depuis les travaux de Killing, complétés et précisés par M. H. Hopf?),
on sait que la totalité des formes de Clifford-Klein (espaces complets &
courbure riemannienne constante positive, nulle ou négative) peut s’ob-
tenir en déterminant les groupes discontinus de déplacements sans points
fixes de 1’espace sphérique, euclidien ou hyperbolique.

En particulier, les formes spatiales sphériques') s’obtiennent par la dé-
termination de tous les groupes finis de rotations sans points fixes de la
sphére & n dimensions S*. Au point de vue analytique, cela revient &
étudier les groupes finis de substitutions linéaires homogenes, orthogo-
nales, n’admettant pas la valeur propre 4 1.

Le probléme qui fait ’objet de ce travail, soit la recherche des formes
spatiales sphériques, se raméne par suite & la détermination des groupes
linéaires finis sans points fixes.

On sait que toute représentation linéaire d’un groupe abstrait fini peut
se déduire, par un procédé d’addition connu, des représentations irré-
ductibles non équivalentes. Le nombre de ces derniéres est fini, égal au
nombre des classes des éléments du groupe. En particulier, les représen-
tations sans points fixes sont les sommes de représentations irréductibles
sans points fixes. Le probléme peut par suite se ramener aux suivants :

1° Déterminer les groupes abstraits finis susceptibles d’admettre des
représentations sans points fixes.

29 Déterminer les représentations irréductibles sans points fixes de
chacun de ces groupes. Pour les applications géométriques, il convient de
déterminer le degré de ces représentations, de reconnaitre si elles sont
équivalentes & une représentation réelle et, dans le cas contraire, si elles
sont ou non équivalentes & I’imaginaire conjuguée.

1) Ces espaces ont été déterminés complétement, pour la dimension 3, par M.H.Hopf [1]
puis par W, Threlfall et H. Seifert [2], par des méthodes particuliéres & cette dimension. —
Les numéros entre crochets renvoient & ’index bibliographique placé & la fin du présent
travail.
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Le premier probléme¥*) fait ’objet des chapitres I et II. Les groupes qui
admettent des représentations sans points fixes sont relativement peu
nombreux (par exemple, il s’en trouve cinq seulement parmi les quinze
structures non isomorphes d’un groupe d’ordre 24). Leurs sous-groupes
abéliens sont tous cycliques. Cette remarque et le fait qu'un p-groupe &
sous-groupes abéliens cycliques est cyclique si p 7% 2, cyclique ou qua-
ternionique (voir 1.2) si p = 2, permet d’établir par une nouvelle voie
un théoréme de Burnside (voir 2.5), base de ce travail. D’apreés ce théo-
reme, les groupes cherchés appartiennent nécessairement a I’'un ou 'autre
des deux types suivants :

" Le premier type est celui des groupes dont tous les sous-groupes de
Sylow sont cycliques.

Le deuxiéme type, celui des groupes dont les p-sous-groupes de Sylow
sont cycliques pour p 7% 2, quaternioniques pour p = 2.

Le chapitre II est consacré a 1’étude de la structure des groupes abs-
traits finis des deux types. Les groupes du premier type sont connus
(voir § 4); ils sont résolubles et ceux qui ne sont pas cycliques peuvent
étre engendrés par deux éléments générateurs liés par quelques relations
simples. Les groupes du deuxiéme type se subdivisent en groupes réso-
lubles et groupes non résolubles. Je montre que les premiers sont métabé-
liens de rang 2, 3 ou 4 et que les groupes non résolubles sont parfaits
(identiques a leur dérivé) ou admettent un premier ou un deuxiéme dérivé
parfait. En utilisant la théorie de I’extension de Schreier (voir 4.4), je
construis tous les groupes du deuxieme type métabéliens de rang 2.

Le second probléme est abordé au chapitre III, o se trouve une étude
complete des représentations irréductibles des groupes du premier type
et d’une large classe de groupes du deuxiéme type, métabéliens de
rang 2. Un critére simple, de nature arithmétique, permet de décider
lesquels de ces groupes admettent des représentations sans points fixes
(th. III 8.4 et IV 9.1).

St un groupe fine du type considéré admet une représentation sans points
fixzes, toutes ses représentations trréductibles fidéles sont sans points fixes,
elles sont toutes de méme degré et mon équivalentes o des représentations
réelles (énoncés précis: th. III* 8.4 et IV* 9.1).

On peut déduire de la quelques conséquences trés générales relatives
aux groupes de rotations sans points fixes. Excluons d’emblée les dimen-
sions paires pour lesquelles, c’est un fait bien connu, les seules formes
spatiales sphériques sont la sphere elle-méme et 1’espace elliptique.

*) Outre les références indiquées dans le texte, il convient de citer ici
H. Zassenhaus, Uber endliche Fastkérper, Hamb. Abh. 11 (1936), 187 — 220,
venu & ma connaissance aprés la rédaction de ce mémoire.
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Toute sphére de dimension tmpaire (supérieure & 1) admet une infinité de
groupes finis de rotations sans points fixes, non abéliens, ne se présentant pas
pour des dimensions inférieures (th. II 8.3).

Bien que I’étude des groupes du deuxiéme type ne soit pas achevée, le
fait que les représentations irréductibles sans points fixes d’'un groupe
quaternionique sont de degré 2 et non équivalentes & une représentation
réelle entraine que seules les sphéres S*+3, dont le nombre de dimen-
sions est congru & 3 (mod. 4), peuvent admettre des groupes de rota-
tions sans points fixes du deuxiéme type. Il en résulte le théoréme
suivant, qui achéve en un certain sens la recherche des groupes de
rotations sans points fixes des sphéres de dimensions 4k 4+ 1, et en
méme temps celle des formes spatiales sphériques de méme dimension :

Les groupes finis de rotations sans points fixes d’une sphére S¥*+1 sont tous
du premier type. Il s’en présente de nouveaux, en nombre tnfine, pour toute
dimension 4k -+ 1 et leur recherche se raméne a wun probléme purement
arithmétique (th. VI 10.1).

L’étude des représentations des groupes du deuxiéme type, bien que
trés incompléte encore, permet cependant d’énoncer le théoréme suivant :

Toute sphére S¥+3, dont le nombre de dimensions est congru a 3 (mod. 8),
admet une infinité de groupes finis de rotations sans points fixes du deuxiéme
type, métabéliens de rang 2, ne se présentant pas pour des dimensions in-
férieures (th. V 9.2).

Au chapitre IV, je déduis quelques corollaires des théorémes fondamen-
taux. Citons celui-ci :

Les groupes d’ordre impazr de rotations sans points fixes d’une sphére de
dimension 2" — 1 sont tous cycliques. Par contre, toute sphére dont la
dimension est un nombre impair qui n’est pas de la forme 2* — 1 admet une
nfinité de groupes d’ordre impair, non abéliens, de rotations sans points
fixzes (th. VIII 10.3).

Je retrouve par voie algébrique un théoréme démontré par M. H. Hopf
(voir 10.4) comme conséquence d’'un théoréme topologique et j’établis
une proposition relative aux ,,translations de Clifford“ (voir 10.5) qui
peut étre déduite d’un théoréme topologique de M. Stiefel.

Je détermine enfin la structure des groupes finis, abéliens, de déplace-
ments elliptiques sans points fixes de I’espace elliptique, ainsi que celle du
premier groupe de Betti des formes spatiales sphériques.

Qu’il me soit permis d’exprimer ici &4 M. H. Hopf, qui m’a proposé le
sujet de ce travail, ainsi qu’a M. G. de Rham ma profonde reconnaissance
pour leurs conseils si bienveillants et I'intérét qu’ils n’ont cessé de me
témoigner au cours de mes recherches.
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Chapitre 1

Conditions nécessaires pour I'existence de représentations
sans points fixes

§ 1. Groupes finis & sous-groupes abéliens eyecliques

1.1. Désignons par g = pi* p3%...p3*¥ la décomposition en facteurs
~premiers distincts de ’ordre g du groupe abstrait fini & . Il existe des sous-
groupes de ® de tous les ordres pfi (1 = 1,2,...,k) ou 1 <B, <«;.
Ceux d’ordre maximum p}¢ sont conjugés dans ® (transformés les uns
dans les autres par les éléments de ®), isomorphes par conséquent, et en
nombre congru & 1 modulo p,. Ce sont les sous-groupes de Sylow?) de &
relatifs au diviseur premier p,.

Tout sous-groupe d’ordre pfi de ® est entiérement contenu dans au
moins un p;-sous-groupe de Sylow de ®.

Un groupe abélien (multiplication commutative) est le produit direct
de ses sous-groupes de Sylow.

1.2. Les p-groupes, groupes finis dont ’ordre est une puissance d’un
entier premier p, jouissent de propriétés remarquables?). J utilise ici deux
de ces propriétés :

Lemme 1 : Un groupe d’ordre p premier est cyclique. Un groupe d’ordre
p* est abélien, cyclique ou de type (p, p).

Lemme 2 : Un groupe d’ordre p™, ou pour un m fixé tel que 1<m<n,
chaque sous-groupe d’ordre p™ est cyclique, est lui-méme cyclique,
excepté dans le cas p=2, m =2, ou le groupe peut étre aussi un groupe
des quaternions généralisé ).

Le groupe des quaternions généralisé Q2* est engendré par deux
éléments A et B avec les relations:

A V' =F B =A*™? BAB'=A41' (x>2).

Son ordre est 2*; pour « = 3, on retrouve le groupe des quaternions,
d’ordre 8
A*=FE B*=A* BAB!'!=A4"1.

Une étude plus approfondie de la structure du groupe des quaternions
généralisé est donnée au chapitre 1I (3.2).

2) Pour tout ce qui a trait & la théorie des sous-groupes de Sylow et des p-groupes, voir
[3] chap.IV ou [4] chap.5.
3) [3] pp. 105 et 113.
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1.3. Considérons un groupe abstrait fini &, dont tous les sous-groupes
abéliens soient cycliques.

Soit g = p* p3:...p%* son ordre. Siles x; sont tous égaux & 'unité, les
sous-groupes de Sylow de ® étant d’ordre premier sont cycliques. Dans le
cas contraire, désignons par P, I'un des sous-groupes de Sylow d’ordre

¥ (x; = 2). Ses sous-groupes d’ordre p} sont abéliens en vertu du
lemme 1 ; or, ce sont des sous-groupes de &, abéliens, donc cycliques par
hypothése. Le lemme 2 est applicable & PB,, qui est par conséquent cy-
clique ou quaternionique.

Réciproquement, soit & un groupe fini dont les sous-groupes de Sylow
sont cycliques ou quaternioniques, $ un sous-groupe abélien de .
L’ordre h de $ est un diviseur de I'ordre g de ®. Un sous-groupe de
Sylow de § relatif au diviseur premier p,; est d’ordre p% < p¥. C’est un
p;-sous-groupe de ® contenu comme tel dans un B, (sous-groupe de
Sylow de ®). Les groupes de Sylow de § sont des sous-groupes des
groupes de Sylow de (. Or, ceux-ci étant cycliques ou quaternioniques,
leurs sous-groupes sont cycliques ou quaternioniques (les sous-groupes
d’un groupe quaternionique sont étudiés au chapitre II). Les groupes de
Sylow de § sont cycliques (quaternioniques exclus car $ est abélien);
$ étant abélien est le produit direct de ses groupes de Sylow, il est cy-
clique. D’ou le théoréme :

La condition nécessaire et suffisante pour que les sous-groupes abéliens
d’un groupe fint ® soient cycliques est que & soit de U'un des deux types
survants :

Premier type : Les sous-groupes de Sylow de & sont cycliques (y com-
pris ceux relatifs au diviseur premier 2 si ’ordre de ® est pair).

Deuziéme type : Les p-sous-groupes de Sylow de ® sont cycliques pour
p # 2, quaternioniques pour p = 2.

Si ® est abélieq, il est cyclique et se rattache au premier type. L’ordre
d’un groupe du deuxieme type est divisible par une puissance de 2 supé-
rieure ou égale & la troisiéme.

§ 2. Représentations sans points fixes

2.1. Les substitutions linéaires, homogénes, définies par z; =
n
> a;, %, & coefficients a;, dans un corps K et a déterminant différent de
k=1
0, forment le groupe linéaire £X(n) de degré n (nombre des variables).

Chaque substitution est caractérisée par la matrice des coefficients
4 = (ay).
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On nomme représentation linéaire*) d’un groupe abstrait ® tout homo-
morphisme de ® dans £%(n). Une telle représentation I fait correspondre
a tout élément x ¢ ® une matrice bien déterminée X = I'(x) et au pro-
duit ab de deux éléments quelconques a, b ¢ ® la matrice produit 4 B.

Si la correspondance est un isomorphisme (c’est-a-dire si I'(x) est
I'image d’un seul élément z ¢ ®), la représentation est dite fidéle.

Deux représentations linéaires I" et I’ d’'un méme groupe ® sont dites
équivalentes si: I''(x) = 8 I'(z) S~ quel que soit z ¢ &, § désignant une
matrice fixe de £%(n). Cette relation d’équivalence étant réflexive, sy-
métrique et transitive permet la répartition des représentations linéaires
de ® en classes de représentations équivalentes.

Je désignerai dans la suite par r le corps des nombres réels et par k
celui des nombres complexes.

2.2. Les substitutions linéaires et homogénes, & coefficients dars %,
unitaires (c’est-a-dire ou I'inverse de la matrice 4 est la transposée de la
matrice complexe conjuguée: AA’ = E, E désignant la matrice unité)
forment un groupe continu, le groupe umnitaire W (n), sous-groupe de
2%(n). Une représentation du groupe abstrait ® dans U (n) est dite
représentation linéaire unitaire, de degré n .

Les substitutions de U (n) & coefficients réels (caractérisées par
AA’ = E) forment le groupe orthogonal Ur(n), sous-groupe de £ (n).
Une représentation du groupe abstrait & dans U"(n) est dite représen-
tation linéaire orthogonale 5), de degré n.

Toute représentation linéaire d’un groupe fint ® dans L(n) est équi-
valente @ une représentation unitarre.

Toute représentation linéaire d’un groupe fini ® dans L7 (n), c’est-a-dire
a coefficients réels, est équivalente a une représentation orthogonale ®).

Il peut étre commode d’utiliser un langage géométrique et d’appeler
rotation une substitution orthogonale d’ordre n quelconque. Une telle sub-
stitution transforme en elle-méme la sphére & (» — 1) dimensions §»-!

n
définie par ¥ 27 = 1 dans P’espace euclidien réel £. Les substitutions
' i=1

orthogonales de déterminant -+ 1 sont les rotations proprement dites

4) La théorie des représentations linéaires des groupes finis est exposée dans Speiser [4]
chapitres 11 & 15. On y trouve les indications bibliographiques relatives aux travaux de
Frobenius et Schur. Voir également [5] chap. XIII & XVII.

8) Je prends systématiquement la locution ,,représentation orthogonale‘‘ dans le sens de
représentation orthogonale réelle.

%) Les démonstrations de ces deux théorémes sont données par exemple dans [4] Satze
134 und 132. Le premier a été étendu par H.Weyl aux groupes continus compacts.
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(elles forment le groupe orthogonal propre Uj(n)), celles de déterminant
— 1, des rotations suivies de certaines symétries.

J’envisage souvent dans la suite un groupe de substitutions linéaires
comme représentation d’un groupe abstrait.

2.8. Définition : Une représentation I' d’un groupe abstrait ® par des
substitutions linéaires homogénes, a coefficients réels ou complexes, est dite
sans points fixes si, pour aucun élément a e ®, différent de U'élément
unité e, la matrice I'(a) n’admet la valeur propre + 1.

Le déterminant | I'(a) — E | est alors £0. ['(a), envisagée comme
transformation lindaire d’un espace vectoriel, n’admet aucun point fixe
en dehors de 1’origine de cet espace.

Une représentation sans points fixes est nécessairement fidéle.

Dans deux représentations équivalentes, les matrices correspondant au
méme élément de ® ont les mémes valeurs propres. La recherche de tous
les groupes linéaires finis sans points fixes se raméne & celle des groupes li-
néaires finis unitaires sans points fixes.

2.4. Un groupe abélien fini ® qur admet une représentation lLinéaire
sams points fizes est nécessairement cyclique.

En effet, cette représentation peut étre décomposée en ses composantes
irréductibles (unitaires) qui toutes sont sans points fixes. Soit I" 1'une
d’elles : la correspondance ® — I' est fidele, ¢’est un isomorphisme (con-
séquence de ’absence de points fixes). Les représentations linéaires irré-
ductibles d’un groupe abélien étant de degré 1, les éléments de I" sont les
g matrices (¢k) £k =1,2,...,¢ ou g désigne 'ordre de & et ¢ une racine
primitive ¢**™® de I'unité. I" est un groupe cyclique, donc ® est cyclique.

