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Les groupes linéaires finis sans points fixes

Par Georges Vincent, Lausanne

Introduction
Depuis les travaux de Killing, complétés et précisés par M. H. Hopf1),

on sait que la totalité des formes de Clifford-Klein (espaces complets à
courbure riemannienne constante positive, nulle ou négative) peut
s'obtenir en déterminant les groupes discontinus de déplacements sans points
fixes de l'espace sphérique, euclidien ou hyperbolique.

En particulier, les formes spatiales sphêriques1) s'obtiennent par la
détermination de tous les groupes finis de rotations sans points fixes de la
sphère à n dimensions S71. Au point de vue analytique, cela revient à
étudier les groupes finis de substitutions linéaires homogènes, orthogonales,

n'admettant pas la valeur propre + 1.

Le problème qui fait l'objet de ce travail, soit la recherche des formes
spatiales sphêriques, se ramène par suite à la détermination des groupes
linéaires finis sans points fixes.

On sait que toute représentation linéaire d'un groupe abstrait fini peut
se déduire, par un procédé d'addition connu, des représentations
irréductibles non équivalentes. Le nombre de ces dernières est fini, égal au
nombre des classes des éléments du groupe. En particulier, les représentations

sans points fixes sont les sommes de représentations irréductibles
sans points fixes. Le problème peut par suite se ramener aux suivants :

1° Déterminer les groupes abstraits finis susceptibles d'admettre des

représentations sans points fixes.

2° Déterminer les représentations irréductibles sans points fixes de
chacun de ces groupes. Pour les applications géométriques, il convient de

déterminer le degré de ces représentations, de reconnaître si elles sont
équivalentes à une représentation réelle et, dans le cas contraire, si elles

sont ou non équivalentes à l'imaginaire conjuguée.

*) Ces espaces ont été déterminés complètement, pour la dimension 3, parM.H.Hopf [1]
puis par W. Threlfall et H. Seifert [2], par des méthodes particulières à cette dimension. —
Les numéros entre crochets renvoient à l'indek bibliographique placé à la fin du présent
travail.
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Le premier problème*) fait l'objet des chapitres IetlI. Les groupes qui
admettent des représentations sans points fixes sont relativement peu
nombreux (par exemple, il s'en trouve cinq seulement parmi les quinze
structures non isomorphes d'un groupe d'ordre 24). Leurs sous-groupes
abéliens sont tous cycliques. Cette remarque et le fait qu'un ^-groupe à

sous-groupes abéliens cycliques est cyclique si p ^ 2, cyclique ou qua-
ternionique (voir 1.2) si p 2, permet d'établir par une nouvelle voie
un théorème de Burnside (voir 2.5), base de ce travail. D'après ce
théorème, les groupes cherchés appartiennent nécessairement à l'un ou l'autre
des deux types suivants :

Le premier type est celui des groupes dont tous les sous-groupes de

Sylow sont cycliques.
Le deuxième type, celui des groupes dont les 2?-sous-groupes de Sylow

sont cycliques pour p ^ 2, quaternioniques pour p 2.
Le chapitre II est consacré à l'étude de la structure des groupes

abstraits finis des deux types. Les groupes du premier type sont connus
(voir § 4) ; ils sont résolubles et ceux qui ne sont pas cycliques peuvent
être engendrés par deux éléments générateurs liés par quelques relations
simples. Les groupes du deuxième type se subdivisent en groupes
résolubles et groupes non résolubles. Je montre que les premiers sont métabé-
liens de rang 2, 3 ou 4 et que les groupes non résolubles sont parfaits
(identiques à leur dérivé) ou admettent un premier ou un deuxième dérivé
parfait. En utilisant la théorie de l'extension de Schreier (voir 4.4), je
construis tous les groupes du deuxième type métabéliens de rang 2.

Le second problème est abordé au chapitre III, où se trouve une étude
complète des représentations irréductibles des groupes du premier type
et d'une large classe de groupes du deuxième type, métabéliens de

rang 2. Un critère simple, de nature arithmétique, permet de décider
lesquels de ces groupes admettent des représentations sans points fixes

(th. III 8.4 et IV 9.1).
Si un groupe fini du type considéré admet une représentation sans points

fixes, toutes ses représentations irréductibles fidèles sont sans points fixes,
elles sont toutes de même degré et non équivalentes à des représentations
réelles (énoncés précis: th. III* 8.4 et IV* 9.1).

On peut déduire de là quelques conséquences très générales relatives
aux groupes de rotations sans points fixes. Excluons d'emblée les dimensions

paires pour lesquelles, c'est un fait bien connu, les seules formes
spatiales sphériques sont la sphère elle-même et l'espace elliptique.

*) Outre les références indiquées dans le texte, il convient de citer ici
H. Zassenhaus, Ûber endliche Fastkôrper, Hamb. Abh. 11 (1936), 187 — 220,
venu à ma connaissance après la rédaction de ce mémoire.

118



Toute sphère de dimension impaire (supérieure à 1) admet une infinité de

groupes finis de rotations sans points fixes, non abéliens, ne se présentant pas
pour des dimensions inférieures (th. Il 8.3).

Bien que l'étude des groupes du deuxième type ne soit pas achevée, le
fait que les représentations irréductibles sans points fixes d'un groupe
quaternionique sont de degré 2 et non équivalentes à une représentation
réelle entraîne que seules les sphères S*k+*, dont le nombre de dimensions

est congru à 3 (mod. 4), peuvent admettre des groupes de
rotations sans points fixes du deuxième type. Il en résulte le théorème
suivant, qui achève en un certain sens la recherche des groupes de
rotations sans points fixes des sphères de dimensions 4& + 1, et en
même temps celle des formes spatiales sphériques de même dimension :

Les groupes finis de rotations sans points fixes d'une sphère S*k+l sont tous
du premier type. Il s'en présente de nouveaux, en nombre infini, pour toute
dimension 4: Je + 1 et leur recherche se ramène à un problème purement
arithmétique (th. VI 10.1).

L'étude des représentations des groupes du deuxième type, bien que
très incomplète encore, permet cependant d'énoncer le théorème suivant :

Toute sphère S8k+3, dont le nombre de dimensions est congru à 3 (mod. 8),
admet une infinité de groupes finis de rotations sans points fixes du deuxième

type, métabéliens de rang 2, ne se présentant pas pour des dimensions
inférieures (th. V 9.2).

Au chapitre IV, je déduis quelques corollaires des théorèmes fondamentaux.

Citons celui-ci :

Les groupes d'ordre impair de rotations sans points fixes d'une sphère de

dimension 2n — 1 sont tous cycliques. Par contre, toute sphère dont la
dimension est un nombre impair qui n'est pas de la forme 2n — 1 admet une
infinité de groupes d'ordre impair, non abéliens, de rotations sans points
fixes (th. VIII 10.3).

Je retrouve par voie algébrique un théorème démontré par M. H.Hopf
(voir 10.4) comme conséquence d'un théorème topologique et j'établis
une proposition relative aux ,,translations de Clifïord" (voir 10.5) qui
peut être déduite d'un théorème topologique de M. Stiefel.

Je détermine enfin la structure des groupes finis, abéliens, de déplacements

elliptiques sans points fixes de l'espace elliptique, ainsi que celle du
premier groupe de Betti des formes spatiales sphériques»

Qu'il me soit permis d'exprimer ici à M. H. Hopf, qui m'a proposé le

sujet de ce travail, ainsi qu'à M. G. de Rham ma profonde reconnaissance

pour leurs conseils si bienveillants et l'intérêt qu'ils n'ont cessé de me
témoigner au cours de mes recherches.
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Chapitre I
Conditions nécessaires pour l'existence de représentations

sans points fixes

§ 1. Groupes finis à sous-groupes abéliens cycliques

1.1. Désignons par g p*1 p%2.. ,p%k la décomposition en facteurs
premiers distincts de l'ordre g du groupe abstrait fini ©. Il existe des sous-

groupes de © de tous les ordres pf* (i 1, 2,..., k) où 1 < fa; < oc{.
Ceux d'ordre maximum p*1 sont conjugés dans © (transformés les uns
dans les autres par les éléments de ©), isomorphes par conséquent, et en
nombre congru à 1 modulo pt. Ce sont les sous-groupes de Sylow2) de ©
relatifs au diviseur premier pt.

Tout sous-groupe d'ordre pf1 de © est entièrement contenu dans au
moins un ^-sous-groupe de Sylow de ©.

Un groupe abélien (multiplication commutative) est le produit direct
de ses sous-groupes de Sylow.

1.2. Les ^-groupes, groupes finis dont l'ordre est une puissance d'un
entier premier p, jouissent de propriétés remarquables2). J'utilise ici deux
de ces propriétés :

Lemme 1 : Un groupe d'ordre p premier est cyclique. Un groupe d'ordre
p2 est abélien, cyclique ou de type (p, p).

Lemme 2 : Un groupe d'ordre pn, où pour un m fixé tel que 1 <m<n,
chaque sous-groupe d'ordre pm est cyclique, est lui-même cyclique,
excepté dans le cas p 2, m 2, où le groupe peut être aussi un groupe
des quaternions généralisé3).

Le groupe des quaternions généralisé £}2a est engendré par deux
éléments A et B avec les relations :

1 E B* A**'2 BAB-1 A-1 (oc>2)

Son ordre est 2a ; pour oc 3, on retrouve le groupe des quaternions,
d'ordre 8

A* E B* A* BAB-1 A'1

Une étude plus approfondie de la structure du groupe des quaternions
généralisé est donnée au chapitre II (3.2).

2) Pour tout ce qui a trait à la théorie des sous-groupes de Sylow et des p-groupes, voir
[3] chap.IV ou [4] chap.5.

8) [3] pp. 105 et 113.
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1.3. Considérons un groupe abstrait fini ©, dont tous les sous-groupes
abéliens soient cycliques.

Soit g p"1 P22.. 'Plk son ordre. Si les <xt sont tous égaux à l'unité, les

sous-groupes de Sylow de © étant d'ordre premier sont cycliques. Dans le
cas contraire, désignons par S$t l'un des sous-groupes de Sylow d'ordre
P*1 (*« ^ 2). Ses sous-groupes d'ordre pj sont abéliens en vertu du
lemme 1 ; or, ce sont des sous-groupes de ©, abéliens, donc cycliques par
hypothèse. Le lemme 2 est applicable à S$t, qui est par conséquent
cyclique ou quaternionique.

Réciproquement, soit © un groupe fini dont les sous-groupes de Sylow
sont cycliques ou quaternioniques, § un sous-groupe abélien de ©.
L'ordre h de § est un diviseur de l'ordre g de ©. Un sous-groupe de
Sylow de £) relatif au diviseur premier pt est d'ordre pj* < p"*. C'est un
prsous-groupe de © contenu comme tel dans un S$t (sous-groupe de
Sylow de ©). Les groupes de Sylow de <r> sont des sous-groupes des

groupes de Sylow de ©. Or, ceux-ci étant cycliques ou quaternioniques,
leurs sous-groupes sont cycliques ou quaternioniques (les sous-groupes
d'un groupe quaternionique sont étudiés au chapitre II). Les groupes de
Sylow de § sont cycliques (quaternioniques exclus car § est abélien) ;

<r> étant abélien est le produit direct de ses groupes de Sylow, il est
cyclique. D'où le théorème :

La condition nécessaire et suffisante pour que les sous-groupes abéliens
d'un groupe fini © soient cycliques est que © soit de Vun des deux types
suivants :

Premier type : Les sous-groupes de Sylow de © sont cycliques (y compris

ceux relatifs au diviseur premier 2 si l'ordre de © est pair).
Deuxième type : Les p-sous-groupes de Sylow de © sont cycliques pour

p ^ 2, quaternioniques pour p 2.

Si © est abéliea, il est cyclique et se rattache au premier type. L'ordre
d'un groupe du deuxième type est divisible par une puissance de 2
supérieure ou égale à la troisième.

§ 2. Représentations sans points fixes

2.1. Les substitutions linéaires, homogènes, définies par x!i
n

J£ aikxk> à coefficients atk dans un corps K et à déterminant différent de

0, forment le groupe linéaire £K(n) de degré n (nombre des variables).
Chaque substitution est caractérisée par la matrice des coefficients
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On nomme représentation linéaire*) d'un groupe abstrait © tout homo-

morphisme de © dans QK(n). Une telle représentation Pfait correspondre
à tout élément x e © une matrice bien déterminée X F(x) et au
produit a6 de deux éléments quelconques a, b e © la matrice produit AB.

Si la correspondance est un isomorphisme (c'est-à-dire si F(x) est
l'image d'un seul élément x e ©), la représentation est dite fidèle.

Deux représentations linéaires F et Ff d'un même groupe © sont dites
équivalentes si : Fr(x) 8 F(x) S~x quel que soit x e ©, 8 désignant une
matrice fixe de QK(n). Cette relation d'équivalence étant réflexive,
symétrique et transitive permet la répartition des représentations linéaires
de © en classes de représentations équivalentes.

Je désignerai dans la suite par r le corps des nombres réels et par k
celui des nombres complexes.

2.2. Les substitutions linéaires et homogènes, à coefficients dans h,
unitaires (c'est-à-dire où l'inverse de la matrice A est la transposée de la
matrice complexe conjuguée : AAr — E, E désignant la matrice unité)
forment un groupe continu, le groupe unitaire U(n), sous-groupe de

Sik(n). Une représentation du groupe abstrait © dans VL(n) est dite
représentation linéaire unitaire, de degré n.

Les substitutions de U(n) à coefficients réels (caractérisées par
AA' — E) forment le groupe orthogonal VLr(n), sous-groupe de f&r(n).
Une représentation du groupe abstrait © dans Ur(n) est dite représentation

linéaire orthogonale5), de degré n.
Toute représentation linéaire d'un groupe fini © dans Qk(n) est

équivalente à une représentation unitaire.
Toute représentation linéaire d'un groupe fini © dans £r(n), c'est-à-dire

à coefficients réels, est équivalente à une représentation orthogonale6).

Il peut être commode d'utiliser un langage géométrique et d'appeler
rotation une substitution orthogonale d'ordre n quelconque. Une telle
substitution transforme en elle-même la sphère à (n — 1) dimensions S71'1

n
définie par J£ x\ 1 dans l'espace euclidien réel En. Les substitutions

orthogonales de déterminant + 1 sont les rotations proprement dites

4) La théorie des représentations linéaires des groupes finis est exposée dans Speiser [4]
chapitres 11 à 15. On y trouve les indications bibliographiques relatives aux travaux de
Frobenius et Schur. Voir également [5] chap. XIII à XVII.

5) Je prends systématiquement la locution ,,représentation orthogonale" dans le sens de

représentation orthogonale réelle.
•) Les démonstrations de ces deux théorèmes sont données par exemple dans [4] Sâtze

134 und 132. Le premier a été étendu par H.Weyl aux groupes continus compacts.
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(elles forment le groupe orthogonal propre VL[(n)), celles de déterminant
— 1, des rotations suivies de certaines symétries.

J'envisage souvent dans la suite un groupe de substitutions linéaires
comme représentation d'un groupe abstrait.

2.3. Définition: Une représentation F d'un groupe abstrait © par des

substitutions linéaires homogènes, à coefficients réels ou complexes, est dite
sans points fixes si, pour aucun élément a e ©, différent de Vêlement
unité e, la matrice F(a) n'admet la valeur propre -f-1.

Le déterminant | F (a) — E \ est alors ^0. F (a), envisagée comme
transformation linéaire d'un espace vectoriel, n'admet aucun point fixe
en dehors de l'origine de cet espace.

Une représentation sans points fixes est nécessairement fidèle.
Dans deux représentations équivalentes, les matrices correspondant au

même élément de © ont les mêmes valeurs propres. La recherche de tous
les groupes linéaires finis sans points fixes se ramène à celle des groupes
linéaires finis unitaires sans points fixes.

