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Les formes différentielles harmoniques

Par PIierrRE BipAL et GEORGES DE RuHAM, Lausanne

INTRODUCTION

Ce travail a été entrepris dans le but de démontrer, d’une maniére & la
fois simple et rigoureuse, le beau théoréme de W. V. D. Hodge, d’apreés
lequel le p'*™° nombre de Betti d’un espace de Riemann clos et orientable
est égal au nombre de formes différentielles harmoniques de degré p
linéairement indépendantes.

Pour raison de clarté, la théorie des formes différentielles harmoniques
a été reprise dés le début et se trouve exposée au chapitre I. C’est dire
que la connaissance d’autres travaux déja publiés sur ce sujet n’est pas
exigée du lecteur. Nous espérons y avoir apporté d’appréciables simplifi-
cations. Grace a I’emploi d’un opérateur différentiel 4 (défini au No. 3),
applicable aux formes différentielles, qui généralise les opérateurs de
Laplace et de Beltrami, les formes différentielles harmoniques sont dé-
finies simplement comme les formes ¢ qui satisfont a ’équation 4¢ = 0.
Le théoréme de décomposition [No. 5], qui nous parait dominer la théorie et
dont le théoréme de Hodge se déduit facilement, est déduit lui-méme d’un
théoréme d’existence relatif & I'équation 4 4 = §, dont un cas particulier
est contenu dans un théoréme de Hilbert [4, p. 226—227]1), d’apreés lequel
la condition de possibilité de cette équation est que la forme différentielle
donnée S soit orthogonale (au sens défini au No. 2) & toutes les solutions
de I’équation homogéne 4 ¢ = 0, c’est-a-dire i toutes les formes différen-
tielles harmoniques du méme degré.

La démonstration de ce théoréme, que nous appelons le théoréme H, a
laquelle est consacrée la suite du travail, est faite par la méthode de la
paramétrix de E. E. Levi[15] et de Hilbert [4, p. 219—232]. Dans le cha-
pitre II, aprés avoir défini la paramétrix, nous établissons deux formules
qui jouent un réle fondamental dans la démonstration. Bien qu’il ne soit
fait appel, le plus souvent, qu’a des méthodes d’un emploi courant dans la
théorie du potentiel et dans I’étude des équations aux dérivées partielles
du type elliptique, nous avons pensé faire ceuvre utile en ne laissant aucun
point dans I’ombre. De 1la I’étendue relative de ce chapitre.

Dans le chapitre III, aprés avoir énoncé les théorémes de Fredholm
relatifs aux équations intégrales sous la forme ou ils devront étre utilisés,

1) Les chiffres entre crochets [ ] renvoient & I'index bibliographique placé aprés 'intro-
duction.
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nous donnons la démonstration du théoréme H. Elle ne différe pas de celle
exposée par Hilbert pour le cas examiné par lui et mentionné ci-dessus,
sauf quelques simplifications provenant du fait que ’opérateur 4 est auto-
adjoint.

Enfin, dans I’Appendice, nous revenons sur la théorie générale des
équations intégrales utilisées ici, ou 'inconnue est une forme différentielle
ou un tenseur. Lorsque ’espace n’est pas parallélisable, ces équations ne
se raménent pas immédiatement aux systémes d’équations intégrales en-
visagés par Fredholm. Nous montrons que la théorie s’applique néan-
moins, et nous reprenons aussi la démonstration de la validité sans restric-
tion du troisiéme théoréme de Fredholm dans le cas de certains noyaux
non bornés. Tout ce qui intervient dans la démonstration du théoréme H
nous parait ainsi complétement établi.

L’idée d’appliquer la méthode de la paramétrix a la démonstration du
théoréme de Hodge, due & M. Hellmuth Kneser, a été utilisée par M. Hodge
lui-méme [7, 8], dont I’argumentation a été complétée sur un point essen-
tiel par M. Hermann Weyl [16]. La premiére démonstration de M. Hodge
— dont M. Weyl dit: «I find it hard to judge whether a previous proof
along different lines is complete, or rather how much effort is needed to
make it complete » — était basée sur la méthode directe du Calcul des
Variations (Principe de Dirichlet) [5, 6].

Dans ce travail, nous utilisons comme paramétrix la méme forme
w,(x, y) employée par M. Hodge, qu’il avait considérée d’abord dans le
cas d’un espace euclidien [5], et dont il remercie M. Kneser [7] de lui en
avoir communiqué 1’expression générale. Mais nous I’appliquons & I’équa-
tion différentielle Ay = #, ce qui conduit & discuter une équation inté-
grale de noyau 4, w, (2, y), tandis que MM. Hodge et Weyl considérent
I’équation différentielle ddu = f (avec les notations du No. 3 ci-dessous)
dont I’étude directe par cette méthode est moins simple. L’avantage de
notre opérateur 4, & cet égard, tient au fait qu’il est totalement elliptique et
que, contrairement a I’équation ddp = 0, ’équation 4¢ = 0 n’a qu’un
nombre fini de solutions linéairement indépendantes partout réguliéres.