2.5. Passons au cas d’un groupe fini quelconque ®» admettant une
représentation linéaire I" sans points fixes. Les matrices de I" correspon-
dant aux éléments d’un sous-groupe § de ® forment une représentation
linéaire sans points fixes de §. Si § est abélien, il est forcément cyclique
(2.4). ® est donc tel que ses sous-groupes abéliens sont tous cycliques.
Le théoreme 1.3 permet d’affirmer que :

Tout groupe abstrait fini & qui admet une représentation linéarre sans
points fixes est du premier ou du deuxiéme type, c’est-a-dire que ses p-sous-
groupes de Sylow sont cycliques pour p % 2, cycliques ou quaternioniques
pour p = 2.

Ce théoréme est dii & Burnside [7] qui I’a établi par une voie différente.
Il montre qu’un p-groupe admettant des représentations sans points fixes
est cyclique pour p # 2 et cyclique ou quaternionique pour p = 2.
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Chapitre II

Structure des groupes du premier et du deuxiéme type

§ 3. Groupes cyeliques et quaternioniques, quelques lemmes

Je rappelle tout d’abord quelques propriétés des groupes cycliques et
quaternioniques, en précisant la nature du groupe de leurs automor-
phismes.

3.1. Les sous-groupes (tous invariants) d’'un groupe abélien sont
abéliens ainsi que ‘les groupes-quotient correspondants. Plus particu-
liérement, les sous-groupes et les groupes-quotient d’un groupe cyclique
sont cycliques. Le groupe des automorphismes d’un groupe cyclique
d’ordre m est abélien : c’est le groupe multiplicatif des classes de restes
modulo m premiéres au module?). Je le désigne par ®m. Son ordre est

donné par la fonction d’Euler ¢ (m) = m IT (1 — %) .
pi/m i
L’exposant d’un groupe ® est le plus petit entier » tel que a® = e quel

que soit @ € . C’est le p.p.c.m. des ordres des éléments de ®. Pour un
groupe abélien ot (ab)® = anb®, c’est I'ordre maximum des éléments du
groupe. L’exposant de ®m est donné par la fonction A(m), définie de la
facon suivante :

@ (2%) a=1,2
A(2%) = A(p*) = @(p*) p premier impair

[ 3 9(2%) x >2

A(m) = p.p.c.m. des A(p¥¥)

m = p}*...p%* étant la décomposition de m en facteurs premiers
distincts.

Lorsque A(m) = ¢(m), ®m contient un élément d’ordre ¢(m) et il
est cyclique. Ce cas ne se présente que pour m = 2, 4, p*, 2p* (p premier
impair). Ainsi, 2%, d’ordre 2*-!, est cyclique pour & = 1,2 mais
abélien de type (2*2,2) pour «>2.

Le groupe des automorphismes d’un groupe abélien non cyclique n’est
pas abélien.

3.2. Pour I’4tude des groupes quaternioniques {Q 2> (1.2), il faut
distinguer le cas x =3 du cas «>3. Le groupe des quaternions Q8,

donné par :
At =FE B = A? BAB-1'= A

7) [3] p. 109.
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admet la répartition suivante en classes d’éléments conjugués, les
éléments d’'une méme classe étant rangés dans la méme colonne :

E Az A B BA
43 BA* BA3

Tous ses sous-groupes sont invariants (un tel groupe est dit hamilto-
nien). {42} est le seul d’ordre 2; c’est le centre (sous-groupe formé des
éléments permutables avec tous les éléments du groupe) et en méme temps
le groupe des commutateurs (3.4). Le groupe-quotient correspondant est
abélien de type (2, 2), c’est le groupe rectangle D2. Les sous-groupes
d’ordre 4 sont au nombre de trois: {4}, {B}, {BA}. Ils sont cycliques
et le groupe-quotient correspondant est cyclique d’ordre 2. Le groupe des
automorphismes, d’ordre 24, est isomorphe au groupe symétrique S,8).
Son ordre est divisible par 3, ce qui n’est plus le cas pour le groupe des
automorphismes d’un groupe généralisé Q 2* ou «>3.

Un tel groupe, defini par :

A V' =F B*= A** BAB'= A"

admet la répartition suivante en classes d’éléments conjugués olt, comme
ci-dessus, les éléments d’une méme classe sont dans la méme colonne :

E A% 4 4 A4* A4..4*t B BA
A1 A= A 4.4 BA? BAS

BA¥'-t Bqria

{427} est le seul sous-groupe d’ordre 2; c’est le centre et le groupe-
quotient correspondant est le groupe diédrique D2*-2 d’ordre 2%-1.

Les sous-groupes d’ordre 4 sont tous cycliques, un seul est invariant
{4*7%}, le groupe-quotient correspondant est D2*-3 d’ordre 2*-2. Les
autres, tels que {B}, {BA}, {BA?},... sont en nombre égal & 2>-2.

Si «>4, un seul sous-groupe d’ordre 8 est invariant c’est le groupe
cyclique {42**}, le groupe-quotient est D22—* d’ordre 2>-3. Il existe
2¢-3 gous-groupes non invariants tels que {43, B}, {4*°, BA},
{42*7®, BA?}, isomorphes au groupe des quaternions Q8.

%) [3] p. 111.
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Les sous-groupes d’ordre 28(2<pf<a& — 2,a>4) sont, I'un cyclique
invariant & groupe-quotient diédrique, les autres non invariants iso-
morphes au groupe Q28.

Mais voici les plus intéressants : tout d’abord le groupe des commuta-
teurs (3.4) d’ordre 2%-2, cyclique, engendré par A2 == BA-1B-14, dont
le groupe-quotient est le groupe rectangle D2, abélien d’ordre 4 et de
type (2,2). Les autres sous-groupes du méme ordre sont non invariants,
en nombre égal & 4, engendrés par A* et 'un des éléments B, BA2, BA
ou BA?3, isomorphes & Q2%2.

Les sous-groupes d’ordre 2*-! sont invariants, parce que d’indice 2. Ils
sont en nombre égal &4 3: 'un est cyclique, {4}, les deux autres iso-
morphes & Q2%1, {4%, B} et {42, BA}. Dans chaque cas, le groupe-
quotient est cyclique d’ordre 2.

Tout automorphisme de Q2% (« > 3) s’obtient par la substitution d’élé-
ments générateurs 4 — A*, B —- BAY (u impair, » quelconque); leur
nombre est 2%-2.2%1 = 22¢-3_ (’est 'ordre du groupe des automorphis-
mes de Q2*. Pour « = 3, les classes de B et BA, renfermant deux élé-
ments, peuvent s’échanger avec la classe de 4, d’olt un nombre plus grand
d’automorphismes.

3.3. Lemme: Soit P un des p-sous-groupes de Sylow de & et N un
sous-groupe invariant de ® ; alors NN P est p-sous-groupe de Sylow de N
et PRIN = P/RNP est p-sous-groupe de Sylow de G /N.

Une démonstration de ce théoreme, due a Witt, est exposée a la
page 100 du livre de Zassenhaus [3].

Remarquons que lintersection N NP du sous-groupe invariant N
avec un p-sous-groupe de Sylow P est un sous-groupe invariant de P
(égal & P si P est dans N). Ce lemme permet de trouver les p-sous-groupes
de Sylow de ®/9t. En particulier, pour un groupe du premier type,
étant cyclique, les p-sous-groupes de Sylow de &/ sont cycliques quel
que soit le sous-groupe invariant Jt; ® /N est donc aussi du premier type.
Pour un groupe du deuxiéme type, &/ a ses p-sous-groupes de Sylow
(p # 2) cycliques; quant & ses 2-sous-groupes de Sylow, ils sont: non
abéliens (diédriques ou quaternioniques), abéliens d’ordre 4 (isomorphes
au groupe rectangle D2), cycliques d’ordre 2 ou inexistants si Q c N.

3.4. ® étant un groupe abstrait quelconque, je désigne par G’ son
groupe dértwé ou groupe des commutateurs. C’est le sous-groupe caracté-
ristique (invariant par les automorphismes de %) engendré par les com-
mutateurs (a,b) = aba~1b~!, a et b étant deux éléments quelconques
de ®. Les deux produits ab et ba, qui peuvent ne pas étre identiques
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dans un groupe non abélien, sont congrus modulo le sous-groupe des com-
mutateurs car ab = (aba='b-')ba. En conséquence, le groupe-quotient
®/®’ est abélien. Le groupe dérivé de &’ est le deuxiéme dérivé de & et
je le représente par G”. Les sous-groupes dérivés successifs sont tous
caractéristiques et méme complétement invariants en ce sens qu’un opé-
rateur quelconque les applique sur eux-mémes ou sur une partie d’eux-
meémes.

Considérons la série des groupes dérivés: GO2G'2G"D ... G est dit
résoluble si elle se termine par £ (le groupe formé seulement de 1’élément
unité). Pour un groupe fini, cette condition est équivalente & celle-ci: &
admet une série de composition & groupes-quotient cycliques d’ordre pre-
mier. Un groupe ® résoluble pour lequel G*-! £ Gk = E est dit méta-
bélien de rang k, 1a série des groupes dérivés admettant k groupes-quotient
abéliens. Métabélien de rang 1 est synonyme d’abélien différent de E.

Le r'®™¢ dérivé du groupe G /N, quotient de & par un sous-groupe in-
variant I est donné par :

(G/N)M = GOR/N ; ainsi, lorsque le 7°™ groupe dérivé de G/N est
E, le 7*™ groupe dérivé de ® est dans N °).

3.5. Lemme: Si dans la série &' 2" D®"... des dérivés d’un
groupe ®, deux groupes-quotient consécutlifs sont cycliques, le second se
réduit a Uidentité.

Ce théoréme est démontré par Zassenhaus [3] th. 9 p. 138.

Il importe de remarquer que la série dont il est question dans le
lemme débute par &', le premier groupe dérivé, et non par & comme
dans 3.4.

§ 4. Groupes du premier type

Rappelons qu’un groupe ® fini est dit du premier type si ses sous-
groupes de Sylow sont tous cycliques (1.3). Ces groupes sont étudiés
dans les traités classiques!?). Voici les points essentiels accompagnés
de quelques remarques utiles pour la suite.

4.1. Un groupe fini ®, dont tous les sous-groupes de Sylow sont cy-
cliques, est résoluble.

Pour démontrer ce théoréme, Zassenhaus!!) procéde par induction
compléte sur le nombre des facteurs premiers distincts de ’ordre de ®.

%) Pour les démonstrations, voir par exemple [3] pp. 55 et 56.

10) Zassenhaus [3] p. 139, Burnside [5] pp. 163 & 166 et [6]. Je suis de préférence Zassen-
haus.

11) [3] p. 139.
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Soit g = p{* pg2. . .p%* cet ordre, ou les p; vont en croissant. Il montre
qu’un p;-sous-groupe de Sylow B, de ® est contenu dans le centre de
son normalisateur (sous-groupe formé des éléments de & permutables
avec P,). ® contient dés lors un sous-groupe invariant N avec P,
comme systéme de représentants (théoréeme de Burnside) 12). L’hypo-
thése d’induction est applicable & 9: N est résoluble, donc & est
résoluble (3.4).

Un fait n’est pas établi par Zassenhaus, mais par contre par Burnside 19):
c’est que le sous-groupe invariant 9t d’ordre p32. . . p%* est caractéristique.
Plus exactement encore, il existe une suite de sous-groupes caractéristi-

ques d’ordres p* p‘:f:l‘ .. pF(=2,3,...,k). Chacun de ces sous-

groupes invariants est en effet d’ordre premier & son indice. Les théo-
rémes de Sylow généralisés, dus & Hall1%), permettent d’affirmer qu’un
tel sous-groupe est seul de son espéce. Il est par conséquent transformé
en lui-méme par tout automorphisme de ®.

4.2. La série des groupes dérivés d’un groupe ® du premier type est
® oG’ O E ou le groupe des commutateurs ®’ est cyclique, a groupe-quotient
®/®’ également cycliquel?).

En effet, tous les groupes de la série des dérivés de G(3.4) G2G 26" ...
sont du premier type. Les groupes-quotient sont abéliens & sous-
groupes de Sylow cycliques (3.3), donc cycliques. G'/®” cyclique et
®”/®"” cyclique entrainent, d’aprés le lemme 3.5, G”/6” = E; d’ou
&’ = &” = E, le groupe étant résoluble (4.1). La suite des groupes
dérivés se réduit bien & & o G’ o E. Les groupes-quotient restent cy-
cliques, d’ot B/®’ cyclique, G’ cyclique. Ces conditions sont nécessaires
pour que & soit du premier type, mais pas suffisantes, comme le montre
I’exemple du groupe diédrique D 4 d’ordre 8, dont le groupe des commu-
tateurs est cyclique d’ordre 4 & groupe-quotient cyclique d’ordre 2, et
n’est pourtant pas du premier type (le seul groupe du premier type
d’ordre 8 étant 38 cyclique).

4.3. St &' est du premier type, il est cyclique. En d’autres termes, un
groupe du premier type, non cyclique, n’est le dérivé d’aucun autre groupe.

Ce corollaire du théoréme précédent s’établit immédiatement. Si &’ est
du premier type, &'> 6" > E, G’'/®” cyclique, " cyclique; &” = E
d’apres le lemme 3.5 et &’ est cyclique. '

12y 5] p. 327, [4] Satz 122,
13) [3] p. 127.
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4.4. Zassenhaus!!) utilise ces considérations pour construire tous les
groupes & sous-groupes de Sylow cycliques au moyen de deux éléments :
I'un engendrant le groupe des commutateurs, ’autre appartenant & une
classe modulo le groupe des commutateurs qui engendre le groupe-
quotient. Il s’assure ensuite que les générateurs et relations définissent
bien un groupe ayant les propriétés voulues en faisant appel au théoréme
de Holder relatif aux groupes finis ayant un sous-groupe invariant
cyclique d’ordre m & groupe-quotient cyclique d’ordre n.

Un tel groupe est défini par:

Am = F B" = A! BAB = A4 (1)
avec les conditions numériques
a) m,n>0 g=mn b) r* = 1(m) c) t(r—1)=0(m) .

Or ce théoreme est une application particuliére de la théorie de I'extension
de Schreier4) qui pose et résout le probléme suivant :

On donne deux groupes abstraits It et & ; trouver tous les groupes ®
admettant :t comme sous-groupe invariant de telle maniére que le groupe-
quotient /N soit isomorphe & §F.

® est une extension de ¢ par §. Dans le cas qui nous occupe, il s’agit
d’une extension par un groupe § = G/’ cyclique, je parlerai d’exten-
sions cycliques. Comme o = @’ est aussi cyclique, nous retrouvons le
cas particulier de Holder. Plus loin, pour les groupes du deuxiéme type,
Jaurai & déterminer des extensions par un groupe abélien, je parlerai
d’extensions abéliennes.

4.5. Tout groupe G du premier type et d’ordre g est donné par!!):
Am = E B =E BAB-' = Ar (2)
avec les conditions numériques
a) m>0, mn=g¢g b) (r—1n,m)=1 c¢) r=1(m)

et réciproquement.

Le groupe des commutateurs &’ est cyclique engendré par B4 B-14-*
= A™'; comme r — 1 est premier & m en vertu de b), c’est {4}. On
vérifie que le groupe-quotient &/®’ est cyclique engendré par B. La
condition accessoire n premier & m assure que tout sous-groupe de Sylow
admet un conjugué dans {4} ou {B}; il est donc cyclique. Ceci élimine
les groupes analogues & D4, signalé & la fin de 4. 2. La condition c¢) est une

14) Exposée aux §§ 6 & 8 du chap. III de Zassenhaus [3].
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conséquence des relations (2): BAB-! = A" entraine B*AB-V= A"’ ;
comme B" = K, r® doit étre = 1 (modulo m).

4.6. Tirons quelques conséquences des conditions numériques b) et c).
Toute racine de la congruence 7® = 1(m) est premiére au module:
(r,m) = 1. De plus, = est multiple de ’exposant ¢ auquel appartient la
racine r (d est ’exposant de la plus petite puissance de r congrue & 1 mo-
dulo m, c’est 'ordre de r dans ®m (3.1)). La condition (r,m)=1
jointe & (r — 1, m) = 1(b), prouve que m doit étre impair. Le groupe
des commultateurs d’un groupe du premier type est cyclique d’ordre impair.

