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Sur les groupes continus de

transformations unitaires de Pespace de Hilbert:
Une extension d'un théorème de M.H.Stone
Par Edmond Arnous, Leysin

L'objet de ce travail est de donner toute sa généralité à un important
théorème de M. H. Stone [1] sur les groupes continus de transformations
unitaires de l'espace de Hilbert, en démontrant la proposition suivante:
soit:

G un groupe abélien localement compact, F le groupe des caractères
de G, Xs(x) la valeur en x e G du caractère s € F de G.

Soit encore:
R l'espace abstrait de Hilbert et {EAv) une famille spectrale de R,

dont l'indice Av parcourt une tribu de parties de Alors, l'intégrale de

Fourier-Stieltjes, étendue aux transformations de R :

U. SxA*) à.EAv (1)

définit un groupe continu de transformations unitaires (Us)8€r de R,
Inversement, à tout groupe continu de transformations unitaires
(Us)8€r de R, correspond une famille spectrale (EAv) de R, et une
seule, vérifiant (1).

La démonstration de cette proposition cf. [2] reposera essentiellement
sur un théorème célèbre de S. Bochner [3], étendu par A. Weil [4, § 30]
aux groupes abéliens localement compacts: La condition nécessaire et
suffisante pour qu'une fonction @(s) soit la transformée de Fourier-
Stieltjes

d'une mesure de Radon juAv bornée sur G, est que &(s) soit du type
positif P00

Dans la première partie de ce travail, je préciserai le sens et la portée
de ce théorème.

Dans la seconde partie, je rappellerai quelques notations et quelques
propriétés de l'espace de Hilbert et je généraliserai la notion de famille
spectrale.

[1]; les numéros figurant entre crochets, dans le courant du texte, renvoient à la
bibliographie.
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Enfin, dans la troisième partie, j'étendrai le théorème de Stone, en
démontrant la proposition que j'ai énoncée en commençant. Il ne sera

question ici, ni des applications à la théorie ergodique [5], ni des
applications à la mécanique quantique.

# # #

Si l'on veut bien faire saisir le sens et la portée du théorème de Bochner,
il est nécessaire de placer auparavant l'intégrale de Fourier-Stieltjes dans

son domaine naturel, celui des groupes abéliens localement compacts.
Pour cela, le plus simple est sans doute, de commencer par construire ce

domaine, c'est-à-dire de partir d'un ensemble G, de lui donner la structure

voulue et d'y définir une mesure.

1. Commençons par lui donner une structure de groupe abélien, en
choisissant, parmi toutes les lois de composition interne possibles, une
loi associative et commutative, qui ait un élément neutre (l'élément
unité du groupe) et associe à tout x e G un symétrique x'1 e G.

Donnons-lui ensuite une structure topologique compatible avec la loi
du groupe, en choisissant un système de voisinages V de l'unité. Un tel
système suffit à définir une topologie, puisqu'on engendre un système
de voisinages de x, par translation, c'est-à-dire en formant les ensembles
x. V. Mais si l'on veut pouvoir définir utilement, tout à l'heure, une
mesure sur G, il faut choisir une structure localement compacte [6, p. 64].
Autrement dit, la topologie doit être assez fine pour que deux éléments
quelconques x et y distincts puissent toujours être enfermés dans deux
voisinages sans point commun (en d'autres termes, l'espace doit être
séparé), et tout élément x doit avoir un voisinage à l'intérieur duquel
l'axiome du recouvrement de Borel-Lebesgue est valable (en d'autres
termes, tout x doit avoir au moins un voisinage compact [bicompact
d'Alexandrofï]).

Le groupe additif des entiers, le groupe multiplicatif des nombres
complexes de module 1, le groupe additif de la droite numérique R1 et
le plan R1 x R1, sont des groupes abéliens localement compacts.

2. Ceci posé, soit T le groupe multiplicatif des nombres complexes de
module 1, et F l'ensemble des représentations x-> %{x) c T de G dans
T, c'est-à-dire l'ensemble des solutions continues et de module 1 de

l'équation :

x(x*y) x(x)x(y) • (2)

II est facile de définir aussi sur F une structure de groupe abélien localement

compact.
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Tout d'abord une structure de groupe abélien: II suffit pour cela de
choisir pour loi de composition interne, la multiplication, car %1 ' X2 es^

solution de (2) en même temps que %x et #2.