Le mode d’exposition de la théorie des formes différentielles harmo-
niques adopté dans le chapitre I a été présenté dans ses grandes lignes par
I'un de nous dans des conférences & Budapest en 1940, & Clermont-Fer-
rand, Rome et Fribourg en 1942 et & Munich en 1944.
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CHAPITRE 1

LES FORMES DIFFERENTIELLES HARMONIQUES SUR UN
ESPACE DE RIEMANN

1. Fonections et tenseurs sur une variété différentiable

Pour commencer, nous rappellerons quelques définitions, nécessaires
pour bien préciser la notion de forme différentielle sur une variété différen-
tiable (Cf.[2] et [13]).

v désignant un entier positif, une fonction de »n variables réelles est dite
de classe C" si elle posséde des dérivées partielles continues jusqu’a I'ordre
v inclus. On désigne encore par C° la classe des fonctions continues, par
C* la classe des fonctions possédant des dérivées de tout ordre, et par O«
la classe des fonctions analytiques. (Nous conviendrons que, v étant fini,
v<oo, v<w o<W 00 +V=o00, w+v=wn)

Etant donnée une variété a n dimensions V, ¢’est-a-dire un espace topo-
logique connexe dont chaque point posséde un voisinage homéomorphe &
I'intérieur d’une sphére de I’espace euclidien & » dimensions, nous appelle-
rons systéme de coordonnées dans V une représentation topologique d’un
domaine D de V dans I'espace numérique a n dimensions; D est appelé le
domaine du systéme. Une telle représentation associe a chaque point de
D n nombres réels, appelés les coordonnées du point relativement au
systéme.

Nous appellerons variété a n dimensions de classe C?, v désignant un
entier positif, ou co, ou w, une variété & n dimensions ¥V dans laquelle est
donnée une famille F de systémes de coordonnées satisfaisant aux deux
conditions suivantes:

1. Les domaines des systémes de la famille F recouvrent entiérement
V, c’est-a-dire que leur réunion est identique a V.

2. Un point variant dans la partie commune aux domaines de deux
systémes de la famille F', ses coordonnées relativement a I'un des systémes
sont des fonctions de classe C” et & jacobien non nul de ses coordonnées
relativement & l'autre systéme.

Deux familles de systémes de coordonnées, donnés dans la méme
variété V et satisfaisant toutes les deux aux conditions 1. et 2., sont con-
sidérées comme équivalentes, et définissent la méme variété de classe C?,
si la famille formée par leur réunion satisfait aussi & la condition 2. Nous
dirons encore qu'un systéme de coordonnées dans V est admissible, s’il
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appartient & la famille F ou si la famille obtenue en ’adjoignant & F' satis-
fait encore & la condition 2.

I1 est clair que, si u < v, la classe C* contient C°.

Les variétés de classe C® sont les variétés analytiques, les variétés de
classe O sont les variétés différentiables.

Une fonction f(x), définie sur la variété V de classe C?, est dite de
classe C* (u étant < v), si, étant donné un systéme quelconque de la
famille F, pour x dans le domaine de ce systéme, f(x) est fonction de
classe C* des coordonnées de x relativement a ce systéme. Il est clair que
le sens de cette définition ne change pas si 'on remplace F par une autre
famille équivalente (pourvu que, comme on l'a supposé, u < v).

Un tenseur est défini, en un point x de V, par ses composantes relative-
ment & un systéme quelconque de coordonnées dont le domaine contient
x; les composantes relativement & un second systéme se déduisent des
premieéres par les formules connues qui, comme on sait, font intervenir
les dérivées partielles du premier ordre des coordonnées d’un systéme par
rapport a celles de 'autre. Ces dérivées partielles sont des fonctions de
classe 'v-1, si la variété V est de classe C'?. 1l en résulte que, si les compo-
santes du tenseur relativement au premier systéme sont de classe
Ct(u <v—1), il en est de méme des composantes relativement au
second systéme, dans toute la partie commune aux domaines des deux
systémes. Cette remarque justifie la définition suivante:

Un tenseur, défini sur la variété V de classe C?, est dit de classe C*
(pour v < v— 1), si,  étant un point du domaine d’un systéme quel-
conque de la famille ¥, les composantes du tenseur relativement & ce
systéme sont des fonctions de classe C* dans ce domaine.

La donnée, sur une variété V de classe C*+1, d’un tenseur covariant
symétrique & deux indices, de classe C?, tel que la forme quadratique
(ou «t,..., 2" sont les coordonnées de x relativement & un certain
systéme et g,, les composantes du tenseur au point x relativement au
méme systéme)

ds* = ¥ g, dxt da
1,7
soit définie positive en chaque point x, définit un espace de Riemann de
classe C®.

La variété V est close si elle est un espace topologique compact. Elle est
alors complétement recouverte par les domaines d’un nombre fini de
systémes de coordonnées, de sorte qu’on peut supposer la famille F finie.

La variété V est orientable s’il est possible de répartir les systémes de
coordonnées en deux classes, de maniére que le jacobien relatif & deux
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systémes dont les domaines empiétent soit positif si les deux systémes
sont de la méme classe, négatif dans le cas contraire. Orienter la variété,
c’est choisir I'une de ces classes, dont les systémes sont alors appelés posi-
tifs, ceux de l'autre classe étant appelés négatifs.

2. Formes différentielles. Forme adjointe

Sur une variété différentiable, & tout p-vecteur covariant, c’est-a-dire
a tout tenseur covariant antisymétrique a p indices, est associée une
forme différentielle extérieure de degré p, représentée dans le domaine D
d’'un systéme de coordonnées par l’expression

x= X A; da"...da?,
(i1.--ip)
oules4, ... i, Sont les valeurs, au point z de D de coordonnées «!,. . ., 2™,
des composantes du p-vecteur relativement a4 ce méme systéme, ot la
sommation étant étendue aux (7) combinaisons (7,...7,) des » indices
1,2,...,n pris p & p.