Les seules valeurs admissibles pour r sont telles que r, » — 1 et 1’ordre
de r dans ®m soient premiers a m.

On peut se demander, m et n étant fixés, s’il existe plusieurs groupes (1)
de structures différentes. Dans la théorie de ’extension cyclique, c’est le
groupe des automorphismes de M qui joue le réle important. Or ici,
N = G’ = {4} est le groupe cyclique d’ordre m impair. Son groupe des
automorphismes est précisément Gm, le groupe multiplicatif des classes
de restes modulo m premiéres au module. La condition donnée dans la
théorie de ’extension cyclique, pour I’isomorphisme sur N de deux exten-
sions, se traduit ici par le fait qu’'on obtient toutes les extensions iso-
morphes en remplagant r par * ou (v,n) = 1. D’ailleurs, dans cette
hypothése, B” engendre le groupe {B} et B*AB-v = A" ; la correspon-
dance 4 - A, B — B” réalise 'isomorphisme.

§ 6. Groupes du deuxidme type

Rappelons qu’un groupe fini ® est dit du deuxiéme type si ses p-sous-
groupes de Sylow sont cycliques pour p # 2, quaternioniques pour
p =2 (1.3). L’ordre d’un tel groupe est divisible par une puissance de
2 supérieure ou égale & la troisiéme, donc au minimum par 8.

Quelques indications relatives & ces groupes se trouvent dans deux
travaux de Burnside [6], [7].

5.1. Les groupes du deuxiéme type se subdivisent en groupes réso-
lubles et groupes non résolubles.

Soit ® un groupe du deuxiéme type d’ordre g = 2*p32...p%¥, &« > 3,
Q2> T'un de ses 2-sous-groupes de Sylow. 2%, n’étant pas abélien, ne
saurait étre contenu dans le centre de son normalisateur, et I’on ne peut
par suite établir I’existence d’un sous-groupe invariant d’ordre p32...p%*
par la méthode indiquée en 4.1. En fait, ® peut ne pas étre résoluble,
comme le prouve I’exemple du groupe binaire de I'icosaédre J* défini en
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6.4. Ce groupe est du deuxiéme type et coincide avec son groupe des com-
mutateurs : J*' = J*.

5.2. Le groupe-quotient ®/®’, d’un groupe du deuxiéme type par
son groupe des commutateurs est soit abélien de type (2, 2, u), soit cy-
clique d’ordre 2% ou u, u étant impair. Il peut se réduire & I’identité, son
ordre étant alors u = 1.

Démonstration: ®' étant sous-groupe de ®, est du premier ou du
deuxiéme type. S’il est du premier type, il est cyclique d’aprés 4. 3. Dans
tous les cas, il contient le groupe des commutateurs du sous-groupe Q2%
c¢’est-a-dire le groupe cyclique {42} d’ordre 2*-2. L’intersection &’'N Q2%
est un sous-groupe invariant de 22> contenant {42}. D’aprés 3.2 ce ne
peut étre que I'un des groupes suivants: {42%} lui-méme, d’ordre 2*-2;
{4}, cyclique d’ordre 2-1; {A%, B} ou {A4%, BA}, quaternioniques
d’ordre 22-1; Q2 d’ordre 2.

Les p-sous-groupes de Sylow de &/ ®’, sont donnés par le lemme 3. 3.
Pour p =2, ils sont isomorphes soit au groupe rectangle D2, soit au
groupe cyclique d’ordre 2, 32, ou enfin inexistants si G/®’ est d’ordre
impair. Pour p # 2, ils sont cycliques.

Le groupe abélien &/G’ est done soit D2Xx Ju=32x 32u (groupe
abélien de type (2, 2, u)), soit 32u, soit Ju (» impair). Il se réduit a
E=31 s 6=06".

Remarques: Si ®/®’ est abélien de type (2, 2, u), G’ est du premier
type, donc cyclique.

Si 6'NQ2* = {4}, ®’ est également du premier type, donc cyclique,
le groupe quotient &/®’ étant aussi cyclique. Ce cas ne peut en fait pas
se présenter, ce qu'on vérifie en partant du théoréme de Holder (4.4).

Si B’ est du deuxiéme type, &/G’ est cyclique.

5.3. Si dans la série des groupes dérivés (3.4) d’un groupe & du
deuxiéme type, trois groupes dérivés consécutifs sont du deuxiéme type,
les deux derniers sont identiques. .

C’est une conséquence du lemme 3.5. Trois groupes dérivés consécu-
tifs définissent deux groupes-quotient successifs, cycliques en vertu de
5.2, le second se réduit & I’identité.

5.4. Il en résulte la classification suivante des groupes ® du deuxiéme
type:

Résolubles:

a) ®>®'>E b) 6o6G'26">2E ¢) 6o56'>6"526"0E .

Le groupe précédant E est cyclique, les autres du deuxiéme type. Un
groupe du deuxiéme type résoluble est métabélien de rang 2, 3 ou 4.
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Non résolubles :
d 6=6" e 6Go26'=6" ) 626'26"=06".

Voici un exemple, le plus simple possible, pour chacune de ces six
catégories :

a) 2%, premier groupe dérivé {A4%} cyclique d’ordre 2*-2, groupe-
quotient D2,
b) le groupe tétraédrique binaire I* (6.2), suite des groupes dérivés:

T*O Q8> {42}k,
c¢) le groupe octaédrique binaire O* (6.3), suite des groupes dérivés :

D*oT*oQ8>D{42%} D FE,

d) le groupe icosaédrique binaire J* (6.4): J* = J*,
e) le produit direct J*x 3Im (m, 120) =1,
f) le produit direct de J* par un groupe du premier type, non cyclique,

d’ordre premier a 120 (un tel groupe existe, voir 8.3).

Je vais déterminer tous les groupes du deuxiéme type métabéliens de
rang 2 (a), puis indiquer la possibilité théorique de construire ceux de
rangs 3 (b) et 4 (¢) (comme exemples, je retrouverai T* et O*). Les
groupes du deuxiéme type parfaits (& = ', classe d) échappent & mes
méthodes ; on pourrait en déduire ceux des classes (e) et (f).

5.5. La condition nécessaire et suffisante, pour qu'un groupe & du
deuxiéme type soit métabélien de rang 2, est qu’il contienne un sous-
groupe invariant M dont l'ordre soit la partie impaire de I'ordre de .

La condition est suffisante : si ® du deuxiéme type d’ordre 2*p32...p%k,
« > 3, contient un sous-groupe invariant Nt d’ordre p3:...p%k, le
groupe-quotient ®/M est isomorphe & I'un des sous-groupes de Sylow
22>, Au sous-groupe invariant {42} de LQ2* (son groupe des commu-
tateurs) correspond un sous-groupe invariant IR de G contenant G’ en
vertu de I'isomorphisme /I =~ G/N/P/N =~ Q2%/{A2} =~ D2 abélien.
I est d’ordre 2*—2p52...p%%k. Orl'ordre de G’ est divisible au moins par
20-2 (5.2); cet ordre est donc exactement divisible par 2*-2. L’inter-
section &'NQ2* est {42}, les 2-sous-groupes de Sylow de G’ sont
cycliques, &' est du premier type, donc cyclique (4.3), 5> G0 E.

La condition est nécessaire: si ®>®'DE est la suite des dérivés d’un
groupe ® du deuxiéme type, &’ est cyclique et /G’ abélien de type
(2, 2, ) (5.2). ®/®’ est engendré par a, b, ¢, avec a2 =02 =c*=ce,
les éléments a et b correspondant aux classes renfermant les générateurs 4
et B d’'un des 2-sous-groupes de Sylow Q2> de 6. Ce groupe abélien a
trois sous-groupes d’ordre 2u: {a,c}, {b,c}, {ab,c} (invariants puis-
que sous-groupes d’un groupe abélien).
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L’un des sous-groupes invariants de ®, celui correspondant & {a, c},
a ses 2-sous-groupes de Sylow cycliques (I'un est {A4}). Il est du premier
type, d’ordre 2*1pS2...p%%, et contient un sous-groupe caractéristique
d’ordre pg2...p%% (4.1), qui est le sous-groupe invariant 9t de 6.

Remarque : Ce sous-groupe invariant i est méme caractéristique, ainsi
que tous les sous-groupes d’ordre pi...p%* (¢ = 2,...,k%k) pour les
mémes raisons qu’en 4.1.

5.6. Rappelons un théoreme de Burnside 15) :

Un groupe d’ordre 2*n, ou » est impair, non divisible par 3, et qui
contient des éléments d’ordre 2*-!, admet un sous-groupe invariant
d’ordre n.

Ce théoreme, joint au précédent, nous montre que les groupes du
deuxiéme type dont l’ordre n’est pas divisible par 3 appartiennent a la
catégorie a) dans la classification 5.4. Les cinq autres catégories ne ren-
ferment que des groupes dont I’ordre est divisible par 24 et présentent
ainsi un caracteére exceptionnel.

5.7. Je passe & la détermination de tous les groupes du deuxiéme
type métabéliens de rang 2:

6> 6o E, &' cyclique d’ordre pair (divisible par 2%2, « > 3),
®/®’ abélien (2, 2, u), w impair.

Il s’agit : 1) de former les extensions!®) d’un groupe cyclique {4} par
le groupe abélien (2,2, u) = 32x32u; 2) de telle sorte que le groupe
des commutateurs soit {4} et 3) que les sous-groupes de Sylow aient la
structure voulue.

Voici ce que donne la théorie de 1’extension abélienne dans ce cas tres
particulier :

Am = E 82 = A" §2 — A"

1
8,8,8181 = (8,,8,) = A 8,48 = A" 8, A8} = A% M)

avec les conditions numériques :

a) & = 1(m) c) &(t, —1)=r(l +t,+ 8 +---4+ 8“1 (m)
b) #* = 1(m) d) ;¢ — 1) = —r(1 +¢,) (m)

Retrouvons tout d’abord Q2%; son groupe des commutateurs étant
cyclique d’ordre 2%-2, c’est la valeur & choisir pour m ; on trouve:

15) [5] p. 330.
16) Voir 4.4 et plus particuliérement [3] p. 97.
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Aza—-2 —_ E S% — A Sg — A2G—3
(2)

(8:,8;) =4 8,48 =4 8, AS;' = A
8, et S, suffisent & engendrer le groupe :
& =E S=8"T 88,85 =8

ce sont les relations connues.
Pour le cas général, ou le groupe des commutateurs est cyclique d’ordre
22-29 (n impair), on obtient :
A2a~2n = F S% — 4" Sgu — Aza—sn ?
(81, 8;) = Ar 8,48t = A S, A8;t = A

(3)

avec les conditions numériques :

x >3, (u,n) =1, u et n impairs

2 = 1(2*2n) 3% = 1(2%2n) (ryt;, —1,t,—1)=1
t, = 1(2%2) t, = — 1(2%2) r = n(2%-2)
r(l+4)=0 (n) rl4+t+-+8H=0 ()

Ce groupe est d’ordre g = 2*nu. Il admet trois sous-groupes inva-
riants d’indice 2%, engendrés par 4 joint respectivement & S,, S,, 8,87,
en accord avec le fait que ®&/®’ abélien (2, 2, u) a trois sous-groupes
d’indice 2% (d’ordre 2). L’'un, {4, 8,}, est du premier type; les deux
autres sont du premier type si « = 3, mais du deuxiéme si x >3. Le
sous-groupe invariant ! du premier type d’ordre nu (5.5) est engendré
par A2*~* et 8i. Il importe de remarquer que des valeurs différentes de
t,, ts, et r peuvent correspondre & des groupes isomorphes. Il en est ainsi,
en particulier, quand on change f, en ¢, ¢, et r en r¢{,, comme le montre
Pautomorphisme réalisé en conservant 4 et §,, mais en substituant a S,
I’élément générateur §,.8,.

Comme premier exemple, je forme tous les groupes du deuxiéme type
dont le groupe des commutateurs est cyclique d’ordre 2. Ici x = 3,
n = 1; jobtiens ¢, =, =r =1 et, en modifiant un peu les relations :

At = E B — A2 BAB-' = A | (4)

Ce groupe est isomorphe au produit direct Q8x 3« (u impair).
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Un groupe du deuxiéme type d’ordre 24, dont le groupe des commuta-
teurs est cyclique d’ordre 2, est isomorphe au produit direct Q8x 33.
Si le groupe des commutateurs est cyclique d’ordre 6, les formules (3)
donnent un seul type:

A2 =F B? = A8 BAB 1= 4"

qui est isomorphe au groupe diédrique binaire DF (6.1). Ces deux
groupes, joints au groupe binaire du tétraedre (5.8), métabélien de
rang 3, sont les seuls d’ordre 24 et du deuxiéme type. Si 'on y ajoute
324 et le groupe :

A3 =EH B =F BAB= 4!

qui sont du premier type, on voit que sur les 15 types'?) de groupes
d’ordre 24, 5 seulement ont leurs sous-groupes abéliens tous cycliques.
Tous les 5 admettent des représentations sans points fixes.

Les groupes du deuxiéme type d’ordre 48 sont au nombre de quatre.
Les formules (3) permettent de trouver ceux dont le groupe des commu-
tateurs est cyclique. Pour &’ cyclique d’ordre 4, on obtient un seul type :
Q16x33; &’ cyclique d’ordre 12, par contre, donne deux structures
non isomorphes

A¥* =E B? = A BAB!' = 41
c’est le groupe diédrique binaire Dﬁ (6.1); en outre

Az — F 82 = A3 82 = A¢

(8, 8,;) = 43 8,48 = A°® S, A8 = A1 2

I1 existe de plus un groupe d’ordre 48 du deuxiéme type, métabélien de
rang 4; c’est le groupe binaire de 'octaédre (5.9).

J’envisage encore les groupes définis par les relations (3)ou ¢, = 1. Le

sous-groupe invariant {4, S,} est alors cyclique et S,4, 8, suffisent a

engendrer le groupe. En modifiant les notations, les relations deviennent :

A¥7In = B = 4> %n BAB-! = Ar (6)
avec les conditions numériques :
>3, (u,n)=1, wu et n impairs
r2u = 1(22-1p) r= — 1(2%1) (r—1,21p) =2 .

17) [5] p. 157.
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® admet un sous-groupe invariant cyclique {4} & groupe-quotient
cyclique 32u ; le type des relations obtenues est bien celui prévu par le
théoréme de Holder (4.4).

Voici la classification que j’établis désormais pour les groupes du
deuxiéme type :

() ®' cyclique, contenu dans un sous-groupe invariant cyclique
d’ordre double de celui de &’ ; ils sont définis par les relations (6).

(B) ®' cyclique, contenu dans un sous-groupe invariant du premier
type, non cyclique, d’ordre double de celui de G’ ; ils sont définis par les
relations (3) ou ¢, ## 1. Exemple: le groupe défini par les relations (5).

(y) Tous les autres, c’est-a-dire les groupes métabéliens de rangs 3 et 4
et tous les groupes non résolubles.

D’aprés 5.4, (x) et (B) épuisent la catégorie a), (y) est formé des cinq
autres.

5.8. Un groupe du deuxiéme type, métabélien de rang 3 admet la
suite des groupes dérivés Go>G'>G"'>E. G’ est du deuxiéme type,
métabélien de rang 2, et appartient aux classes (x) ou (8). /G’ est
cyclique d’ordre  ou 2%, » impair (5.2).

La théorie de I’extension cyclique!®) permettrait de les obtenir tous.
A titre d’exemple, je choisis pour &’ le groupe métabélien de rang 2 le
plus simple, Q8.

Une extension cyclique d’ordre » est caractérisée par M (ici Q8), un
automorphisme o de N et par N ¢, invariant par ¢, N° = N, et in-
duisant dans R I'automorphisme N N N—-! identique & o™.

Q8, défini par 4* = F B? = A* BAB'= A-1, a 24 automorphis-
mes (3.2). L’automorphisme d’ordre 3 défini par A° = B, B° = BA
conduit au groupe :

As=E B'=4*  BABt=A"|

7
S’ = F SAS-*= B SBS-1 = BA | )

qui est du deuxiéme type si n’ est impair. Son ordre est 24n’ ; pour n’ = 1,
c’est le groupe binaire du tétraédre I* (6.2) d’ordre 24, contenant Q8
comme sous-groupe invariant (groupe des commutateurs) et quatre sous-
groupes d’ordre 3. Sa série des dérivés est: T*OQ8>O{4%*}>HE. Si
n’ % 1 est premier & 24, (7) représente le produit direct T*x 3x'.
Pour Q2%, avec « >3, on trouve des extensions du deuxiéme type (par
exemple 22%+1), mais aucune ne conduit & un groupe métabélien de

18) [3] p. 94.
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rang 3. En voici la raison : aucun automorphisme de Q2*, «>3, ne

change 42~ en B (3.2). Dans une extension cyclique, ces deux éléments
ne peuvent étre conjugués et il résulte d’un théoréeme de Burnside!s) déja
cité que le groupe correspondant admet un sous-groupe invariant dont
Pordre est la partie impaire de ’ordre de &. Si ® est du deuxiéme type,
il est métabélien de rang 2 (5.5).