Ensuite une structure topologique localement compacte: II suffit de
former pour tout voisinage V de l'unité de T, et toute partie compacte
0 de 0, l'ensemble W des représentations % appliquant C dans F. Les
W engendrent dans F un système de voisinages de l'unité. Comme
certains de ces voisinages sont compacts [4, p. 100], ils définissent sur F
une structure localement compacte. Le groupe jT, muni de ces deux structures,

s'appelle le groupe dual de G (par rapport à T). Ce n'est pas autre
chose en somme que le groupe des caractères des représentations linéaires
bornées irréductibles de G dans T.

Dans la suite, s désignera un élément de F et %8{x) la valeur en x e G

du caractère s € F de G. C'est une fonction de module 1, continue sur
GxF. Le choix de la multiplication pour loi de composition interne
sur F entraîne évidemment :

Xs(x) * Xt(*)

et par suite aussi, x*-i Xs — X»-^s étant égal à 1 :

(3)

(4)Xs-i(x) Xs(x) •

Le dual de R1 est R1 lui-même (à un isomorphisme près) avec %8(x)=t
Le plan R1 X R1 est aussi son propre dual. Mais le dual du groupe additif
des entiers est le groupe T avec %s(x) sx.
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3. G et F sont maintenant dotés d'une structure abélienne localement
compacte.

Il reste encore à doter G d'une mesure. Il suffira de choisir une mesure
bornée. Qu'entend-on par là?

Une mesure bornée jbt, sur G, est une fonction d'ensembles, à valeurs
réelles ^ 0 et < + °°> définie sur une famille de parties (Av) de G dont
l'indice v parcourt un ensemble quelconque. Pour conserver à cette fonction

les propriétés essentielles de la mesure ordinaire, il est nécessaire que
la famille (Av) ne soit pas quelconque : Ainsi, chaque fois qu'elle contient
Av et Av,, elle doit contenir leur différence, c'est-à-dire l'intersection de

Av et du complémentaire de Av, ; chaque fois qu'elle contient une famille
dénombrable de Av> elle doit en contenir l'intersection et la réunion. Une
telle famille est alors appelée tribu de parties.

Mais il est nécessaire aussi que /bc soit une fonction complètement addi-
tive, c'est-à-dire que jua U [aavi chaque fois que A est la réunion d'une

V

famille dénombrable de Av. Lorsque toutes ces conditions sont remplies,
les ensembles Av sont dits mesurables.

4. Mais il reste une grande liberté de choix dans l'ensemble des tribus
et des mesures possibles. Nous allons restreindre ce choix en imposant à

ju de nouvelles conditions, intimement liées à la nature localement
compacte du groupe.

Lorsqu'une fonction f{x) à valeurs > 0 est mesurable, c'est-à-dire
lorsque l'ensemble des points où f(x) ^ oc est mesurable, quelque soit
oc > 0, les sommes de Lebesgue permettent de lui attacher une intégrale
§f(x) d[x finie ou infinie. Si elle est finie, f(x) est dite intégrable. D'une
façon générale, une fonction complexe, qui peut toujours s'écrire

f ft — f2 -\- ifs — ifi avec fn > 0, est dite intégrable, si les fn sont

intégrables.
Ceci posé, parmi toutes les tribus et les mesures possibles, notre choix

se portera sur celles qui rendent intégrables toutes les fonctions continues,
nulles en dehors d'un ensemble compact (fonctions de la classe L). Les

mesures soumises à cette condition sont appelées mesures de Radon.
Les mesures de Radon et leurs combinaisons linéaires à coefficients

complexes (mesures complexes de Radon) jouent un rôle essentiel dans
la théorie de l'intégrale de Fourier-Stieltjes.

5. En effet, dans le cadre qui vient d'être défini, l'intégrale de Fourier-
Stieltjes prend la forme :

(5)
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Or, il est essentiel d'être assuré de l'existence de &(s). En exigeant que
fjiAv soit une mesure de Radon, on atteint justement un degré de
généralité qu'il serait bien difficile de dépasser, tout en ayant la certitude que
la fonction %s{x), bornée et continue, est intégrable.

Dès lors, un problème analogue se pose pour @(s). Quelles sont les

conditions les plus larges qu'on puisse imposer à &(s), pour qu'il existe
une mesure pAv vérifiant (5)? La réponse est justement donnée par le
théorème de Bochner : La condition nécessaire et suffisante pour qu'une
fonction 0(s) définie sur F soit la transformée de Fourier-Stieltjes d'une
mesure de Radon juAv bornée sur G, est que 0(s) soit du type positif
P°°, c'est-à-dire qu'elle soit continue et que

Xm,nCmC^0(s-1.sJ^O (6)

quels que soient sm et sn e F et les constantes Gm et Cn en nombre fini.
De plus, la mesure juAv correspondant à 0(s) e P°° est unique.

On saisit la généralité et la portée de ce théorème. On jugera au § 13

du degré de simplicité et de maniabilité de la forme hermitienne (6).