On sait que, dans un changement de coordonnées, en vertu des régles
du calcul extérieur, les produits extérieurs da®...dz se transforment
comme les composantes d'un p-vecteur contravariant (c’est-a-dire d’un
tenseur contravariant antisymétrique a p indices). La forme « apparait
ainsi comme le produit contracté (divisé par p!) d’un p-vecteur contra-
variant indéterminé par le p-vecteur covariant auquel elle est associée.

Sur un espace de Riemann orient¢ & n dimensions, on peut faire cor-
respondre a toute forme différentielle extérieure de degré p, ou, comme
nous dirons dorénavant pour abréger, a toute forme de degré p, une forme
de degré n» — p qu’on appelle la forme adjointe. Nous allons en rappeler
la définition en établissant ses principales propriétés.

Nous utiliserons les symboles de Kronecker 6?'”’:’ , égaux a 1 (respec-
1+4%p

tivement — 1) lorsque j,. . .7, est une permutation paire (respectivement
impaire) des indices tous distincts 4,...7,, et & 0 dans tous les autres cas.

On sait que ces nombres 61""’: peuvent étre considérés comme les
1-+-%p

composantes d’un tenseur covariant antisymétrique par rapport aux
indices ¢ et contravariant antisymétrique par rapport aux indices j.

Nous utiliserons aussi le n-vecteur covariant e (tenseur e de Levi-Civita
[9, p. 78]), dont les composantes e, ...; sont définies par

1...n
€iy..ig — =+ V—éé’u

in

ol g est le déterminant || g,, || des coefficients de la forme quadratique
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fondamentale ds* = ¥ ¢,,dx*da’, et ou il faut prendre le signe 4 ou le
]

signe — selon que le systéme de coordonnées est positif ou négatif. La

forme de degré n associée a ce n-vecteur,

1
1. .. dxt. . . da” |

représente ['élément de volume de l'espace de Riemann.

On sait que, dans un espace de Riemann, a tout tenseur covariant est
associé un tenseur contravariant. En particulier, & tout p-vecteur cova-
riant de composantes 4, .. vip @b associé un p-vecteur contravariant

dont les composantes A% ‘- ' sont définies par les relations

Ry... k
A, o= X Gig, »Gigp, AP
1 ./ o
ky...kp

qui peuvent aussi s’écrire
i1 ip irky ipk
A "-k}:k A R "
1.+Kp

les g% étant les composantes du tenseur contravariant associé au tenseur
fondamental g,; et définies par les formules

A:: gik Irj = 5;:

Nous pouvons maintenant définir la forme adjointe a la forme «, que
nous désignerons par «*, en posant, ¢,...¢, désignant une permutation
paire de 1...n,

A* — e. . Ail,..ip et

‘p+1"'iﬂ 11...tn

o= 3 AF ,  dzi...daiv

(G- .In-p)

(1)

Il est évident que les A;'; <+ jy_p SONt les composantes d’un (n — p)-
vecteur covariant, qui est le produit contracté (divisé par p!) du n-vec-
teur covariant e avec le p-vecteur contravariant associé & la forme «.

Remarquons que, d’apres cette définition, la forme adjointe & la forme
de degré 0 qui se réduit & la fonction constante égale a 1 est la forme qui
représente I'élément de volume, et que nous désignerons dorénavant par
1* (ou 1} #'il y a lieu de préciser le point variable z):

1¥=¢, ,dxl...da"
= Vg si le systéme de coordonnées est positif.

0‘\1 el.. n



Propriétés de la forme adjointe

o et B étant deux formes de méme degré p, f et h des fonctions, on a

a) (fo + hp)* = fo* + hf*

b) (%)% = (— 1)pn+r o
c) o f* = fo*
d) xo* = F.1%, ou F est une forme quadratique définie positive

des coefficients de «.

La. propriété a) est évidente, I’opération * étant linéaire.

En désignant par B; ; les coefficients de §, 4,  ; étant toujours
ceux de «, d’aprés la définition de I’adjointe et d’aprés les régles du
calcul extérieur, on a

% __ t1... % %
“ﬁ - . . A‘il...ip B ! P 1 *
(’I«]...lp)
Supposons qu’au point considéré g, = &, ce qu'on peut toujours
obtenir en choisissant un systéme convenable de coordonnées. Alors,
comme on sait, 4; , = A"'? et B, i = Bua--i»  de sorte

codllp e
que les propriétés c) et d) résultent immédiatement de I’expression de

o f*.
Pour établir b), il suffit de remarquer que, au point considéré ou
g,; = &i,ona,t,...1, étant une permutation paire de 1. . .n et le systéme

de coordonnées étant positif,
(dx, ...

51

de, )* =dx, . ...dz,

p+1

et

(dx do; )*¥ = (— 1)"?+P dx, . ..dx,
n 1 4

ip+1. o« o

la permutation ¢,,,...¢,3,...¢, étant paire ou impaire selon que
(—1)"?+p = 4+ 1 ou — 1. ’
Produit scalaire de deux formes

x et B étant toujours deux formes de méme degré p, nous appellerons
produit scalaire de x et B et nous désignerons par (x,f), la valeur de
Iintégrale étendue a V de op*:

(«,8) = Joup* .