5.9. Les groupes du deuxieme type métabéliens de rang 4 pourraient
s’obtenir & partir des groupes métabéliens de rang 3 par une nouvelle
extension cyclique.

Un seul exemple fera comprendre la méthode. Partant du groupe bi-
naire du tétraédre IT*, donné par les relations (7) ou »’ = 1, j’envisage
Pautomorphisme: A4°= A, B°= BA3, 8° = S§2BA?. Cet automor-
phisme est d’ordre 4, il engendre entre autres ’extension suivante :

A= E B? = A2 BAB1 = 4
8 =K SAS-1 = B SBS-1= BA (8)
T2—=A TAT-'=A TBT-'= BA* TST-!—= S:BA*

Ce groupe, que je désigne par O* est d’ordre 48 et du deuxieme type ;
il a trois sous-groupe d’ordre 16 (I'un est engendré par A, Bet T': 1% = E
B*=1T* BTB-'= T-!) isomorphes & 216 et 4 sous-groupes d’ordre 3
(évidemment cycliques). Son groupe des commutateurs est d’ordre 24 et
isomorphe & T*. La série des groupes dérivés est :

D*oT*o Q8> {42} E .

J’ai pu montrer son isomorphisme avec le groupe binaire de 1’octaédre
(6.3).

Cet exemple met en défaut I'affirmation de Burnside!®) selon laquelle
un groupe du deuxiéme type d’ordre 2*p3...p%*¥, x«>3, contient des

sous-groupes caractéristiques de tous les ordres P p‘;‘i“fll P (=
2,3,...,k). Ce n’est le cas, en vertu de 5.5, que pour les classes (x) et

(B), soit pour les groupes du deuxiéme type métabéliens de rang 2.

5.10. Voici un théoréme qui limite le nombre des types contenus
dans la classe (y) (5.7):

Le groupe des commutateurs &’ d’un groupe ® du deuxiéme type,
métabélien de rang 3, a ses 2-sous-groupes de Sylow isomorphes & Q8.

1) 6] p. 50.
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Démonstration: &> ®'>G"DE; G est métabélien de rang 2 et
admet un sous-groupe caractéristique Jt dont 1'ordre est la partie im-
paire de I'ordre de . (Remarque & la fin de 5.5.) R est sous-groupe in-
variant de G: (G/N) ~ G'RN =~ &' /N~ Q2*, 2-sous-groupe de
Sylow de &’. Ceci est impossible si « >3, car dans le cas contraire Q2*
admettrait une extension cyclique &/®, groupe du deuxiéme type,
métabélien de rang 3 (5.8).

Une hypothése, que je n’ai pu démontrer, me parait justifiée :

Si " est du deuxiéme type, ses 2-sous-groupes de Sylow sont iso-
morphes & Q8.

Cette proposition (analogue &: G’ du premier type entraine &’ cy-
clique) concernerait toute la classe (). Un groupe de cette classe aurait en
particulier ses 2-sous-groupes de Sylow d’ordre au plus égal & 16. De plus,
il me semble qu’un groupe ® de la classe (y) doit contenir des sous-
groupes d’ordre 24 isomorphes & T*. Cela est en tout cas exact pour O*
et J*.

§ 6. Les groupes polyédriques binaires

Ces groupes peuvent étre représentés comme groupes de translations
de Clifford (rotations sans points fixes d’'une nature particuliere) de la
sphére & trois dimensions S% (voir 10.5).

En vertu du théoreme 2.5, ils sont du premier ou du deuxieme type.
C’est ce que je me propose de vérifier directement ici, en précisant les-
quels appartiennent au premier type et lesquels au deuxiéme.

La dénomination ,groupes binaires” vient de ce que l'on peut les
engendrer par des substitutions binaires (unitaires). Ils renferment un
sous-groupe invariant d’ordre 2, le groupe-quotient correspondant étant
un groupe polyédrique ordinaire 20).

6.1. Les groupes diédriques binaires D} (ordre 4m) sont définis par :
A" = B*=(C*= P CBA =E P:=F .

Sous cette forme, on voit que le groupe-quotient par le sous-groupe
invariant {P}, d’ordre 2, est le groupe diédrique ordinaire Dm : A™ =
B*=(C*=F CBA = E, dordre 2m. A et B suffisent & engendrer le
groupe, car (1= B4 :

Am = E B = Am BAB1 = 4-1 (1)

ou la derniére relation s’obtient en transformant C2 = A4m™.

20) J'utilise ici les notations de Threlfall et Seifert [2] p. 26.
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Supposons tout d’abord m pair: m = 2*2n, n impair, x > 3. Les
relations deviennent :

A — | B = A BAB1= A 2)

C’est un groupe du deuxieme type d’ordre 4m = 2*n appartenant a
la classe (x) comme le montrent les relations (6) de (5.7). Son groupe
des commutateurs est {42} cyclique d’ordre 2*-2n = m. Pour n =1,
c’est-a-dire lorsque m est une puissance de 2, c’est le groupe quater-
nionique Q2*. Ainsi 28, par exemple, n’est autre que le groupe rectangle
binaire D).

Supposons maintenant m tmpair. Opérons dans (1) la substitution
d’éléments générateurs A2 = X, B4 = Y ; on obtient:

Xm—E Yi=E YXY-1 = X1 . (3)

On s’assure de l’isomorphisme en exprimant 4 et B au moyen de X
1-m m—1

et Y: A=X 2% Y2 B=Y'X %2 , et en montrant que les relations
(3) entrainent (1), ou plus simplement encore en remarquant que (3) re-
présente un groupe du premier type d’ordre 4m d’apres les relations (2)
de 4.5. Le groupe des commutateurs est {X}, cyclique, d’ordre m
impair.

Les groupes DY étant rangés suivant les valeurs croissantes de m (2,
3,...), sont alternativement du deuxiéme et du premier type.

Remarque : Les groupes diédriques ordinaires Dm, qui peuvent étre
définis par: Am=FE B*=E BAB!= A-! sont du premier type
pour m impair. Ils n’admettent aucune représentation sans points fixes,
car ils contiennent plus d’un élément d’ordre 2 (11.2). Pour m pair, ils
ne sont ni du premier type, ni du deuxiéme type, leurs 2-sous-groupes de
Sylow étant diédriques.

6.2. Le groupe binaire du tétraédre IT* (ordre 24) est défini par:
A=RB=0"B=P CBA =FE P:=F .

On peut éliminer B en résolvant CBA =FE: B=C14"!', B'=AC
B2 = B2 = ACAC = A3 = (C®. Les relations deviennent :

AS=E 08 = A3 CAC-1 = 410 . (4)
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En posant: AC =X, CA=Y, A*=Z, on trouve:

Xt—E Ye— X*  YXY-1— X1 5
B—FE  ZXZ1—7 ZYZ1— YX (

et réciproquement, Z:X2= A4 et ZX3= C conduisent aux anciennes
relations. Or (5) est le groupe du deuxiéme type, métabélien de rang 3,
trouvé en 5.8.

6.3. Le groupe binaire de Uoctaédre O* (ordre 48) est défini par :
A*=B*=(C*= P CBA =E P*=FE .
On peut éliminer B et obtenir :
A% = E O3 = A+ CAC*=A"C . (6)

Ce groupe est isomorphe au groupe du deuxiéme type, métabélien de
rang 4, construit en 5.9.

6.4. Le groupe binaire de Uicosaédre J* (ordre 120) est défini par:
A= B*=(C*= P CBA =E P:=F .
On peut également éliminer B :
AV = F C3 = A5 CAC1= A-10C . (7)

Ce groupe, identique & son groupe des commutateurs, J*' = J*, n’est
pas & portée de mes méthodes (parce que du deuxiéme type, non résoluble).
Il n’est pas identique au groupe symétrique &S; d’ordre 120, qui posséde
un sous-groupe invariant d’ordre 60, le groupe simple ;. Constatons
cependant ce fait curieux : les deux groupes ont des séries de composition
de méme longueur et des groupes-quotient isomorphes & I'ordre pres:

J*2 30 E SoUDE

les groupes-quotient étant respectivement : U, 3, et 35, ;. Autre fait
intéressant : les éléments de J* se répartissent en 9 classes d’éléments
conjugués, alors que ceux de O* se répartissent en 8 classes et ceux de
T*en 7.
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Chapitre III

Conditions suffisantes pour I'existence de représentations
sans points fixes. Théoréemes fondamentaux

§ 7. Représentations irréduectibles. Groupes cycliques et quaternioniques

7.1. Les éléments d'un groupe abstrait & fini, d’ordre g, se répar-
tissant en NV classes d’éléments conjugués, ® admet N représentations

irréductibles, unitaires, non équivalentes, de degrés d, (# =1, 2,..., N)

diviseurs de g, caractérisées par leurs caractéres y,;2!). Je désigne par C,
N

les classes et par ¢, le nombre des éléments qu’elles renferment: ¥ ¢, = g.
i=1

Le critére d’vrréductibilité d’une représentation de caractere y est
> x(8)7(S) =g, la somme étant étendue & tous les éléments S ¢ 6.

Les caractéres des N représentations irréductibles non équivalentes
vérifient les relations d’orthogonalité :

R I B Ry,
swene =, 5 174 )

; 0 si S et T non conjugués
(S ¥ (T) =
2 (8) 7; (1) ch "

b4 =

(2)

?

S et T conjugués dans &

Il
[u

S et T appartenant a la classe C,, ~cg— est 'ordre du normalisateur d’un

élément de cette classe. En particulier, si § = 7' = E, ’élément unité
de ®, les deuxiémes relations d’orthogonalité donnent :

N
> df =49, (3)
i=1
la somme des carrés des degrés des représentations irréductibles est égale
a I'ordre du groupe.

La condition nécessaire et suffisante pour 1’équivalence de deux représen-
tations linéaires, réductibles ou non, d'un méme groupe &, est 'identité
des caractéres.

21) Voir note 4.
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7.2. Les représentations irréductibles, unitaires, de ® sont de trois
sortes: 1. équivalentes & une représentation réelle; 2. équivalentes 3
I'imaginaire conjuguée, mais & aucune représentation réelle ; 3. non équi-
valentes a I'imaginaire conjuguée 22).

Cette classification peut s’opérer d’apreés les valeurs des caractéres par
la relation

}53 2(8%) = cg (4)

oucvaut +1, —1, 0 suivant que la représentation envisagée appar-
tient & la premiére, a la deuxiéme ou & la troisiéme catégorie.

Une représentation quelconque de ® est somme de représentations
irréductibles. Pour qu’elle soit équivalente & une représentation réelle, il
faut et il suffit que les représentations de la deuxiéme catégorie qu’elle
peut contenir apparaissent un nombre pair de fois, celles de la troisiéme
catégorie aussi souvent que I’imaginaire conjuguée.

A ce propos, je rappelle la correspondance qu’on peut établir entre
U%(n) et U (2n): la forme d’Hermite, & n variables, z,2, +---+ 2, 2,
ou z,=wx,+1ty, (,,y, réels), peut s’écrire: a3 + 45 +---+ a2 + y2,
forme quadratique & 27 variables. De plus, i désignant une matrice uni-
taire U 4 ¢V (U et V matrices réelles), de degré n, on a la relation

n 0\, , (U—" . , 1 E —iE
T(o ﬁ)Tl“(V U) o T'=--> (-w E) (%)

T étant unitaire et la matrice du second membre orthogonale de degré 2= .

Cette loi de composition sera utilisée pour les représentations irréduc-
tibles des deuxiéme et troisiéme catégories. Elle permet d’obtenir les
représentations orthogonales (réelles)®), irréductibles dans U7 (n). Toute
représentation orthogonale de ® est une somme de représentations irré-
ductibles unitaires qui peuvent appartenir aux trois catégories, & condi-
tion que celles de la deuxiéme et de la troisiéme soient amplifiées au sens
que je viens d’indiquer.

7.3. Le cas d’un groupe cyclique, engendré par A, d’ordre g, est
particuliérement simple.

Les N = g représentations irréductibles sont toutes de degré 1 et
g’obtiennent en faisant correspondre & A la matrice (k) k=1,2,..., ¢
ol ¢ est une racine primitive g*™° de 'unité (2.4).

22) Pour tout le 7.2 voir [8].
23) Voir note 5.
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Celles correspondant & k premier & g sont sans points fixes ; leur nombre
est @(g) (définition en 3.1). Ce sont les seules qui soient fidéles ; de plus
elles appartiennent a la troisieme catégorie (7.2), c’est-a-dire qu’elles ne
sont pas équivalentes a Pimaginaire conjuguée, sauf dans le cas g = 2.

Les représentations orthogonales, sans points fixes, irréductibles dans
le domaine réel, non équivalentes, d’un groupe cyclique d’ordre g (% 2)
sont de degré 2 et en nombre égal & $¢(g). Il n’y en a qu’une, formée de
+1 et de —1, de degré 1, pour le groupe cyclique d’ordre 2.

Le groupe cyclique d’ordre g (F# 2) admet des représentations orthogo-
nales, sans points fixes, pour tous les degrés 2k et pour ceux-la seuls. Le
nombre des représentations non équivalentes pour le degré 2k est égal
au nombre des combinaisons k & k avec répétitions, des 1¢(g) représen-
tations irréductibles de degré 2. Le groupe d’ordre 2, par contre, admet
pour tout degré I'unique représentation orthogonale sans points fixes
formée de £ et — E.

Je retrouve les théorémes connus :

Toute sphére de dimension impaire admet des groupes cycliques de rota-
tions sans points fixes, de degrés quelconques.

Une sphére de dimension paire n’admet pas d’autres groupes cycliques de
rotations sans points fixes que 32 et le groupe se réduisant a lidentité.

Comme formes spatiales sphériques (11.1), j'obtiens ici: 1’espace
sphérique S™ et I’espace elliptique P™ (non orientable) pour les dimen-
sions 7 paires ; je montre plus loin que ce sont les seules. Pour les dimen-
sions impaires, des formes orientables : ’espace sphérique, I’espace ellip-
tique, une infinité de formes sphériques & groupe fondamental cyclique
(les espaces lenticulaires pour la dimension trois). Ces dernieres sont ellip-
tiques ou non, suivant qu’elles admettent ou non Il’espace elliptique
comme espace de recouvrement, c’est-a-dire suivant que g est pair ou
impair 24). '

7.4. Pour les groupes quaternioniques Q2% (x = 3), j’ai donné en 3.2
la répartition en classes d’éléments conjugués: N = 2%-2 4 3.

C’est le nombre des représentations irréductibles unitaires. L’ordre du
groupe rendu abélien, Q/RQ’, étant 4, il existe quatre représentations
irréductibles de degré 1 (4 — (4+1), B —(4-1)). La formule (3) de 7.1
prouve que les 2*-2 — 1 autres sont de degré 2: 4.1 4 (22 — 1).4 =
2* = g. On les obtient en posant:

A 0 0o 1
a=(5 ) B=(_7 o

2) [1] p. 321.
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ou A est une racine primitive d’ordre 2*-! de l'unité et r =1,
2,...,2v2 — 1. Les autres valeurs de r conduisent & des représen-
tations équivalentes (méme caractere) sauf r = 2%-2 et r = 21 qui
donnent des représentations réductibles.

Remarques : 1. Les caractéres sont tous réels ; c’est une conséquence du
fait que S et S~ sont dans la méme classe quel que soit S eQ, car
£(871) = 7(8), ici (871) = £(S) dot #(S) = F(S) réel.

2. Les caractéres de B (et BA4) sont nuls dans toutes les représenta-
tions irréductibles de degré 2, en accord avec le fait que la somme
%5(B) %;(B) étendue aux caractéres de degré 1 donne déja 4, ordre du
normalisateur de B (formules (2) en 7.1).

Les représentations irréductibles sans points fixes sont & rechercher
parmi les représentations fideles. Or celles-ci s’obtiennent en donnant & 7
les 1¢(2%-1) = 2*-3 valeurs (1, 3,...,2%2 — 1) premiéres & 2%~ et in-
férieures a 2*2.

