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Sur les équations différentielles linéaires
non homogénes, a coefficients constants

Par CHARLES BraNc, Lausanne

L’intégration d’'une équation différentielle linéaire, & coefficients cons-
tants et avec second membre

dN dN—l U
DU = tN+ v T ay U=F() (1)

se rameéne, grace a la méthode de la variation des constantes, a la réso-
lution d’une équation algébrique et & des quadratures. Mais on peut
procéder d’une autre maniere. Si toutes les intégrales de I’équation sans

second membre
DU =0 (2)

tendent vers zéro pour {— -+ oo, il parait vraisemblable qu’une inté-
grale de I’équation (1) ne dépendra, pour ¢ assez grand, que de la valeur
de F (t) pour cette valeur et pour les valeurs prises par F (t) aux instants
immédiatement précédents. On peut donc espérer donner une intégrale
de (1) sous la forme d’une série ou figureront les valeurs de F (t) et de ses
dérivées. C’est ce qu’ont fait en particulier MM. J. R. Carson et T. C. Fry
dans un mémoire consacré a I’étude de la modulation de fréquence!):
toutefois, pour établir en toute rigueur la validité du développement en
série, il faut faire sur F (t) une premiére hypotheése trés restrictive: F(f)
doit étre analytique pour toute valeur réelle de ¢.

Le but de ce travail est de donner une expression des intégrales valable
dans des cas beaucoup plus généraux, tels ceux par exemple qui se pré-
sentent dans les applications. Il ne s’agira tout d’abord plus de séries,
mais de développements limités, avec un reste auquel il est facile de
donner une forme analogue au reste de Lagrange.

On se bornera ici au cas d’une seule équation: il est aisé de généraliser
aux systémes différentiels.

Avant de passer au probléme proprement dit, il convient d’établir une
généralisation, assez élémentaire, de la formule de Taylor.

1) J. R. Carson et T'. C. Fry, Variable frequency electric circuit theory with
application to the theory of frequency-modulation. Bell System Technical
Pp y q y y
Journal 16 (1937), p. 513—540.
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1. Considérons une fonction G'(t) continue ainsi que ses (n 4 1) pre-
mieéres dérivées pour T > 0, excepté pour une suite de valeurs t,, 7,,.. .,
T,,. . . tendant vers l’infini; G (7) est complexe. On suppose que lim G™ (1)
existe & gauche et a droite de 7,, et on pose

M =G"(r, +0) —Q@(r,—0). r=0,...,n.
Si I’on convient de poser, pour = = 7,

G (7)) = G (7, — 0)

on a alors
T

G(7) = G(0) + [G'(2)dz + X &Y,
0 <<t
puis )

fG’(z)dz= TG’(O)+3(1—z)G”( )dz + ¥ (‘I:—r)é(l)

0 0 <<t

en continuant ainsi les intégrations par parties, compte tenu des disconti-
nuités,
T ( T

G(1) = GO0) + ¢ (0) ++ - -+ — 26 (0) + | T g ) a

3 n !

1
+ X[+ — 1) P+ -+ =T o] .

T <<?T

On peut encore transformer I'intégrale qui figure dans cette expression.
Soit en effet
G (1) = Gy(7) + 1Gy(7) ,

G, (7) et G,(7) étant réels; on a
T T .
By = [ (e 2 G () dz = [ o (=2 [60 () + 360 @] da,
0 0

d’ou, par le théoreme de la moyenne,

1

R, = 60 (0,7) + i680 (0:9)] oy

la parenthése carrée est un nombre complexe dont le point représentatif
est & 'intérieur de tout rectangle contenant toutes les valeurs prises par
G+ (1) pour 0 <t < 7. Cela étant, on a donc
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n r n
T

6m=3T6e"0+ 3 3T gy
g <<t

(r—

(nr—’:;) ! [G(I“H)(Olr)—l— iGi”H)(Gzr)]

Cette formule généralise la formule de Taylor avec reste de Lagrange.
On obtient une série convergente en faisant n— oo si

Hm'@:FETIG¥“WQI)+iG$“N%r”:=O.

Si, en particulier, |G (7) | <M pour | 7| < R, quel que soit r, le
reste tend vers zéro et la série converge.

2. Soit 1’équation différentielle linéaire & coefficients constants et
réels

DU = F(t) (1)

avec ’équation caractéristique
Ziry=r¥ +ar" 14 o day=0; (3)

on supposera que toutes les racines de cette équation ont leur partie
réelle négative; soit — p la plus grande de ces parties réelles.
On suppose F (t) réelle ou complexe, intégrable, bornée pour ¢ réel.
Soit X (t) I'intégrale de 1’équation

DU =1 (4)

avec les valeurs initiales X(0)= X'(0) = ... = X¥1D0)=0; il est
inutile de déterminer explicitement cette fonction; elle disparait de la
suite des calculs. En posant?)