2.4. Un groupe abêlien fini © qui admet une représentation linéaire
sans points fixes est nécessairement cyclique.

En effet, cette représentation peut être décomposée en ses composantes
irréductibles (unitaires) qui toutes sont sans points fixes. Soit F Tune
d'elles : la correspondance © -> F est fidèle, c'est un isomorphisme
(conséquence de l'absence de points fixes). Les représentations linéaires
irréductibles d'un groupe abélien étant de degré 1, les éléments de F sont les

g matrices (ek) k 1,2, ...,</ où g désigne l'ordre de © et £ une racine
primitive gième de l'unité. F est un groupe cyclique, donc © est cyclique.

2.5. Passons au cas d'un groupe fini quelconque © admettant une
représentation linéaire F sans points fixes. Les matrices de F correspondant

aux éléments d'un sous-groupe § de © forment une représentation
linéaire sans points fixes de §. Si § est abélien, il est forcément cyclique
(2.4). © est donc tel que ses sous-groupes abéliens sont tous cycliques.
Le théorème 1.3 permet d'affirmer que :

Tout groupe abstrait fini © qui admet une représentation linéaire sans
points fixes est du premier ou du deuxième type, c'est-à-dire que ses p-sous-
groupes de Sylow sont cycliques pour p ^ 2, cycliques ou quaternioniques

pour p 2.

Ce théorème est dû à Burnside [7] qui l'a établi par une voie différente.
Il montre qu'un p-groupe admettant des représentations sans points fixes
est cyclique pour p ^ 2 et cyclique ou quaternionique pour p 2.
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Chapitre II
Structure des groupes du premier et du deuxième type

§ 3, Groupes cycliques et quaternioniques, quelques lemmes

Je rappelle tout d'abord quelques propriétés des groupes cycliques et
quaternioniques, en précisant la nature du groupe de leurs automor-
phismes.

3.1. Les sous-groupes (tous invariants) d'un groupe abélien sont
abéliens ainsi que les groupes-quotient correspondants. Plus
particulièrement, les sous-groupes et les groupes-quotient d'un groupe cyclique
sont cycliques. Le groupe des automorphismes d'un groupe cyclique
d'ordre m est abélien : c'est le groupe multiplicatif des classes de restes
modulo m premières au module7). Je le désigne par ©m. Son ordre est

donné par la fonction d'Euler q> (m) m IJ(1 1

Pifm\ Vil
L'exposant d'un groupe © est le plus petit entier n tel que an e quel

que soit a € ©. C'est le p.p.cm. des ordres des éléments de ©. Pour un
groupe abélien où (ab)n anbn, c'est l'ordre maximum des éléments du
groupe. L'exposant de ©m est donné par la fonction X{m), définie de la
façon suivante :

ç>(2«) «=1,2
« >2

A (m) p. p. cm. des

p premier impair

m pî1-• .p** étant la décomposition de m en facteurs premiers
distincts.

Lorsque A (m) <p(m), ©m contient un élément d'ordre (p(m) et il
est cyclique. Ce cas ne se présente que pour m 2, 4, pa, 2p(X (p premier
impair). Ainsi, ©2a, d'ordre 2a~1, est cyclique pour oc 1,2 mais
abélien de type (2<*-2,2) pour <x>2.

Le groupe des automorphismes d'un groupe abélien non cyclique n'est
pas abélien.

3.2. Pour l'étude des groupes quaternioniques Q 2a (1.2), il faut
distinguer le cas oc 3 du cas oc > 3. Le groupe des quaternions Q8,
donné par :

A* E B2 A* BAB-1 A-1
_____
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admet la répartition suivante en classes d'éléments conjugués, les
éléments d'une même classe étant rangés dans la même colonne :

E A2 A B BA
A* BA* BA*

Tous ses sous-groupes sont invariants (un tel groupe est dit hamilto-
nien). {A2} est le seul d'ordre 2 ; c'est le centre (sous-groupe formé des
éléments permutables avec tous les éléments du groupe) et en même temps
le groupe des commutateurs (3.4). Le groupe-quotient correspondant est
abélien de type (2, 2), c'est le groupe rectangle Z>2. Les sous-groupes
d'ordre 4 sont au nombre de trois : {.4}, {B}, {BA}. Ils sont cycliques
et le groupe-quotient correspondant est cyclique d'ordre 2. Le groupe des

automorphismes, d'ordre 24, est isomorphe au groupe symétrique <S48).

Son ordre est divisible par 3, ce qui n'est plus le cas pour le groupe des

automorphismes d'un groupe généralisé Q2a où oc > 3.
Un tel groupe, défini par :

A**'1 E B2 A2*-2 BAB-1 A-1

admet la répartition suivante en classes d'éléments conjugués où, comme
ci-dessus, les éléments d'une même classe sont dans la même colonne :

E A**'* A

A-1

A*

A-*

A3

A-3

A*.. .A2a~''

A-*...A-*
'-i B

BA*-*-*

BA

BA3

BA*"-1-1

{A2CL~2} est le seul sous-groupe d'ordre 2; c'est le centre et le groupe-

quotient correspondant est le groupe diédrique D2a~2 d'ordre 2a~1.

Les sous-groupes d'ordre 4 sont tous cycliques, un seul est invariant
{A2(X~3}, le groupe-quotient correspondant est D20C~3 d'ordre 2<x~2. Les

autres, tels que {B}, {BA}, {BA2},... sont en nombre égal à 2a~2.

Si <%>4, un seul sous-groupe d'ordre 8 est invariant c'est le groupe
cyclique {A2<x~*}, le groupe-quotient est D2a~4 d'ordre 2a~3. Il existe
2<*-3 Sous-groupes non invariants tels que {A2<x~z, B}, {A2<x~z, BA},
{A20C~3, BA2}, isomorphes au groupe des quaternions £18.

•) [3] p. 111.
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Les sous-groupes d'ordre 2^(2</?<x — 2,<x>4) sont, l'un cyclique
invariant à groupe-quotient diédrique, les autres non invariants
isomorphes au groupe Q2&.

Mais voici les plus intéressants : tout d'abord le groupe des commutateurs

(3.4) d'ordre 2a~2, cyclique, engendré par A2 BA~XB~XA, dont
le groupe-quotient est le groupe rectangle D2, abélien d'ordre 4 et de

type (2,2). Les autres sous-groupes du même ordre sont non invariants,
en nombre égal à 4, engendrés par A* et l'un des éléments B, BA2, BA
ou BAZ, isomorphes à jQ2a~2.

Les sous-groupes d'ordre 2a~1 sont invariants, parce que d'indice 2. Ils
sont en nombre égal à 3 : l'un est cyclique, {^4}, les deux autres
isomorphes à £l20L~1, {A2, B} et {A2, BA}. Dans chaque cas, le groupe-
quotient est cyclique d'ordre 2.

Tout automorphisme de jQ2a(# > 3) s'obtient par la substitution
d'éléments générateurs A -> Av-, B -> BAV (/lc impair, v quelconque) ; leur
nombre est 2a~2-2a-1 22a~3. C'est l'ordre du groupe des automorphis-
mes de jQ2a. Pour oc 3, les classes de B et BA, renfermant deux
éléments, peuvent s'échanger avec la classe de A, d'où un nombre plus grand
d'automorphismes.

3.3. Lemme : Soit S$ un des p-sous-groupes de Sylow de © et 9t un
sous-groupe invariant de © ; alors 9tfl *p est p-sous-groupe de Sylow de 9t
et ^3 91/91 ^ ^}/9tn ^ est p-sous-groupe de Sylow de ®/9l.

Une démonstration de ce théorème, due à Witt, est exposée à la

page 100 du livre de Zassenhaus [3J.

Remarquons que l'intersection 31 n ty du sous-groupe invariant 91

avec un 2>-sous-groupe de Sylow ^3 est un sous-groupe invariant de ^}
(égal à ^3 si S$ est dans 91). Ce lemme permet de trouver les ^-sous-groupes
de Sylow de (5/91. En particulier, pour un groupe du premier type, S$

étant cyclique, les 2>-sous-groupes de Sylow de ©/9l sont cycliques quel
que soit le sous-groupe invariant 91 ; ®/9l est donc aussi du premier type.
Pour un groupe du deuxième type, ®/9t a ses ^-sous-groupes de Sylow
(p z£ 2) cycliques ; quant à ses 2-sous-groupes de Sylow, ils sont : non
abéliens (diédriques ou quaternioniques), abéliens d'ordre 4 (isomorphes
au groupe rectangle D2), cycliques d'ordre 2 ou inexistants si £ic 91.

3.4. © étant un groupe abstrait quelconque, je désigne par ©' son

groupe dérive ou groupe des commutateurs. C'est le sous-groupe caractéristique

(invariant par les automorphismes de ©) engendré par les
commutateurs (a, 6) aba'^b"1, a et b étant deux éléments quelconques
de ©. Les deux produits ab et 6a, qui peuvent ne pas être identiques
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dans un groupe non abélien, sont congrus modulo le sous-groupe des
commutateurs car ab (a6a~16~1)6a. En conséquence, le groupe-quotient
©/©' est abélien. Le groupe dérivé de ©' est le deuxième dérivé de © et
je le représente par ©". Les sous-groupes dérivés successifs sont tous
caractéristiques et même complètement invariants en ce sens qu'un
opérateur quelconque les applique sur eux-mêmes ou sur une partie d'eux-
mêmes.

Considérons la série des groupes dérivés : ©^©^©^^ • * • © est dit
résoluble si elle se termine par E (le groupe formé seulement de l'élément
unité). Pour un groupe fini, cette condition est équivalente à celle-ci : ©
admet une série de composition à groupes-quotient cycliques d'ordre
premier. Un groupe © résoluble pour lequel ©k-1 ^ ©fc E est dit méta-
bélien de rang k, la série des groupes dérivés admettant k groupes-quotient
abéliens. Métabélien de rang 1 est synonyme d'abélien différent de E.

Le rlème dérivé du groupe ®/9l, quotient de © par un sous-groupe
invariant 5R est donné par :

(<g/9l)(p) ©<r>$ft/9i ; ainsi, lorsque le r*ème groupe dérivé de ®/$tt est
E, le rlème groupe dérivé de © est dans 919).

3.5. Lemme: Si dans la série ©/^©//^©///... des dérivés d'un
groupe ©, deux groupes-quotient consécutifs sont cycliques, le second se

réduit à Videntité.

Ce théorème est démontré par Zassenhaus [3] th. 9 p. 138.

Il importe de remarquer que la série dont il est question dans le
lemme débute par ©', le premier groupe dérivé, et non par © comme
dans 3.4.

§ 4. Groupes du premier type

Rappelons qu'un groupe © fini est dit du premier type si ses sous-

groupes de Sylow sont tous cycliques (1.3). Ces groupes sont étudiés
dans les traités classiques10). Voici les points essentiels accompagnés
de quelques remarques utiles pour la suite.

4.1. Un groupe fini ©, dont tous les sous-groupes de Sylow sont
cycliques, est résoluble.

Pour démontrer ce théorème, Zassenhaus11) procède par induction
complète sur le nombre des facteurs premiers distincts de l'ordre de ©.

9) Pour les démonstrations, voir par exemple [3] pp. 55 et 56.
10) Zassenhaus [3] p. 139, Burnside [5] pp. 163 à 166 et [6]. Je suis de préférence Zassenhaus.

U) [3] p. 139.
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Soit g p*1 pp. p%k cet ordre, où les pt vont en croissant. Il montre
qu'un 2>i-sous-groupe de Sylow *px de © est contenu dans le centre de

son normalisateur (sous-groupe formé des éléments de © permutables
avec ^J1). © contient dès lors un sous-groupe invariant 9t avec *px

comme système de représentants (théorème de Burnside) 12). L'hypothèse

d'induction est applicable à 91: 91 est résoluble, donc © est
résoluble (3.4).

Un fait n'est pas établi par Zassenhaus, mais par contre par Burnside10) :

c'est que le sous-groupe invariant 9i d'ordre p%2... p%k est caractéristique.
Plus exactement encore, il existe une suite de sous-groupes caractéristiques

d'ordres p°j* p*i+*... p^k (i 2, 3,..., k). Chacun de ces sous-

groupes invariants est en effet d'ordre premier à son indice. Les
théorèmes de Sylow généralisés, dus à Hall13), permettent d'affirmer qu'un
tel sous-groupe est seul de son espèce. Il est par conséquent transformé
en lui-même par tout automorphisme de ©.

4.2. La série des groupes dérivés d'un groupe © du premier type est

© id©' Z)i? où le groupe des commutateurs ©' est cyclique, à groupe-quotient
©/©' également cyclique11).

En effet, tous les groupes de la série des dérivés de © (3.4) ®^
sont du premier type. Les groupes-quotient sont abéliens à sous-

groupes de Sylow cycliques (3.3), donc cycliques, (g7/©" cyclique et
©7©//; cyclique entraînent, d'après le lemme 3.5, ©7©"' E; d'où
©" @//7 E, le groupe étant résoluble (4.1). La suite des groupes
dérivés se réduit bien à ©zdS'zdI?. Les groupes-quotient restent
cycliques, d'où ©/©' cyclique, ©' cyclique. Ces conditions sont nécessaires

pour que © soit du premier type, mais pas suffisantes, comme le montre
l'exemple du groupe diédrique D 4 d'ordre 8, dont le groupe des commutateurs

est cyclique d'ordre 4 à groupe-quotient cyclique d'ordre 2, et
n'est pourtant pas du premier type (le seul groupe du premier type
d'ordre 8 étant 3^ cyclique).

4.3. Si ©' est du premier type, il est cyclique. En d'autres termes, un
groupe du premier type, non cyclique, n'est le dérivé d'aucun autre groupe.

Ce corollaire du théorème précédent s'établit immédiatement. Si ©7 est
du premier type, ©'=) &fz>E, ©7©/7 cyclique, ©/; cyclique ; ©" E
d'après le lemme 3.5 et ©7 est cyclique.

[5] p. 327, [4] Satz 122.
») [3] p. 127.
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4.4. Zassenhaus11) utilise ces considérations pour construire tous les

groupes à sous-groupes de Sylow cycliques au moyen de deux éléments :

l'un engendrant le groupe des commutateurs, l'autre appartenant à une
classe modulo le groupe des commutateurs qui engendre le groupe-
quotient. Il s'assure ensuite que les générateurs et relations définissent
bien un groupe ayant les propriétés voulues en faisant appel au théorème
de Holder relatif aux groupes finis ayant un sous-groupe invariant
cyclique d'ordre m à groupe-quotient cyclique d'ordre n.

Un tel groupe est défini par :

Am E Bn A1 BAB-1 Ar (1)

avec les conditions numériques

a) m,n>0 g mn b) rn=l(m) c) t(r — 1) O(ra)

Or ce théorème est une application particulière de la théorie de l'extension
de Schreier14) qui pose et résout le problème suivant :

On donne deux groupes abstraits 5R et $f î trouver tous les groupes (5

admettant 91 comme sous-groupe invariant de telle manière que le groupe-
quotient (5/îl soit isomorphe à $.

(5 est une extension de 91 par g. Dans le cas qui nous occupe, il s'agit
d'une extension par un groupe 5 ©/©' cyclique, je parlerai d'extensions

cycliques. Comme 9Î ©; est aussi cyclique, nous retrouvons le
cas particulier de Holder. Plus loin, pour les groupes du deuxième type,
j'aurai à déterminer des extensions par un groupe abélien, je parlerai
d'extensions abéliennes.

4.5. Tout groupe © du premier type et d'ordre g est donné par11) :

A™ E Bn E BAB~1 Ar (2)

avec les conditions numériques

a) m>0, mn g b) ((r -— l)n, m) 1 c) rn l(m)

et réciproquement.
Le groupe des commutateurs ©; est cyclique engendré par BAB~lA~^
Ar~1 ; comme r — 1 est premier à m en vertu de b), c'est {A}. On

vérifie que le groupe-quotient ©/©7 est cyclique engendré par B. La
condition accessoire n premier à m assure que tout sous-groupe de Sylow
admet un conjugué dans {A} ou {B} ; il est donc cyclique. Ceci élimine
les groupes analogues à D4, signalé à la fin de 4.2. La condition c) est une

14) Exposée aux §§ 6 à 8 du chap. III de Zassenhaus [3].
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conséquence des relations (2) : BAB~X Ar entraîne BVAB~V ArV ;

comme Bn E, rn doit être 1 (modulo m).