Les 2%-3 représentations vrréductibles, unitavres, fidéles, de degré 2, sont
toutes sans points fixes.

Démonstration : Les valeurs propres de 4 sont des racines primitives
d’ordre 2*-! de 'unité. La premiére puissance de 4 qui admet une valeur
propre +1 est A2*' qui vaut E. Celles de B sont ¢ et —17 (équation
caractéristique A2 4 1 = 0) et sont les mémes pour tous les éléments de
sa classe. Celles de BA enfin :

0 A
Bd = (-/1r 0 )

d’équation caractéristique 424 1 = 0, sont ¢+ et —4 comme pour tous
les éléments de sa classe.

Ces 2%-3 (:: ?%Jl) représentations irréductibles, unitaires, sans points

fizes, appartiennent & la deuxiéme catégorie (7.2) c’est-a-dire qu’elles
sont équivalentes a U'imaginaire conjuguée (évident puisque le caractére est
réel) mais & aucune représentation réelle.

La formule (4) de 7.2 donne, en effet, tous calculs effectués :
38 =—22=—yg.
s

Les représentations orthogonales, sans points fixes, irréductibles dans
Ur(n), non équivalentes, s’obtiennent par composition a partir des 2*-3
représentations irréductibles, unitaires, sans points fixes, de degré 2.
Elles ont le degré 4 et sont en nombre égal a 2%-3.
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Le groupe quaternionique Q2%, d’ordre 2%, admet des représentations
orthogonales, sans points fixzes (en général réductibles, méme dans le
domaine réel), pour tous les degrés 4k et pour ceux-la seuls. Le nombre des
représentations non équivalentes pour ce degré est égal au nombre de
combinaisons k & k, avec répétitions, des 2*-2 représentations orthogo-
nales irréductibles.

Or tout groupe ® du deuxiéme type contient des 2-sous-groupes de
Sylow quaternioniques. Soit Q2* I'un d’eux ; toute représentation sans
points fixes de ® induit une représentation sans points fixes de Q2%.
Toute représentation orthogonale, sans points fixes, d’'un groupe du
deuxiéme type est de degré 4k. Envisagée comme groupe de rotations,

cette représentation transforme en elle-méme la sphere S%-1 4 4%k — 1
ou 4%k’ 4+ 3 dimensions; d’ou le

Théoréme I: Seules les sphéres S*%+3, dont le nombre de dimensions est
congru & 3 (mod. 4), peuvent admettre des groupes de rotations sans points
fixes du deuwxiéme type.

Les groupes quaternioniques 22> sont du deuxieme type; ils appa-
raissent effectivement comme groupes de rotations sans points fixes de
toutes les sphéres 8%, 87, 811, .. 1ls sont relatifs a la dimension 3 ; j’en-
tends par la, que c’est la plus petite dimension pour laquelle ils appa-
raissent comme groupes de rotations sans points fixes.

Les formes sphériques (elliptiques) correspondantes sont, pour la di-
mension trois, des espaces prismatiques particuliers (Q 2% .est en effet le
groupe diédrique binaire D;H (6.1)).

D’autres exemples sont donnés plus loin (9.3).

§ 8. Groupes du premier type, non cycliques

Un groupe ® du premier type (sous-groupes de Sylow cycliques),
d’ordre ¢, est défini par:

Am = E B —E BAB — Ar (1)
a) m>0, mm=g b) (r—Lunm)=1 c) r=1(m).

Son groupe des commutateurs {4} est cyclique d’ordre m impair
(4.5 formules (2) et 4.6).

8.1. Soit tout d’abord m premier (impair). Nous pouvons choisir
pour r 'un quelconque des m — 2 restes premiers & m autres que 1
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(¢(m) = A(m) =m — 1; pour r = 1, nous aurions le groupe cyclique
d’ordre mn, déja traité) ; » — 1 est, en effet, premier & m pour toutes ces
valeurs.

Supposons, dans un premier cas, que la valeur choisie pour r appartienne
a Vexposant m — 1; r engendre le groupe multiplicatif Gm (3.1)
cyclique d’ordre @(m) =m — 1. 1l y a exactement ¢(m — 1) valeurs
de r vérifiant cette condition, correspondant dans les cas précisés & la fin
de 4.6 & des groupes isomorphes.

La condition ¢) 7* = 1(m) entraine n multiple de m — 1: n =
(m — 1)n’, n’ premier & m.

La relation BAB-! = A" donne par itération B*AB-* = A", si bien
que B™-1 est permutable & 4 ; étant aussi permutable & B, cet élément
est dans le centre. Le groupe admet un centre {B™-'} d’ordre n’, % E
si »’ % 1. De plus, r engendrant Gm, 1’élément 4 et ses puissances
forment une seule classe d’éléments conjugués. Mon but étant la recherche
des représentations irréductibles sans points fixes, je précise tout d’abord
cette répartition en classes. Comme BAB-1 = Ar, BA™ ? B-1 = A™ "
=A et ABA-'= BA™ -1, on a A!BA~'=BAW" -1 ym-z _ ]
étant premier & m, la classe de B renferme tous les éléments: B, BA,
BAz,..., BA™ 1, Le résultat est analogue pour tous les éléments B” qui
n’appartiennent pas au centre, d’ou la répartition suivante en classes
d’éléments conjugués, ou les éléments d’une méme classe sont dans la
méme colonne :

E A B B ... Bm—2
A? BA B2A4 ... Bm24
: : : : (2)
Am——l BAm—z B2Am—2 e Bm—zAm-—z
B m—1 BZAm—-l ... Bm~—2Am—~1

La répartition compléte est formée de n’ tableaux de structure iden-
tique & (2) (elle se réduit d’ailleurs & (2) si »' = 1); les n’ — 1 autres
tableaux s’obtiennent en multipliant (2) parles »’ — 1 éléments # E du
centre {B™1}.

Voici ce que je me propose d’établir tout d’abord : quel que soit n’, les
représentations irréductibles de @ sont soit de degré 1, soit de degré
m — 1. Je montre alors que, moyennant une restriction sur »’, il existe
des représentations irréductibles sans points fixes, toutes de degré m — 1,
non équivalentes & des représentations réelles. Je procéde par étapes :
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a) L’ordre du groupe ® est ¢ = mn = m(m — 1)n’. Les classes d’élé-
ments conjugués sont en nombre N = mn’. (’est le nombre des repré-
sentations irréductibles. Le groupe rendu abélien, G/G' = G/{4} est
cyclique d’ordre n = (m — 1)n’ ; c’est le nombre des représentations de
degré 1, qui s’obtiennent par la correspondance A — (1), B— (8¥)
k=1,2,...,n, ou B désigne une racine primitive n*™® de l'unité. Il
reste n’ représentations de degrés inconnus, supérieurs & 1.

b) Le caractére de B dans toute représentation de degré supérieur & 1
est nul. C’est une conséquence des relations d’orthogonalité (2) des carac-
téres, rappelées en 7.1. La somme des yx,;(B) %;(B), étendue aux carac-
téres de degré 1, donne déja n, ordre du normalisateur de B.

Il en est de méme pour toute puissance de B, non contenue dans le
centre.

Un élément du centre est représenté (dans toute représentation irré-
ductible) par xE?2%). C’est une conséquence immédiate du ,,Jemme de
Schur. Ici, B™! estreprésenté par «l, Bk (m—1 par xkE 6 oux désigne
une racine 7/*™® de 1'unité (primitive ou non).

® n’étant pas abélien, les matrices d’'une représentation linéaire fidéle
de ® ne peuvent avoir toutes la forme diagonale. Mais deux matrices
correspondant & des éléments permutables de ® peuvent étre mises simul-
tanément sous forme diagonale ; les valeurs propres du produit soht alors
le produit des valeurs propres. Ainsi les valeurs propres de B™14 sont le
produit par « de celles de 4 ; plus généralement, les valeurs propres de
Bktm-1D 4 gsont celles de 4 multipliées par «*. Soit y le caractére d’une
représentation irréductible de degré = >1 ; le systéme des caractéres est :

x(B)=x,%(4),0,...,0 pour le premier tableau,
2 (B" 1) =uxz, y(B™14) = ay(4), 0,...,0 pour le deuxiéme,
g (B¥m=1) = ykgz 4 (BEm-DAQ) = gy (A4), 0,...,0 pour le (k- 1)Pme,

c¢) Utilisons alors le critére d’irréductibilité d’une représentation (7.1):
E x(8) x(8)=g.
n'z? +n'(m — 1) x(4) 7(4) =g =m(m — 1) n’
ou
22 + (m — 1) x(4) 2(4) =m(m — 1) .

Cetite égalité prouve que x(A4) z(A) est rationnel. Or, y(4) est un entier

%) [5] p. 266, [4] Satz 151.
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algébrique (somme de racines de I'unité) ; y(4) 7(A4) est un entier ration-
nel, x est divisible par m — 1. Les n’ représentations trréductibles de degré
>1 sont toutes de degré m — 1 ; c’est la seule valeur qui convienne, la
somme des carrés des degrés des représentations irréductibles devant étre
égale a g (7.1):

m—1)n'xX14+n'xXm—12=mm—1)n" =g .

De plus, x(4) 7(4) = 1 dans toutes les représentations irréductibles
(méme pour le degré 1).

d) A et ses puissances #* E forment une seule classe d’éléments con-
jugués, les matrices correspondantes ont les mémes valeurs propres.
Dans toute représentation irréductible de degré m — 1, ce sont A4,
A%2,...,Am1 ol A désigne une racine de 1’unité d’ordre m. Elles sont
toutes primitives, puisque m est premier. Le cas ou elles seraient toutes
égales & 'unité ne peut se produire & cause de y(4) 7 (A4) = 1. Je trouve
ici y(4) = — 1, en accord avec cette relation. 4, nt aucune de ses puis-
sances # E, n’admet la valeur propre + 1. Je suis désormais en mesure
de donner le systéme complet des caractéres ; pour les n’ représentations
irréductibles de degré m — 1 on obtient :

m—1, —1,0,...,0 pour le premier tableau
ok(m — 1), —ak, 0,...,0 pourle (k 4 1)®me

olt & est & remplacer successivement par les n’ racines n/*™* de I'unité.

e) Je cherche alors & déterminer les valeurs propres de B dans une
représentation irréductible de degré m — 1.

Soient u;, ys,. .., 4m-q ces valeurs propres, racines de I'unité d’ordre
"'m=(m — 1)n’. Comme celles de I’élément B™-! du centre sont toutes

égales, ut =yl =...= M} = um1 et 'on peut poser: u; = ug
ot £ 1= 1. Le caractére de B* est nul pour k=1,2,...,m — 2:
m—1 m—1 m—1

E,u"ef=0. D’ou sf:() pour k=1,2,...,m —2 et ¥ 1=
1

=1 i= =1
m — 1. Les formules de Newton prouvent que les ¢; sont les m — 1
racines de ¢"1 = 1.

Les valeurs propres de B, dans toute représentation irréductible de degré
m — 1, occupent sur le cercle unité les sommets d’un polygone régulier de
m — 1 cotés.
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Soit # une racine primitive de 'unité, d’ordre n = (m — 1)n’. Les
valeurs propres de B dans les n’ représentations irréductibles de degré

m — 1 sont: pk uke,...,pu*e™ 2% k=1,2,...,%/, ¢ racine primitive
(m — 1)®*™¢ de P'unité. Choisissons en particulier pour ¢ la valeur u’, les
valeurs propres de B sont: uk, pk+n’ gk+2n’ - yk+m—2in’

f) A quelle condition les valeurs propres de B sont-elles toutes racines
primitives d’ordre n de 'unité?
Les m — 1 entiers:

k,k+n',k+2n,....k+ (m— 2)n’ (3)

doivent étre premiers & n = (m — 1) »’.

La condition nécessaire et suffisante, pour quun choix de £ remplissant
cette exigence soit possible, est que n’ soit multiple des facteurs premiers de
m—1; 81 m—1=pPpS...p3k, n' doit égaler p,p,...p,n" (n” res-
tant premier & m, pour satisfaire la condition (n,m) = 1).

La condition est nécessaire : k peut toujours étre choisi premier & n =
(m — 1) n' : il suffit de prendre au besoin £ = 1. Soit p; un des divi-
seurs premiers de m — 1 et supposons qu’il ne divise pas »’: (»/,p;) = 1.
Les p, premiers entiers de la suite (3): k,k+n',...,k+ (p, — 1) n’
sont deux & deux incongrus (mod.p;): car k + sn' =k + tn/(p,)
entrainerait (s — t) n’ = 0(p,) et s = ¢(p;) puisque (n’,p,) = 1. Lun
d’eux est congru a O(p,;) et n’est pas premier & n, contrairement &
Phypothése. Done p,/n’.

La condition est suffisante: soit n’ = p, p,... pyn” et choisissons k
premier & n’ : du méme coup, k est premier 4 m — 1. Les nombres de la
suite (3) sont tous congrus & £ (mod. n’), donc premiers & n = (m — 1)n’.

On peut choisir pour k les ¢(n’) valeurs inférieures et premiéres & n’.
Pour les ¢(n’) représentations irréductibles correspondantes, de degré
m — 1, Bniaucune de ses puissances % E n’admet la valeur propre +1.
Il en est de méme pour tous les éléments d’une classe renfermant une
puissance de B (qui ont en effet les mémes valeurs propres). Il ne reste a
considérer, d’apres les tableaux (2), que les éléments tels que B*¥m-14 .
Or, d’aprés (b), les valeurs propres d’un tel élément sont celles de 4 mul-
tipliées par o*. Toute valeur propre de A est racine m*™® primitive de
Punité ; a* est racine »n/*™¢ (primitive ou non); (m,%’) =1 rend im-
possible ’apparition d’une valeur propre +1.

4

La condition nécessaire et suffisante d’existence de représentations sams
points fixes d’un groupe & du type considéré est que n' soit multiple des fac-
teurs premiers de m — 1.
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® admet n’ représentations irréductibles de degré m — 1, parmi les-
quelles @(n’) sont alors sans points fixes.
Remarques: 1. Le centre de ® est alors # K.

2. Le nombre ¢(n’) des représentations irréductibles sans points fixes
¢(9)

(m — 1)*°

traine @(g)=g(m)p[(m —1)2n']; p(m)=m —1 et g[(m—1)n'] =

(m — 1) p(n’) & cause de n’ multiple des facteurs premiers de m — 1;

(@) =(m — 1)2p(n’), d’ou l'égalité en question.

est égal & Car g=m(m — 1)n’; (m,(m —1)n’)=1 en-

3. Toutes les représentations irréductibles fidéles de ® sont sans points
fixes ; ce sont justement les ¢(n’) représentations irréductibles sans
points fixes trouvées ci-dessus.

g) A quelle catégorie appartiennent les ¢ (n’) représentations irréduc-
tibles sans points fixes, de degré m — 1? Les caractéres de ces ¢(n’) re-
présentations s’obtiennent en donnant & «, & la fin de (d), les ¢@(n’) va-
leurs, racines n/*™® primitives de I'unité. J’applique la formule (4) de 7.2 ;
on trouve :

S8 =mm —1) (x + a3+ a5 +..-4 a2 1) |
S

Deux cas sont & distinguer suivant que »n’, qui est pair (multiple des
facteurs premiers de m — 1, ol m est premier), est supérieur ou égal & 2 :
n'>2 entraine ¥ 4(82) =0 etles @(n’) représentations irréductibles

5

sans points fixes appartiennent & la troisiéme catégorie (non équivalentes
4 I'imaginaire conjuguée).
Pour n' =2, o vaut —1, et X 4(8%) = —m(m —1)2= — g;
s

P’unique représentation sans points fixes de degré m — 1 appartient a la
deuxiéme catégorie, c’est-a-dire qu’elle est équivalente & I'imaginaire con-
juguée, mais & aucune représentation réelle. Dans ce cas, m — 1 ne doit
admettre que le facteur premier 2: m —1=2°, m=2* 41 est un
nombre premier de Fermat (3,5, 17,...).

Les représentations orthogonales, sans points fixes, trréductibles dans
U (n), sont dans les deux cas de degré 2(m — 1) et en nombre (non équr-
valentes) égal a p(n') oo n'>2 et 1 s n' = 2.