Avant d'étendre le théorème de Stone aux groupes abéliens localement

compacts, il est nécessaire de rappeler un certain nombre de notations

et de propriétés de l'espace de Hilbert, et de généraliser convenablement

la notion de famille spectrale.

6. Soit donc R l'espace de Hilbert. C'est un espace muni de trois structures

:

Tout d'abord d'une structure de groupe abélien à opérateurs: R est

en effet un module par rapport au corps des nombres complexes. On

désignera ses éléments par /, g... et les nombres complexes par cx, c2... ;

on notera additivement, par f -\- g, la loi de composition interne, et

multiplicativement, par c/, la loi de composition externe.
C'est ensuite un espace muni d'une structure topologique et d'une structure

uniforme. Comme on sait, on définit ces deux structures à l'aide
d'un produit scalaire, c'est-à-dire d'une fonction à valeurs complexes,
définie sur R x R, qu'on note (/, g) et qui jouit des quatre propriétés
suivantes :

(cf, 9)=c(Uj^ (h + f2, g) (h, g) + (f2>g)

(/. 9) (777) (/,/)> 0 si / ^ 0 et (/,/) 0 si / 0

et par suite aussi, des deux propriétés:

(/, eg) c(f, g) (f, 9l + g2) (/, gx) + (/, g2)
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De façon précise, et 11 /11 désignant la norme de /, c'est-à-dire la quantité

(/, fj*, on définit la topologie de R en prenant pour système
fondamental de voisinages de l'unité, les boules formées par les f € R tels que
| j / 11 < a pour a > 0, et la structure uniforme de R, en prenant pour
système fondamental d'entourages, les entourages formés par les couples
/, g tels que 11 / — g 11 < a pour a > 0.

Il est bien évident que l'intersection de ces entourages est la diagonale
de R X R. Autrement dit, l'espace uniforme ainsi défini est séparé, et

par suite, s'il n'était pas complet, il serait possible de le compléter, et
d'une seule manière [6, p. 102]. Mais R sera supposé complet. Par contre,
il ne sera pas nécessairement séparable, afin qu'il puisse avoir un nombre
de dimensions supérieur au dénombrable et représenter, par exemple,
l'espace des fonctions presque périodiques.

7. Telles sont les propriétés essentielles de l'espace sur lequel vont
opérer les deux familles de transformations dont il est question dans
l'énoncé du théorème de Stone. Que sont maintenant ces deux familles?
Ce sont des familles de transformations partout définies sur R, linéaires
et bornées.

La première est une famille spectrale (Eav), dont l'indice parcourt une
tribu de parties de G. Que faut-il entendre par là? Il faut entendre une
famille de transformations soumises, pour tout f * R, aux conditions
suivantes :

(EAvf,f) est réel (EAv est hermitien)

EAvrsAv' $AV ' Eav'

jUAv(f) || EAvf ||2 est une mesure de Radon bornée,

MoU) =11/H2

où Av fl Av, représente l'intersection de Av et Av, La deuxième condition

entraîne que Eav est idempotent (Eav E\v si v v') et par
suite que EAv est un projecteur. Comme d'autre part on retombe sur la
définition classique des familles spectrales, en prenant pour Av les
intervalles de la droite numérique, la généralisation est bien légitime (pour
d'autres généralisations, voir [7]).

La seconde famille est un groupe continu de transformations unitaires.
Comme on sait, on entend par là une famille de transformations (U8)

soumises, pour tout / e R, aux conditions suivantes:
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U* Us U8 U? 1 (C7S est unitaire)
Ust Us- Ut ([Us] est un groupe) (8)

0(s) (Usf,f) est continue en s,

où Z7*désigne l'adjoint de U8. Ces conditions entraînent évidemment que
77* _ 77

8. Ceci précisé, et pour terminer cette seconde partie, voici une
propriété importante qui sera bientôt utile.

Une fonction L(f), définie sur jR et à valeurs complexes, est une forme
linéaire si, quels que soient / et g de B et les constantes de ct et c2:

1(0^+ c2f2) ClL(h) +

De plus, elle est bornée s'il existe, pour tout / e R, un nombre M tel que :

\L(f)\ <-M ||/||.
Les formes linéaires bornées jouissent d'une propriété remarquable
(théorème de Fréchet [8]): elles peuvent s'écrire sous forme de produit
scalaire. Autrement dit, il existe un élément et un seul g* e B tel que:

De même, une fonction L(f, g), définie sur B x B et à valeurs complexes,
sera une forme bilinéaire bornée, si elle est linéaire par rapport à / et g
et s'il existe, quels que soient f et g de B, un nombre M tel que :