Nous supposons que l’espace V est clos, de maniére que l’intégrale ait



toujours un sens, et sauf indication contraire, le signe j‘ désignera doréna-
vant une intégrale étendue a V.

Si (x,f) =0, on dira que « et § sont orthogonales.
I1 est clair que ce produit est commutatif, en vertu de c), et distributif.

En vertu de d), le carré scalaire (« , &) d’une forme x (& coefficients continus)
ne peut s'annuler que si cette forme est identiquement nulle :

(¢,6) =0 entratne o =0

3. Les opérateurs d, 6 et 4

On appelle différentielle extérieure, ou simplement différentielle, de la
forme x de degré p, la forme de degré p + 1

L odxh. . .dxtr .
l1e.0%p

Comme on le vérifie immédiatement, d’apres les régles du calcul ex-
térieur, le coefficient de dx®...dx?+: dans la forme dx est

ity kp  OAg, .k
v 6 k. kp

. . i
Ry k) 010X

Les coefficients 4, , de la forme « sont naturellement supposés
différentiables, c’est-a-dire que la forme « est de classe (. Dans le cas
d’une forme de degré 0, c’est-a-dire d’une fonction, c’est la différentielle
habituelle. On sait que I'on a la formule de Stokes

ja:j'd(x

Fcp+1 cp+ 1

ou cP+! est un champ d’intégration & p 4+ 1 dimensions et F c?+1 ga
frontiére. On sait aussi que la différentielle seconde d’une forme (sup-
posée de classe C?) est toujours nulle. La différentielle d’une forme de
degré n est toujours nulle.

L’opérateur 6. Nous désignerons par dx la forme
o = (do¥*)* .

Le degré de « étant p, celui de du est p — 1. L’opérateur é abaisse le
degré d’une unité, tandis que I'opérateur d ’augmente d’une unité.



Il est clair que 0 dx = 0%« = 0, parce que ddx* = d2%x* = 0. Si « est
de degré 0, c’est-a-dire une fonction, 'opération é n’a pas de sens, mais
ce qui sera commode, nous conviendrons alors d’écrire dx == 0.

On dit que la forme « de degré p, supposée de classe C1, est fermée,
si do = 0. S’il existe une forme g de degré p — 1 telle que x = df, on
dit que x est homologue & zéro et l'on écrit « ~ 0 . Il est clair que si
«x ~ 0, « est fermée.

Utilisant des termes de la topologie combinatoire, nous dirons que «
est cofermée si 0 = 0, et que « est cohomologue a zéro, §’il existe une
forme y de degré p 4 1 telle que dy = «. Il est clair que la forme ad-
jointe «* est fermée (ou homologue & zéro), si la forme « est cofermée
(ou cohomologue & zéro), et réciproquement.

Dans des cas particuliers, les opérations *, d et 6 et leurs combinaisons,
fournissent les opérations bien connues de l’analyse vectorielle. Une
forme o de degré 1 peut étre interprétée comme le travail élémentaire d’un

— —
vecteur v ; x est la forme associée & v (dans le sens o, selon le No. 2,
une forme de degré p est associée & un p-vecteur).

La forme «*, de degré m — 1, représente alors le flux élémentaire de

- . ) -~
v , tandis que dx est la divergence de v

—_
ox = div v .

Si f est une fonction, df est la forme associée au gradient de f, et par
suite ddf est la divergence du gradient de f:

—
ddf = div grad f .

Remarquons que l'opérateur dd, appliqué & une forme de degré p

(de classe C2), fournit une forme du méme degré p. Si p = 0, dd se réduit
—_—
au laplacien div grad (ou parameétre différentiel du second ordre de

Beltrami). Ainsi, en un certain sens, dd apparait comme un opérateur
qui, pour les formes de degré p > 0, généraliserait le laplacien. Mais
d’autres généralisations sont possibles. En effet, ddx est aussi une forme
de méme degré p que «, qui se réduit & zéro si p = 0, mais en général
pas si p > 0. Par suite, si a et b désignent deux nombres, pouvant dé-
pendre de p et m, mais a se réduisant & 1 pour p = 0, 'opérateur a déd
+ bdd généralise le laplacien au méme titre que 'opérateur dd. Pour
des raisons qui apparaitront au chapitre II, nous avons été conduits &
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préférer 'opérateur obtenu en posant a = (— 1)*? et b = (— 1)*P+n,
mais ce qui importe avant tout, c’est que ni @ ni b ne soient nuls.

L’opérateur A. Nous désignerons par A Vopérateur A =(— 1)*?éd +
(— 1)rP+ndfd. Appliqué & une forme « de degré p (et de classe C?)
cet opérateur fournit une autre forme de méme degré p,

A = (— 1) ddx + (— 1)"P+nddx .

Nous dirons qu'une forme « de degré p est harmonique si elle est de
classe C? et s1 Adx = 0.

Pour p = 0, 4 se réduisant comme dd au laplacien généralisé de
Beltrami, cette définition coincide avec la définition classique des fonc-
tions harmoniques. Pour p > 0, nous verrons que, si I’espace est clos,
elle est équivalente & la définition de M. Hodge, d’aprés laquelle « est
dite harmonique si dx = 0 et dx = 0.