LX)} ==x(s), UMD} =u(s), L{FO} =10,
on a ;
Z(s)-x(s)::—s—
d’out

x(é’):;jz—(g)' )

?) Q{X (¢)} représente la transformée de Laplace de X (), ete. Voir, par exemple,
G. Doetsch, Theorie und Anwendung der Laplace-Transformation. Berlin,
Springer 1937.
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et, en supposant U(0) =U’(0) = - = U¥V (0)=0,

u(e) = S = 5 f(5) 2 (5)

or s-z(s) = L8{X'(t)}, donec, par le théoréme de composition,

U(t)=j£F(t——1)X’(t)d1:. (5)

0
D’autre part, I'intégrale
V)= [F(@t— 1) X (r)dx (6)
t

converge uniformément en ¢, par I’hypothese faite sur F (¢) ; par un chan-
gement de variable, elle devient

V) = j?F(r)X’(t —17)d<

que I'on peut dériver IV fois par rapport a ¢ ; on en déduit que V (¢) satis-
fait & la méme équation différentielle que X’(t), donc & ’équation homo-
géne (2). Ainsi, en ajoutant (5) et (6), on obtient aussi une intégrale de
(1), que I'on écrira encore U (¢):

U(t) = j'oF(t — ) X'(v)dz. (7)

Cette intégrale est l'intégrale particuliére qui s’annule ainsi que ses
(N — 1) premiéres dérivées pour { - — oo . On pourrait du reste I’obtenir
au moyen de la méthode de la variation des constantes.

On forme ensuite I'intégrale générale de (1) en ajoutant & (7) 'intégrale
générale de (2).

3. Considérons en particulier le cas ol le second membre est F (t) = e*.
Alors (7) donne
Ut)= [P X (r)dv = e [e "X (1) d7 ;
0 0
posons -
Y(s)=fe X (r)d7 ; (8)
0

la fonction Y (s) est la transformée de Laplace de X'(¢), donc

1 1
Y(8)= Z(S) = 8N-+—a18N'—1+"‘+aN )
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si, par exemple, F () =¢'“!, on a
U) = Y (o) e

L’intégrale (8) converge uniformément pour tout s (réel ou complexe)
dont la partie réelle o est supérieure & — ¢ + ¢. On peut donc dériver
par rapport a s, d’ou, d’'une fagon générale,

Y (s) = (— 1)"3?‘["6_” X'(r)dr. (9)

Si nous pouvions développer F(t — 7) dans tout l'intervalle d’inté-
gration en une série entiére en 7, l'intégrale (7) serait la somme d’une
série formée des quantités Y (0) avec des coefficients convenables.
Mais cette hypothése est trés restrictive, et on peut obtenir un développe-
ment valable dans des cas beaucoup plus généraux.

4. Posons
Wit,r,s) =e"F(t — 1), (10)

s étant un nombre réel ou complexe dont la partie réelle est supérieure
a — o . Pour l'instant, s est a part cela quelconque; on lui donnera plus
loin une valeur déterminée pour assurer la convergence d’une série. On a,

a la place de (7),
U(t) = j'e"” W, ,8) - X'(r)dr ; (11)
0

supposons désormais que W (¢, r,s) est continue en v pour 7> 0,
posséde des dérivées continues jusqu’'a l'ordre (n + 1), excepté peut-
étre pour un ensemble fini de valeurs =,, 7,,..., 7;,..., la dérivée
(n + 1)éme étant bornée. On suppose également que les limites a gauche
et a droite existent pour ces valeurs 7,, et on pose

W, 7 +0,8)  ITW(E, 7 —0,9)
or" at"

8 = (12)

Ces 7, dépendent de ¢, leur nombre également; il en est de méme des
8. Posons, pour simplifier ’écriture, G(7) = W (¢, 7,s) . La relation
(I) est valable pour cette fonction G (7); il n’est pas nécessaire de 1’écrire
a nouveau.