4.6. Tirons quelques conséquences des conditions numériques b) et c).
Toute racine de la congruence rn 1 (m) est première au module :

(r, m) 1. De plus, n est multiple de l'exposant d auquel appartient la
racine r (d est l'exposant de la plus petite puissance de r congrue à 1

modulo m, c'est l'ordre de r dans ©m (3.1)). La condition (r,ra) 1

jointe à (r — 1, m) 1 (6), prouve que m doit être impair. Le groupe
des commutateurs d'un groupe du premier type est cyclique d'ordre impair.

Les seules valeurs admissibles pour r sont telles que r, r — 1 et l'ordre
de r dans (5m soient premiers à m.

On peut se demander, metn étant fixés, s'il existe plusieurs groupes (1)
de structures différentes. Dans la théorie de l'extension cyclique, c'est le

groupe des automorphismes de 9t qui joue le rôle important. Or ici,
31 ©' {A} est le groupe cyclique d'ordre m impair. Son groupe des

automorphismes est précisément ©m, le groupe multiplicatif des classes
de restes modulo m premières au module. La condition donnée dans la
théorie de l'extension cyclique, pour l'isomorphisme sur 91 de deux extensions,

se traduit ici par le fait qu'on obtient toutes les extensions
isomorphes en remplaçant r par rv où (v,n) 1. D'ailleurs, dans cette
hypothèse, Bv engendre le groupe {B} et BVAB~V ArV ; la correspondance

A -> A B -> Bv réalise l'isomorphisme.

§ 5. Groupes du deuxième type

Rappelons qu'un groupe fini © est dit du deuxième type si ses p-sous-
groupes de Sylow sont cycliques pour p ^ 2, quaternioniques pour
p 2 (1.3). L'ordre d'un tel groupe est divisible par une puissance de
2 supérieure ou égale à la troisième, donc au minimum par 8.

Quelques indications relatives à ces groupes se trouvent dans deux
travaux de Burnside [6], [7].

5.1. Les groupes du deuxième type se subdivisent en groupes
résolubles et groupes non résolubles.

Soit ffi un groupe du deuxième type d'ordre g 2ap%2.. ,p%k, x ^ 3,
£}2a l'un de ses 2-sous-groupes de Sylow. Q2a, n'étant pas abélien, ne
saurait être contenu dans le centre de son normalisateur, et l'on ne peut
par suite établir l'existence d'un sous-groupe invariant d'ordre p\%.. .pj*
par la méthode indiquée en 4.1. En fait, © peut ne pas être résoluble,
comme le prouve l'exemple du groupe binaire de l'icosaèdre 3* défini en
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6.4. Ce groupe est du deuxième type et coïncide avec son groupe des

commutateurs : 3*7 3*.
5.2. Le groupe-quotient ©/©', d'un groupe du deuxième type par

son groupe des commutateurs est soit abélien de type (2, 2, u), soit
cyclique d'ordre 2u ou u, u étant impair. Il peut se réduire à l'identité, son
ordre étant alors u 1.

Démonstration: ©' étant sous-groupe de ©, est du premier ou du
deuxième type. S'il est du premier type, il est cyclique d'après 4.3. Dans
tous les cas, il contient le groupe des commutateurs du sous-groupe Q2a,
c'est-à-dire le groupe cyclique {A2} d'ordre 2a~2. L'intersection ©/n£ï2a
est un sous-groupe invariant de JQ2a contenant {A2}. D'après 3.2 ce ne
peut être que l'un des groupes suivants : {A2} lui-même, d'ordre 2a~2 ;

{A}, cyclique d'ordre 2a~1 ; {A2, B} ou {A2, BA}, quaternioniques
d'ordre 2a~1 ; Q2a d'ordre 2a.

Ljes £>-sous-groupes de Sylow de ©/©', sont donnés par le lemme 3.3.
Pour p 2, ils sont isomorphes soit au groupe rectangle D2, soit au

groupe cyclique d'ordre 2, 3^, ou enfin inexistants si ®/©7 est d'ordre
impair. Pour p ^ 2, ils sont cycliques.

Le groupe abélien ©/©' est donc soit D2x$u 32x32u (groupe
abélien de type (2,2, u)), soit $2u, soit 3^ (w impair). Il se réduit à

E 3l si © ©'.
Remarques : Si ©/©' est abélien de type (2, 2, u), ©' est du premier

type, donc cyclique.
Si ©;nQ2a {A}, ©' est également du premier type, donc cyclique,

le groupe quotient ©/©' étant aussi cyclique. Ce cas ne peut en fait pas
se présenter, ce qu'on vérifie en partant du théorème de Hôlder (4.4).

Si ©' est du deuxième type, ©/©' est cyclique.
5.3. Si dans la série des groupes dérivés (3.4) d'un groupe © du

deuxième type, trois groupes dérivés consécutifs sont du deuxième type,
les deux derniers sont identiques.

C'est une conséquence du lemme 3.5. Trois groupes dérivés consécutifs

définissent deux groupes-quotient successifs, cycliques en vertu de

5.2, le second se réduit à l'identité.
5.4. Il en résulte la classification suivante des groupes © du deuxième

type:
Résolubles :

a) ©dÇ'dJ b) ©dS'z)©"!)^ c) ©3 ©'3 ©"3 f&mz>E

Le groupe précédant E est cyclique, les autres du deuxième type. Un

groupe du deuxième type résoluble est métabélien de rang 2, 3 ou 4.
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Non résolubles :

d) © ©' e) ©3©'=©" f) ©3©'z)©"= ©'"
Voici un exemple, le plus simple possible, pour chacune de ces six

catégories :

a) &2a, premier groupe dérivé {A2} cyclique d'ordre 2a~2, groupe-
quotient D2,

b) le groupe tétraédrique binaire 2* (6.2), suite des groupes dérivés:

c) le groupe octaédrique binaire O* (6.3), suite des groupes dérivés:

d) le groupe icosaédrique binaire 3* (6.4) : 3*' 3*,
e) le produit direct 3*x3m (m, 120) 1,
f le produit direct de 3* P&r un groupe du premier type, non cyclique,

d'ordre premier à 120 (un tel groupe existe, voir 8.3).
Je vais déterminer tous les groupes du deuxième type métabéliens de

rang 2 (a), puis indiquer la possibilité théorique de construire ceux de

rangs 3 (b) et 4 (c) (comme exemples, je retrouverai %* et £>*). Les

groupes du deuxième type parfaits (© ©', classe d) échappent à mes
méthodes ; on pourrait en déduire ceux des classes (e) et (f).

5.5. La condition nécessaire et suffisante, pour qu'un groupe © du
deuxième type soit métabélien de rang 2, est qu'il contienne un sous-

groupe invariant Sft dont l'ordre soit la partie impaire de l'ordre de ©.
La condition est suffisante : si © du deuxième type d'ordre 20Lp%2.. .p^k,

oc ^ 3, contient un sous-groupe invariant 9t d'ordre p%2.. .p%k, le

groupe-quotient ®/îl est isomorphe à l'un des sous-groupes de Sylow
«Q2a. Au sous-groupe invariant {A2} de jQ2a (son groupe des

commutateurs) correspond un sous-groupe invariant 501 de © contenant ©' en
vertu de l'isomorphisme ®/9K ^ ®/9ï/S0t/9t ^ £>2a/{^2} ^ D2 abélien.
501 est d'ordre 2a-2^2 • • 'Ptk • Or l'ordre de ©' est divisible au moins par
2a~2 (5.2); cet ordre est donc exactement divisible par 2a~2. L'intersection

©/f|£i2a est {A2}, les 2-sous-groupes de Sylow de ©' sont
cycliques, ©'est du premier type, donc cyclique (4.3), © zd ©'d E.

La condition est nécessaire : si © 3 ©;z> E est la suite des dérivés d'un
groupe © du deuxième type, ©' est cyclique et ©/©' abélien de type
(2, 2, u) (5.2). ©/©7 est engendré par a, b, c, avec a2 b2 — cu e,
les éléments a et b correspondant aux classes renfermant les générateurs A
et B d'un des 2-sous-groupes de Sylow Q2a de ©. Ce groupe abélien a
trois sous-groupes d'ordre 2u: {a, c}, {b,c}, {ab, c} (invariants puisque

sous-groupes d'un groupe abélien).
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L'un des sous-groupes invariants de ©, celui correspondant à {a, c},
a ses 2-sous-groupes de Sylow cycliques (l'un est {A}). Il est du premier
type, d'ordre 2OL~1p%2... p%k, et contient un sous-groupe caractéristique
d'ordre p%2.. ,p°^k (4.1), qui est le sous-groupe invariant 9t de ©.

Remarque : Ce sous-groupe invariant 91 est même caractéristique, ainsi

que tous les sous-groupes d'ordre p*1... p0^ (i 2,..., Je) pour les
mêmes raisons qu'en 4.1.

5.6. Rappelons un théorème de Burnside15) :

Un groupe d'ordre 2an, où w est impair, non divisible par 3, et qui
contient des éléments d'ordre 2a~1, admet un sous-groupe invariant
d'ordre n.

Ce théorème, joint au précédent, nous montre que les groupes du
deuxième type dont l'ordre n'est pas divisible par 3 appartiennent à la
catégorie a) dans la classification 5.4. Les cinq autres catégories ne
renferment que des groupes dont l'ordre est divisible par 24 et présentent
ainsi un caractère exceptionnel.

5.7. Je passe à la détermination de tous les groupes du deuxième

type métabéliens de rang 2 :

©z>©'z)i?, ©' cyclique d'ordre pair (divisible par 2a~2, oc > 3),

©/S7 abélien (2, 2, u), u impair,
II s'agit : 1) de former les extensions16) d'un groupe cyclique {^4} par

le groupe abélien (2, 2, u) 32X$2u ; 2) de telle sorte que le groupe
des commutateurs soit {A} et 3) que les sous-groupes de Sylow aient la
structure voulue.

Voici ce que donne la théorie de l'extension abélienne dans ce cas très
particulier :

A™ E 8\ A8' 822U A**

S^S^Sl1 (81982) Ar SiAS? A1* S2A8? A1*

avec les conditions numériques :

(1)

a) t\ 1 (m) c) s2(tt - 1) r(1 + t2 + t\ +... + Ç-1) (m)

b) tf l(m) d) sAk - 1) - r(l + tt) (m)

Retrouvons tout d'abord Q2a; son groupe des commutateurs étant
cyclique d'ordre 2a~2, c'est la valeur à choisir pour m ; on trouve :

15) [5] p. 330.
1S) Voir 4.4 et plus particulièrement [3] p. 97.
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S) A SAS-* A - ¦-¦ ^
8X et S2 suffisent à engendrer le groupe :

ox Jij o2 ox fo2à1o2 ox

ce sont les relations connues.
Pour le cas général, où le groupe des commutateurs est cyclique d'ordre

2a~2n (n impair), on obtient :

A2<x~2n E 81 An 8lu A2<x~*n

-i_ h -1 «,

^ (3)
(ox, o2) :=: -^r &iAbx A o2Ab2 A

avec les conditions numériques :

oc ^ 3, («,»)=1, w et » impairs

^ 1 (2«-2w) ^2M 1 (2a~2w) (r, ^ - 1, t2 - 1) 1

tx 1 (2a~2) £2 — 1 (2a~2) r 71 (2a~2)

r(l + tx) 0 (w) r(l + ^2 H (- J^"1) 0 (n)

Ce groupe est d'ordre g 2arm. Il admet trois sous-groupes
invariants d'indice 2u, engendrés par A joint respectivement k 8X, 82, 81S\l,
en accord avec le fait que ©/©' abélien (2, 2, w) a trois sous-groupes
d'indice 2u (d'ordre 2). L'un, {A,8^, est du premier type; les deux
autres sont du premier type si oc 3, mais du deuxième si oc > 3. Le

sous-groupe invariant 91 du premier type d'ordre nu (5.5) est engendré

par A2(*~2 et 8%. Il importe de remarquer que des valeurs différentes de

tlft2ietr peuvent correspondre à des groupes isomorphes. Il en est ainsi,
en particulier, quand on change t2 en tx t2 et r en rtly comme le montre
Fautomorphisme réalisé en conservant A et St, mais en substituant à 82

l'élément générateur 8^.
Comme premier exemple, je forme tous les groupes du deuxième type

dont le groupe des commutateurs est cyclique d'ordre 2. Ici oc 3,
n 1 ; j'obtiens tx t2 r 1 et, en modifiant un peu les relations :

A* E B2u A2 BAB-1 A-1 (4)

Ce groupe est isomorphe au produit direct £18 x3^ (u impair).
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Un groupe du deuxième type d'ordre 24, dont le groupe des commutateurs

est cyclique d'ordre 2, est isomorphe au produit direct JD8x3^.
Si le groupe des commutateurs est cyclique d'ordre 6, les formules (3)
donnent un seul type :

A12 E B2 A« BAB-1 A-1

qui est isomorphe au groupe diédrique binaire D* (6.1). Ces deux

groupes, joints au groupe binaire du tétraèdre (5.8), métabélien de

rang 3, sont les seuls d'ordre 24 et du deuxième type. Si Ton y ajoute
3 24 et le groupe :

Az E B8 E BAB'1 A'1

qui sont du premier type, on voit que sur les 15 types17) de groupes
d'ordre 24, 5 seulement ont leurs sous-groupes abéliens tous cycliques.
Tous les 5 admettent des représentations sans points fixes.

Les groupes du deuxième type d'ordre 48 sont au nombre de quatre.
Les formules (3) permettent de trouver ceux dont le groupe des commutateurs

est cyclique. Pour ©' cyclique d'ordre 4, on obtient un seul type :

Q. 16x3 3; ©' cyclique d'ordre 12, par contre, donne deux structures
non isomorphes

A2* E B2 A12 BAB-1 A-1

c'est le groupe diédrique binaire D*2 (6.1); en outre

~~ * ~~ 2 ~
(5)

(S,S) A3 S AS'1 A5 S AS'1 — A-1

II existe de plus un groupe d'ordre 48 du deuxième type, métabélien de

rang 4 ; c'est le groupe binaire de l'octaèdre (5.9).
J'envisage encore les groupes définis par les relations (3) où tx 1. Le

sous-groupe invariant {A, St} est alors cyclique et StA, S2 suffisent à

engendrer le groupe. En modifiant les notations, les relations deviennent :

n BAB-1 Ar (6)

avec les conditions numériques :

<x ^ 3 (u, n) 1, u et n impairs

r2u i (2«-%) r - 1 (2*-1) (r — 1, 2«~1n) 2

") [5] p. 157.
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© admet un sous-groupe invariant cyclique {A} à groupe-quotient
cyclique $2u ; le type des relations obtenues est bien celui prévu par le
théorème de Hôlder (4.4).

Voici la classification que j'établis désormais pour les groupes du
deuxième type :

(oc) ©7 cyclique, contenu dans un sous-groupe invariant cyclique
d'ordre double de celui de ©' ; ils sont définis par les relations (6).

(/?) ©' cyclique, contenu dans un sous-groupe invariant du premier
type, non cyclique, d'ordre double de celui de ©' ; ils sont définis par les
relations (3) où tx ^ 1. Exemple : le groupe défini par les relations (5).

(y) Tous les autres, c'est-à-dire les groupes métabéliens de rangs 3 et 4
et tous les groupes non résolubles.

D'après 5.4, (oc) et (/?) épuisent la catégorie a), (y) est formé des cinq
autres.

5.8. Un groupe du deuxième type, métabélien de rang 3 admet la
suite des groupes dérivés ©dS'd©"!)!?. ©' est du deuxième type,
métabélien de rang 2, et appartient aux classes (oc) ou (fi). ©/©' est

cyclique d'ordre u ou 2u, u impair (5.2).
La théorie de l'extension cyclique18) permettrait de les obtenir tous.

A titre d'exemple, je choisis pour ©' le groupe métabélien de rang 2 le
plus simple, Q8.

Une extension cyclique d'ordre n est caractérisée par 5R (ici JQ8), un
automorphisme a de 5R et par N e 31, invariant par a, Na N, et
induisant dans 91 l'automorphisme N 91 N~x identique à an.