Si « est une forme de degré 1, dans l'espace euclidien & 3 dimensions,

—_
associée au vecteur v, les formes ddx et ddx sont respectivement asso-

- ->
ciées aux vecteurs grad div v et rot rot v , et la forme A« est par suite

. - . -
associée au vecteur lap v = grad div v — rot rot » , qu'on appelle

—
précisément le laplacien de v . Cela suggére que notre opérateur A est
bien la généralisation convenable du laplacien, fait qui sera confirmé
au chapitre II.

4. Relations d’orthogonalité

Soit x une torme de degré p, » une forme de degré p + 1, toutes deux
de classe C'. uv* est de degré » — 1, et, en vertu de la régle de diffé-
rentiation d’un produit, d(uv*) = du . v* + (— 1)? udr*, ce qu’on peut
écrire, comme dy* = (— 1)P7+P (§y)*

d(pv*) = duv* + (— LyPnu (09)* . (2)

D’aprés la formule de Stokes, la variété V étant close et constituant
un champ & » dimensions fermé, dont la frontiére se réduit & zéro, I'inté-
grale étendue & V d’une forme de degré n homologue & zéro est nulle.
On a donec
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Jdlur*) =0,

ce qui, en tenant compte de (2), donne la relation
(dp,v) = (— 1)Pn+i(u, 67) (3)

On en déduit les théorémes suivants.

Pour qu’une forme u soit fermée, il faut et il suffit qu’elle soit orthogonale
& toutes les formes cohomologues a zéro.

La condition est en effet nécessaire, car si du = 0, en vertu de (3),
(u, 6v) = 0 quelle que soit la forme » de degré p 4+ 1 (et de classe CY).

Elle est aussi suffirante, car si la forme u (supposée de classe C?) est
orthogonale & toutes les formes cohomologues a zéro, elle est orthogonale
a ddu, (u,ddu) = 0, ce qui entraine en vertu de (3) (du,du) =0, et 'on
sait que cela n’est possible que si du = 0.

Pour qu’une forme soit cofermée, il faut et il suffit qu’elle soit orthogonale
& toutes les formes homologues a zéro.

Ce théoréme peut se démontrer d’une maniére analogue, les roles des
opérateurs d et § étant simplement permutés. Mais il se déduit aussi du
précédent, en l'appliquant & la forme adjointe.

Chacun de ces deux théorémes entraine en particulier que les formes
homologues a zéro somt orthogonales aux formes cohomologues & zéro (de
méme degré naturellement).

Cela étant, soit « une forme harmonique, de degré p,
Ao = (—1)"?ddx + (— 1)*"?+2dfx = 0 .

ddo et ddx sont deux formes orthogonales, par suite Ax = 0 entraine
d0dx = 0 et déx = 0. Comme, d’apreés (3), (d«,dx) = (— 1)P*+1(x, ddw),
ddx = 0 entraine dx = 0, et de méme ddx = 0 entraine dx — 0. Ainsi:

Les formes harmoniques sont les formes de classe C? a la fois fermées et
cofermées.

Pour qu’une forme de classe C? soit harmonique, il faut et il suffit qu’elle
soit orthogonale a toutes les formes homologues @ zéro et & toutes les formes
cohomologues a zéro.

Sur un espace clos, I’équation A« = 0 est ainsi équivalente au systéme
des deux équations dx = 0 et d = 0, qui correspondent & la définition
des formes harmoniques de M. Hodge. Pour une forme de degré 0, cette
équivalence traduit le fait bien connu qu'une fonction harmonique sur
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un espace clos se réduit & une constante. Il n’en est naturellement plus de
méme sur un espace ouvert non clos, ni sur un domaine ayant des points
frontiéres.

Les formes de degré p, pouvant étre additionnées et multipliées par un
nombre, constituent un espace vectoriel (4 une infinité de dimensions).
Désignons cet espace par F? et désignons par F}, F% et F} les sous-
espaces de F'? constitués respectivement par les formes homologues a
zéro, par les formes cohomologues & zéro, et par les formes harmoniques.
Cela posé, les deux derniéres propositions ci-dessus peuvent s’énoncer de
la maniére suivante:

Les sous-espaces F%, F} et F§ de FP sont deux & deux totalement per-
pendiculaires : deux formes appartenant a deux distincts de ces sous-espaces
sont orthogonales.

Ils forment dans FP un systéme complet, dans le sens qu’une forme ortho-
gonale & chacun de ces sous-espaces se réduit nécessairement a zéro.

Nous pouvons illustrer cet énoncé par le schéma suivant, ou les espaces
F? F? et F? sont représentés par les trois axes d’un triédre trirectangle,
I'un des plans coordonnés représentant I’espace vectoriel des formes fer-
mées, un autre celui des formes cofermées:

Aa=o0

formes harmoniques

——— formes
%é cofermées
<
&
e A a0 —————
0 L&
?;5&6 Z
o
% 66/ ) a==57
7% F,
2 formes
cohomologues
a zéro
N
a=df
formes !
homologues a zéro
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Ces propositions, comme le théoréeme de décomposition dont il va étre
question, correspondent & des théorémes connus de Topologie combina-
toire. (Cf.[14, p. 430],[12] et [17].)