\Mf,g)\ <Jf||/||-|MI-
Mais alors, pour tout g donné, il existe un élément g* e B et un seul, tel
que, pour tout f € B :

Il suffit maintenant de poser g* Eg, pour conclure qu'à toute forme
bilinéaire bornée L(f,g) correspond une transformation E partout
définie, linéaire, bornée, et une seule, et telle que:

,g) (f,Eg).
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Si de plus L(f,g) est une forme hermitienne, c'est-à-dire si, quels que
soient f et g de R:

alors E est une transformation hermitienne.
Nous avons maintenant en main tous les éléments voulus pour donner

rapidement toute sa généralité au théorème de Stone.

* * *

Tout d'abord le théorème direct.

9. Existence de Us. Si (EAv) est une famille spectrale,

Ls(f,9) !xAx)d-(EAvf,9)

est une forme bilinéaire partout définie. Elle est aussi bornée. En effet,
| %s(x) | 1 entraîne

\Ls{f,g)\<\{Eof,g)\<\\f\\-\\g\\.
Il existe donc une transformation Us partout définie, linéaire et bornée,
et une seule, telle que

Ls(f,g) (Usf,g).

10. Les U8 forment un groupe.

En effet (3) permet d'écrire maintenant

(Ustf,g) J x.{x) Xt(*) d{EAJ,g)

ou encore, %8(%) et Xt(x) étant continus et bornés:

(U,t f, 9) hs(x) dv$Xt(yî dA®AVr,AV>f, g)

c'est-à-dire finalement, en vertu de (7):

Calculons maintenant (USUJ, g):

{UtUtf,g) SXl(x)dv{EApUtf,g)

/*.(*) djxtiv) dAEAv EAv, f, g)
Ainsi
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11. U8 est unitaire. En effet, (4) entraîne

(UJ,9) J Xt-i(x) d(g,EAJ) (C/g-l9r,/) (/, Us-l9)

et par suite U* C/g_i Dès lors

UT ¦ Us Urll C7X $dEAv Eo 1 UaU:

12. Le groupe est continu

puisque %s(x) est continu.
Voici maintenant la réciproque. La démonstration s'inspirera, dans

ses grandes lignes, de celle de Bochner [1]. Elle reposera en effet
essentiellement sur la remarque suivante:

13. 0(s) (Usf,f) est du type positif P00

En effet, 0(s) est continue, par hypothèse, et d'autre part:

E CmCn(Us-> SJJ) (ZCm USmf, E Cn USJ) > 0 •

m,n n m n

La forme hermitienne (6) se révèle donc très maniable, et cela suffit à

assurer le succès de la méthode.

14. Existence de Eav • C'est ici qu'il faut utiliser le théorème de Bochner.

Il permet d'affirmer l'existence d'une mesure de Radon bornée
ju>Av(f) et d'une seule, telle que

L'artifice classique

3 2 ' 2

'• 2 ' 2 / Ts 2

permet immédiatement de calculer (Usf, g):

(U3f, g) §%s(x) d/UAv(f, g) (9)

où juAv(f, g) est la mesure complexe de Radon
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Il est bien clair que juAv(f, g) est une forme bilinéaire, partout définie.
Elle est aussi bornée. En effet U1= l entraîne

et par suite

\f*AU,9)\<\t>a{f,ff)\<\\f\\'\\9\\-

Dès lors, le théorème de Préchet permet d'affirmer l'existence d'un opérateur

partout défini, linéaire et borné EAv, et d'un seul, tel que

VAV(f,g) (EAvf,g) -

15. EAv Q&t hermitien.

En effet %8-i{x) %8{%) entraîne

(U.f,9) (Url g,f)=$ x.W diiAv{g,f)

Mais (U8f,g) ne peut se mettre que d'une seule manière sous la forme
(9). Ainsi

f
16. Relation EAvç\Av, EAvEAy,

Comparons les deux expressions de (U8tf, g):

iXs(%) dv j'xt(y) àv,{EAv rs Av> f, g)

et, d'après (8)

(U8tf, g) ne peut, lui aussi, se mettre sous la forme (9) que d'une seule

manière. Par suite

(EAv Utf,g) $Xt(x) dv, (EAv riAyf.g).
Or

(EAv Ut f, g) $Xt(x) dv,(EAv, EAv f, g)

Alors, toujours pour la même raison:

{EAvÇ\Av,f,g) {EAvEAv,t,g)

Si en particulier v — v', EAv EAv

59



17. || Ejlv f ||2 est une mesure de Radon bornée.

C'est bien évident maintenant, puisque

La démonstration est ainsi complète.
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