Q8, défini par A* E B2 A2 BAB-1 A-1, a 24 automorphis-
mes (3.2). L'automorphisme d'ordre 3 défini par A° B, Ba BA
conduit au groupe :

A* E B2 A2 BAB-1 A-1 j

S*n' E SAS-1 B SBS-1 BA

qui est du deuxième type si nr est impair. Son ordre est 24/2/ ; pour nr 1,

c'est le groupe binaire du tétraèdre X* (6.2) d'ordre 24, contenant -Q8

comme sous-groupe invariant (groupe des commutateurs) et quatre sous-

groupes d'ordre 3. Sa série des dérivés est: 2*z>Q8 3{^42}z)^. Si
n1 t^ 1 est premier à 24, (7) représente le produit direct Ï*x3^/-

Pour Q2a, avec oc > 3, on trouve des extensions du deuxième type (par
exemple Q2a+1), mais aucune ne conduit à un groupe métabélien de

») [3] p. 94.
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rang 3. En voici la raison: aucun automorphisme de Q2a, <x>3, ne

change A2(X~Z en B (3.2). Dans une extension cyclique, ces deux éléments
ne peuvent être conjugués et il résulte d'un théorème de Burnside15) déjà
cité que le groupe correspondant admet un sous-groupe invariant dont
l'ordre est la partie impaire de l'ordre de ©. Si © est du deuxième type,
il est métabélien de rang 2 (5.5).

5.9. Les groupes du deuxième type métabéliens de rang 4pourraient
s'obtenir à partir des groupes métabéliens de rang 3 par une nouvelle
extension cyclique.

Un seul exemple fera comprendre la méthode. Partant du groupe
binaire du tétraèdre 2*, donné par les relations (7) où n1 1, j'envisage
l'automorphisme : Aa A, Ba BA*, Sa S2BA2. Cet automorphisme

est d'ordre 4, il engendre entre autres l'extension suivante :

A* E B2 A2 BAB-1 A"1

S* E SAS-1 B SBS-1 BA
T2 A TAT-1 A TBT-1 BA* TST~* S2BA2

(8)

Ce groupe, que je désigne par £>* est d'ordre 48 et du deuxième type ;

il a trois sous-groupe d'ordre 16 (l'un est engendré par A, B et T : T8 E
B2 T* BTB~X T-1) isomorphes à Q16 et 4 sous-groupes d'ordre 3

(évidemment cycliques). Son groupe des commutateurs est d'ordre 24 et
isomorphe à 2*. La série des groupes dérivés est :

J'ai pu montrer son isomorphisme avec le groupe binaire de l'octaèdre
(6.3).

Cet exemple met en défaut l'affirmation de Burnside19) selon laquelle
un groupe du deuxième type d'ordre 20Cp%2.. .pj*, <%>3, contient des

sous-groupes caractéristiques de tous les ordres p*1 p*i+1... p*k (i
2, 3,...,&). Ce n'est le cas, en vertu de 5.5, que pour les classes (oc) et
(/?), soit pour les groupes du deuxième type métabéliens de rang 2.

5.10. Voici un théorème qui limite le nombre des types contenus
dans la classe (y) (5.7):

Le groupe des commutateurs ©; d'un groupe © du deuxième type,
métabélien de rang 3, a ses 2-sous-groupes de Sylow isomorphes à JQ8.

») [6] p. 50.
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Démonstration: ©z> ©'d ©"d E ; ©' est métabélien de rang 2 et
admet un sous-groupe caractéristique 31 dont Tordre est la partie
impaire de Tordre de ©. (Remarque à la fin de 5.5.) 91 est sous-groupe
invariant de ©: (<5/3t)'^ ©'Sft/ît^ ©75R^Q2a, 2-sous-groupe de

Sylow de ©'. Ceci est impossible si <x>3, car dans le cas contraire Q2a
admettrait une extension cyclique ©/9t, groupe du deuxième type,
métabélien de rang 3 (5.8).

Une hypothèse, que je n'ai pu démontrer, me paraît justifiée :

Si ©' est du deuxième type, ses 2-sous-groupes de Sylow sont
isomorphes àQ8.

Cette proposition (analogue à : ©'du premier type entraîne ©'
cyclique) concernerait toute la classe (y). Un groupe de cette classe aurait en
particulier ses 2-sous-groupes de Sylow d'ordre au plus égal à 16. De plus,
il me semble qu'un groupe © de la classe (y) doit contenir des sous-

groupes d'ordre 24 isomorphes à !X*. Cela est en tout cas exact pour £)*
et 3*.

§ 6. Les groupes polyédriques binaires
Ces groupes peuvent être représentés comme groupes de translations

de Clifford (rotations sans points fixes d'une nature particulière) de la
sphère à trois dimensions 8B (voir 10.5).

En vertu du théorème 2.5, ils sont du premier ou du deuxième type.
C'est ce que je me propose de vérifier directement ici, en précisant
lesquels appartiennent au premier type et lesquels au deuxième.

La dénomination ,,groupes binaires" vient de ce que Ton peut les

engendrer par des substitutions binaires (unitaires). Ils renferment un
sous-groupe invariant d'ordre 2, le groupe-quotient correspondant étant
un groupe polyédrique ordinaire20).

6.1. Les groupes diédriques binaires D* (ordre 4 m) sont définis par :

Am J52 C2 p CBA ^e P* E

Sous cette forme, on voit que le groupe-quotient par le sous-groupe
invariant {P}, d'ordre 2, est le groupe diédrique ordinaire Dm : Am

B* C2 E CBA E, d'ordre 2m. A et B suffisent à engendrer le

groupe, car C"1 BA :

A*m E B2 Am BAB-1 A'1 (1)

où la dernière relation s'obtient en transformant C2 Am.

20) J'utilise ici les notations de Threlfall et Seifert [2] p. 26.
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Supposons tout d'abord m pair : m 2<x~2n, n impair, oc > 3. Les
relations deviennent :

A2«-in E B2 A2"-*n BAB-1 ^L-1 (2)

C'est un groupe du deuxième type d'ordre 4m 2<xn appartenant à

la classe (oc) comme le montrent les relations (6) de (5.7). Son groupe
des commutateurs est {A2} cyclique d'ordre 2<x-2n m. Pour n=l,
c'est-à-dire lorsque m est une puissance de 2, c'est le groupe quater-
nionique Q2a. Ainsi Q8, par exemple, n'est autre que le groupe rectangle
binaire D*.

Supposons maintenant m impair. Opérons dans (1) la substitution
d'éléments générateurs A2 X, BA Y ; on obtient :

Xm^E Y* E YXY-1 X-1 (3)

On s'assure de ]'isomorphisme en exprimant A et B au moyen de X
l—m m—1

et Y : A X 2 Y2, 5= F"1 X 2 et en montrant que les relations
(3) entraînent (1), ou plus simplement encore en remarquant que (3)
représente un groupe du premier type d'ordre 4m d'après les relations (2)
de 4.5. Le groupe des commutateurs est {X}, cyclique, d'ordre m
impair.

Les groupes D* étant rangés suivant les valeurs croissantes de m (2,
3,...), sont alternativement du deuxième et du premier type.

Remarque: Les groupes diédriques ordinaires Dm, qui peuvent être
définis par : Am E B2 E BAB~X A~x sont du premier type
pour m impair. Ils n'admettent aucune représentation sans points fixes,
car ils contiennent plus d'un élément d'ordre 2 (11.2). Pour m pair, ils
ne sont ni du premier type, ni du deuxième type, leurs 2-sous-groupes de

Sylow étant diédriques.

6.2. Le groupe binaire du tétraèdre 2* (ordre 24) est défini par :

A* B2 C3 P CBA =E P2 E

On peut éliminer B en résolvant CBA=E: B^C^A-1, B^^AG
B~2 B2 ACAC A* C3. Les relations deviennent :

A* E C3 A* CAC-1 ^A-W (4)
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En posant : AC X, CA 7, A2 Z, on trouve :

X4 # 72 X2 Fir-^I-1
Z3 # ZXZ1 7 Z7Z-1 7X '

et réciproquement, Z2X2 A et ZX3 (7 conduisent aux anciennes
relations. Or (5) est le groupe du deuxième type, métabélien de rang 3,
trouvé en 5.8.

6.3. Le groupe binaire de Voctaèdre 53* (ordre 48) est défini par:

A* JS2 C3 P CBA E P2 E

On peut éliminer 5 et obtenir :

A* E C* A* CAC-1 A~1C (6)

Ce groupe est isomorphe au groupe du deuxième type, métabélien de

rang 4, construit en 5.9.

6.4. Le groupe binaire de Vicosaèdre 3* (ordre 120) est défini par:

A* B* C* P CBA E P* E

On peut également éliminer B :

^io E CZ A* CAC-1 A~1C (7)

Ce groupe, identique à son groupe des commutateurs, 3*; 3* > n'est
pas à portée de mes méthodes (parce que du deuxième type, non résoluble).

Il n'est pas identique au groupe symétrique <S5 d'ordre 120, qui possède

un sous-groupe invariant d'ordre 60, le groupe simple ?ï5. Constatons
cependant ce fait curieux : les deux groupes ont des séries de composition
de même longueur et des groupes-quotient isomorphes à l'ordre près :

les groupes-quotient étant respectivement : 3l5, 32 e^ 32 > ^s* Autre fait
intéressant : les éléments de 3* se répartissent en 9 classes d'éléments
conjugués, alors que ceux de O* se répartissent en 8 classes et ceux de
3;* en 7.
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Chapitre III
Conditions suffisantes pour l'existence de représentations

sans points fixes. Théorèmes fondamentaux

§ 7. Représentations irréductibles. Groupes cycliques et quaternioniques

7.1. Les éléments d'un groupe abstrait © fini, d'ordre g, se répar-
tissant en JV classes d'éléments conjugués, © admet JV représentations
irréductibles, unitaires, non équivalentes, de degrés dt (i 1, 2,..., JV)

diviseurs de g, caractérisées par leurs caractères %t21). Je désigne par C%

N
les classes et par ct le nombre des éléments qu'elles renferment : £ ct g.

Le critère d'irréductibilité d'une représentation de caractère % est

J£ % (8) # ($) 9 y
^a somme étant étendue à tous les éléments 8 € ©.

Les caractères des JV représentations irréductibles non équivalentes
vérifient les relations d'orthogonalité :

0 si i ^ j
g si i j
0 si 8 et T non conjugués

-S x,(8) XAT)= \ 9_ gi s et T conjugués dans (g
(2)

S et T appartenant à la classe Ct, — est l'ordre du normaliaateur d'un

élément de cette classe. En particulier, si 8 T E, l'élément unité
de ©, les deuxièmes relations d'orthogonalité donnent :

Edl g (3)

la somme des carrés des degrés des représentations irréductibles est égale
à l'ordre du groupe.

La condition nécessaire et suffisante pour Véquivalence de deux représentations

linéaires, réductibles ou non, d'un même groupe ©, est Videntité
des caractères.

21) Voir note 4.
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7.2. Les représentations irréductibles, unitaires, de © sont de trois
sortes : 1. équivalentes à une représentation réelle ; 2. équivalentes à

l'imaginaire conjuguée, mais à aucune représentation réelle ; 3. non
équivalentes à l'imaginaire conjuguée22).

Cette classification peut s'opérer d'après les valeurs des caractères par
la relation

cg (4)

où c vaut + 1, — 1, 0 suivant que la représentation envisagée appartient

à la première, à la deuxième ou à la troisième catégorie.
Une représentation quelconque de © est somme de représentations

irréductibles. Pour qu'elle soit équivalente à une représentation réelle, il
faut et il suffit que les représentations de la deuxième catégorie qu'elle
peut contenir apparaissent un nombre pair de fois, celles de la troisième
catégorie aussi souvent que l'imaginaire conjuguée.

A ce propos, je rappelle la correspondance qu'on peut établir entre
VLk(n) et Ur(2n) : la forme d'Hermite, à n variables, z1z1-{— • + zn zn
où z8 x8 + i y8 (x8, y8 réels), peut s'écrire : x\ + y\ -\ h x\ + yl,
forme quadratique à 2n variables. De plus, U désignant une matrice
unitaire U -f- iV (U et F matrices réelles), de degré w, on a la relation

T(U1 \ 0 Xïr ~\V U f
OÙ T~YÏ \-iE E » (5)

T étant unitaire et la matrice du second membre orthogonale de degré 2n.
Cette loi de composition sera utilisée pour les représentations irréductibles

des deuxième et troisième catégories. Elle permet d'obtenir les

représentations orthogonales (réelles)23), irréductibles dans Ur(n). Toute
représentation orthogonale de © est une somme de représentations
irréductibles unitaires qui peuvent appartenir aux trois catégories, à condition

que celles de la deuxième et de la troisième soient amplifiées au sens

que je viens d'indiquer.

7.3. Le cas d'un groupe cyclique, engendré par A, d'ordre g, est

particulièrement simple.
Les N g représentations irréductibles sont toutes de degré 1 et

s'obtiennent en faisant correspondre à A la matrice (ek) k= 1, 2,..., g
où e est une racine primitive gième de l'unité (2.4).

22) Pour tout le 7.2 voir [8].
28) Voir note 5.
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Celles correspondant à k premier à g sont sans points fixes ; leur nombre
est <p(g) (définition en 3.1). Ce sont les seules qui soient fidèles ; de plus
elles appartiennent à la troisième catégorie (7.2), c'est-à-dire qu'elles ne
sont pas équivalentes à Vimaginaire conjuguée, sauf dans le cas g 2.

Les représentations orthogonales, sans points fixes, irréductibles dans
le domaine réel, non équivalentes, d'un groupe cyclique d'ordre g (^ 2)
sont de degré 2 et en nombre égal à \<p(g). Il n'y en a qu'une, formée de

-f- 1 et de — 1, de degré 1, pour le groupe cyclique d'ordre 2.
Le groupe cyclique d'ordre g (^ 2) admet des représentations orthogonales,

sans points fixes, pour tous les degrés 2k et pour ceux-là seuls. Le
nombre des représentations non équivalentes pour le degré 2 k est égal
au nombre des combinaisons k k k avec répétitions, des ^(p(g) représentations

irréductibles de degré 2. Le groupe d'ordre 2, par contre, admet

pour tout degré l'unique représentation orthogonale sans points fixes
formée de E et — E.

Je retrouve les théorèmes connus :

Toute sphère de dimension impaire admet des groupes cycliques de

rotations sans points fixes, de degrés quelconques.
Une sphère de dimension paire n'admet pas d'autres groupes cycliques de

rotations sans points fixes que 3 2 et le groupe se réduisant à l'identité.

Comme formes spatiales sphériques (11.1), j'obtiens ici: l'espace
sphérique Sn et l'espace elliptique Pn (non orientable) pour les dimensions

n paires ; je montre plus loin que ce sont les seules. Pour les dimensions

impaires, des formes orientables : l'espace sphérique, l'espace
elliptique, une infinité de formes sphériques à groupe fondamental cyclique
(les espaces lenticulaires pour la dimension trois). Ces dernières sont
elliptiques ou non, suivant qu'elles admettent ou non l'espace elliptique
comme espace de recouvrement, c'est-à-dire suivant que g est pair ou
impair24).

7.4. Pour les groupes quaternioniques Q2a (oc > 3), j'ai donné en 3.2
la répartition en classes d'éléments conjugués : N 2a~2 + 3.

C'est le nombre des représentations irréductibles unitaires. L'ordre du

groupe rendu abélien, JQ/JQ', étant 4, il existe quatre représentations
irréductibles de degré 1 (A -> (± 1), B -> (±1)). La formule (3) de 7.1
prouve que les 2a~2 — 1 autres sont de degré 2 : 41+ (2a~2 — l)-4
2a g. On les obtient en posant :

H B=\-i o)

[1] P-321.
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où A est une racine primitive d'ordre 20C~1 de l'unité et r 1,
2,..., 2a~2 — 1. Les autres valeurs de r conduisent à des représentations

équivalentes (même caractère) sauf r 2a~2 et r 2a~1 qui
donnent des représentations réductibles.