5. Le théoréme de décomposition et le théoréme de Hodge

Les relations d’orthogonalité qui viennent d’étre établies conduisent
a se demander si toute forme de degré p se laisse décomposer en la somme
de trois formes appartenant respectivement & F7, Fy et F'y. Pour répondre
a cette question (qui serait évidente si F'¥ n’avait qu'un nombre fini de
dimensions), nous utiliserons les deux propositions suivantes.

Théoréme H. g étant une forme de degré p et de classe C?, la cond:-
tion mécessaire et suffisante pour qu’il existe une forme u telle que

Ap=4

est que f soit orthogonale @ toutes les formes harmoniques de degré p.

Ce théoréme sera établi au chapitre III.

La seconde proposition est la suivante: il n’y a qu'un nombre fini de
formes harmoniques linéairement indépendantes de degré p. Elle sera établie
ci-dessous par voie topologique, et d’une autre maniére, indépendante,
au chapitre III.

Pour I'instant, admettons ces deux propositions. On peut alors trouver
un nombre fini - de formes harmoniques de degré p, linéairement indé-
pendantes, ¢, , ¢,,. .., ¢,, et toute autre forme harmonique de degré p
est égale & une combinaison linéaire de celles-la. On peut supposer aussi
que ces formes sont normées et deux & deux orthogonales, c’est-a-dire
que (g;, ¢;) = 6 .

Soit alors & une forme quelconque de degré p et de classe C2. La forme

h
= X (x, ;) ;
t=1

est harmonique et x — &, est évidemment orthogonale & toutes les formes
harmoniques. D’apres le théoreme H, il existe une forme pu telle que
A4 u = o« —oy. En posant (— 1)*? édu = «, et (— 1)"?*"*du = «,, cette
équation s’écrit o, + x, = x — o5, OU

&= & + Xy + 04
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«, étant homologue & zéro, x, cohomologue & zéro et , harmonique. Il
résulte immédiatement des relations d’orthogonalité du No. 4 qu’une
telle décomposition n’est possible que d’'une seule maniére. Nous avons
ainsi établi le

Théoréme de décomposition. Toute forme «, de degré p, de classe C?,
peut étre decomposée, d’une maniére unique, en la somme o« = &, + x, + oy
de trois formes respectivement homologue @ zéro, cohomologue & zéro et har-
monique.

Le théoréeme de Hodge va se déduire aisément de la, mais il convient
de rappeler d’abord quelques propositions générales indépendantes de
toute métrique, relatives aux formes différentielles sur une variété close.

« étant une forme fermée de degré p, on appelle période de « relative-
ment au champ d’intégration fermé a p dimensions C? la valeur de I'inté-
grale

o
oP

R, étant le p*™* nombre de Betti de la variété, toutes les périodes
d’'une forme fermée se déduisent de R, d’entre elles, appelées périodes
fondamentales, qui sont les périodes relatives & un systéme fondamental
de R, champs fermés & p dimensions.

On a alors les théorémes suivants[10].

A. Il existe toujours une forme fermée ayant comme périodes fondamen-
tales des mombres arbitrairement donnés.

B. Une forme fermée dont toutes les périodes sont nulles est homologue
a zéro.

Cela rappelé, nous pouvons établir le

Théoréme de Hodge. Il existe une forme harmonique de degré p, et
une seule, ayant des périodes fondamentales données arbitrairement.

Soit « une forme fermée ayant les périodes fondamentales données.
Une telle forme existe d’aprés A. D’aprés le théoréme de décomposition,
& = &, -+ &4, la composante x, étant nulle parce que x est fermée et par
suite orthogonale & F?. Comme &, ~ 0, les périodes de «, sont nulles,
et la forme harmonique «,;, ayant les mémes périodes que «, est la forme
cherchée.

Pour établir 1'unicité, il suffit de prouver qu’une forme harmonique
dont toutes les périodes sont nulles se réduit & zéro. Or cela résulte im-
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médiatement de B et des relations d’orthogonalité, car cette forme serait
a la fois harmonique et homologue & zéro.

Corollaire. Le nombre des formes harmoniques linéairement indépen-
dantes de degré p est égal au p**™ nombre de Betti.

En effet, soit «, la forme harmonique de degré p dont toutes les périodes
fondamentales sont nulles, sauf la %" qui vaut 1 (¢ = 1,..., R,). Toute
forme harmonique de degré p dépend linéairement de ces R, formes, qui
sont linéairement indépendantes.

Remarque 1. Pour établir 'existence de la forme harmonique ayant
des périodes fondamentales données, nous avons utilisé le théoréme A et
le théoréme H (par 'intermédiaire du théoréme de décomposition). Mais
pour établir ensuite I'unicité, seul le théoréme B est intervenu: il n’a pas
été fait appel aux théorémes A et H.

On peut aussi, comme 1’a fait M. Hodge [7 et 8], établir 'unicité sans
faire usage du théoréme B et en déduire ensuite le théoréme B. On se
base alors sur le théoréme C : si les périodes de la forme fermée « de degré p
sont nulles, (x,B) = 0 quelle que soit la forme cofermée B de degré p. Ce der-
nier théoréme résulte d’'une proposition générale [10 et 11] d’apres la-
quelle les périodes du produit de deux formes fermées sont des fonctions
bilinéaires des périodes fondamentales de ces dernidres (en appliquant
cette proposition & la forme « 8* dont (x, ) est une période, on obtient le
théoréme C). Admettons-le. Si alors x est une forme harmonique a
périodes nulles, (x,x) = 0 et par suite l'unicité est établie.

