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Sur les équations différentielles linéaires
non homogènes, à coefficients constants

Par Chaules Blanc, Lausanne

L'intégration d'une équation différentielle linéaire, à coefficients
constants et avec second membre

(1)

se ramène, grâce à la méthode de la variation des constantes, à la
résolution d'une équation algébrique et à des quadratures. Mais on peut
procéder d'une autre manière. Si toutes les intégrales de l'équation sans
second membre

DU O (2)

tendent vers zéro pour t-> -}- oo, il paraît vraisemblable qu'une
intégrale de l'équation (1) ne dépendra, pour t assez grand, que de la valeur
de F(t) pour cette valeur et pour les valeurs prises par F(t) aux instants
immédiatement précédents. On peut donc espérer donner une intégrale
de (1) sous la forme d'une série où figureront les valeurs de F(t) et de ses
dérivées. C'est ce qu'ont fait en particulier MM. J. E. Carson et T. C. Fry
dans un mémoire consacré à l'étude de la modulation de fréquence1):
toutefois, pour établir en toute rigueur la validité du développement en
série, il faut faire sur F (t) une première hypothèse très restrictive: F (t)
doit être analytique pour toute valeur réelle de t.

Le but de ce travail est de donner une expression des intégrales valable
dans des cas beaucoup plus généraux, tels ceux par exemple qui se
présentent dans les applications. Il ne s'agira tout d'abord plus de séries,
mais de développements limités, avec un reste auquel il est facile de
donner une forme analogue au reste de Lagrange.

On se bornera ici au cas d'une seule équation : il est aisé de généraliser
aux systèmes différentiels.

Avant de passer au problème proprement dit, il convient d'établir une
généralisation, assez élémentaire, de la formule de Taylor.

1) J. R. Carson et T. C.Fry, Variable frequency electric circuit theory with
application to the theory of frequency-modulation. Bell System Technical
Journal 16 (1937), p. 513—540.
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1. Considérons une fonction G(x) continue ainsi que ses (n -\- l)
premières dérivées pour r ^ 0, excepté pour une suite de valeurs r0, xx,...,
rk,... tendant vers l'infini ; G (r) est complexe. On suppose que lim G{r) (t)
existe à gauche et à droite de rk, et on pose

r=
Si Ton convient de poser, pour r rk9

on a alors

puis

G' (z) dz xG' (0) + (r - z) G" (z)dz+ £ (t - r,) «5^ ;
0 0 *&"<T

en continuant ainsi les intégrations par parties, compte tenu des discontinuités,

G(t) G(0) + rGf(0) H j. J-tn^»)^) + j (Tz)W
71

+ Z [#? + (T - Tfc) ^ + • • • + ± (T - Tt)»

On peut encore transformer l'intégrale qui figure dans cette expression.
Soit en effet

et G2(r) étant réels; on a

\(T ~z)n °ln+1) {z) dz=fé\ {r~z)n t(?iM+1> (2)+iG("+1)Wdz
o

d'où, par le théorème de la moyenne,

la parenthèse carrée est un nombre complexe dont le point représentatif
est à l'intérieur de tout rectangle contenant toutes les valeurs prises par
G{n+U(t) pour 0 < t < r. Cela étant, on a donc
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±
r=o

Cette formule généralise la formule de Taylor avec reste de Lagrange.
On obtient une série convergente en faisant n -> oo si

0

Si, en particulier, | G{r)(r) \ <M pour | t | < 22, quel que soit r, le
reste tend vers zéro et la série converge.

2. Soit l'équation différentielle linéaire à coefficients constants et
réels

DU=F(t) (1)

avec l'équation caractéristique

Z(r) rN + a^-1 + ¦ + aN 0 ; (3)

on supposera que toutes les racines de cette équation ont leur partie
réelle négative; soit — q la plus grande de ces parties réelles.