Remarques : 1. Les caractères sont tous réels ; c'est une conséquence du
fait que 8 et 8~x sont dans la même classe quel que soit S e Q, car
£($-!) %(S), ici xfô"1) — X(&) d'où #($) #($) réel.

2. Les caractères de B (et BA) sont nuls dans toutes les représentations

irréductibles de degré 2, en accord avec le fait que la somme
%j(B)'xJ(B) étendue aux caractères de degré 1 donne déjà 4, ordre du
normalisateur de B (formules (2) en 7.1).

Les représentations irréductibles sans points fixes sont à rechercher
parmi les représentations fidèles. Or celles-ci s'obtiennent en donnant à r
les \<p{20L-1) 2a~3 valeurs (1,3,..., 2a~2 — 1) premières à 2<x~1 et
inférieures à 2a"2.

Les 2a~3 représentations irréductibles, unitaires, fidèles, de degré 2, sont
toutes sans points fixes.

Démonstration : Les valeurs propres de A sont des racines primitives
d'ordre 2<x~1 de l'unité. La première puissance de A qui admet une valeur
propre +1 est A20L~l qui vaut E. Celles de B sont i et — i (équation
caractéristique A2 + 1 0) et sont les mêmes pour tous les éléments de

sa classe. Celles de BA enfin :

BA

d'équation caractéristique A2 + 1 0, sont i et —i comme pour tous
les éléments de sa classe.

Ces 2a-3(=^~J représentations irréductibles, unitaires, sans points

fixes, appartiennent à la deuxième catégorie (7.2) c'est-à-dire qu'elles
sont équivalentes à l'imaginaire conjuguée (évident puisque le caractère est

réel) mais à aucune représentation réelle.

La formule (4) de 7.2 donne, en effet, tous calculs effectués :

Les représentations orthogonales, sans points fixes, irréductibles dans

Xtr(n), non équivalentes, s'obtiennent par composition à partir des 2a~3

représentations irréductibles, unitaires, sans points fixes, de degré 2.
Elles ont le degré 4 et sont en nombre égal à 2a~3.
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Le groupe quaternionique JQ2a, d'ordre 2a, admet des représentations
orthogonales, sans points fixes (en général réductibles, même dans le
domaine réel), pour tous les degrés ék et pour ceux-là seuls. Le nombre des

représentations non équivalentes pour ce degré est égal au nombre de
combinaisons k à k, avec répétitions, des 2a~3 représentations orthogonales

irréductibles.
Or tout groupe © du deuxième type contient des 2-sous-groupes de

Sylow quaternioniques. Soit Q2a Pun d'eux; toute représentation sans

points fixes de © induit une représentation sans points fixes de Q2a.
Toute représentation orthogonale, sans points fixes, d'un groupe du
deuxième type est de degré 4fc. Envisagée comme groupe de rotations,
cette représentation transforme en elle-même la sphère S4*1-1, à 4& — 1

ou 4F+ 3 dimensions ; d'où le

Théorème I : Seules les sphères Sik+Z, dont le nombre de dimensions est

congru à 3 (mod. 4), peuvent admettre des groupes de rotations sans points
fixes du deuxième type.

Les groupes quaternioniques & 2a sont du deuxième type ; ils
apparaissent effectivement comme groupes de rotations sans points fixes de

toutes les sphères $3, S1, S11,... Ils sont relatifs à la dimension 3 ;

j'entends par là, que c'est la plus petite dimension pour laquelle ils
apparaissent comme groupes de rotations sans points fixes.

Les formes sphériques (elliptiques) correspondantes sont, pour la
dimension trois, des espaces prismatiques particuliers (Q2a*est en effet le

groupe diédrique binaire D2a-i (6.1)).
D'autres exemples sont donnés plus loin (9.3).

§ 8. Groupes du premier type, non cycliques

Un groupe (5 du premier type (sous-groupes de Sylow cycliques),
d'ordre g, est défini par :

Am E Bn E BAB-1 Ar (1)
où:

a) m>0, mn g b) ((r — l)n,m) 1 c) rn=l(m).

Son groupe des commutateurs {A} est cyclique d'ordre m impair
(4.5 formules (2) et 4.6).

8.1. Soit tout d'abord m premier (impair). Nous pouvons choisir

pour r l'un quelconque des m — 2 restes premiers à m autres que 1
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(g? (m) A (m) m — 1 ; pour r 1, nous aurions le groupe cyclique
d'ordre m», déjà traité) ; r — 1 est, en effet, premier à m pour toutes ces
valeurs.

Supposons, dans un premier cas, que la valeur choisie pour r appartienne
à Vexposant m— 1; r engendre le groupe multiplicatif ©m (3.1)
cyclique d'ordre <p(m) m — 1. Il y a exactement cp(m — 1) valeurs
de r vérifiant cette condition, correspondant dans les cas précisés à la fin
de 4.6 à des groupes isomorphes.

La condition c) rn 1 (m) entraîne n multiple de m — 1 : n
(m — 1)^', %' premier à m.

La relation BAB~X ^4r donne par itération BVAB~V ArV, si bien
que J?™-"1 est permutable à A ; étant aussi permutable à B, cet élément
est dans le centre. Le groupe admet un centre {B™-1} d'ordre nr, ^ E
si nr 7^ 1. De plus, r engendrant ©m, l'élément J. et ses puissances
forment une seule classe d'éléments conjugués. Mon but étant la recherche
des représentations irréductibles sans points fixes, je précise tout d'abord
cette répartition en classes. Comme BAB~X Ar, BAr7n~2 B'1 A*™"1

A et ABA"1 BAr7n~2-1, on a A^A-1 BAi{f*lr*-1) ; rm~2 — 1

étant premier à m, la classe de B renferme tous les éléments : B, BA,
BA2,..., BAm"x. Le résultat est analogue pour tous les éléments Bv qui
n'appartiennent pas au centre, d'où la répartition suivante en classes

d'éléments conjugués, où les éléments d'une même classe sont dans la
même colonne :

E A B B2 .• B™-2

A2 BA B2A • • • Bm~2A

: : : : (2)

SA171"1 B2Am~1 • • • sm~2Am~1

La répartition complète est formée de nr tableaux de structure
identique à (2) (elle se réduit d'ailleurs à (2) si n1 1) ; les nr — 1 autres
tableaux s'obtiennent en multipliant (2) par les n1 — 1 éléments ^ E du
centre {Bm~1}.

Voici ce que je me propose d'établir tout d'abord : quel que soit nf, les

représentations irréductibles de © sont soit de degré 1, soit de degré
m — 1. Je montre alors que, moyennant une restriction sur nf, il existe
des représentations irréductibles sans points fixes, toutes de degré m — 1,
non équivalentes à des représentations réelles. Je procède par étapes :
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a) L'ordre du groupe © est g mn m(m — l)nf. Les classes
d'éléments conjugués sont en nombre N mn1. C'est le nombre des
représentations irréductibles. Le groupe rendu abélien, ©/©' ©/{A} est

cyclique d'ordre n (m — l)n' ; c'est le nombre des représentations de

degré 1, qui s'obtiennent par la correspondance A ->(1), 2ï->(/?*)
&=l,2,...,tt, où/? désigne une racine primitive nième de l'unité. Il
reste nr représentations de degrés inconnus, supérieurs à 1.

b) Le caractère de B dans toute représentation de degré supérieur à 1

est nul. C'est une conséquence des relations d'orthogonalité (2) des caractères,

rappelées en 7.1. La somme des %i(B)"%i(B), étendue aux caractères

de degré 1, donne déjà n, ordre du normalisateur de B.
Il en est de même pour toute puissance de B, non contenue dans le

centre.
Un élément du centre est représenté (dans toute représentation

irréductible) par ocE25). C'est une conséquence immédiate du ,,lemme de
Schur". Ici, B711-1 est représenté par ocE, Bk(m'-1) par ockE, où oc désigne
une racine w/lème de l'unité (primitive ou non).

© n'étant pas abélien, les matrices d'une représentation linéaire fidèle
de © ne peuvent avoir toutes la forme diagonale. Mais deux matrices
correspondant à des éléments permutables de © peuvent être mises
simultanément sous forme diagonale ; les valeurs propres du produit soiit alors
le produit des valeurs propres. Ainsi les valeurs propres de B^^A sont le

produit par oc de celles de A ; plus généralement, les valeurs propres de
_B&(m-i)j[ sont celles de A multipliées par ock. Soit % le caractère d'une
représentation irréductible de degré x > 1 ; le système des caractères est :

X{E) #,#(-4),0,...,0 pour le premier tableau,

^(B™-1) ocx, xiB™-^) ocx(A), 0,..., 0 pour le deuxième,

^(J5*<m-i>) %hXi x(Bk{m-»A) ockx(A), 0,..., 0 pour le (k + l)ième.

c) Utilisons alors le critère d'irréductibilité d'une représentation (7.1);
2z(S)z(S) j.s

n'x2 + nr(m — 1) x(A)~x(A) g m(m — 1) n'
ou

X2 + {m _ i) x{A) x{A) m(m - 1)

Cette égalité prouve que %(-4) #(-4) est rationnel. Or, x(A) est un entier

28) M p. 266, [4] Satz 151.
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algébrique (somme de racines de l'unité) ; %(A) x(A) est un entier rationnel,

x est divisible par m — 1. Les nr représentations irréductibles de degré

> 1 sont toutes de degré m — 1 ; c'est la seule valeur qui convienne, la
somme des carrés des degrés des représentations irréductibles devant être
égale à ^ (7.1):

(m — 1) n'x 1 + n'x (m — l)2 m(m — 1) n' g

De plus, %(A) %{A) 1 dans toutes les représentations irréductibles
(même pour le degré 1).

d) A et ses puissances ^ E forment une seule classe d'éléments
conjugués, les matrices correspondantes ont les mêmes valeurs propres.
Dans toute représentation irréductible de degré m — 1, ce sont A,

P,..., Am~x où A désigne une racine de l'unité d'ordre m. Elles sont
toutes primitives, puisque m est premier. Le cas où elles seraient toutes
égales à l'unité ne peut se produire à cause de %{A) ~x(A) 1. Je trouve
ici %{A) — 1, en accord avec cette relation. A, ni aucune de ses

puissances =£E, n9admet la valeur propre + 1. Je suis désormais en mesure
de donner le système complet des caractères ; pour les n1 représentations
irréductibles de degré m — 1 on obtient :

m — 1, —1, 0,...,0 pour le premier tableau

(xk(m - 1), - ock, 0,..., 0 pour le (k + l)ième

où oc est à remplacer successivement par les nr racines nnèmes de l'unité.

e) Je cherche alors à déterminer les valeurs propres de B dans une
représentation irréductible de degré m — 1.

Soient /uly ju2,..., /xm_1 ces valeurs propres, racines de l'unité d'ordre
n =(m — l)n'. Comme celles de l'élément B™-1 du centre sont toutes
égales, /a™"1 fj^~x •. ju,™z\ — pm~x et l'on peut poser : ju{ /^
où ef~1 1. Le caractère de Bk est nul pour &=l,2,...,m — 2:
m—1 m-l m—1

e* 0. D'où S e? 0 pour k 1, 2,..., m - 2 et JE ef""1
i

m — 1. Les formules de Newton prouvent que les ^ sont les m — 1

racines de e™"1 1.

valeurs propres de B, dans toute représentation irréductible de degré

m — 1, occupent sur le cercle unité les sommets d'un polygone régulier de

m — 1 côtés.
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Soit fi une racine primitive de l'unité, d'ordre n (m — 1) nf. Les
valeurs propres de B dans les nr représentations irréductibles de degré
m — 1 sont : juk, fjtke,..., ^kem~29 k 1, 2,..., n', s racine primitive
(m — l)lème de l'unité. Choisissons en particulier pour e la valeur pn\ les
valeurs propres de B sont : jlcJc /^+n', ju,k+2n',..., ^k+(m-2)n'

f A quelle condition les valeurs propres de £ sont-elles toutes racines
primitives d'ordre n de l'unité?

Les m — 1 entiers :

k9k + n',Jc + 2n',...,k + (m - 2) n1 (3)

doivent être premiers à n (m — 1) n1.

La condition nécessaire et suffisante, pour qu'un choix de k remplissant
cette exigence soit possible, est que n! soit multiple des facteurs premiers de

m — 1 ; si m — 1 — p^p^2... p%k, nr doit égaler pxp%. • -Vkn" W res"
tant premier à m, pour satisfaire la condition (n, m) 1).

La condition est nécessaire : k peut toujours être choisi premier à n
(m — 1) nr : il suffit de prendre au besoin k 1. Soit pt un des
diviseurs premiers de m — 1 et supposons qu'il ne divise pas nf : (n1\Pi) 1.
Les Pi premiers entiers de la suite (3) : k, k + nf,- • •, k + (pt — 1) nr
sont deux à deux incongrus (mod. pt) : car k + snr k + tn'(Pi)
entraînerait (5 — t) nf 0(p{) et s t(pi) puisque (n\ Pt) 1. L'un
d'eux est congru à 0(p{) et n'est pas premier à n, contrairement à

l'hypothèse. Donc pjnf.
La condition est suffisante: soit n'= p1p%-.. ^fe^7 e^ choisissons k

premier à n1 : du même coup, k est premier à m — 1. Les nombres de la
suite (3) sont tous congrus à k (mod. nr), donc premiers à n (m — l)n'.

On peut choisir pour k les <p(nr) valeurs inférieures et premières à n1'.

Pour les ç>(w') représentations irréductibles correspondantes, de degré
m — 1, £ ni aucune de ses puissances ^ i£ n'admet la valeur propre + 1 •

II en est de même pour tous les éléments d'une classe renfermant une
puissance de B (qui ont en effet les mêmes valeurs propres). Il ne reste à

considérer, d'après les tableaux (2), que les éléments tels que Bk{m~x)A.

Or, d'après (b), les valeurs propres d'un tel élément sont celles de A
multipliées par (xk. Toute valeur propre de A est racine mième primitive de
l'unité ; ak est racine nnème (primitive ou non) ; (m, nf) 1 rend
impossible l'apparition d'une valeur propre + 1.

La condition nécessaire et suffisante d'existence de représentations sans
points fixes d'un groupe © du type considéré est que nf soit multiple des foc-
teurs premiers de m — 1.
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© admet nr représentations irréductibles de degré m — 1, parmi
lesquelles (p(nf) sont alors sans points fixes.

Remarques: 1. Le centre de © est alors

2. Le nombre <p{nf) des représentations irréductibles sans points fixes

est égal à 9^ Car g m(m- l)n' ; (m, (m - 1) nr) 1

entraîne 9>(<7) ç?(m) ç>[(m— 1) nf"\ ; ç?(m) m — 1 et ç>[(ra—1) w']
(m — 1) ç? (ti') à cause de n1 multiple des facteurs premiers de m — 1 ;

q>(g) (m — l)2cp(nr), d'où l'égalité en question.

3. Toutes les représentations irréductibles fidèles de © sont sans points
fixes; ce sont justement les <p(n') représentations irréductibles sans
points fixes trouvées ci-dessus.

g) A quelle catégorie appartiennent les (p(nr) représentations irréductibles

sans points fixes, de degré m — 1? Les caractères de ces q>(nf)

représentations s'obtiennent en donnant à ex, à la fin de (d), les <p(nf)
valeurs, racines 7i/ièmes primitives de l'unité. J'applique la formule (4) de 7.2 ;

on trouve :

£ %(S2) m(m - 1) (oc + oc* + o? -\ h o?n'~x)
s

Deux cas sont à distinguer suivant que nf, qui est pair (multiple des

facteurs premiers de m — 1, où m est premier), est supérieur ou égal à 2 :

nf> 2 entraîne J£#($2)==0 et les q>(nf) représentations irréductibles
s

sans points fixes appartiennent à la troisième catégorie (non équivalentes
à l'imaginaire conjuguée).

Pour n' 2, oc vaut — 1, et X X(s*) ~™>{™> — 1)2= — gr ;

s
l'unique représentation sans points fixes de degré m — \ appartient à la
deuxième catégorie, c'est-à-dire qu'elle est équivalente à l'imaginaire
conjuguée, mais à aucune représentation réelle. Dans ce cas, m — 1 ne doit
admettre que le facteur premier 2: m—-1 2*, m=2*+l est un
nombre premier de Fermât (3,5, 17,...).