8.2. Passons au cas, ot m étant toujours premier, ’'ordre de r dans Gm
est, non pas m — 1, mais un diviseur d de p(m)=m — 1:

A™ =K Br=E BAB! = Ar
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comme ¢ est la plus petite puissance de » congrue & 1 modulom, ™ =1
(m) entraine n multiple de d : n = dn’ (avec n’ premier & m, en vertu de
(m,n) =1). B"ArB-v = Ar™ montre que la classe de A# renferme les
d éléments : A+, Avr,, .. ,Al"d_l, les exposants étant incongrus modulo
m car les 7* — 1 sont premiers & m pour 0 <« <d. Les puissances de 4,

; 1 classes de d éléments. ArBvA-+ =

BYArt""-1 montre, d’une part que B? est dans le centre, d’autre part
que la classe d’un élément BY n’appartenant pas au centre renferme les m
éléments B*, B*A,..., B’A™1 (conséquence de ré~*—1 premier a m).

La répartition en classes d’éléments conjugués est formée de n’ ta-
bleaux :

, . m
#FE, se répartissent en

E A ... A» B B .. B
AT ... Awr BA B:A ... B4
: : (4)
A7 . Awerdt
ke : BAm—t  Begm-i .. Bi-igm-i

les »/ — 1 autres ont la méme structure et s’obtiennent en multipliant
les éléments de (4) par les »' — 1 éléments #E du centre {B?}.

Je me propose d’établir que les représentations irréductibles ont soit le
degré 1, soit le degré d (quel que soit »’). La condition nécessaire et suf-
fisante pour qu’il existe des représentations irréductibles sans points
fixes est que »’ soit multiple des facteurs premiers de d. Il existe alors

_1
e =T

représentations irréductibles sans points fixes, non équivalentes & des
représentations réelles.

Je suis le méme plan qu’en 8.1:
L’ordre de & est g = mn = mdn’; les classes d’éléments conjugués

m— 1 -+ d) n'. ®/®’ est cyclique d’ordren = dn’;

sont en nombre N = ;)

c’est le nombre des représentations irréductibles de degré 1. Il reste

m— 1
d
Soit 4 le caractére d’une représentation de degré z>1. Les raisonne-

n/ représentations de degrés inconnus, supérieurs & 1.
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ments de 8.1 b) s’appliquent ici et permettent d’affirmer que y(B*) = 0
pour tout élément B* n’appartenant pas au centre {B?}; de plus,
x (B¥) = ok, y(B*Ar) = a¥y(A*) ol « désigne une racine n/*™¢  pri-
mitive ou non, de 'unité.
Le critére d’irréductibilité de y (7.1) permet d’écrire: ¥ x(S) %(S) =g¢
s

n'z2 4+ n'd ¥ y(A+*) 7(A*) = g = m dn’

d
les puissances de 4 autres que E. On en tire: 22 4 d X y(4*) 3(4#) =
md qui prouve que x est multiple de d (car X y(A*) ¥ (A*) entier algé-

brique, rationnel, est entier rationnel). Comme 3 dZ =g (7.1) et que:
—1 e —
dn’x1 -+ m 3 n'xd? = mdn’ = g, j’obtiens le résultat : les Zn—d—l n’

représentations irréductibles de degré >1 ont toutes le degré d.

Autre conséquence: ¥ y(A4*) % (4*) =m — d. Les valeurs propres de
A ne sauraient, dans une représentation irréductible de degré &, étre
toutes égales a I'unité (la somme prendrait en effet la valeur (m — 1) d).
Soit A % 1 une valeur propre de A4, racine m®™°® de I'unité (primitive
puisque m premier). En se reportant au tableau (4), on voit que les d

la somme étant étendue aux classes en lesquelles se répartissent

d— .
valeurs propres de A4 sont: A, A7,..., ™', Ce sont toutes des racines
primitives : A, ni aucune de ses puissances = K, n’admet la valeur propre

. - 1 \ s(r 2 \
+ 1. On obtient &JM caracteres différents en remplacant 4 par A* ol

u est un représentant d’une classe de ®m suivant {r}; l'ordre de Gm/{r}
 a m — 1
est precisement —a
Quant aux valeurs propres de B, de ses puissances et des B¥A#, on
les obtient par les mémes raisonnements qu’en 8.1 e) et f).

Dans toute représentation vrréductible de degré d, les valeurs propres de B
occupent sur le cercle unité les sommets d’un polygone régulier de d cotés. Les

caractéres relatifs a

n’ caractéres distincts obtenusici, joints aux

d
A, donnent les 7—'—1—(1——1 n’ représentations irréductibles, non équivalentes,

de degré d.

La condition nécessaire et suffisante pour que les valeurs propres de B
puissent étre toutes primitives, est que n' sott multiple des facteurs premiers
de d (méme raisonnement qu’en 8.1 f)).
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- Dans ce cas, aucun élément # K n’admet la valeur propre 1.

Moyennant cette condition, ® admet ™

d <p(n) représentations 1irré-

ductibles (unitarres), sans points fixes, toutes de degré d. Ce nombre n’est
¢ (9)
a2
irréductibles fidéeles.
Pour trouver les représentations orthogonales, sans points fixes, irré-
ductibles dans U7 (r), il faut déterminer & quelle catégorie appartiennent

ces ?(9) représentations irréductibles, sans points fixes, unitaires. En

d2
appliquant le critére (4) de 7.2, on obtient :

autre que (voir fin de 8.1 f); c’est aussi celui des représentations

o _ si d impair
ZXS md((x+oc3+--°+062”'*1) si d pair

ol o désigne une racine n'®™° primitive de 'unité.
Quand d est pair, deux cas se présentent :

n' (qui doit étre pair) supérieur & 2: ¥ #(S?) = 0
s

n=2: ¥ y(8)=—md2=—g .
s

Daig ce dernier cas, d est une puissance de 2

En définitive, ® admet 99529) représentations irréductibles, sans points

fixes, non équivalentes & 'imaginaire conjuguée (troisiéme catégorie), ou
équivalentes a 'imaginaire conjuguée, mais & aucune représentation réelle
(deuxiéme catégorie). Les représentations orthogonales, sans points fixes,
irréductibles dans U"(n), ont toutes le degré 2d. Elles sont en nombre

rp(g) dans le premier cas, plg) _m—1 dans le second (ou

d? d

egal at
= 2).

8.3. Existe-t-il un entier m, tel que le groupe Gm (groupe multipli-
catif des classes de congruences modulo m, premiéres au module) con-
tienne un élément d’ordre d donné?

La réponse est affirmative ; il y a méme une infinité d’entiers répondant
a la question. Il me suffit ici, d’établir I’existence d’une infinité d’entiers
m, premiers impairs, tels que ¢@(m) = A(m) = m — 1 soit divisible par
d. Or, tous les nombres premiers (en nombre infini, d’aprés Dirichlet) de
la progression arithmétique 1 + kd répondent & la question. Soit m I'un
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d’eux, r un reste modulo m d’ordre d dans Gm. Le groupe & du premier
type, d’ordre ¢ = mdn’ défini par:

A™ =K Bir' — F BAB = Ar

ou n', premier & m, est multiple des facteurs premiers de d, admet tp;zg)

représentations irréductibles (unitaires), sans points fixes, de degré d. Les
représentations orthogonales correspondantes, irréductibles dans U (n),
sans points fixes, non équivalentes, sont de degré 2d et en nombre égal & :

%tp(g) si n’¢2,(p€§g) =m;1 si n'=2.

® admet des représentations orthogonales, sans points fixes, pour tous
les degrés 2kd et pour ceux-la seuls. Je dirai de & qu’il est relatif a la
dimension 2d — 1; il n’apparait pas comme groupe de rotations sans
points fixes d’une sphére de dimension inférieure. Le nombre de repré-
sentations orthogonales, sans points fixes, non équivalentes, pour le
degré 2kd est égal au nombre de combinaisons k£ & k, avec répétitions,

des % Lk (g) (‘p;g) si n/ = 2) représentations orthogonales irréductibles.

J’obtiens le :

Théoréme II: Toute sphére de dimension itmpaire (supérieure @ 1) agmet
une infinité de groupes finis de rotations sans points fixes, non abéliens, ne
se présentant pas pour des dimensions inférieures.

Pour illustrer ce théoréme, je vais construire quelques exemples. Mais
auparavant, je fais une remarque qui sera précisée apres 1’étude compléte
des groupes du premier type (il s’agit ici de groupes du premier type dont
le groupe des commutateurs est d’ordre premier). Si d est pair (= 0 mo-
dulo 2), ® est relatif & la dimension 2d — 1 = —1 ou -+ 3 modulo 4;
quel que soit k£, 2kd — 1 = + 3(4). ® n’apparait que pour des spheres
S2kd-1 dont la dimension est =3(4). Si d est impair (=1 modulo 2),
® est relatif & la dimension 2d — 1 = 4+ 1 modulo 4; mais 2kd — 1
= —1 ou -+ 1 'suivant que k est pair ou impair. ®, relatif & une sphere
de dimension = 1(4), apparait aussi pour des sphéres dont la dimension
est alternativement =1 ou = 3(4).

Voici le gréupe de rotations sans pornts fizes de S5, non cyclique, d’ordre
minimum. 2d — 1 = 5 donne d = 3; le plus petit nombre premier de
la progression arithmétique 1 4 3k est m =7; 7= 36, on peut
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choisir pour 7 les valeurs 2 ou 4, seuls restes d’ordre 3 dans 7 (groupes
isomorphes si »’ impair, voir fin de 4.6) n» = 3n’; a’ doit étre multiple
de 3 pour qu’il existe des représentations sans points fixes: n’ = 3n”
(n” premier & 7), n = 9n”. Pour n” = 1:

A" =H B*=F BAB- = A4?

@ (9)
dz
tibles, unitaires, de degré 3, sans points fixes, non équivalentes & 'ima-

ginaire conjuguée, données par :

= 4 représentations irréduc-

Ce groupe est d’ordre 63 ; il admet

A 0 O 01 0
=| 0 A% O B=§10 0 1
0 0 At x« 0 0

ou A désigne une racine primitive d’ordre 7 de I'unité (les diverses valeurs
de A ne conduisent qu’a deux caractéres distincts), « une racine primitive
d’ordre 3 (deux possibilités). Les représentations orthogonales irréduc-
tibles sont au nombre de deux (non équivalentes), de degré 6. S® admet
deux groupes de rotations non équivalents de ce type. Ce groupe se pré-
sente également pour S, 817, ... S8-1 . pour S'1, par exemple, on

obtient —?—% = 3 représentations orthogonales non équivalentes.

Pour n” quelconque (mais premier & 7), on obtient une infinité de
groupes différents, d’ordres 63x#”, de rotations sans points fixes de S5.
Sin” est pair, il faut considérer en outre les groupes: A7 = B, B = E |
BAB-1'= A%, d’ordres 63n”, non isomorphes aux précédents.

Comme deuxiéme exemple, je forme le groupe suivant :
A»® =F B® =F BAB-! = A

Son ordre est g = 29.49 = 1421 ; on vérifie que 167 = 1 (modulo 29).

Ce groupe admet ?(9) = 24 représentations irréductibles (unitaires),
group p

dz
sans points fixes, de degré 7, non équivalentes & 1'imaginaire conjuguée.
11 est relatif @ la dimension 13. C’est 'exemple annoncé en 5. 4, d’un groupe
du premier type d’ordre premier & 120, admettant en outre des représen-
tations sans points fixes.

166



J’indique encore le groupe du premier type (non cyclique) d’ordre le plus
petit, admettant des représentations sans points fixes. C’est :

A3 =E bt == B BAB-1= A4

d’ordre 12, isomorphe au groupe binaire D) (6.1). Il est relatif & S3:et

admet ?9) _ 1 représentation irréductible, sans points fixes, de degré 2,

d2
a caractere réel, donc équivalente a I'imaginaire conjuguée mais & aucune
représentation réelle. C’est avec 312 le seul du premier type de cet ordre
(il y a 5 groupes d’ordre 12).

Remarque : Les groupes de rotations sans points fixes relatifs & §24-1
sont en nombre infini pour deux raisons : I’ordre du groupe des commuta-
teurs ®’ peut étre choisi d’une infinité de fagons et il en est de méme pour

Pordre de G/®'.

8.4. Pour achever I’étude des groupes du premier type, il reste & con-
sidérer le cas ou 'ordre m de G’ est un nombre impair composé.

Il faut choisir » de telle sorte que r, r — 1 et 'ordre d de r dans Gm
(3.1) soient premiers a m (ce choix est possible quel que soit m impair ;
on prendra au besoin r = — 1 d’ordre 2). d est diviseur de A(m), ’expo-
sant de ®m. L’indice » du groupe des commutateurs doit étre multiple
de d, égal & dn’ avec (n’,m) = 1. Le groupe ® est défini par:

Am = E Bin' — F BAB-' = Ar . (5)

Son ordre est ¢ = m dn’. La répartition de ses éléments en classes d’élé-
ments conjugués est plus compliquée que pour m premier (8.1 et 8.2).
Soit m, un diviseur quelconque de m, r; le reste de r modulo m,, d; ’ordre
de r; dans ®m; (pour m; = 1, je pose par convention d, = 1). Je vais
établir le théoréme :

/
® admet —(E(ﬂ%@— représentations irréductibles (unitaires) de degré d;,
d;
ou A™ et ses puissances sont, seules parms les puissances de A , représentées
par la matrice E . Le nombre total des représentations irréductibles de ® est

. /
égala > Y —ggn—zé—)éin— , la somme étant étendue a tous les diviseurs m,; de m
i

(y compris 1 et m). C’est le nombre N des classes d’éléments conjugués.
Ce théoréme est vrai pour m premier, ainsi qu’il résulte de 8.2, les repré-
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m — 1

sentations irréductibles étant n’ de degré d et dn’ de degré 1, au

total :

d
m — 1
d

n 4+ dn' .

Je procéde par induction compléte sur le nombre des facteurs premiers de
m, en supposant le théoréme établi pour tous les groupes du type consi-
déré ou ’ordre du groupe des commutateurs est un diviseur m, (<<m) de
m

m . Le sous-groupe {A™}, d’ordre du groupe cyclique G’ d’ordre m

?

est caractéristique, donc sous-groupe invariant de ® . Le groupe-quotient
® /{A™} est d’ordre m;dn’ et donné par:

A™ = E Bin' — g BAB-! = A7 . (6)

Ses représentations irréductibles induisent des représentations de &

également irréductibles ( X x(8) % (S8) = —g— m; dn’ = mdn’ = g) dans
s i

lesquelles A™ et ses puissances sont représentés par la matrice . J’ap-

plique I’hypotheése d’induction & & /{4A™} (m;<m); le nombre des re-

présentations irréductibles correspondantes de & ou aucune puissance de

/
A avant la m,/*™° n’est représentée par E est (pw———m(ml;l dn . La formule (3)
de 7.1 donne alors: i
N
Sdi= X om)dn + X af =g =mdn’ (7)
i1

la premiére somme étant étendue a tous les diviseurs de m inférieurs & m,
la deuxiéme aux représentations (en nombre et de degrés inconnus) ou
aucune puissance de 4, #* K, n’est représentée par la matrice unité. Or
3 @(m;) =m; la relation (7) s’écrit : [m — @(m)] dn’ + X % =mdn’
mi/m
ou ¥ 2% = p(m)dn’.

On montre d’autre part comme en 8.2 que les ¢ (m) puissances de 4

p-d Y V4 . m
d’exposants premiers & m se répartissent en A d ) classes contenant

chacune d éléments (4,A",...,A™ " par exemple). Le nombre des re-

@ (m)

présentations inconnues est supérieur ou égal 3 ~q n', leurs degrés
divisibles par d (avec A, A admet A7, A™",.. ., A" comme valeurs pro-

pres). La seule possibilité en accord avec ¥ a3 = @(m) dn’ est :?—(am—ln’
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représentations irréductibles de degré d. Comme ce nombre est égal &

4
Z)—(—f-%@-—, le théoréme est établi.
® admet P (m) n' représentations irréductibles de degré d on aucune puis-

d
sance de A, # E , n’admet la valeur propre + 1. Les valeurs propres de A
sont en effet racines m*™* primitives de I'unité, sinon une puissance de 4,
# E, serait représentée par la matrice unité.

Je vais montrer que les puissances de B non contenues dans le centre
{B?} ont le caractere nul dans toutes ces représentations.