Comme les intégrales (9) ont toutes un sens, on peut écrire (11) sous
la forme
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oo

U(t) = > G(r) 0)f e " X' (v)dr + > E Lom T") e X'(v)dv

r <<t r=0
-+ ____(n —}1—-— 1)! f.cn+1 [G(lnﬂ) 01 T) + sz‘,_”+1)(92 ‘t)] et X/ (‘L') dr . (13)
0

Simplifions encore I’écriture. Posons

[ -]

> (v —t)re "X (v)dr ;

<<t

la somme ne comporte qu’'un nombre fini de termes, et 'intégrale a un
sens pour chaque terme pris isolément; il est donc légitime de permuter
Pintégration par rapport & 7 et la sommation par rapport & l'indice % ;
on a ainsi

Jo=3 [ (v—7)ye X (v)dr .
k 77

Or
fae—w)ye X' ()dr=e** e X' (v + 1,) dv
% 0

Posons

Y(|7) = j‘e_"~ X'(v+ 1) d7 ;
(1]
on a, puisque l'intégrale converge uniformément en s,

Y (s]7) = (— 1) fre=* . X'(z + ) de (14)

donc
= (— 1y X 6P e** Y (3]1,) .
k

On écrira d’autre part

oo

1 * n -8t
R,(t,s) = mft““ [G¢H1 (6, 7) + 4G (0, 7) ] e * X/ () dr ; (15)
0

on a ainsi ’expression d’une intégrale de (1) sous la forme d’un développe-
ment limité:

ve =3 SV [00 0¥ () + X e 0P T (5] 7)) + Bo(4,)
k

r=0

66

. (1)



5. Calcul des 7, et des 6y’. On a posé
G(r)=W({t,1r,8) =¢€"-Ft — 1) ;

les singularités de G'(t) proviennent de celles de F'(t — 7). Supposons
désormais que F (t) est nulle pour ¢t < 0 et qu’elle posséde pour ¢ > 0
une suite de singularités ¢, = 0,¢,,...,¢,,... tendant vers l'infini (on
les suppose rangées par ordre de valeurs croissantes); ¢ étant fixé, les
singularités de G'(t) sont (par valeurs décroissantes):

Tozt,TIZt‘—tl,..., Tp=t—tp;

t, étant le plus grand des ¢, inférieurs a .

Le calcul des 6 se fait & partir des grandeurs analogues pour F (t);
on pose AP = FW (¢, 4+ 0) — F" (¢, — 0) .

Par la formule de Leibniz, on a

r

G")(t) e 2 <;)(_ l)l st et P (t — ‘t) :

or
o) = G (7, + 0) — G (z, — 0)

=é(”pqywwwwmw—%—m~me—%+mL

r(r
&) = {‘,‘ (l)(—~ 1) gt e* ™ AD |
Evaluons encore les fonctions Y (s|t); on a
Y® (s|t) = j—lzwmxa+ﬂdu
0

et lim Y (s|t) = 0. Or la fonction X’ (t) tend vers zéro, pour ¢t — + oo,
t> 400
comme e~ ¢*, donc Y (s|t) tend vers zéro plus rapidement que e~ (¢=%)¢

ainsi
Y® (s|t) = o(e™ (¢ 07, (16)

6. Un choix particulier de s. Le parameétre s a été laissé arbitraire
jusqu’ici. Faisons maintenant s = 0 (ce qui est légitime puisqu’il suffit

que Rs> — p, et on a supposé g > 0). Alors
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Q(r) = Wit,7r,0)=F(@{ — 1)
et

G(")(T) — (___ l)rF(r)(t - 7;) :
d’autre part

) = — (— 1y 4
d’ott
O YPV(slm) = — (= D)rAP YL (0t —t,)

et enfin

n

U(t) = 2 [F"’(t Y™ (0) — 2A&:’Y‘”(Olt——tk)HRn(t,O); (17)

la somme est étendue aux indices k avec ¢, < t, car ce sont les seuls qui
figurent dans le développement limité de G (7).

Si, par exemple, la fonction F(t) a une seule singularité, pour ¢t = 0,
on a, pour ¢t > 0,

U = X —[F () T0(0) — F9 ) T9(0[0)] + R,(,0), (18)

’“0
ou on a posé F@(0) = AP .

7. Passage du développement limité a une série. Etudions, dans le cas
ol s = 0, la convergence de la série obtenue en faisant tendre n vers
Pinfini. On suppose que F'(t) est analytique pour tout ¢ réel, excepté pour
les valeurs ¢,,¢,,...,1%,...; de plus, on suppose que les valeurs de
F ) (t) sont toutes dans un rectangle D,, intérieur lui-méme au cercle de
rayon A" et de centre & l'origine, avec 4 < g, et cela pour toute valeur
entiére positive de r. Alors la série

i-; [FO @) YN (0) — 3 AQY® (0t — t,)] (19)
k

r=0

converge, et sa somme est une intégrale de (1).