Les représentations orthogonales, sans points fixes, irréductibles dans

Ur(n), sont dans les deux cas de degré 2 (m — 1) et en nombre (non
équivalentes) égal à \(p(nf) si n'>2 et 1 si n1 2.

8.2. Passons au cas, où m étant toujours premier, l'ordre de r dans © m
est, non pas m — 1, mais un diviseur d de <p (m) m — 1 :

A™ E B» E BAB-1 Ar
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comme r^ est la plus petite puissance de r congrue à 1 modulo m, rn 1

(m) entraîne n multiple de d: n dfi' (avec /&'premier km, en vertu de

(m, ri) 1). BVA^B~V A^rV montre que la classe de Av renferme les

d éléments : Aix,Afir,...,A^'1, les exposants étant incongrus modulo
m car les ra — 1 sont premiers à m pour 0 <<x <d. Les puissances de A,

se répartissent en —-=— classes de d éléments. A^BvA~v-

v-1) montre, d'une part que Bd est dans le centre, d'autre part
que la classe d'un élément Bv n'appartenant pas au centre renferme les m
éléments Bv, BVA,..., BvAm~1 (conséquence de rd~v— 1 premier à m).

La répartition en classes d'éléments conjugués est formée de nr
tableaux :

E A
Ar

Av- B
BA

BAm~l B2Am~1

les n' — 1 autres ont la même structure et s'obtiennent en multipliant
les éléments de (4) par les nr — 1 éléments ^E du centre {Bd}.

Je me propose d'établir que les représentations irréductibles ont soit le
degré 1, soit le degré d (quel que soit nr). La condition nécessaire et
suffisante pour qu'il existe des représentations irréductibles sans points
fixes est que nr soit multiple des facteurs premiers de d. Il existe alors

—2—y(*) 3T

représentations irréductibles sans points fixes, non équivalentes à des

représentations réelles.

Je suis le même plan qu'en 8.1:
L'ordre de © est g — mn mdnf ; les classes d'éléments conjugués

(—-7 h d\ nf. (5/(5'est cyclique d'ordres dnr ;

c'est le nombre des représentations irréductibles de degré 1, II reste
?M 1

—-=—n' représentations de degrés inconnus, supérieurs à 1.

Soit x te caractère d'une représentation de degré x > 1 Les raisonne-

sont en nombre N
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ments de 8.1 b) s'appliquent ici et permettent d'affirmer que %(BV) 0

pour tout élément Bv n'appartenant pas au centre {Bd}; de plus,
X(BM) <xkx, x(BkdA^) ockxiAP) où oc désigne une racine nnème,

primitive ou non, de l'unité.
Le critère d'irréductibilité de % (7.1) permet d'écrire : J£ % (S) % (S) g

s

n'x2 + n'd £ x(^) x(Atl) g mdn'

yn — 1

la somme étant étendue aux —-=— classes en lesquelles se répartissent

les puissances de A autres que E. On en tire : x2 +
md qui prouve que x est multiple de d (car £ x {Av) ~x (Av) entier
algébrique, rationnel, est entier rationnel). Comme J£ d\ g (7.1) et que :

dnfx 1 H—--j— n1xd2 m dnr g, j'obtiens le résultat : les —-^— nf

représentations irréductibles de degré > 1 ont toutes le degré d.
Autre conséquence : J£ x(^) #(A*1) m — d. Les valeurs propres de

A ne sauraient, dans une représentation irréductible de degré d, être
toutes égales à l'unité (la somme prendrait en effet la valeur (m — 1) d).
Soit X ^ \ une valeur propre de A, racine mième de l'unité (primitive
puisque m premier). En se reportant au tableau (4), on voit que les d

valeurs propres de A sont : A, XT,..., Xr ~x. Ce sont toutes des racines
primitives : A, ni aucune de ses puissances ^ E, n'admet la valeur propre

+ 1. On obtient —-=— caractères différents en remplaçant A par A^ où
a

ju est un représentant d'une classe de ©m suivant {r} ; l'ordre de ©m/ {r}
est précisément —-=¦—d

Quant aux valeurs propres de B, de ses puissances et des BkdAfx, on
les obtient par les mêmes raisonnements qu'en 8.1 e) et f).

Dans toute représentation irréductible de degré d, les valeurs propres de B
occupent sur le cercle unité les sommets d'un polygone régulier de d côtés. Les

nf caractères distincts obtenus ici, joints aux —-=— caractères relatifs à
-, d

A, donnent les —- — nr représentations irréductibles, non équivalentes,
d

de degré d.

La condition nécessaire et suffisante pour que les valeurs propres de B
puissent être toutes primitives, est que n' soit multiple des facteurs premiers
de d (même raisonnement qu'en 8.1 f)).
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Dans ce cas, aucun élément ^ E n'admet la valeur propre + 1.

Moyennant cette condition, © admet —-=—<p(nf) représentations irré-
(m

ductibles (unitaires), sans points fixes, toutes de degré d. Ce nombre n'est

autre que )% (voir fin de 8.1 f) ; c'est aussi celui des représentations

irréductibles fidèles.
Pour trouver les représentations orthogonales, sans points fixes,

irréductibles dans Ur (n), il faut déterminer à quelle catégorie appartiennent

ces ^-4^ représentations irréductibles, sans points fixes, unitaires. En
a

appliquant le critère (4) de 7.2, on obtient :

X ~ rnd{oc + ** -\ h ot2"'-1) si d pair

où a désigne une racine nnème primitive de l'unité.
Quand d est pair, deux cas se présentent :

nf (qui doit être pair) supérieur à 2 : J£ #(#2) 0

- g

ce dernier cas, d est une puissance de 2.

En définitive, © admet ^— représentations irréductibles, sans points

fixes, non équivalentes à l'imaginaire conjuguée (troisième catégorie), ou
équivalentes à l'imaginaire conjuguée, mais à aucune représentation réelle
(deuxième catégorie). Les représentations orthogonales, sans points fixes,
irréductibles dans Ur(n), ont toutes le degré 2d. Elles sont en nombre

égal à | ?^~ dans le premier cas, ?~- — —^— dans le second (où

n' 2).

8.3. Existe-t-il un entier m, tel que le groupe ©m (groupe multiplicatif

des classes de congruences modulo m, premières au module)
contienne un élément d'ordre d donné?

La réponse est affirmative ; il y a même une infinité d'entiers répondant
à la question. Il me suffit ici, d'établir l'existence d'une infinité d'entiers

m, premiers impairs, tels que ç>(m) A (m) m — 1 soit divisible par
d. Or, tous les nombres premiers (en nombre infini, d'après Dirichlet) de
la progression arithmétique 1 + kd répondent à la question. Soit m l'un
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d'eux, r un reste modulo m d'ordre d dans ©m. Le groupe © du premier
type, d'ordre g mdn' défini par :

Am E Bdn' E BAB-1 Ar

où n', premier à m, est multiple des facteurs premiers de d, admet ^-W-

représentations irréductibles (unitaires), sans points fixes, de degré d. Les
représentations orthogonales correspondantes, irréductibles dans Ur(n),
sans points fixes, non équivalentes, sont de degré 2d et en nombre égal à :

© admet des représentations orthogonales, sans points fixes, pour tous
les degrés 2 kd et pour ceux-là seuls. Je dirai de © qu'il est relatif à la
dimension 2d — 1 ; il n'apparaît pas comme groupe de rotations sans
points fixes d'une sphère de dimension inférieure. Le nombre de
représentations orthogonales, sans points fixes, non équivalentes, pour le
degré 2kd est égal au nombre de combinaisons k à k, avec répétitions,

s* w7 2) représentations orthogonales irréductibles.

J'obtiens le :

Théorème II : Toute sphère de dimension impaire (supérieure à 1) carnet

une infinité de groupes finis de rotations sans points fixes, non abéliens, ne

se présentant pas pour des dimensions inférieures.

Pour illustrer ce théorème, je vais construire quelques exemples. Mais

auparavant, je fais une remarque qui sera précisée après l'étude complète
des groupes du premier type (il s'agit ici de groupes du premier type dont
le groupe des commutateurs est d'ordre premier). Si d est pair 0
modulo 2), © est relatif à la dimension 2d -— 1 — 1 ou +3 modulo 4 ;

quel que soit k, 2kd — l +3(4). © n'apparaît que pour des sphères
gzkd-i dont la dimension est =3(4). Si d est impair (=1 modulo 2),
© est relatif à la dimension 2d — 1 + 1 modulo 4 ; mais 2kd — 1

— 1 ou +1 suivant que k est pair ou impair. ©, relatif à une sphère
de dimension 1 (4), apparaît aussi pour des sphères dont la dimension
est alternativement =1 ou =3(4).

Voici le groupe de rotations sans points fixes de S5, non cyclique, d'ordre
minimum. 2d — 1 5 donne d 3 ; le plus petit nombre premier de
la progression arithmétique 1 + 3& est ra 7; ©7^3®» on peut

154



choisir pour r les valeurs 2 ou 4, seuls restes d'ordre 3 dans © 7 (groupes
isomorphes si nr impair, voir fin de 4.6) n 3w' ; nr doit être multiple
de 3 pour qu'il existe des représentations sans points fixes : n1 3n"
(nfr premier à 7), n 9n/f. Pour n" 1 :

A1 E B» E BAB-1 A2

Ce groupe est d'ordre 63 ; il admet ^~ 4 représentations irréductibles,

unitaires, de degré 3, sans points fixes, non équivalentes à
l'imaginaire conjuguée, données par :

A

0

0

0
A2

0

0

0A 0 A2 0 B

où A désigne une racine primitive d'ordre 7 de l'unité (les diverses valeurs
de A ne conduisent qu'à deux caractères distincts), <x une racine primitive
d'ordre 3 (deux possibilités). Les représentations orthogonales irréductibles

sont au nombre de deux (non équivalentes), de degré 6. S5 admet
deux groupes de rotations non équivalents de ce type. Ce groupe se
présente également pour S11, S11,..., S61**1,... ; pour S11, par exemple, on

2 • 3
obtient -—- 3 représentations orthogonales non équivalentes.

1 • 2

Pour n" quelconque (mais premier à 7), on obtient une infinité de

groupes différents, d'ordres 63tt/7, de rotations sans points fixes de 8S.
Si nn est pair, il faut considérer en outre les groupes : A1 E, B%n" E,
BAB-1 A*, d'ordres 63n", non isomorphes aux précédents.

Comme deuxième exemple, je forme le groupe suivant :

A29 E B*» E BAB-1 A™

Son ordre est g 29-49 1421 ; on vérifie que 167 1 (modulo 29).

Ce groupe admet ^W- — 24 représentations irréductibles (unitaires),

sans points fixes, de degré 7, non équivalentes à l'imaginaire conjuguée.
Il est relatif à la dimension 13. C'est l'exemple annoncé en 5.4, d'un groupe
du premier type d'ordre premier à 120, admettant en outre des représentations

sans points fixes.
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J'indique encore le groupe du premier type (non cyclique) d'ordre le plus
petit, admettant des représentations sans points fixes. C'est :

A* E B* E BAB-1 A-1

d'ordre 12, isomorphe au groupe binaire D3*(6.1). Il est relatif à #3^et

admet ^~— 1 représentation irréductible, sans points fixes, de degré 2,

à caractère réel, donc équivalente à l'imaginaire conjuguée mais à aucune
représentation réelle. C'est avec 312 le seul du premier type de cet ordre
(il y a 5 groupes d'ordre 12).

Remarque : Les groupes de rotations sans points fixes relatifs à 82d~x

sont en nombre infini pour deux raisons : l'ordre du groupe des commutateurs

©' peut être choisi d'une infinité de façons et il en est de même pour
l'ordre de S/©'.

8.4. Pour achever l'étude des groupes du premier type, il reste à
considérer le cas où Yordre m de & est un nombre impair composé.

Il faut choisir r de telle sorte que r, r — 1 et l'ordre d de r dans ©m
(3.1) soient premiers à m (ce choix est possible quel que soit m impair ;

on prendra au besoin r — 1 d'ordre 2). d est diviseur de X (m), l'exposant

de ©m. L'indice n du groupe des commutateurs doit être multiple
de d, égal à dnr avec (n', m) 1. Le groupe © est défini par :

A™ E B**>' E BAB-1 A* (5)

Son ordre est g m dnr. La répartition de ses éléments en classes
d'éléments conjugués est plus compliquée que pour m premier (8.1 et 8.2).
Soit mt un diviseur quelconque de m, rt le reste de r modulo mt, c^. l'ordre
de r{ dans ©mt (pour m{¦= 1, je pose par convention d{ 1). Je vais
établir le théorème :

© admet *i représentations irréductibles (unitaires) de degré d{,

où A™* et ses puissances sont, seules parmi les puissances de A, représentées

par la matrice E. Le nombre total des représentations irréductibles de © est

égal à : 2 *2 la somme étant étendue à tous les diviseurs mi de m

(y compris 1 et m). C'est le nombre N des classes d'éléments oonjugués.
Ce théorème est vrai pour m premier, ainsi qu'il résulte de 8.2, les repré-

156



sentations irréductibles étant —-z— n' de degré d et dn' de degré 1, au
total :

—j— n' + dn'
d

Je procède par induction complète sur le nombre des facteurs premiers de

m, en supposant le théorème établi pour tous les groupes du type considéré

où l'ordre du groupe des commutateurs est un diviseur mt <ra) de

m. Le sous-groupe {Ami}, d'ordre — du groupe cyclique ©' d'ordre m
mt

est caractéristique, donc sous-groupe invariant de ©. Le groupe-quotient
©/ {Am%} est d'ordre m% dn1 et donné par :

Am* e Bd™' E BAB-1 Ar* (6)

Ses représentations irréductibles induisent des représentations de ©

également irréductibles J£ #($) ~x(8) — mt dn' m dn' g) dans
s m%

lesquelles Am% et ses puissances sont représentés par la matrice E.
J'applique l'hypothèse d'induction à ^>j{Am%) (mt<m) ; le nombre des

représentations irréductibles correspondantes de © où aucune puissance de

A avant la mtlème n'est représentée par E est *l La formule (3)
de 7.1 donne alors : *

N
H à\ E <p(m>t) dn' + Z x2k g mdn' (7)

la première somme étant étendue à tous les diviseurs de m inférieurs à m,
la deuxième aux représentations (en nombre et de degrés inconnus) où

aucune puissance de A, =fi E, n'est représentée par la matrice unité. Or

jr (p(mt) m ; la relation (7) s'écrit : [m — cp (m)] dn' + J£ x\ m dn'
m%\m

ou J£ x\ — (p{m) dn'.

On montre d'autre part comme en 8.2 que les <p(m) puissances de A

d'exposants premiers à m se répartissent en classes contenant
Cv

chacune d éléments (AiAr,.. ^A^1 par exemple). Le nombre des

représentations inconnues est supérieur ou égal à n', leurs degrés

divisibles par d (avec X, A admet Xr, Xr%,.. X1^'1 comme valeurs

propres). La seule possibilité en accord avec £ x\ ç?(m) dn1 est : Â n'
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représentations irréductibles de degré d. Comme ce nombre est égal à

^ *2 le théorème est établi.

© admet nr représentations irréductibles de degré d où aucune puis-
a

sance de A, =£E, n'admet la valeur propre + 1. Les valeurs propres de A
sont en effet racines mième8 primitives de l'unité, sinon une puissance de A,
¦=£E, serait représentée par la matrice unité.

Je vais montrer que les puissances de B non contenues dans le centre
{Bd} ont le caractère nul dans toutes ces représentations.