Si m = p* (p premier impair), ®m est cyclique d’ordre ¢(m) =
p*~1(p — 1). La condition r, r — 1 et d premiers & m entraine d diviseur
de p — 1. Gm a un seul sous-groupe d’ordre p — 1 (cyclique done iso-
morphe & ®p); on l’obtient en élevant les éléments de G m & la puissance
p*~! (d’ott ’homomorphisme Gm — Gp). Soit m, = pf 0<f<a un
diviseur de m ; r,, reste de r modulo m,, est d’ordre d dans Gm; (consé-
quence de ’homomorphisme ®m; - Gp). Un groupe & donné par les
formules (5), o m = p*, admet des représentations irréductibles de
degré 1 et de degré d. La répartition de ses éléments en classes d’éléments
conjugués est la méme que pour m premier (voir tableau (4) en 8.2).
Toutes les puissances de B, non contenues dans le centre, ont le caractére
nul dans les représentations de degré supérieur a 1.

Sim contient des facteurs premiers différents, ® m n’est plus cyclique et
le groupe ® donné par les formules (5) admet des représentations irréduc-
tibles de degrés divers. Soit d; (1 <d;<d) le degré d’une de ces représen-
tations irréductibles et m, le plus grand diviseur de m tel que 1’ordre de r;
dans Gm, soit égal & d;. Le groupe &/{4™}, donné par les relations (6),
admet pour centre {B%}. L’élément B*% est seul dans sa classe, les
B*iAr(u=1,2,...,m; — 1) se répartissent en classes d’éléments
conjugués de la méme maniére que les A*. Dans ®, les m éléments

B*di gp (,u =1,2,...,m; k fixe premier & ;—) se répartissent dans les

mémes classes, le nombre d’éléments dans chaque classe étant multiplié

m 3 . y . m V4
par ——. Clest ainsi que la classe de B*% contient les —— éléments :
t i

m
. . , . — —1)m . . .
B*di Bkdigmi - Bk A(”"' ) ; la classe qui contient B*% A
m
. . R . ., {1 mg
contient aussi: B¥H grtmi BEdi 4 (’”‘ ) .

J’en déduis deux conséquences importantes. Tout d’abord, le normali-
sateur dans & de B*?% est d’ordre m;dn’. Or, B*% étant dans le centre
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de &/{A™}, la somme des y,(B*%)7%,(B*%) étendue aux représenta-
tions irréductibles de ®/{A4™} (qui induisent des représentations irré-
ductibles de &) donne I’ordre m,dn’ de ce groupe. Il résulte de la relation
d’orthogonalité (2) de 7.1 que B*% a le caractére nul dans toutes les

autres représentations irréductibles de & . En particulier, dans les ﬂo—;—nl n'

représentations irréductibles qui nous intéressent (voir plus haut), toute purs-
sance de B non située dans le centre a un caractére nul. Il en est de méme
pour les BYA* a& condition que BY n’appartienne pas au centre.

m
2 1\
D’autre part, dans la suite B*% Ar, B¥% gp+mi = Bkdi AM('M Jmi

d’éléments appartenant & la méme classe, il en est un ou I’exposant de 4

et deux

est multiple de —:—nn— . Ces exposants sont en effet en nombre ™

i
a deux incongrus (modulo m) ; Pun est =0 ( m ) Or, BAB*=A4r
m m Jdip ™ , \
entraine B¥% 4™ B~k — 4™ = = 4™ en vertu de r%=1(m,); B*%
m

est permutable avec A™ | Toute classe de & qui renferme un B¥A#,
renferme un B*AF | ow BY est permutable avec A* .

Les raisonnements de 8.1 e) f) g) sont dés lors applicables. Le caractére
de toute puissance de B non contenue dans le centre étant nul, les valeurs
propres de B se répartissent aux sommets d’un polygone régulier de d cotés.
La condition nécessaire et suffisante pour qu’elles puissent étre toutes primia-
tives est que n' soit multiple des facteurs premiers de d. Il existe alors

(m) ¢(9)

A
représentations irréductibles de degré d ou aucune puissance de 4 ou de B,
# B, n’admet la valeur propre -+ 1 ; la deuxiéme remarque prouve que la
valeur propre 41 ne peut intervenir dans aucune classe % E (B’A* a
pour valeurs propres le produit des valeurs propres de B” et A*" qui sont
d’ordres différents, les ordres de A et B étant premiers entre eux). Ces
?ia(_zg_) représentations irréductibles sont sans points fixes. De plus, et ceci
est essentiel, ’application du critére ¥ x(S%) = cg (7.2), montre qu’elles

S

appartiennent & la troisieme catégorie (non équivalentes & 'imaginaire
conjuguée) si n’>2 et & la deuxiéme (équivalentes & 1'imaginaire con-
juguée mais & aucune représentation réelle) si n’ = 2. Résumons ces
résultats dans les deux théorémes suivants :
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Théoréme III: La condition nécessaire et suffisante d’existence de re-
présentations sans points fixes d’un groupe & fini, du premier type, non cy-
clique, d’ordre ¢ = mdn’, défini par:

A™ = E B = F BAB- = A4r

own',r, r — 1,d (ordre de r dans ®m) sont premiers & m, est que n’ sott
multiple des facteurs premiers de d?2).

Théoréme III*: Sv un groupe & fine, du premier type, non cyclique,
admet une représentation sans points fixes :

a) toutes ses représentations vrréductibles fidéles somt sans points fixes ;

b) elles ont toutes le méme degré d, diviseur de Uordre g du groupe ;

?(9) .

az ’
d) elles ne sont pas équivalentes a des représentations réelles et sont ou ne
sont pas équivalentes a I'imaginaire conjuguée selon que n’ = 2 ou n'>2.

c) leur nombre est égal a

Les représentations orthogonales de &, irréductibles dans U”(n), sans
points fixes, sont de degré 2d et en nombre (non équivalentes) égal &

%Ld(zg) si n'>2, ?9) si n’ = 2. @ est relatif & la dimension 2d — 1 et

d2
apparait comme groupe de rotations sans points fixes pour toutes les
dimensions 2kd — 1.

Signalons en particulier cette conséquence : les seules formes spatiales
sphériques de dimensions paires sont I'espace sphérique et 1’espace ellip-
tique (voir 7.3 et le théoréme I en 7.4 pour les formes & groupe fonda-
mental du deuxiéme type).

A titre d’exemple, le groupe & défini par:

A% = F B = F BAB-1 = A

d’ordre ¢ = 4207, admet: 12n’ représentations irréductibles de degré
1, 3n’de degré 4, 8n' de degré 3, 2n' de degré 12. 2¢(n’) des représen-
tations de degré 12 sont fidéles. Si »’ (premier & 35) est multiple de 6, ces
représentations fidéles sont sans points fixes; »n’ = 6, par exemple, con-
duit & un groupe d’ordre 2520 admettant 4 représentations irréductibles,
sans points fixes, de degré 12, non équivalentes & 1’'imaginaire conjuguée.
Ce groupe est relatif & la dimension 23 (2.12 — 1) et admet deux repré-
sentations orthogonales, sans points fixes, non équivalentes, irréductibles
dans U7(24), de degré 24.

26) Cette condition est indiquée par Burnside [6], qui 'obtient par une tout autre mé-
thode.
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§ 9. Groupes du deuxiéme type, en particulier de la classe (x)

J’ai proposé, & la fin de 5.7, une répartition des groupes & du deuxiéme
type (groupes finis dont les p-sous-groupes de Sylow sont cycliques pour
p # 2, quaternioniques pour p = 2) en trois classes : les deux premiéres
(«) et (B) renfermant les groupes métabéliens de rang 2, la troisiéeme (y)
les groupes métabéliens de rangs 3 et 4 et les groupes non résolubles. Je
vais m’attacher surtout a la classe (x) et établir des théorémes trés ana-
logues & ceux régissant les groupes du premier type.

9.1. Rappelons qu'un groupe ® du deuxiéme type est dit de la classe
(x) si &’ cyclique est contenu dans un sous-groupe invariant cyclique
d’ordre double. Il est donné par (relations (6) en 5.7):

A* T = | B = 4?7 BAB-1 = Ar (1)

avec les conditions numériques :

«>=>3, (u,m)=1, w et n impairs

riv=102*n) r=-—1(02*1Y) (r—1, 2*1p)=2

Son ordre est ¢ = 2*nwu. Le groupe des commutateurs &' = {42} est
cyclique d’ordre 2*2n, le groupe-quotient /G’ abélien d’ordre 4u et
de type (2, 2, u). A™ et B* engendrent 1'un des 2-sous-groupes de Sylow,
tous isomorphes & Q2.

Je pose 2°-1n = m, multiple de 4 4 cause de « > 3, et je désigne par
d Vordre de r dans Gm (3.1): ¢ = 1(m). Il résulte des conditions
numériques qui accompagnent les relations (1) que d est pair, conséquence
de r= —1(2*1), et que 2u est multiple de d (2 = 1 modulo m).
Comme u est impair, d est divisible par 2 et non par 4: d = 4k + 2. De
plus, 2u = du’ avec w’ impair et méme premier & m. Les relations
deviennent :

Am = E B = 42 BAB-!' = Ar (2)

m = 2*'n (n impair, « > 3) étant donné, il faut choisir » de telle sorte
que 7, ’_'_%l , —g— soient premiers & m, et que r soit congru & — 1 modulo
2«1, Alors d, I’ordre de r dans Gm, est de la forme 4%k + 2. Un tel choix
est possible quel que soit m (multiple de 4) ; on prendra au besoin r = —1

d’ordre 2. Il faut choisir en outre »’ premier & m.

161

11 Commentarii Mathematici Helvetici



Sous cette forme, I’ordre de G est g = mdu’. Remarquons que ’ordre
de B est égal & 2du’. Je désigne par m; un diviseur quelconque de m,
par 7, le reste de » (modulo m,;) par d,’ordre de r, dans ®m, (pour m; = 2
ou 1, je pose d; = 1). Des raisonnements trés analogues & ceux exposés
au § 8 pour les groupes du premier type conduisent au théoréme :

Le groupe ® donné par les relations (2) ci-dessus admet en tout

@ (m;) du’

> 2

mifm
représentations irréductibles (unitaires) de degrés d;, diviseurs de d ;
‘P( ) @ (u/)

sont fidéles et de degré d.

La recherche des représentations sans points fixes aboutit aux deux
théorémes suivants :

Théorédme 1V : La condition nécessaire et suffisante d’existence de repré-
sentations sans points fixzes d’un groupe ® fini, du deuxiéme type et de la
classe (), d’ordre g = m du', donné par les relations (2) ci-dessus, est que
u’ (premier & m) soit multiple des facteurs premiers impairs de d.

Théoréme IV*: Si un groupe ® fini, du deuxiéme type et de la classe (x),
admet une représentation sans points fizes :

a) toutes ses représentations irréductibles fidéles somt sams points fixes;
b) elles ont toutes le méme degré d, diviseur de Uordre g du groupe ;
¢(9) .
a ’
d) elles ne sont pas équivalentes a des représentations réelles et sont ou ne
sont pas équivalentes & U'imaginaire conjuguée selon que v’ =1 ou o' >1.

c) leur nombre est égal a

Précisons que »’ = 1 n’est possible que si d = 2 et que ce cas se pré-
sente effectivement pour les groupes quaternioniques (7.4) et plus géné-
ralement pour ceux des groupes diédriques binaires qui sont du deuxiéme
type (6.1). .

Les représentations orthogonales irréductibles correspondantes ont
toutes le degré 2d (de la forme 8% -+ 4) et sont en nombre (non équl-

valentes) égal a 1 = qo(g) si u'>1, qod(zg) = <pfig) si u' =1.
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9.2. Avant de construire un exemple relatif au théoréme IV, je vais
montrer qu’inversément, pour toute valeur d = 4% 4+ 2 donnée, on peut
trouver une infinité de groupes du type considéré, ce qui conduit au :

Théoréme V : Toute sphére S8%+3 dont le nombre de dimensions est congru
a 3 (mod. 8), admet une infinité de groupes finis de rotations sans points
fizes, du deuxiéme type et de la classe (x), ne se présentant pas pour des
dimensions inférieures.

Il existe une infinité d’entiers premiers » tels que @(n) =n — 1 soit
divisible par d = 4k 4 2 (8.3). Choisissons pour m l'une quelconque
des valeurs 2*-'n (x > 3). Si 'on peut trouver un r vérifiant les condi-
tions qui accompagnent les relations (2) de 9.1, le théoréeme est établi.

L’ordre de ®m est ¢(2*1n) = 2*-2(n — 1). Réduisons ses éléments
modulo 2%-1; on réalise un homomorphisme de Gm sur 2*! (d’ordre
22-2). Le noyau R de cet homomorphisme est le sous-groupe invariant de
®m formé des éléments =1 (modulo 2*-1); son ordre est n — 1 et
comme ses éléments sont incongrus deux & deux modulo » (ils sont tous
congrus & 'un d’eux modulo 2*-! mais incongrus deux a deux modulo
2%-1p) il est isomorphe au groupe cyclique ®n d’ordre n — 1.

I1 faut choisir » parmi les éléments = —1 (modulo 2*-1). Or ceux-ci
forment la classe € de Gm/M qui contient —1; on les obtient en
multipliant ceux de M par —1. L’ordre d’un tel élément est celui
de I’élément correspondant de M si celui-ci est pair, son double #’il est
impair. Or dans RN (cyclique d’ordre » — 1) existe un seul sous-groupe

d’ordre d et par conséquent ¢(d) éléments d’ordre d et ¢ (d) p(d)
éléments d’ordre g (impair). La classe € renferme 2¢(d) éléments d’ordre
d, qui tous peuvent étre choisis pour 7 si d # 2, car le seul élément de

— . ; r—1_ —2
€ =1(n), donc tel que 4 5 ! ne soit pas premier & m (r 5 =3

= — 1 modulo 221 est premier & 2! ), est d’ordre 2. Si d= 2, la seule

valeur admissible pour r est — 1. C’est la valeur que ’on rencontre pour
tous les groupes de ce type relatifs & §%. Il existe dans tous les cas, des
valeurs de r vérifiant les conditions imposées, le théoréme est établi.

Remarques : 1. Les diverses valeurs de r peuvent conduire & des groupes
isomorphes (voir fin de 4.6). :
2. Les groupes qu’on peut ainsi construire sont en nombre infini pour
deux raisons : ’ordre du groupe des commutateurs peut étre choisi d’une
infinité de facons, ainsi que l'ordre du groupe-quotient correspondant.
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3. Le groupe ®m joue, comme pour ® du premier type, un roéle
essentiel. .

9.3. Je vais construire, a titre d’exemple, le groupe de rotations sans
points fizes, du deuxiéme type et de la classe (x), non relatif & S3, d’ordre
minimum.

11 est relatif o S et correspond & d = 6; n vaut 7, 13,19, 31,... Je
choisis » = 7 et m = 28; les valeurs admissibles pour 7 sont 3, 11, 19,
23 (en nombre égal & 2¢(6) = 4):3 et 19 ainsi que 11 et 23, conduisent
a des groupes isomorphes si %’ est premier & 5. J’obtiens entre autres le
groupe défini par:

A8 =F Bt = A1 BAB = 4?

(9)

d’ordre g = 168%’, admettant 36 représentations irréductibles sans

points fixes, de degré 6, si u’ (premier & 28) est multiple de 3 (seul facteur
premier impair de 6).

Pour 4’ = 3, ® est d’ordre 504 et admet 4 représentations unitaires,
sans points fixes, de degré 6; d’ou 2 représentations orthogonales sans
points fixes, non équivalentes, irréductibles dans U7(12), de degré 12.
® apparait pour S, 823,..., S1k-1 . Ses 2-sous-groupes de Sylow
sont isomorphes & Q8.

Voici des groupes de rotations sans points fixes relatifs a S'*, dont les
2-sous-groupes de Sylow sont isomorphes &4 Q32; m= 16-7 = 112:

AUuz — Btvw' — A58 BAB- —= Ar

r vaut 31, 47, 79 ou 95 (les deux premiéres valeurs et les deux derniéres
conduisent & des groupes isomorphes si «’ est premier & 5). «/, premier &
112, doit étre multiple de 3; ' = 3 conduit & un groupe d’ordre ¢ =
2016 admettant 16 représentations irréductibles de degré 6.

9.4. Il est trés probable que des résultats analogues pourraient étre
obtenus pour les groupes du deuxiéme type des classes (8) et (y).