On suppose F(t) réelle ou complexe, intégrable, bornée pour t réel.
Soit X(t) l'intégrale de l'équation

DU 1 (4)

avec les valeurs initiales X(0) Xf(0) • • • Z^-^O) 0 ; il est
inutile de déterminer explicitement cette fonction; elle disparait de la
suite des calculs. En posant2)

&{X(t)} z(s), &{U(t)} u(s), £{*•(*)} /(«)>
on a

S

d'où

2) 2[X(t)\ représente la transformée de Laplace de X{t), etc. Voir, par exemple,
G. Doetsch, Théorie und Anwendung der Laplace-Transformation. Berlin,
Springer 1937.
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et, en supposant 17(0) Ï7'(O) • • • U^'^ (0) 0

or s • x(s) 2{Xf(t)}, donc, par le théorème de composition,
t

U(t) $F(t - r) Xr(r) dr (5)
o

D'autre part, l'intégrale

V(t) jfF(t - t) X;(r) dr (6)
t

converge uniformément en t, par l'hypothèse faite sur F (t) ; par un
changement de variable, elle devient

o

:'(t — r)dr

que l'on peut dériver N fois par rapport à t ; on en déduit que F (t) satisfait

à la même équation différentielle que Xf(t), donc à l'équation homogène

(2). Ainsi, en ajoutant (5) et (6), on obtient aussi une intégrale de

(1), que l'on écrira encore U(t):

U(t) JF(t-r)X'(t)dr. (7)
0

Cette intégrale est l'intégrale particulière qui s'annule ainsi que ses

(N — 1) premières dérivées pour t-> — oo On pourrait du reste l'obtenir
au moyen de la méthode de la variation des constantes.

On forme ensuite l'intégrale générale de (1) en ajoutant à (7) l'intégrale
générale de (2).

3. Considérons en particulier le cas où le second membre est F(t) est.

Alors (7) donne

17(0 Je*«-*> X'(r) dx e*< §e'i%Xf(r) dr ;
0 0

posons a,

Y(8) fe-%X'(T)dT ;
0

la fonction Y (s) est la transformée de Laplace de X'(t), donc

(8)

Z(s)~ s* + alS*-i+ \-aN '
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si, par exemple, F(t) e%ù)t, on a

U(t)= Y(ico)eiù)t

L'intégrale (8) converge uniformément pour tout s (réel ou complexe)
dont la partie réelle a est supérieure à — g + s On peut donc dériver

par rapport à s, d'où, d'une façon générale,

r<r>(s) (- l)r ]rre-8T Xr(r)dr (9)
o

Si nous pouvions développer F(t — r) dans tout l'intervalle
d'intégration en une série entière en t, l'intégrale (7) serait la somme d'une
série formée des quantités Yir)(0) avec des coefficients convenables.
Mais cette hypothèse est très restrictive, et on peut obtenir un développement

valable dans des cas beaucoup plus généraux.

4. Posons

T), (10)

s étant un nombre réel ou complexe dont la partie réelle est supérieure
à — g Pour l'instant, s est à part cela quelconque; on lui donnera plus
loin une valeur déterminée pour assurer la convergence d'une série. On a,
à la place de (7),

U(t) ]e~8T W{t, r, s) - Xf{r) dr ; (11)
o

supposons désormais que W(t,r,s) est continue en r pour r>0,
possède des dérivées continues jusqu'à l'ordre (n + 1), excepté peut-
être pour un ensemble fini de valeurs r0, xx,..., rk,..., la dérivée
(n -\- l)ème étant bornée. On suppose également que les limites à gauche
et à droite existent pour ces valeurs rk, et on pose

Xk - 0 ê)

Ces rk dépendent de t, leur nombre également ; il en est de même des

ô%K Posons, pour simplifier l'écriture, G(r) W(t, r, s) La relation
(I) est valable pour cette fonction G(r); il n'est pas nécessaire de l'écrire
à nouveau.

