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Sur les groupes continus de
transformations unitaires de I'espace de Hilbert:
Une extension d'un théoréme de M.H.Stone

Par EpmonD ArNoOUs, Leysin

L’objet de ce travail est de donner toute sa généralité & un important
théoréme de M. H. Stone [1] sur les groupes continus de transformations
unitaires de I'espace de Hilbert, en démontrant la proposition suivante:
soit:

G un groupe abélien localement compact, I" le groupe des caractéres
de G, y,(x) la valeur en z e G du caractére s ¢ I' de G.

Soit encore:

R V’espace abstrait de Hilbert et (£,,) une famille spectrale de R,
dont I'indice 4, parcourt une tribu de parties de G. Alors, 'intégrale de
Fourier-Stieltjes, étendue aux transformations de R:

Us = IXs(x) d. EAV (1)

définit un groupe continu de transformations unitaires (U,),.r de R.
Inversement, & tout groupe continu de transformations unitaires
(U)ser de R, correspond une famille spectrale (£4,) de R, et une
seule, vérifiant (1).

La démonstration de cette proposition cf. [2] reposera essentiellement
sur un théoréme célebre de S. Bochner [3], étendu par A. Weil [4, § 30]
aux groupes abéliens localement compacts: La condition nécessaire et
suffisante pour qu’une fonction @(s) soit la transformée de Fourier-
Stieltjes

D(s) = [2,(x) dpa,

d’une mesure de Radon uy, bornée sur G, est que @(s) soit du type
positif P* .

Dans la premiere partie de ce travail, je préciserai le sens et la portée
de ce théoréme.

Dans la seconde partie, je rappellerai quelques notations et quelques
propriétés de ’espace de Hilbert et je généraliserai la notion de famille
spectrale.

[1]; les numéros figurant entre crochets, dans le courant du texte, renvoient a la biblio-
graphie,
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Enfin, dans la troisiéme partie, j’étendrai le théoréme de Stone, en
démontrant la proposition que j’ai énoncée en commencant. Il ne sera
question ici, ni des applications & la théorie ergodique [5], ni des appli-
cations a la mécanique quantique.

* % *

Sil’on veut bien faire saisir le sens et la portée du théoreme de Bochner,
il est nécessaire de placer auparavant I'intégrale de Fourier-Stieltjes dans
son domaine naturel, celui des groupes abéliens localement compacts.
Pour cela, le plus simple est sans doute, de commencer par construire ce
domaine, c’est-a-dire de partir d’un ensemble G, de lui donner la struc-
ture voulue et d’y définir une mesure.

1. Commengons par lui donner une structure de groupe abélien, en
choisissant, parmi toutes les lois de composition interne possibles, une
loi associative et commutative, qui ait un élément neutre (I’élément
unité du groupe) et associe a tout x ¢ G un symétrique z1 e G.

Donnons-lui ensuite une structure topologique compatible avec la loi
du groupe, en choisissant un systéme de voisinages V de 'unité. Un tel
systéme suffit & définir une topologie, puisqu’on engendre un systéme
de voisinages de x, par translation, c¢’est-a-dire en formant les ensembles
z. V. Mais si I'on veut pouvoir définir utilement, tout & ’heure, une
mesure sur (7, il faut choisir une structure localement compacte [6, p. 64].
Autrement dit, la topologie doit étre assez fine pour que deux éléments
quelconques z et y distincts puissent toujours étre enfermés dans deux
voisinages sans point commun (en d’autres termes, ’espace doit étre
séparé), et tout élément x doit avoir un voisinage & l'intérieur duquel
laxiome du recouvrement de Borel-Lebesgue est valable (en d’autres
termes, tout x doit avoir au moins un voisinage compact [bicompact
d’Alexandroff]).

Le groupe additif des entiers, le groupe multiplicatif des nombres
complexes de module 1, le groupe additif de la droite numérique R?! et
le plan R! x R!, sont des groupes abéliens localement compacts.