Si m p* (p premier impair), ©m est cyclique d'ordre q>(m)

p<*-i(p — 1). La condition r, r — 1 et d premiers à m entraîne d diviseur
de p — 1. © m a un seul sous-groupe d'ordre p — 1 (cyclique donc
isomorphe à (ôp) ; on l'obtient en élevant les éléments de ©m à la puissance
pot-i (d'où l'homomorphisme ©m -> ©£>). Soit m{ pP 0<f}<<x un
diviseur de m ; riy reste de r modulo mi9 est d'ordre d dans S%
(conséquence de l'homomorphisme ©mf -> (5p). Un groupe © donné par les

formules (5), où m #a, admet des représentations irréductibles de

degré 1 et de degré d > La répartition de ses éléments en classes d'éléments
conjugués est la même que pour m premier (voir tableau (4) en 8.2).
Toutes les puissances de B, non contenues dans le centre, ont le caractère
nul dans les représentations de degré supérieur à 1.

Si m contient des facteurs premiers différents, ©m n'est plus cyclique et
le groupe © donné parles formules (5) admet des représentations irréductibles

de degrés divers. Soit dt (l<di<d)le degré d'une de ces représentations

irréductibles et m{ le plus grand diviseur de m tel que l'ordre de rt
dans ©m^ soit égal à dt. Le groupe ®/{^4mf}, donné par les relations (6),
admet pour centre {Bdi}. L'élément Bkdi est seul dans sa classe, les

BkdiAP(jbt 1, 2, m{ — 1) se répartissent en classes d'éléments
conjugués de la même manière que les At1. Dans ©, les m éléments

BkdiAP (JM=l,2,...,m; k fixe premier à -=-) se répartissent dans les

mêmes classes, le nombre d'éléments dans chaque classe étant multiplié

par —. C'est ainsi que la classe de Bkdi contient les éléments :
m ^ m

^"* )m%
; la

contient aussi : Bkdi A*+»«,..., Bkdi

Bkdi, B^A"*,. Bkdi A^"* )m%
; la classe qui contient Bkdi A*

J'en déduis deux conséquences importantes. Tout d'abord, le normali-
sateur dans © de Bkd* est d'ordre m^n'. Or, Bkdi étant dans le centre

158



de (&j{Ami), la somme des x$(Bkdi)x,(&***) étendue aux représentations

irréductibles de ©/ {Am} (qui induisent des représentations
irréductibles de (5) donne l'ordre mfin1 de ce groupe. Il résulte de la relation
d'orthogonalité (2) de 7.1 que Bkdi a le caractère nul dans toutes les

autres représentations irréductibles de ®. En particulier y dans les nr
a

représentations irréductibles qui nous intéressent (voir plus haut), toute
puissance de B non située dans le centre a un caractère nul. II en est de même

pour les BvAfl à condition que Bv n'appartienne pas au centre.

D'autre part, dans la suite BkdiA*, BkdiA*x+mi,..., Bkdi A*1*^'"*
d'éléments appartenant à la même classe, il en est un où l'exposant de A

est multiple de Ces exposants sont en effet en nombre — et deux
rrti mi

à deux incongrus modulo — I ; l'un est 0 — Or, BAB~X Ar

rkdi
entraîne Bkdi Ami B~kdi A™* ' %

Am en vertu de r* 1 (m,) ; Bkdi
m

est permutable avec Am Toute classe de © qui renferme un BvAp,
renferme un BVA^, où Bv est permutable avec J>'.

Les raisonnements de 8.1 e) f g) sont dès lors applicables. Le caractère
de toute puissance de B non contenue dans le centre étant nul, les valeurs

propres de B se répartissent aux sommets d'un polygone régulier de d côtés.

La condition nécessaire et suffisante pour qu'elles puissent être toutes primitives

est que nr soit multiple des facteurs premiers de d. Il existe alors

représentations irréductibles de degré d où aucune puissance de A ou de B,
7^ E, n'admet la valeur propre + 1 ; la deuxième remarque prouve que la
valeur propre +1 ne peut intervenir dans aucune classe ^ E (BvAfJ-f a

pour valeurs propres le produit des valeurs propres de Bv et A&' qui sont
d'ordres différents, les ordres de A et B étant premiers entre eux). Ces

^W- représentations irréductibles sont sans points fixes. De plus, et ceci
a

est essentiel, l'application du critère X #($2) ^9 (7.2), montre qu'elles
s

appartiennent à la troisième catégorie (non équivalentes à l'imaginaire
conjuguée) si nl > 2 et à la deuxième (équivalentes à l'imaginaire
conjuguée mais à aucune représentation réelle) si nf 2. Résumons ces
résultats dans les deux théorèmes suivants :
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Théorème III : La condition nécessaire et suffisante d'existence de re*

présentations sans points fixes d'un groupe © fini, du premier type, non
cyclique, d'ordre g mdn;, défini par:

Am E Bdn' E BAB-1 Ar

où nf, r, r — \, d (ordre de r dans ©m) sont premiers à m, est que nr soit
multiple des facteurs premiers de d26).

Théorème III* : Si un groupe © fini, du premier type, non cyclique,
admet une représentation sans points fixes :

a) toutes ses représentations irréductibles fidèles sont sans points fixes ;

b) elles ont toutes le même degré d, diviseur de l'ordre g du groupe;

c) leur nombre est égal à *-W- ;
a

d) elles ne sont pas équivalentes à des représentations réelles et sont ou ne
sont pas équivalentes à l'imaginaire conjuguée selon que n1 2 ou nf>2.

Les représentations orthogonales de ©, irréductibles dans VLr (n), sans

points fixes, sont de degré 2d et en nombre (non équivalentes) égal à

\^-~ si n'>2, ?~P- si n'= 2. © est relatif à la dimension 2d — 1 et* a2 a2

apparaît comme groupe de rotations sans points fixes pour toutes les
dimensions 2kd — 1.

Signalons en particulier cette conséquence : les seules formes spatiales
sphériques de dimensions paires sont l'espace sphérique et l'espace
elliptique (voir 7.3 et le théorème I en 7.4 pour les formes à groupe
fondamental du deuxième type).

A titre d'exemple, le groupe © défini par :

e B12n' E BAB-1 A2

d'ordre g 420nr, admet : I2nr représentations irréductibles de degré
1, 3 nr de degré 4, 8 n1 de degré 3, 2 nf de degré 12. 2 cp (n1) des représentations

de degré 12 sont fidèles. Si n! (premier à 35) est multiple de 6, ces

représentations fidèles sont sans points fixes ; n1 6, par exemple,
conduit à un groupe d'ordre 2520 admettant 4 représentations irréductibles,
sans points fixes, de degré 12, non équivalentes à l'imaginaire conjuguée.
Ce groupe est relatif à la dimension 23 (2.12 — 1) et admet deux
représentations orthogonales, sans points fixes, non équivalentes, irréductibles
dans Ur(24), de degré 24.

28) Cette condition est indiquée par Burnside [6], qui l'obtient par une tout autre
méthode.
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§ 9. Groupes du deuxième type, en particulier de la classe (oc)

J'ai proposé, à la fin de 5.7, une répartition des groupes © du deuxième

type (groupes finis dont les ^-sous-groupes de Sylow sont cycliques pour
p zfi 2, quaternioniques pour p 2) en trois classes : les deux premières
(oc) et (j8) renfermant les groupes métabéliens de rang 2, la troisième (y)
les groupes métabéliens de rangs 3 et 4 et les groupes non résolubles. Je
vais m'attacher surtout à la classe (oc) et établir des théorèmes très
analogues à ceux régissant les groupes du premier type.

9.1. Rappelons qu'un groupe © du deuxième type est dit de la classe

(oc) si ©' cyclique est contenu dans un sous-groupe invariant cyclique
d'ordre double. Il est donné par (relations (6) en 5.7) :

A**'1* E B2u A*" "2 BAB-1 Ar (1)

avec les conditions numériques :

oc > 3 (u, n) 1, ttr et n impairs

r2u i (2«-in) r — 1 (2a~1) (r - 1, 2*-%) 2

Son ordre est g 2*nu. Le groupe des commutateurs & {A2} est

cyclique d'ordre 2a~2n, le groupe-quotient ©/©' abélien d'ordre ±u et
de type (2, 2, u). An et Bu engendrent l'un des 2-sous-groupes de Sylow,
tous isomorphes à Q2a.

Je pose 2<x~1n m, multiple de 4 à cause de oc > 3, et je désigne par
d l'ordre de r dans ©m (3.1): r^ l(ra). Il résulte des conditions
numériques qui accompagnent les relations (1) que d est pair, conséquence
de r= — l(2a~1), et que 2u est multiple de d (r2u 1 modulo m).
Comme u est impair, d est divisible par 2 et non par 4: d 4i + 2. De
plus, 2u du1 avec ^ impair et même premier à m. Les relations
deviennent :

A* (2)

m 2<x~1n (n impair, oc ^ 3) étant donné, il faut choisir r de telle sorte

que r, —-— —soient premiers à m, et que r soit congru à — 1 modulo
2 2

2a~1. Alors d, l'ordre de r dans ©m, est de la forme 4h + 2. Un tel choix
est possible quel que soit m (multiple de 4) ; on prendra au besoin r — 1

d'ordre 2. Il faut choisir en outre u1 premier à m.
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Sous cette forme, l'ordre de © est g mdur. Remarquons que Tordre
de B est égal à 2du'. Je désigne par mt un diviseur quelconque de m,
par rt- le reste de r (modulo m,) par d{ l'ordre de r€ dans ©m, (pour m{ 2

ou 1, je pose d{= 1). Des raisonnements très analogues à ceux exposés
au § 8 pour les groupes du premier type conduisent au théorème :

Le groupe © donné par les relations (2) ci-dessus admet en tout

mi/m ai

représentations irréductibles (unitaires) de degrés d%, diviseurs de d;

œ(m)
\i <P(U)
d

sont fidèles et de degré d.

La recherche des représentations sans points fixes aboutit aux deux
théorèmes suivants :

Théorème IV : La condition nécessaire et suffisante d'existence de

représentations sans points fixes d'un groupe © fini, du deuxième type et de la
classe (oc), d'ordre g m du', donné par les relations (2) ci-dessus, est que
u' (premier à m) soit multiple des facteurs premiers impairs de d.

Théorème IV* : Si un groupe © fini, du deuxième type et de la classe (oc),

admet une représentation sans points fixes:

a) toutes ses représentations irréductibles fidèles sont sans points fixes;

b) elles ont toutes le même degré d, diviseur de l'ordre g du groupe;

c) leur nombre est égal à J^ ;

d) elles ne sont pas équivalentes à des représentations réelles et sont ou ne
sont pas équivalentes à l'imaginaire conjuguée selon que u' 1 ou u'>\.

Précisons que ur 1 n'est possible que si d 2 et que ce cas se
présente effectivement pour les groupes quaternioniques (7.4) et plus
généralement pour ceux des groupes diédriques binaires qui sont du deuxième

type (6.1).
Les représentations orthogonales irréductibles correspondantes ont

toutes le degré 2d (de la forme 8 k + 4) et sont en nombre (non équi-

valentes) égal à *-?M. si «/>i, 2® lM_ gi u,
a a 4
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9.2. Avant de construire un exemple relatif au théorème IV, je vais
montrer qu'inversement, pour toute valeur d ék + 2 donnée, on peut
trouver une infinité de groupes du type considéré, ce qui conduit au :

Théorème V : Toute sphère $8&+3 dont le nombre de dimensions est congru
à 3 (mod. 8), admet une infinité de groupes finis de rotations sans points
fixes, du deuxième type et de la classe (oc), ne se présentant pas pour des

dimensions inférieures,

II existe une infinité d'entiers premiers n tels que ç> (n) n — 1 soit
divisible par d ék -\- 2 (8.3). Choisissons pour m l'une quelconque
des valeurs 20L~1n (oc ^ 3). Si l'on peut trouver un r vérifiant les conditions

qui accompagnent les relations (2) de 9.1, le théorème est établi.
L'ordre de ©m est (p(20L~1n) 2OL~2(n — 1). Réduisons ses éléments

modulo 2a~1 ; on réalise un homomorphisme de ©m sur ©2a~1 (d'ordre
2a~2). Le noyau 9t de cet homomorphisme est le sous-groupe invariant de

©m formé des éléments 1 (modulo 2a~1) ; son ordre est n — 1 et
comme ses éléments sont incongrus deux à deux modulo n (ils sont tous
congrus à l'un d'eux modulo 2a~1 mais incongrus deux à deux modulo
20L~1n), il est isomorphe au groupe cyclique (&n d'ordre n — 1.

Il faut choisir r parmi les éléments — 1 (modulo 2OL~X), Or ceux-ci
forment la classe (£ de ©ra/9l qui contient — 1 ; on les obtient en
multipliant ceux de 9t par — 1. L'ordre d'un tel élément est celui
de l'élément correspondant de 91 si celui-ci est pair, son double s'il est

impair. Or dans 9t (cyclique d'ordre n — 1) existe un seul sous-groupe

d'ordre d et par conséquent y(d) éléments d'ordre d et (p\-A <p(d)
d ^ '

éléments d'ordre - (impair). La classe £ renferme 2cp(d) éléments d'ordre
Z

d, qui tous peuvent être choisis pour r si d ^ 2, car le seul élément de

r — 1 [r — 1 — 2
(£ 1 (n), donc tel que —^— ne soit pas premier à m I —-— -^r—Z y Z 2è

— 1 modulo 2a"~1 est premier à 2a~1 J, est d'ordre 2. Si d= 2, la seule

valeur admissible pour r est — 1. C'est la valeur que l'on rencontre pour
tous les groupes de ce type relatifs à S3. Il existe dans tous les cas, des

valeurs de r vérifiant les conditions imposées, le théorème est établi.

Remarques : 1. Les diverses valeurs de r peuvent conduire à des groupe^
isomorphes (voir fin de 4.6).

2. Les groupes qu'on peut ainsi construire sont en nombre infini pour
deux raisons : l'ordre du groupe des commutateurs peut être choisi d'une
infinité de façons, ainsi que l'ordre du groupe-quotient correspondant.
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3. Le groupe ©m joue, comme pour © du premier type, un rôle
essentiel. •

9.3. Je vais construire, à titre d'exemple, le groupe de rotations sans
points fixes, du deuxième type et de la classe (oc), non relatif à S3, d'ordre
minimum,

II est relatif à S11 et correspond à d 6 ; n vaut 7,13,19,31,... Je
choisis n =1 et m 28 ; les valeurs admissibles pour r sont 3, 11, 19,
23 (en nombre égal à 2ç>(6) 4) : 3 et 19 ainsi que 11 et 23, conduisent
à des groupes isomorphes si u' est premier à 5. J'obtiens entre autres le

groupe défini par :

A™ E B«u' A1* BAB-1 A*

d'ordre g 168 uf, admettant ^^ représentations irréductibles sans

points fixes, de degré 6, si uf (premier à 28) est multiple de 3 (seul facteur
premier impair de 6).

Pour ur 3, © est d'ordre 504 et admet 4 représentations unitaires,
sans points fixes, de degré 6 ; d'où 2 représentations orthogonales sans
points fixes, non équivalentes, irréductibles dans Xlr(12), de degré 12.
© apparaît pour S11, #23,..., /S18*""1, Ses 2-sous-groupes de Sylow
sont isomorphes à Q8.

Voici des groupes de rotations sans points fixes relatifs à S11, dont les

2-sous-groupes de Sylow sont isomorphes à £132 ; m= 16-7= 112:

E B?u'= A™ BAB-1 Ar

r vaut 31, 47, 79 ou 95 (les deux premières valeurs et les deux dernières
conduisent à des groupes isomorphes si uT est premier à 5). uf, premier à

112, doit être multiple de 3 ; uf 3 conduit à un groupe d'ordre g
2016 admettant 16 représentations irréductibles de degré 6.

9.4. Il est très probable que des résultats analogues pourraient être
obtenus pour les groupes du deuxième type des classes ((5) et (y).