Comme les intégrales (9) ont toutes un sens, on peut écrire (11) sous
la forme

5 Commentarii Mathematici Helvetici vo



0

U(t) 2 ^9 ff e-< X' (T) rfr + f 2 2 -^r^ <5<T>e-"X'(T) d

0 0

T> + i
o

Simplifions encore l'écriture. Posons

la somme ne comporte qu'un nombre fini de termes, et l'intégrale a un
sens pour chaque terme pris isolément ; il est donc légitime de permuter
l'intégration par rapport à r et la sommation par rapport à l'indice k ;

on a ainsi „
Jr= X à?] (T - Tk)' e~" X'(T) dT

* «t
Or

J (t - rhy e~n X' (z) dx e~"* f rr e~" ¦ X' (t + rk) dx
n o

Posons x
Y(s\xk) $e~".X'(x + xk)dx;

0

on a, puisque l'intégrale converge uniformément en s,

jfre-«-X'(T+Tk)dT (14)
0

donc
Jr (- l)r S ôVe-^YM (8\rk)

k

On écrira d'autre part

+ ^"+1) (8i ^ ] e~"X'(T) dx ; (15)

on a ainsi l'expression d'une intégrale de (1) sous la forme d'un développement

limité:

r=0 r' k
• (II)
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5. Calcul des rk et des ô^. On a posé

les singularités de G(r) proviennent de celles de F(t — r) Supposons
désormais que F (t) est nulle pour t < 0 et qu'elle possède pour t ^ 0

une suite de singularités t0 — 0, tl9..., tk,... tendant vers l'infini (on
les suppose rangées par ordre de valeurs croissantes); t étant fixé, les

singularités de G(r) sont (par valeurs décroissantes):

To t, Tj t t1,. Tp t tp

tp étant le plus grand des tk inférieurs à t.
Le calcul des ô^ se fait à partir des grandeurs analogues pour F (t) ;

on pose 4r) F^(tk + 0) - F^(tk - 0)

Par la formule de Leibniz, on a

or

>(T) ]£ (')(- l)lsr-le8tF<»(t - r) ;

i-o \ * /

<$<;> Qir) (Tk + 0) - G^ (rk - 0)

i J) (- 1)' ^ «•'* [^<^> (« - Tfc - 0) - JP«« (t - Tfc + 0) ]

donc

Evaluons encore les fonctions Y(r)(s\t); on a

et lim ]T(r) (5 \t) 0 Or la fonction Xr(t) tend vers zéro, pour t -> + cx>,

comme e"c T, donc Yir) (s \ t) tend vers zéro plus rapidement que e~~ (ç~£) l

ainsi
t) o(e-^~e)t) (16)

6. Un choix particulier de s. Le paramètre s a été laissé arbitraire
jusqu'ici. Faisons maintenant s 0 (ce qui est légitime puisqu'il suffit
que 91s > — g, et on a supposé g > 0) Alors
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et

d'autre part

d'où
i

et enfin

n i
U(t) 2 fr

G(T)

>if)ï1br)(«l*i

[^<r) (<) r(i

W(t,T,O)--

x) (— Vf Fi

(r)^ ~ (" ]

fc) — (— 1)'

r) (o) - S 4r)

F(t-r)
r){t — t) ;

(r)
k

¦4r)7ir>(0

Y(r) (0\t — + *» (t, o) ; (17)

la somme est étendue aux indices k avec tk<t, car ce sont les seuls qui
figurent dans le développement limité de 6r(r).