2. Ceci posé, soit T' le groupe multiplicatif des nombres complexes de
module 1, et I' ’ensemble des représentations z— y(x) ¢ 7 de G dans
T, c’est-a-dire ’ensemble des solutions continues et de module 1 de
Iéquation :

x(x-y) = x(=) x(y) . (2)

Il est facile de définir aussi sur I" une structure de groupe abélien locale-
ment compact.
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Tout d’abord une structure de groupe abélien: Il suffit pour cela de
choisir pour loi de composition interne, la multiplication, car y, - x, est
solution de (2) en méme temps que y, et y,.

Ensuite une structure topologique localement compacte: Il suffit de
former pour tout voisinage V de l'unité de 7', et toute partie compacte
C de @G, I'ensemble W des représentations y appliquant C' dans V. Les
W engendrent dans I" un systéme de voisinages de I'unité. Comme cer-
tains de ces voisinages sont compacts [4, p. 100], ils définissent sur I
une structure localement compacte. Le groupe I', muni de ces deux struc-
tures, s’appelle le groupe dual de G (par rapport & 7). Ce n’est pas autre
chose en somme que le groupe des caracteres des représentations linéaires
bornées irréductibles de G dans 7'.

Dans la suite, s désignera un élément de I' et y,(x) la valeur en « ¢ ¢
du caractére s e I' de G. C’est une fonction de module 1, continue sur
G xI'. Le choix de la multiplication pour loi de composition interne
sur I" entraine évidemment:

Xst(X) = x5(%) - x4 () (3)

et par suite aussi, y;~1 ¥, = x,-1., 6tant égal a 1:

Xs-1 (%) = x,() . (4)
Le dual de R! est R! lui-méme (& un isomorphisme prés) avec y,(x)=e>"%,
Le plan R'x R! est aussi son propre dual. Mais le dual du groupe additif

des entiers est le groupe 7' avec y,(x) = s*.
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3. G et I' sont maintenant dotés d’une structure abélienne localement
compacte.

I1 reste encore & doter G' d’'une mesure. Il suffira de choisir une mesure
bornée. Qu’entend-on par 14?

Une mesure bornée u, sur ¢, est une fonction d’ensembles, & valeurs
réelles > 0 et < + oo, définie sur une famille de parties (4,) de G dont
Iindice » parcourt un ensemble quelconque. Pour conserver a cette fonc-
tion les propriétés essentielles de la mesure ordinaire, il est nécessaire que
la famille (4,) ne soit pas quelconque: Ainsi, chaque fois qu’elle contient
A, et A,, elle doit contenir leur différence, c’est-a-dire I'intersection de
A, et du complémentaire de 4, ; chaque fois qu’elle contient une famille
dénombrable de A4, elle doit en contenir I'intersection et la réunion. Une
telle famille est alors appelée iribu de parties.

Mais il est nécessaire aussi que x soit une fonction complétement addi-

tive, ¢’est-a-dire que uy = ' p4,, chaque fois que 4 est la réunion d’une
1 4
famille dénombrable de 4, . Lorsque toutes ces conditions sont remplies,

les ensembles A, sont dits mesurables.

4. Mais il reste une grande liberté de choix dans I’ensemble des tribus
et des mesures possibles. Nous allons restreindre ce choix en imposant &
u de nouvelles conditions, intimement liées & la nature localement com-
pacte du groupe.

Lorsqu’une fonction f(x) & valeurs > 0 est mesurable, c’est-a-dire
lorsque ’ensemble des points ou f(x) > « est mesurable, quelque soit
« > 0, les sommes de Lebesgue permettent de lui attacher une intégrale
j' f(z) du finie ou infinie. Si elle est finie, f(x) est dite intégrable. D’une
facon générale, une fonction complexe, qui peut toujours s’écrire
f=1FfH —1f,+ifs —if, avec f, >0, est dite intégrable, si les f, sont
intégrables.

Ceci posé, parmi toutes les tribus et les mesures possibles, notre choix
se portera sur celles qui rendent intégrables toutes les fonctions continues,
nulles en dehors d’un ensemble compact (fonctions de la classe L). Les
mesures soumises & cette condition sont appelées mesures de Radon.