Je me contente de signaler que les groupes binaires du tétraèdre, de
l'octaèdre et de l'icosaèdre (§ 6), qui appartiennent à la classe (y),
admettent des représentations irréductibles (unitaires), sans points fixes,
de degré 2. Comme groupes de rotations sans points fixes, ils sont relatifs
à 8Z. Ainsi %* admet 3 représentations irréductibles de degré 1, 1 de

degré 3 (non fidèle) et 3 de degré 2 ; deux des représentations irréductibles

de degré 2 sont sans points fixes. Fait remarquable, ce nombre

est égal à *&>-
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Chapitre IV
Applications

§ 10. Quelques corollaires des théorèmes fondamentaux

Je déduis des théorèmes I à V des conséquences relatives aux groupes
finis de rotations sans points fixes de la sphère 8n à n dimensions. Pour
les dimensions paires, j'ai retrouvé plus haut la propriété connue que seuls

interviennent le groupe cyclique d'ordre 2 (groupe fondamental de

l'espace elliptique, non orientable pour n pair) et le groupe se réduisant à

l'identité (groupe fondamental de l'espace sphérique simplement
connexe). Pour les dimensions n impaires, il importe de distinguer deux cas :

n 1 et n 3 (modulo 4), c'est-à-dire les dimensions de la forme
4kk + 1 et àk + 3.

10.1. Les groupes du premier type sont étudiés complètement au § 8,
au point de vue de leurs représentations sans points fixes. Les théorèmes I
en 7.4, II en 8.3 et III en 8.4, permettent d'énoncer le :

Théorème VI : Les groupes finis de rotations sans points fixes d'une
sphère 84k+1 sont toits du premier type (cycliques ou non abêliens). Il s'en
présente de nouveaux, en nombre infini, pour toute dimension 4& + 1 &
leur recherche se ramène à un problème purement arithmétique.

10.2. Les sphères S*k+Z admettent une infinité de groupes finis de
rotations sans points fixes, du premier et du deuxième type. Pour le

premier type, il s'en présente de nouveaux, en nombre infini, pour toute
dimension 44 + 3 ; pour le deuxième type, j'ai montré en 9.2 (théorème

V) que, pour toutes les dimensions 8 k + 3, apparaissent des

groupes nouveaux de la classe (oc) et j'ai donné la possibilité de les
construire.

Un groupe © du premier type (non cyclique), admettant des représentations

irréductibles (unitaires), sans points fixes, de degré d, est relatif à

la dimension 2d — 1. Il admet des représentations (réductibles) comme

groupe de rotations sans points fixes pour toutes les dimensions 2hd — 1

et pour celles-là seules. Si d est pair, 2d — l et 2hd — 1 sont 3

(modulo 4) ; si d est impair, 2d — 1 est 1 (modulo 4) et 2hd — 1 est

congru à 1 ou 3 suivant que h est impair ou pair.

Théorème VII : Un groupe fini © de rotations sans points fixes, du
premier type, relatif à une sphère 8*k+z ne se présente pour aucune sphère

Dans les mêmes conditions, si le groupe © est relatif à une sphère
1, il se présente alternativement pour des sphères 8ék+1 et S*k+Z.
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En particulier, aucun groupe ©, non cyclique, de rotations sans points
fixes de la sphère S3 ne se présente pour une sphère Sék+1 (voir 10.4). Si ©
est du deuxième type c'est immédiat et si © est du premier type, il est
relatif à la dimension 3.

10.3. Un groupe de rotations sans points fixes d'ordre impair est du
premier type, car Tordre d'un groupe du deuxième type est divisible au
moins par 8. S'il n'est pas cyclique, le degré de ses représentations
orthogonales sans points fixes est divisible par un entier d > 1 impair, ce qui
exclut les degrés 2n.

Théorème VIII : Les groupes d'ordre impair de rotations sans points
fixes d'une sphère de dimension 2n — 1 sont tous cycliques. Par contre,
toute sphère dont la dimension est un nombre impair qui n'est pas de la
forme 2n — 1 admet une infinité de groupes d'ordre impair, non abéliens,
de rotations sans points fixes.

La première partie de ce théorème est la généralisation d'un théorème
relatif à S* démontré par M. H.Hopf27).

10.4. Le groupe © fini admettant des représentations réelles sans

points fixes est du premier ou du deuxième type (2.5). S'il est du premier
type, ses représentations réelles sans points fixes sont de degrés 21cd, d
étant le degré des représentations irréductibles (unitaires) sans points
fixes (théorème III* 8.4). S'il est du deuxième type, ses représentations
réelles sans points fixes sont de degrés multiples de 4 (théorème I 7.4).

On en déduit le théorème suivant, dû à M. H.Hopf28) ; il le démontre

par voie topologique, comme cas particulier d'un théorème sur les

groupes d'automorphismes sans points fixes des variétés admettant les
mêmes groupes de Betti (ordinaires, c'est-à-dire relatifs à l'anneau des

entiers rationnels) que la sphère 8n :

Théorème IX : Si le groupe fini ©, non cyclique, admet une représentation

réelle sans points fixes de degré 2dt, il n'admet aucune représentation
réelle sans points fixes de degré 2d2 où d2 est premier à dx.

Ajoutons la remarque suivante :

Si © est du premier type ou du deuxième type et de la classe (<x), les degrés
des représentations réelles sans points fixes de © sont les multiples du double

2d du degré d de ses représentations irréductibles {unitaires) (théorèmes
III* 8.4 et IV* 9.1).
______

u) [9] 15.5 p. 76.
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Le cas particulier dx 2, signalé par M. Hopf, exprime qu'aucun
groupe de rotations sans points fixes de $3 ne se présente pour une sphère
gêk+i (rencontré en 10.2 comme conséquence du théorème VII).

10.5. Une rotation de S2^1 est une translation au sens de ClifiEord si
les valeurs propres de la matrice représentative (de degré 2d) sont égales
à Tune d'elles ou à l'imaginaire conjuguée ; plus exactement, d d'entre
elles doivent être égales à X ei0L et d h Â e~i(x. Une telle translation
est caractérisée géométriquement par le fait que tout vecteur réel subit
une rotation d'amplitude <x ; elle est, par définition même, sans points
fixes.

Existe-t-il des groupes finis formés uniquement de telles translations?
La réponse est affirmative ; les groupes quaternioniques admettent des

représentations de cette nature, comme il résulte de 7.4.
Je vais établir la propriété suivante, conséquence d'un théorème

topologique de M. E.Stiefel29) :

Théorème X : II riexiste aucun groupe fini, non cyclique, de rotations
d'une sphère S*k+1 dont les éléments soient tous des translations (au sens de

Clifford).

J'ajoute ce complément :

Les groupes de rotations du premier type (non cycliques) et du deuxième

type classe (oc), formés uniquement de translations, sont les groupes diédri-
ques binaires (6.1) ; ils sont relatifs à S3.

Démonstration : Soit © un groupe fini, non cyclique, de translations et
F l'une de ses composantes irréductibles (unitaire). Le degré de F est

supérieur à 1 (sinon il y aurait des points fixes). Il résulte d'un théorème
de Burnside30) que F renferme un élément au moins dont le caractère est
nul. Soit B l'élément correspondant de © ; ses valeurs propres dans F
sont A et 1 (en nombre non nécessairement égal, il pourrait y avoir
compensation avec la représentation complexe conjuguée). Or, le caractère
devant être nul, ces valeurs propres ne peuvent être que i et —i en
nombre égal. Le degré de F est pair. De plus l'ordre de B est 4 J54 a des

valeurs propres +1) ; l'ordre de © est donc lui-même divisible par 4.
Pour la première partie du théorème, seuls interviennent les groupes ©

du premier type (théorème VI 10.1); les représentations irréductibles
(unitaires) sans points fixes de © sont toutes de même degré d, celui de

29) E.Stiefel, Richtungsfelder und Fernparallelismus in w-dimensionalen
Mannigfaltigkeiten, Comment. Math. Helvet. 8 (1935/36), Satz 27.

80) Proceedings of the London Math. Soc, New Séries, Vol. I, p. 115.
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F, donc pair. © est relatif à une sphère 8*k+z et ne se présente pour aucune
sphère S*k+1 (théorème VII 10.2).

Pour la deuxième partie, supposons tout d'abord © du premier type ;

l'élément B, d'une classe qui engendre ©/©' a le caractère nul dans
toute représentation irréductible sans points fixes (8.4). B est d'ordre 4

et © du type défini par les relations (3) en 6.1. Pour un groupe © du
deuxième type et de la classe (oc), il en est de même pour l'élément B,
d'une classe engendrant ®/{^4}. B est d'ordre 4 et © du type défini par
les relations (2) en 6.1.

Les autres groupes polyédriques binaires (§ 6) admettent également
des représentations comme groupes de translations (de degré 4). Ils
appartiennent au deuxième type, classe (y). Peut-être n'en existe-t-il pas
d'autres, mais je n'ai pas encore pu le démontrer.

§ 11. Le point de vue topologique

11.1. Le problème de topologie à la solution duquel les résultats ci-
dessus apportent une contribution est le problème spatial de Clifford-
Klein, ainsi nommé par Killing31).

Il s'agit de déterminer les variétés F à n dimensions, connexes et sans
frontière, métrisables par un ds2 défini positif, à courbure riemannienne
constante, et les géométries ainsi définies. De telles variétés sont localement

applicables sur l'espace euclidien, hyperbolique ou sphérique. On
exclut les variétés qui se déduisent de F en supprimant un ensemble fermé
de points (la variété restant connexe) et en conservant la métrique, par
l'exigence que sur toute géodésique passant par un point P quelconque de

F on puisse reporter, dans les deux sens, tout segment positif a. C'est
ainsi que le plan cartésien (homéomorphe à la sphère pointée) muni d'une
métrique sphérique par projection stéréographique de la sphère, ne sera

pas considéré comme définissant une géométrie différente de la géométrie
sphérique. Dans ces conditions, F est dite variété de Clifford-Klein et la
géométrie ainsi définie, forme spatiale de Clifford-Klein.

Le théorème fondamental, dû à Killing, et précisé par M. H.Hopf dans
le travail cité31), exprime que la totalité des formes spatiales de Clifford-
Klein peut s'obtenir en cherchant les groupes discontinus de déplacements

de l'espace F euclidien, hyperbolique ou sphérique (au sens de la
géométrie sur F), sans points fixes, sauf pour le déplacement identique,
et tels que l'ensemble des images d'un point de F par les opérations du

groupe ne présente jamais de point d'accumulation sur F. Un tel groupe

81) Voir à ce propos l'introduction et le § 1 du travail de M. H.Hopf [1].
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© définit une variété F, admettant F comme espace de recouvrement
universel (simplement connexe), le groupe des transformations de recouvrement

étant ©, isomorphe au groupe fondamental ou groupe de
connexion de F.

En particulier, la totalité des variétés de Clifford-Klein à courbure
constante positive, ou formes spatiales sphériques, s'obtient en cherchant
les groupes © finis de déplacements isométriques (rotations), sans points
fixes, de la sphère à n dimensions 8n.

Les groupes © étudiés dans le présent travail donnent la totalité des groupes
fondamentaux des formes spatiales sphériques.

Les théorèmes II 8.3 et V 9.2 prouvent l'existence de nouvelles formes
sphériques pour toutes les dimensions impaires, en ce sens que le groupe
fondamental © n'est isomorphe à aucun des groupes fondamentaux des
formes de dimensions inférieures (voir 11.4).

Il est à remarquer que ces formes spatiales sphériques peuvent se
présenter comme espaces de recouvrement les unes des autres. Ainsi une
forme de groupe fondamental © du premier type admet un espace de
recouvrement régulier, forme de groupe fondamental ©' cyclique (espace
lenticulaire), le groupe des transformations de recouvrement étant ©/©'
cyclique. Autre exemple : si © est du deuxième type, métabélien de rang 2

(classes (oc) et (fi)), il admet un sous-groupe invariant 91 du premier type,
dont l'ordre est la partie impaire de l'ordre de © (5.5). La forme
correspondante admet un espace de recouvrement régulier à 2a feuillets, forme
de groupe fondamental 5R du premier type, le groupe des transformations
de recouvrement étant isomorphe à Q2a et permutant transitivement les
2<* feuillets.

11.2. Un groupe fini © de rotations sans points fixes de 8n, d'ordre
pair, contient un et un seul élément d'ordre 2, — E (conséquence de 7.3
et du fait que la représentation est fidèle). Le groupe ty formé de E et — E
est sous-groupe invariant de ©. La forme spatiale sphérique correspondante,

de groupe fondamental © (11.1), admet Pn, l'espace elliptique,
comme espace de recouvrement régulier (Sn étant l'espace de recouvrement

universel, qui recouvre deux fois Pn). La forme est dite elliptique (si
© est d'ordre impair, la forme est sphérique mais non elliptique). Le
groupe des transformations de recouvrement est isomorphe à ®/^î,
groupe de déplacements (au sens de la métrique elliptique), sans points
fixes, de Pn.

Ces groupes se déduisent sans peine des groupes de rotations sans
points fixes de 8n. Si © est cyclique (d'ordre pair), ®/*p est aussi cye-
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lique. Pour © du premier type (non cyclique), ®/^J} est également du
premier type (ne vérifiant plus toujours la condition n1 multiple des
facteurs premiers de d). Mais pour © du deuxième type, ©/$ n'est plus du
deuxième type, car ses 2-sous-groupes de Sylow sont diédriques (3.2).

Je vais préciser la structure de ©/^} quand il est abélien. Si © n'est
pas abélien, ty doit être identique au groupe des commutateurs ©'•©'
d'ordre 2 entraîne © du deuxième type ; j'ai montré en 5.7 que © est alors
isomorphe au produit direct QSx^u (u impair). ©/*£ est abélien de

type (2, 2, te).

Théorème XI : Les groupes finis, abéliens, de déplacements elliptiques de

Pn (Vespace elliptique), sans points fixes, sont cycliques ou de type (2, 2, u),
u impair.

11.3. Les groupes de Betti 2?} d'une forme spatiale sphérique de
dimension N sont entièrement déterminés par le groupe fondamental ©,
le domaine J des coefficients et le nombre N. © étant fini, d'ordre g, les

groupes de Betti (ordinaires, c'est-à-dire où J est l'anneau des entiers
rationnels), sont également finis et l'ordre de chacun de leurs éléments est
un diviseur de g*2).

Je vais préciser ici la structure du premier groupe de Betti 331 isomorphe
à ©/©'. Les propriétés des groupes © du premier et du deuxième type
4.2 et 5.2), ainsi que les théorèmes III 8.4 et IV 9.1, permettent d'énoncer

le :

Théorème XII : Le groupe de Betti 93 * ^ ©/©' d'une forme spatiale
sphérique de groupe fondamental ©, est: soit le groupe nul, soit cyclique
d'ordre quelconque m (un coefficient de torsion égal à m), soit abélien de

type (2, 2, u) u impair (coefficients de torsion 2 et 2u). De plus, si © est du
premier type ou du deuxième et de la classe (oc), relatif à la dimension
2d — 1, Vordre de 331 est divisible par II p*i+1, où d II p*{ est la décom-

i i
position de d en facteurs ^premiers distincts.

Signalons que même l'anneau d'homologie d'une forme spatiale
sphérique est déterminé par son groupe fondamental. C'est ce qui résulte d'un
travail récent de M. B.Eckmann33).

11.4. Un problème qui se présente naturellement est celui de la
classification des formes spatiales sphériques.

82) Ainsi qu'il résulte du travail de M. H. Hopf [9].
w) B.Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment.

Math. Helvet. 18 (1945/46), 232—282.
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On vérifie facilement l'affirmation suivante :

Pour que deux représentations réelles /\ et F2, sans points fixes, d'un
même groupe (S définissent deux formes spatiales isométriques, il faut et il
suffit qu'il existe un automorphisme oc de © tel que F2(x) soit équivalente
à rx((xx), x désignant un élément quelconque de ©.

L'étude du groupe des automorphismes de © permettrait en
conséquence l'énumération des formes spatiales de groupe fondamental ©
distinctes au point de vue métrique.

Mais examinons la question de l'équivalence topologique :

Que deux formes spatiales sphériques aient même groupe fondamental
et même dimension est évidemment nécessaire pour leur homéomorphie,
mais des exemples bien connus prouvent que ce n'est pas suffisant.

Il résulte d'un théorème de MM. W.Franz34) et G. deRham35) que
deux formes spatiales sphériques ne peuvent être homéomorphes ,,au sens
combinatoire" sans être isométriques.

Si ce théorème se révélait valable pour l'homéomorphie au sens habituel,

la classification topologique se réduirait à la précédente.
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