Voici maintenant comment B se déduit de H et C. Soit une forme
fermée a périodes nulles. D’aprés le théoréme de décomposition, &« =
%; + o; xy étant harmonique et & périodes nulles, o; = 0. Par suite
o« = o, qui est homologue a zéro.

Remarque 2. Le complément au théoréme H, énoncé ci-dessus, d’apres
lequel le nombre des formes harmoniques de degré p linéairement indé-
pendantes est fini, et qui sera établi au chapitre IV sans faire usage de A,
B ni C, est inclus dans le corollaire au théoréme de Hodge, qui nous dit
que ce nombre est égal & R,. Mais les raisonnements faits pour établir
Punicité, basés uniquement sur B ou sur C et ne faisant pas intervenir
le théoréme H, nous montrent déja que ce nombre est au plus égal & R,.
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CHAPITRE II
LA PARAMETRIX ET LES FORMULES I ET II

6. Définition de la paramétrix. Enoncé des formules I et II

Nous appellerons fonction distance (cf. Hodge[8], p. 119—122), sur
I'espace de Riemann V, une fonction r(x,y) de deux points de V satis-
faisant aux conditions suivantes:

1° r(z,y)=r(y,x) >0 pour x %4y, r(r,z) =0 .
20 ¢2(z, y) est fonction de classe C2.

3° Les coordonnées de z et y étant, relativement & un méme systéme,
2l...an, yl...y", la fonction

4 1 0%(r?)

i = ?'axiayi

se réduit, pour # = y dans le domaine du systéme, au coefficient g,; de
la forme quadratique fondamentale ds?:

Ai,a‘ (z,2) = gy () .

La condition 3% qui est invariante vis-a-vis des changements de co-
ordonnées, signifie simplement, comme cela résulte des propriétés éta-
blies plus loin, que lorsque y est infiniment voisin de z, r(x, y) est égal
a la longueur ds de l'arc zy.

Dans Despace euclidien, la distance euclidienne est une fonction
distance. Dans un espace de Riemann clos de classe C?, pour v assez grand,
lexistence d’une fonction distance sera établie plus loin.

Définition de la paraméirix.

Soient z? et y’ les coordonnées de z et y, relativement & deux systémes
en général distincts. Pour j et y fixés, les n fonctions
A 0%(r?)
. T %axiayf
sont les composantes d'un vecteur covariant lié & x; pour ¢ et x fixés,
on a les composantes d’un vecteur covariant lié & y. Nous dirons que les
A,-' ; sont les composantes d’un double vecteur covariant, 1i6 aux deux
points x et y.

2 Commentarii Mathematici Helvetici 17



Nous dirons plus généralement que les (7)? fonctions

1,78 $1,0p

i1.0 8pad1. . dp

Aip,ix Cot tp,ip
sont les composantes d'un double p-vecteur covariant 1ié aux deux points x
et y, et nous appellerons paramétriz de degré p la forme de degré p tant
en ¥ qu'en y

1

w,(2,y) = m

Z Ay ipis. (d:::‘1 dx'?r)(dy’ . . . dyir)

(il- . .’l:p)(il- . .7'}7)

11 est clair que cette forme est complétement déterminée par la fonction
distance r(z,y).
Dans I'espace euclidien, r étant la distance euclidienne,

P = E(xt - yz)z ’
i

A,,=068 , A,

4,7 t

J
ipae. ?-—-6’ ., et pour n>2,

z (dz . . . da*v)(dy" . . . dy'?) .

Le but de ce chapitre est d’établir les formules I et II ci-dessous:

w(T,y) =

fo,(@, ) [da@))* = fa@)[d,0,@,y)]* — ka(z) (I)
Afw, (@, y)p*y) = [4,0,@,y) - w*y) — kup(x) (I)

« et u désignent des formes quelconques de degré p, x de classe C2 et u
de classe C*; * désigne I’adjointe relativement & y et k = n(n — 2)k,,, k,,
étant le contenu de la sphére de rayon un dans I'espace euclidien & »
dimensions.
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Nous supposerons n > 2; les modifications qu’il y aurait lieu d’ap-
porter aux démonstrations pour n = 2 étant presque évidentes, nous
n’y insisterons pas.

7. Fonetions distances et métriques oseculatrices

Sur tout espace de Riemann clos de classe (%, on peut construire une
fonction distance de la maniére suivante. Soit g(x, %) la borne inférieure
des longueurs des arcs de courbe joignant les points x et y. On sait qu’il
existe alors un nombre positif ¢ tel que, si go(z,y) <&, les points x et
y sont les extrémités d’un arc de géodésique de longueur p(x,y) et
d’'un seul, et la fonctiong?(x,y) est de classe C? pourg(z,y) <e. Soit
alors F(t) une fonction de la variable réelle ¢, de classe C*, non dé-
croissante, égale & ¢t pour 0 ¢t < et & 2 ¢ pour t>¢. (On sait cons-
truire une telle fonction.) La fonction F(o(z,y)) est alors une fonction
distance, comme on le vérifie aisément.

Remarquons que, si ’'espace de Riemann est de classe C* ou C¢, la
fonction distance ainsi construite est de classe C*. Sil’espace de Riemann
consiste en une variété réguliére plongée dans un espace euclidien & N > n
dimensions, la distance euclidienne (relativement a 1’espace ambiant) de
deux points de la variété fournit une fonction distance.