Les mesures de Radon et leurs combinaisons linéaires & coefficients
complexes (mesures complexes de Radon) jouent un réle essentiel dans
la théorie de I'intégrale de Fourier-Stieltjes.

5. En effet, dans le cadre qui vient d’étre défini, I'intégrale de Fourier-
Stieltjes prend la forme:

D(s) = [ 1,(2) dpa, - (5)
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Or, il est essentiel d’étre assuré de I’existence de @(s). En exigeant que
U4, Soit une mesure de Radon, on atteint justement un degré de géné-
ralité qu’il serait bien difficile de dépasser, tout en ayant la certitude que
la fonction y,(x), bornée et continue, est intégrable.

Deés lors, un probleme analogue se pose pour @(s). Quelles sont les
conditions les plus larges qu’on puisse imposer & @D(s), pour qu’il existe
une mesure uy, vérifiant (5)? La réponse est justement donnée par le
théoréme de Bochmer: La condition nécessaire et suffisante pour qu’une
fonction @ (s) définie sur I" soit la transformée de Fourier-Stieltjes d’une
mesure de Radon u,, bornée sur G, est que @(s) soit du type positif
P>, c’est-a-dire qu’elle soit continue et que

Em,nCijZ@(S;l'Sm) >O (6)

quels que soient s,, et s, € I' et les constantes C,, et C, en nombre fini.
De plus, la mesure x4, correspondant & @(s) e P* est unique.

On saisit la généralité et la portée de ce théoréme. On jugera au § 13
du degré de simplicité et de maniabilité de la forme hermitienne (6).

* kK

Avant d’étendre le théoreme de Stone aux groupes abéliens locale-
ment compacts, il est nécessaire de rappeler un certain nombre de nota-
tions et de propriétés de I’espace de Hilbert, et de généraliser convenable-
ment la notion de famille spectrale.

6. Soit donc R I'espace de Hilbert. C’est un espace muni de trois struc-
tures:

Tout d’abord d’une structure de groupe abélien & opérateurs: R est
en effet un module par rapport au corps des nombres complexes. On
désignera ses éléments par f, g. .. et les nombres complexes par ¢, ¢c,. . .;
on notera additivement, par f 4 ¢, la loi de composition interne, et
multiplicativement, par cf, la loi de composition externe.

C’est ensuite un espace muni d’une structure topologique et d’une struc-
ture uniforme. Comme on sait, on définit ces deux structures a l'aide
d’'un produit scalaire, c¢’est-a-dire d’une fonction & valeurs complexes,
définie sur B X R, qu’on note (f, g) et qui jouit des quatre propriétés
suivantes:

(c]‘,g)zc(f_,:q_) (fr + 1 9) = (fis9) + (f2, 9)

(f,9)= (9,0 (f,)>0 si f£0 et (f,f)=03si f=0
et par suite aussi, des deux propriétés:

(feg)=clf9)  (f9.+92) = (.90 + (F 92) -
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De fagon précise, et || f|| désignant la norme de f, c’est-a-dire la quan-

tité (f, f)%, on définit la topologie de R en prenant pour systéme fonda-
mental de voisinages de 'unité, les boules formées par les f ¢ R tels que
Il || <a pour a > 0, et la structure uniforme de R, en prenant pour
systéme fondamental d’entourages, les entourages formés par les couples
f,g telsque ||f—g]| <a poura>0.

11 est bien évident que 'intersection de ces entourages est la diagonale
de B X R. Autrement dit, ’espace uniforme ainsi défini est séparé, et
par suite, 8’il n’était pas complet, il serait possible de le compléter, et
d’une seule maniére [6, p. 102]. Mais R sera supposé complet. Par contre,
il ne sera pas nécessairement séparable, afin qu’il puisse avoir un nombre
de dimensions supérieur au dénombrable et représenter, par exemple,
Iespace des fonctions presque périodiques.