Je me contente de signaler que les groupes binaires du tétraédre, de
Poctaédre et de l'icosaédre (§ 6), qui appartiennent & la classe (y), ad-
mettent des représentations irréductibles (unitaires), sans points fixes,
de degré 2. Comme groupes de rotations sans points fixes, ils sont relatifs
a 83. Ainsi T* admet 3 représentations irréductibles de degré 1, 1 de
degré 3 (non fidéle) et 3 de degré 2; deux des représentations irréduc-
tibles de degré 2 sont sans points fixes. Fait remarquable, ce nombre

?(9)

est égal & F
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Chapitre IV
Applications

§ 10. Quelques corollaires des théorémes fondamentaux

Je déduis des théorémes I & V des conséquences relatives aux groupes
finis de rotations sans points fixes de la sphére S 4 n dimensions. Pour
les dimensions paires, j’ai retrouvé plus haut la propriété connue que seuls
interviennent le groupe cyclique d’ordre 2 (groupe fondamental de 1’es-
pace elliptique, non orientable pour » pair) et le groupe se réduisant a
I’identité (groupe fondamental de l’espace sphérique simplement con-
nexe). Pour les dimensions » impaires, il importe de distinguer deux cas:
n=1 et n =3 (modulo 4), c’est-d-dire les dimensions de la forme
4k + 1 et 4k + 3.

10.1. Les groupes du premier type sont étudiés complétement au § 8,
au point de vue de leurs représentations sans points fixes. Les théorémes I
en 7.4, IT en 8.3 et III en 8.4, permettent d’énoncer le:

Théoréme VI: Les groupes finis de rotations sans points fixes d’une
sphére S¥%+1 sont tous du premier type (cycliques ou non abéliens). Il s’en
présente de nouveaux, en nombre infini, pour toute dimension 4k + 1 et
leur recherche se raméne & un probléme purement arithmétique.

10.2. Les sphéres S*+3 admettent une infinité de groupes finis de
rotations sans points fixes, du premier et du deuxiéme type. Pour le
premier type, il s’en présente de nouveaux, en nombre infini, pour toute
dimension 4% + 3; pour le deuxiéme type, j’ai montré en 9.2 (théo-
reme V) que, pour toutes les dimensions 8k 4 3, apparaissent des
groupes nouveaux de la classe (x) et j’ai donné la possibilité de les
construire.

Un groupe ® du premier type (non cyclique), admettant des représen-
tations irréductibles (unitaires), sans points fixes, de degré d, est relatif &
la dimension 2d — 1. Il admet des représentations (réductibles) comme
groupe de rotations sans points fixes pour toutes les dimensions 2hd — 1
et pour celles-la seules. Si d est pair, 2d — 1 et 2hd — 1 sont =3
(modulo 4) ; si d est impair, 2d — 1 est = 1 (modulo 4) et 2Ad — 1 est
congru & 1 ou 3 suivant que % est impair ou pair.

Théoréme VII: Un groupe fini ® de rotations sans points fixzes, du
premier type, relatif & une sphére S4%+3 ne se présente pour aucune sphére
S+ Dans les mémes conditions, si le groupe ® est relatif o une sphére
S4k+1 4l ge présente alternativement pour des sphéres S4+1 ef S4+3,
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En particulier, aucun groupe &, non cyclique, de rotations sans points
fizes de la sphére S3 ne se présente pour une sphére S¥*+1 (voir 10.4). Si G
est du deuxiéme type c’est immédiat et si & est du premier type, il est
relatrf & la dimension 3.

10.3. Un groupe de rotations sans points fixes d’ordre impair est du
premier type, car ’ordre d’'un groupe du deuxiéme type est divisible au
moins par 8. S’il n’est pas cyclique, le degré de ses représentations ortho-
gonales sans points fixes est divisible par un entier d>1 impair, ce qui
exclut les degrés 27.

Théoréme VIII: Les groupes d’ordre impair de rotations sans points
fizes d’une sphére de dimension 2" — 1 sont tous cycliques. Par contre,
toute sphére dont la dimension est un mombre impair qui n’est pas de la
forme 2® — 1 admet une infinité de groupes d’ordre impair, non abéliens,
de rotations sans points fixes.

La premiére partie de ce théoréme est la généralisation d’un théoréme
relatif 4 S% démontré par M. H. Hopf??).

10.4. Le groupe ® fini admettant des représentations réelles sans
points fixes est du premier ou du deuxiéme type (2.5). S’il est du premier
type, ses représentations réelles sans points fixes sont de degrés 2kd, d
étant le degré des représentations irréductibles (unitaires) sans points
fixes (théoréme IIT* 8.4). S’il est du deuxiéme type, ses représentations
réelles sans points fixes sont de degrés multiples de 4 (théoréme I 7.4).

On en déduit le théoréme suivant, di & M. H. Hopf®) ; il le démontre
par voie topologique, comme cas particulier d’un théoréme sur les
groupes d’automorphismes sans points fixes des variétés admettant les
mémes groupes de Betti (ordinaires, c’est-a-dire relatifs & ’anneau des
entiers rationnels) que la sphére S :

Théoréme IX : Su le groupe fint ®, non cyclique, admet une représenta-
tion réelle sans points fixes de degré 2d,, il n’admet aucune représentation
réelle sans points fixzes de degré 2d, ou d, est premier & d, .

Ajoutons la remarque suivante :

St ® est du premaer type ou du deuzxiéme type et de la classe (x), les degrés
des représentations réelles sans points fixes de & sont les multiples du double
2d du degré d de ses représentations vrréductibles (unitarres) (théorémes
ITI* 8.4 et IV* 9.1).

27) [1] p. 325.
) [9] 15.5 p. 76.
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Le cas particulier d, = 2, signalé par M. Hopf, exprime qu’aucun
groupe de rotations sans points fixes de S ne se présente pour une sphére
S4+1 (rencontré en 10.2 comme conséquence du théoréme VII).

10.5. Une rotation de S%¥-1 est une translation au sens de Clifford si
les valeurs propres de la matrice représentative (de degré 2d) sont égales
a 'une d’elles ou & 'imaginaire conjuguée ; plus exactement, d d’entre
elles doivent étre égales & A = ei® et d & 4 = e, Une telle translation
est caractérisée géométriquement par le fait que tout vecteur réel subit
une rotation d’amplitude « ; elle est, par définition méme, sans points
fixes.

Existe-t-il des groupes finis formés uniquement de telles translations?
La réponse est affirmative ; les groupes quaternioniques admettent des
représentations de cette nature, comme il résulte de 7.4.

Je vais établir la propriété suivante, conséquence d’'un théoreme topo-
logique de M. E. Stiefel #) :

Théoréme X : Il n’existe aucun groupe fint, non cyclique, de rotations

d’une sphére S¥+1 dont les éléments soient tous des translations (au sens de
Clifford).

‘J’ajoute ce complément :

Les groupes de rotations du premier type (non cycliques) et du deuxiéme
type classe (x), formés uniquement de translations, sont les groupes diédri-
ques binaires (6.1) ; ils sont relatifs a S3.

Démonstration : Soit ® un groupe fini, non cyclique, de translations et
I" I'une de ses composantes irréductibles (unitaire). Le degré de I est
supérieur & 1 (sinon il y aurait des points fixes). Il résulte d’'un théoreme
de Burnside ) que I" renferme un élément au moins dont le caractére est
nul. Soit B I’élément correspondant de & ; ses valeurs propres dans I
sont A et 4 (en nombre non nécessairement égal, il pourrait y avoir com-
pensation avec la représentation complexe conjuguée). Or, le caractére
devant étre nul, ces valeurs propres ne peuvent étre que et —¢ en
nombre égal. Le degré de I" est pair. De plus I'ordre de B est 4 (B* a des
valeurs propres - 1); 'ordre de & est donc lui-méme divisible par 4.

Pour la premiére partie du théoréme, seuls interviennent les groupes ®
du premier type (théoréme VI 10.1); les représentations irréductibles
(unitaires) sans points fixes de & sont toutes de méme degré d, celui de

29) E.Stiefel, Richtungsfelder und Fernparallelismus in n-dimensionalen
Mannigfaltigkeiten, Comment. Math. Helvet. 8 (1935 /36), Satz 27.
30) Proceedings of the London Math. Soc., New Series, Vol. I, p. 115.
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I', done pair. ® est relatif & une sphére S4+3 et ne se présente pour aucune
sphére S4+1 (théoréme VII 10.2).

Pour la deuxiéme partie, supposons tout d’abord & du premier type ;
Pélément B, d’une classe qui engendre ®/®’ a le caractére nul dans
toute représentation irréductible sans points fixes (8.4). B est d’ordre 4
et ® du type défini par les relations (3) en 6.1. Pour un groupe ® du
deuxiéme type et de la classe (x), il en est de méme pour I’élément B,
d’une classe engendrant &/{4}. B est d’ordre 4 et ® du type défini par
les relations (2) en 6.1.

Les autres groupes polyédriques binaires (§ 6) admettent également
des représentations comme groupes de translations (de degré 4). Ils ap-
partiennent au deuxiéme type, classe (y). Peut-étre n’en existe-t-il pas
d’autres, mais je n’ai pas encore pu le démontrer.

§ 11. Le point de vue topologique

11.1. Le probléme de topologie & la solution duquel les résultats ci-
dessus apportent une contribution est le probléme spatial de Clifford-
Klein, ainsi nommé par Killing3?).

Il s’agit de déterminer les variétés V & n dimensions, connexes et sans
frontiére, métrisables par un ds? défini positif, & courbure riemannienne
constante, et les géométries ainsi définies. De telles variétés sont locale-
ment applicables sur ’espace euclidien, hyperbolique ou sphérique. On
exclut les variétés qui se déduisent de V en supprimant un ensemble fermé
de points (la variété restant connexe) et en conservant la métrique, par
Pexigence que sur toute géodésique passant par un point P quelconque de
V on puisse reporter, dans les deux sens, tout segment positif a. C’est
ainsi que le plan cartésien (homéomorphe & la sphére pointée) muni d’une
métrique sphérique par projection stéréographique de la sphere, ne sera
pas considéré comme définissant une géométrie différente de la géométrie
sphérique. Dans ces conditions, V est dite variété de Clifford-Klein et la
géométrie ainsi définie, forme spatiale de Clifford-Klein.

Le théoréme fondamental, di & Killing, et précisé par M. H. Hopf dans
le travail cité3!), exprime que la totalité des formes spatiales de Clifford-
Klein peut s’obtenir en cherchant les groupes discontinus de déplace-
ments de I’espace V euclidien, hyperbolique ou sphérique (au sens de la
géométrie sur V), sans points fixes, sauf pour le déplacement identique,
et tels que I’ensemble des images d’un point de ¥ par les opérations du
groupe ne présente jamais de point d’accumulation sur V. Un tel groupe

31) Voir & ce propos l'introduction et le § 1 du travail de M. H.Hopf [1].
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® définit une variété V, admettant V comme espace de recouvrement uni-
versel (simplement connexe), le groupe des transformations de recouvre-
ment étant &, isomorphe au groupe fondamental ou groupe de con-
nexion de V.

En particulier, la totalité des variétés de Clifford-Klein a courbure
constante positive, ou formes spatiales sphériques, s’obtient en cherchant
les groupes ® finis de déplacements isométriques (rotations), sans points
fixes, de la sphére & n dimensions S™.

Les groupes ® étudiés dans le présent travail donnent la totalité des groupes
fondamentaux des formes spatiales sphériques.

Les théoremes II 8.3 et V 9.2 prouvent I’existence de nouvelles formes
sphériques pour toutes les dimensions impaires, en ce sens que le groupe
fondamental & n’est isomorphe & aucun des groupes fondamentaux des
formes de dimensions inférieures (voir 11.4).

Il est & remarquer que ces formes spatiales sphériques peuvent se pré-
senter comme espaces de recouvrement les unes des autres. Ainsi une
forme de groupe fondamental ® du premier type admet un espace de
recouvrement régulier, forme de groupe fondamental &’ cyclique (espace
lenticulaire), le groupe des transformations de recouvrement étant /G’
cyclique. Autre exemple : si ® est du deuxiéme type, métabélien de rang 2
(classes (x) et (B)), il admet un sous-groupe invariant i du premier type,
dont ’ordre est la partie impaire de I’ordre de ® (5.5). La forme corres-
pondante admet un espace de recouvrement régulier & 2* feuillets, forme
de groupe fondamental i du premier type, le groupe des transformations
de recouvrement étant isomorphe & Q2* et permutant transitivement les
2« feuillets.

11.2. Un groupe fini ® de rotations sans points fixes de S, d’ordre
pair, contient un et un seul élément d’ordre 2, — E (conséquence de 7.3
et du fait que la représentation est fidéle). Le groupe P formé de £ et — E
est sous-groupe invariant de &. La forme spatiale sphérique correspon-
dante, de groupe fondamental ® (11.1), admet P, l’espace elliptique,
comme espace de recouvrement régulier (8™ étant 1’espace de recouvre-
ment universel, qui recouvre deux fois P"). La forme est dite elliptique (si
® est d’ordre impair, la forme est sphérique mais non elliptique). Le
groupe des transformations de recouvrement est isomorphe & &/,
groupe de déplacements (au sens de la métrique elliptique), sans points
fixes, de Pm. ‘

Ces groupes se déduisent sans peine des groupes de rotations sans
points fixes de 8". Si & est cyclique (d’ordre pair), &/ est aussi cyc-
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lique. Pour ® du premier type (non cyclique), ®&/P est également du
premier type (ne vérifiant plus toujours la condition »” multiple des fac-
teurs premiers de d). Mais pour ® du deuxiéme type, &/P n’est plus du
deuxiéme type, car ses 2-sous-groupes de Sylow sont diédriques (3.2).

Je vais préciser la structure de /P quand il est abélien. Si ® n’est
pas abélien, P doit étre identique au groupe des commutateurs &’-®’
d’ordre 2 entraine ® du deuxiéme type ; j’ai montré en 5.7 que ® est alors
isomorphe au produit direct Q8x Ju (u impair). G/P est abélier de
type (2, 2, u).

Théoréme XI: Les groupes finis, abéliens, de déplacements elliptiques de
P (Pespace elliptique), sans points fixes, sont cycliques ou de type (2, 2, u),
u tmparr.

11.3. Les groupes de Betti B d’une forme spatiale sphérique de
dimension N sont entiérement déterminés par le groupe fondamental @,
le domaine J des coefficients et le nombre N. & étant fini, d’ordre ¢, les
groupes de Betti (ordinaires, c’est-a-dire o J est I’anneau des entiers
rationnels), sont également finis et ’ordre de chacun de leurs éléments est
un diviseur de g 32).

Je vais préciser ici la structure du premier groupe de Betti B! isomorphe
a &/®’. Les propriétés des groupes & du premier et du deuxiéme type
(4.2 et 5.2), ainsi que les théorémes 111 8.4 et IV 9.1, permettent d’énon-
cer le :

Théoréme XII: Le groupe de Betti B!~ G/G’ d’'une forme spatiale
sphérique de groupe fondamental &, est: soit le groupe nul, soit cyclique
d’ordre quelconque m (un coefficient de torsion égal & m), soit abélien de
type (2,2, u) u tmpair (coefficients de torsion 2 et 2u). De plus, si ® est du
premaer type ou du deuxiéme et de la classe (x), relatif a la dimension
2d — 1, Dordre de B! est divisible par IT pYit1, ou d = ITpY est la décom-

i i

position de d en facteurs premaers distincts.

Signalons que méme ’anneau d’homologie d’une forme spatiale sphé-
rique est déterminé par son groupe fondamental. C’est ce qui résulte d’un
travail récent de M. B.Eckmann 33).

11.4. Un probleme qui se présente naturellement est celui de la classi-
fication des formes spatiales sphériques.

32) Ainsi qu’il résulte du travail de M. H. Hopf [9]. _
38) B.Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment.
Math. Helvet. 18 (1945 /46), 232—282.
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On vérifie facilement l'affirmation suivante :

Pour que deux représentations réelles I} et I',, sans points fixes, d’un
méme groupe ® définissent deux formes spatiales tsométriques, il faut et il
suffit qu’il existe un automorphisme x de ® tel que I',(x) soit équivalente
a I'| («x), x désignant un élément quelconque de .

L’étude du groupe des automorphismes de & permettrait en consé-
quence l’énumération des formes spatiales de groupe fondamental &
distinctes au point de vue métrique.

Mais examinons la question de I’équivalence topologique :

Que deux formes spatiales sphériques aient méme groupe fondamental
et méme dimension est évidemment nécessaire pour leur homéomorphie,
mais des exemples bien connus prouvent que ce n’est pas suffisant.

Il résulte d’un théoréme de MM. W.Franz3¢) et G.de Rham?33) que
deux formes spatiales sphériques ne peuvent étre homéomorphes ,,au sens
combinatoire sans étre isométriques.

Si ce théoréme se révélait valable pour I’homéomorphie au sens habi-
tuel, la classification topologique se réduirait a la précédente.
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