Si, par exemple, la fonction F(t) a une seule singularité, pour t 0,
on a, pour t > 0,

£ 4 5n(*,o) (18)

où on a posé i^(r)(0) A(Qr)

7. Passage du développement limité à une série. Etudions, dans le cas
où s 0, la convergence de la série obtenue en faisant tendre n vers
l'infini. On suppose que F(t) est analytique pour tout t réel, excepté pour
les valeurs t0, tx,..., tk,... ; de plus, on suppose que les valeurs de
F(r) (t) sont toutes dans un rectangle Dr, intérieur lui-même au cercle de

rayon Ar et de centre à l'origine, avec A < q et cela pour toute valeur
entière positive de r. Alors la série

U(t) 2 -T lFir) W Yir) (°) - 2 A V Yir) (° It ™ h) ]

converge, et sa somme est une intégrale de (1).

oo

Considérons, pour le montrer, la série J£Rn(t, 0). On a ici3)
o

oo

3) Les nombres 6t et 02 <lui figurent au second membre dépendent évidemment de n,
mais cela n'a aucune importance pour la suite.
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0

et la somme partielle peut s'écrire

1
dx ;

or | F{n)(r) | <An, donc

d2r)]

puisque l'intégrale

converge absolument si A < g, il en est de même de la série 2^Rn{t^ 0),
o

d'où lim Rn(t, 0) 0 Ainsi le reste du développement limité (17) tend

vers zéro si n-> oo, ce qui établit notre affirmation.
On peut obtenir une série convergente dans des cas plus généraux, en

donnant à s une valeur convenable autre que zéro. Supposons que F(t)
peut s'écrire

F(t) =eXt

avec 9U > — g, i£(r) (t) étant dans le rectangle Dr, avec maintenant
^4 < 9Î A + £ î alors la série

U(t) ]g iz^[©(r)(0)r(r)(A) + 2«"XT*^f)ïr(r)(>l|< —**)] (20)
r=0 rl h

converge, et sa somme est une intégrale de (1).

Faisons en effet s X dans G(r), ce qui est légitime puisqu'on a

supposé 5RA > — g Il vient

G(T) eXxF(t - r) eXi K(t - r)
puis

G^(r) (-- iyeXtK<r>(t- r),
d'où le reste

-e^T)3e"Xtz'<T>
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On considère la série Z Rn {t, A), dont on peut écrire une somme partielle

?Bn(t,X)-e»f
c/
0

or, ici encore,

et l'intégrale

p

i

£ n!
00

n!

- [JKf> + ,-*«] <eA\

Je-A'Z'(T)^TdT
0

converge absolument si ^4 < 9t A + q ; on en tire donc lim Bn(t, X) 0,
d'où notre affirmation. w~*°°

Comme on a

(?(t) eA* • K(t — r)
il vient

Q(r)/r\ — / \\r eXt J£(r) U T\

et

où

On peut donc énoncer le théorème

Théorème: Si le second membre de Véquation (1) est delà forme

F(t) eXt-K{t)

avec y{X> — q, K(t) étant analytique pour t réel, excepté pour une suite
de valeurs t0,.. ,,tk-> oo avec

k — 0) ;4'> K"(tk + 0)

si de plus K(r){t) est toujours intérieur à un rectangle Dr, intérieur lui-
même au cercle \z\ Ar, avec A < 5R X + g, «fors fa sén'e

ri
(A | (III)

converge, et sa somme est une intégrale de (1).
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Supposons un instant que la fonction K (t) est constante par intervalles.
On a alors K{r) (t) 0 (si r > 0), et les hypothèses du théorème étant
vérifiées, on a simplement

U(t) eXt K(t) 7(A) - E extk 4°> Y{X\t~ tk) (21)

II résulte de là en particulier que les fonctions Y{r) (X | t) sont des
intégrales de Téquation homogène (2), ce que l'on peut aussi obtenir directement.

8. On peut établir au moyen de la transformation de Laplace, formellement,

les développements en série considérés. On a en effet

d'où, avec les notations du début de ce travail,

u(s) =/(«) • Y(s) 2 -Jj-«"/(«) I™ (0)

et par conséquent

U(t) 5~JW(<)rw(0) (22)
o r'

c'est-à-dire la série (19) pour F(t) continue. Ce raisonnement très
incomplet est parfois donné comme justification de la formule (22).

(Reçu le 13 février 1946.)
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