7. Telles sont les propriétés essentielles de 1’espace sur lequel vont
opérer les deux familles de transformations dont il est question dans
I’énoncé du théoréeme de Stone. Que sont maintenant ces deux familles?
Ce sont des familles de transformations partout définies sur R, linéaires
et bornées.

La premiere est une famille spectrale (B 4,), dont l'indice parcourt une
tribu de parties de . Que faut-il entendre par 1a? Il faut entendre une
famille de transformations soumises, pour tout fe B, aux conditions
suivantes:

(B4, f, f) est réel (# 4, est hermitien)
Eiyna,, =Ey4 - By, (7)
ta,(f) = || B4, f||* est une mesure de Radon bornée,
ue(f) =111

ou 4,N A, représente 'intersection de 4, et 4,, . La deuxiéme condi-
tion entraine que K., est idempotent (B4, = E%, si v = ) et par
suite que £ 4, est un projecteur. Comme d’autre part on retombe sur la
définition classique des familles spectrales, en prenant pour A4, les inter-
valles de la droite numérique, la généralisation est bien légitime (pour
d’autres généralisations, voir [7]).

La seconde famille est un groupe continu de transformations unitaires.
Comme on sait, on entend par 14 une famille de transformations (U,)
soumises, pour tout f e B, aux conditions suivantes:
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UXU,=U,UF=1 (U, est unitaire)
U,=U,-U, ([U,] est un groupe) (8)
D(s) = (U, [, f) est continue en s,
U,=1,

ot UFdésigne I’adjoint de U,. Ces conditions entrainent évidemment que
U 8* = U8"" .

8. Ceci précisé, et pour terminer cette seconde partie, voici une pro-
priété importante qui sera bient6t utile.

Une fonction L(f), définie sur R et & valeurs complexes, est une forme
linéaire si, quels que soient f et g de R et les constantes de c, et c,:

L(c,fy + cofs) = ¢ L(fy) + ¢ L(f,) .

De plus, elle est bornée §’il existe, pour tout f ¢ B, un nombre M tel que:
| L) | <MIlf]l.

Les formes linéaires bornées jouissent d’une propriété remarquable
(théoréme de Fréchet [8]): elles peuvent s’écrire sous forme de produit
scalaire. Autrement dit, il existe un élément et un seul g* ¢ R tel que:

L(f) = (f,9%) .

De méme, une fonction L (f, g), définie sur B X R et & valeurs complexes,
sera une forme bilinéaire bornée, si elle est linéaire par rapport a f et g
et 8’1l existe, quels que soient f et g de B, un nombre M tel que:

| LG L <M fIl-1lgll-

Mais alors, pour tout g donné, il existe un élément g* ¢ R et un seul, tel
que, pour tout fe R:

I1 suffit maintenant de poser g* = Eg, pour conclure qu’a toute forme
bilinéaire bornée L(f,g) correspond une transformation E partout
définie, linéaire, bornée, et une seule, et telle que:

L(f,q) = (f, Eyg) .
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Si de plus L(f, g) est une forme hermitienne, c’est-a-dire si, quels que
soient f et ¢ de R:
L(f,9) = L(g. 1),

alors £ est une transformation hermitienne.
Nous avons maintenant en main tous les éléments voulus pour donner
rapidement toute sa généralité au théoréme de Stone.

* k%

Tout d’abord le théoréme direct.

9. Euxistence de U,. Si (X4,) est une famille spectrale,

L,(f,9) = [ 2:(2) d - (B4 f, 9)

est une forme bilinéaire partout définie. Elle est aussi bornée. En effet,
| x,(x) | = 1 entraine

| L(f ) | < | (Be ) | <l -1l gll.

Il existe donc une transformation U, partout définie, linéaire et bornée,
et une seule, telle que

Ls(f’ g) = (Usf’ g) -
10. Les U, forment un groupe.