Considérons, pour le montrer, la série ¥ R, (¢, 0). On a ici?)
]

R,(t,0) = 'En_i)g'i j A [FEHD (1 — 9, 7) 4 JFP (6 — 0,7)] X/ (v) d

0

3) Les nombres 0, et 0, qui figurent au second membre dépendent évidemment de »,
mais cela n’a aucune importance pour la suite.
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et la somme partielle peut s’écrire

p-1 " P (—1)" e [F{ (t—0, 7) + i F P (t—0,
§Rn(t,o>=fX'(r)§( PERE b iRl

or |F™(7)| < A", donc

p (— 1) [FP(t—0,7) 4+ tFP(E— 6,7)] 1< P gt An

| |

puisque l'intégrale

(X' (z) et dv
0

converge absolument si 4 < p, il en est de méme de la série YR, (¢, 0),

0
d’ou lim R, (¢, 0) = 0. Ainsi le reste du développement limité (17) tend

N—>0o0

vers zéro si n— oo, ce qui établit notre affirmation.

On peut obtenir une série convergente dans des cas plus généraux, en
donnant & s une valeur convenable autre que zéro. Supposons que F (t)
peut s’écrire

F(t) = eM. K (¢)

avec RA> — p, K™ (t) étant dans le rectangle D,, avec maintenant
A<RA+ o; alors la série

Ul) = 3 (:,”r[am O) YN (A) 4+ ¥ e % §D YW (4]t —t,)] (20)
r=0 * k

converge, et sa somme est une intégrale de (1).

Faisons en effet s = A dans G(r), ce qui est légitime puisqu’'on a
supposé RA> — o . Il vient

G(r)=e"F(t — 1) =M K(t — 7)
puis
GM (1) = (— 1) e KM (@t — 1),
d’ou le reste

o0

—_— n+4+1
R,(t,2) = ”((%?LDT)T e f 1 [KOHD) (5 — 0, 7) 4 iKSH (6 — 0,7) ] e X (v) d .
(1]
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On considere la série X' R, (¢, 1), dont on peut écrire une somme partielle
0

oo

E R,(t,A) = e"‘f e X' (7) 2 ( r” [K™ (t—6,7) + iK™ (¢—0,7) ] d7 ;
0
or, ici encore,
4 ("— l)n T" (n) : 77(n) ( At
;T[Kl + K¢ ]|<e ,
et I'intégrale w
Je X' (r) e* dv
0

converge absolument si 4 <RA -+ p; on en tire donc lim R, (¢, 1)=0,
d’ou notre affirmation. oo
Comme on a
G(r) =er . K(t — 1),

il vient

G (1) = (— 1) et . K(r) (t — 1)
et

e—)uk 6(’:-) —_ (__ 1)r e“k AScr) ,
ou

AP = KO (¢, + 0) — KO (¢, — 0).
On peut donc énoncer le théoréme
Théoréme : St le second membre de I'équation (1) est de la forme
F(t) = eM. K (t)

avec RA> — o, K(t) étant analytique pour t réel, excepté pour une suite
de valeurs t,,...,t,— oo, avec

AP = KD (t, + 0) — KO (8, — 0) ;

st de plus KT (1) est toujours intérieur a un rectangle D,, intérieur lui-

méme au cercle |z| = A", avec A <RA -+ g, alors la séree
V)= 3 L [MEOOTO() — 3 S*APTO(t—1)] |
) : tp<<t

converge, et sa somme est une intégrale de (1).
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Supposons un instant que la fonction K () est constante par intervalles.
On a alors K™ (t) = 0 (si r > 0), et les hypotheses du théoréme étant
vérifiées, on a simplement

Ui) =eM K@) Y(A) — X f®AD Y (At —t,). (21)

tp<<t

11 résulte de 1a en particulier que les fonections Y™ (1 | ¢) sont des inté-
grales de I’équation homogeéne (2), ce que I’on peut aussi obtenir directe-
ment.

8. On peut établir au moyen de la transformation de Laplace, formelle-
ment, les développements en série considérés. On a en effet

Y(s) = i —}'— Y (0) s

0

d’ou1, avec les notations du début de ce travail,

u@) =16)- ¥6) = XS T(0),

et par conséquent

Ul = 3 FO @) Y0 ©) (22)

c’est-a-dire la série (19) pour F(¢) continue. Ce raisonnement tres in-
complet est parfois donné comme justification de la formule (22).

(Recgu le 13 février 1946.)
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