En effet (3) permet d’écrire maintenant

((]stf’ g) j xs xt x) d EAvf g

ou encore, y,(x) et y,(x) étant continus et bornés :

(Ust f, g) = jxs(x) dv th(y) dv'(EAvf'\Av’f’ g)

c’est-a-dire finalement, en vertu de (7):

(Ustf: g) = J.xs(x) dv J'Xt(y) dv'(EAv EAv’f: g) .

Calculons maintenant (U,U,f, g):

(Us Utf’ g) = sz(x) dv (EAV Utf? g) =

= ".xs(x) dvf%t(y) dv’(EAv EAV’ f’ g) .
Ainsi
(Ustf’g) = (Us Utf’g) .
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11. U, est unitaire. En effet, (4) entraine

(Usfo g) - f Xs—1 (CU) d(g’EAvf) = (Urlg 9f) = (f> Us'lg)

et par suite U = U,., . Dés lors

U U, =Upny,=U = [dEs, = By = 1 = U, U* .

12. Le groupe est continu

puisque y,(x) est continu.

Voici maintenant la réciproque. La démonstration s’inspirera, dans
ses grandes lignes, de celle de Bochner [1]. Elle reposera en effet essen-
tiellement sur la remarque suivante:

13. @(s) = (U, f,[) est du type positif P> .
En effet, @(s) est continue, par hypothese, et d’autre part:

X CuCuUp 0 f) = (X CuU, [, X 0.0, f) >0 -

m,n

La forme hermitienne (6) se révele donc tres maniable, et cela suffit a
assurer le succes de la méthode.

14. Euxistence de B4,. Cest ici qu’il faut utiliser le théoréme de Boch-
ner. Il permet d’affirmer 1l’existence d’une mesure de Radon bornée
Ua,(f) et d’une seule, telle que

(Usf,f) = fxs(x) d:uAv(f) .

L’artifice classique

RN i SR

+i<Usf+i9 f+i9>~i<Usf“i9 f—ig)

2 7 2 2 2
permet immédiatement de calculer (U,f, g):

(Usf’ g)szs(x)dﬂAv(f> g) (9)

ou uyu,(f,g) est la mesure complexe de Radon

wathsd) = (159) = (159) 4 i (1579 = i (1579).

/
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Il est bien clair que u4,(f,9) est une forme bilinéaire, partout définie.
Elle est aussi bornée. En effet U, = 1 entraine

fd-pa,(f,9) = upef,9)=(f.9)

leat D < T DI <IN -1Ngll

et par suite

Dés lors, le théoréme de Fréchet permet d’affirmer 1’existence d’un opéra-
teur partout défini, linéaire et borné £4,, et d'un seul, tel que

luAv(fa g) = (EAvf7 g) .

15. E 4, est hermaitien.

En effet y,.(x) = y,(x) entraine
(Usfa g) = (Us“l gaf) = j‘ Zs(x) dluAv(g’f) .

Mais (U, f, g) ne peut se mettre que d’une seule maniere sous la forme
(9). Ainsi

:L‘Av(g’f) = A“Av(fag) .

16. Relation E4,N 4, = B4, B4, .

Comparons les deux expressions de (U, f, g9):

(Ustfa g) = ‘,ﬂ%s(x) Xt(x) d (EAv.f’ g)

= [ 2@ d, [ 5:(9) &y (Bay ~ a0 fr 9)
et, d’apres (8)

(Ustf’g): (Us Utfag) :_fxs(x)dv(EAv Utf,g) .

(Ug f, 9) ne peut, lui aussi, se mettre sous la forme (9) que d’une seule
maniére. Par suite

(Efiv Utf?g fxt(x EAvnAv f 9)
Or
(B4, Usf,9) f%t(x) dy(Ba, Ea,f,9) .

Alors, toujours pour la méme raison:
(EAV N 4, f’ g) = (EAV EAV’ f’ g) -
Si en particulier » = +’, B4, = Ej, .
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(1]

(2]
(3]

(4]
[5]
(6]
(7]

(8]
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17. || E4, [ ||? est une mesure de Radon bornée.

C’est bien évident maintenant, puisque

| Eayf11* = (B |, ) = pa (f) -

La démonstration est ainsi compléte.
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