Pour établir quelques propriétés de la fonction distance, nous suppose-
rons que x et y restent dans le domaine d’'un méme systéme de coor-
données. 4 = —-—%72 (z,y) est alors fonction des 2 n coordonnées x¢ et y*
de x et y relativement & ce systéme. Nous désignerons, dans ce No. uni-
quement, les dérivées partielles de cette fonction jusqu’a I’ordre 3 en affec-
tant la lettre 4 des indices des variables par rapport auxquelles s’est faite
la dérivation, les indices des variables x étant placés & gauche et ceux des
variables y & droite d’une virgule. Ainsi:

a4 24 4 34

Ai, = ozt § == a’g;; ) i 3 x‘iay,‘- ’ i,k = m 3

ete.

La signification de 4 ; ; concorde avec celle donnée ci-dessus. Les dérivées
d’ordre > 4 n’intervenant pas dans la suite, aucune confusion n’est &
craindre au sujet des symboles tels que A4,; ;, qui désigneront toujours
les déterminants introduits plus haut.

La fonction 4 étant maxima pour y = z, on a:
4, (x,z) =0 et A, (x,2)=0.
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En dérivant ces identités par rapport & 27, on obtient:
Ay (x,2) + A, ;(x,x) =0 et A, (x,%)+ 4 (x,2)=0.

La symétrie de r(x,y) entraine d’ailleurs 4, ;(x,x) = 4, ;(x,x). Il en
résulte les identités:

Ay (x,2) =—A; ;(x,0) = — 4, (x,2) = 4 ;(x,2) . (1)

65 (
Considérons la fonction

or or
S(x,y) —_:7‘53—:—7: +ré—?ﬁ. — —Ai, — |

X

les identités ci-dessus montrent que cette fonction qui est définie dans
le domaine du systéme de coordonnées envisagé, s’annule ainsi que ses
dérivées premiéres pour y = x. Son développement par la formule de
Taylor autour du point ¥ suivant les puissances des z? — y* ne contient
par suite pas de terme de degré inférieur a 2. Il en résulte que l'on a:

w _ w Sey Sy
i e WL TP

étant bornée. (2)

Métrique euclidienne osculatrice. On dit que les métriques définies par
les éléments linéaires

ds? = ¥ g, dxtda’ et ds? = X g;dxtda’
i i
sont osculatrices en un point, si, en ce point,

- 99:; 09; .
gy; = gs; et 699'3”‘ = a‘i,ﬁ (pour tous %,7,k) .

Comme on le vérifie aisément, ces relations sont invariantes vis-a-vis
de tout changement du systéme de coordonnées.

On sait qu’il existe des métriques euclidiennes, définies au voisinage
d’un point z quelconque, occulatrices en ce point & la métrique rieman-
nienne donnée (voir[1], p. 94—96;[9], p. 82—87).

Théoréme. Soit r(x,y) la distance euclidienne des points x et y relative-
ment & une métrique euclidienne osculatrice a la métrique donnée au
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point z de coordonnées z!,. . ., 2 ; le développement taylorien de la fonc-
tion 72(x,y) — r2(x, y) autour du point 2, suivant les puissances des
y'—zt et des ' —z?, ne contient pas de termes de degré inférieur & 4.

Démonstration. Nous pouvons supposer le systéme de coordonnées tel
que 1’élément linéaire de la métrique euclidienne osculatrice se réduise &
ds2 = ¥ (da?)?. Un tel systéme de coordonnées est dit géodésique au

‘

point 2.

On a alors §,; = &, identiquement et ¢,, = & ,gi’,z = 0 au point z.
Comme

Pey) = 3 @ —#+ T @) —2 3 @ — )y —2)
i B i

en tenant compte des identités (1) appliquées au point z, on voit que
dans le développement taylorien de r%(x,y), ou les termes de degré O
et 1 manquent évidemment, les termes du second degré se réduisent a
r2(x,y) . Pour achever la démonstration, il suffira par suite de prouver
que toutes les dérivées troisiémes de r%(x ,y), ou 4 (x, y), s’annulent pour
B = g =2,

En dérivant par rapport a z* I'identité (1) et remarquant que

0 0
5;;;‘4;',7‘(%,‘”) == éz‘vﬁgij(x) =0,
il vient
Ai:ilc, + Aia’,k = ""—Aik,:' _ Ai,ik = Ak,ii + A,ia‘k =0

pour r =y = 2.

La symétrie de 4 (x,y) entraine d’autre part
Az':ik, = A,z’jk et Ai,a‘k = Aik,i pour y = T .

Il en résulte en particulier 4., ; = — 4, ;, = — A, ; = — A,,; ; et par
permutation circulaire 4, ;=—A4,,,=A;;, =—4, ;=0 et l'on
voit que toutes les dérivées troisiéemes s’annulent pour x =y = z.

Remarque. 1l résulte de ce théoréme que si r,(x,y) et r,(x,y) sont
des fonctions distances associées a deux métriques osculatrices au point z,
r3(x,y) — r2(x,y) s’annule ainsi que ses dérivées jusqu’a l'ordre trois
inclusivement pour * =y = 2.
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8. L’opérateur 4 dans I’espace euclidien

Théoréme. Soient a1, x%,..., " un systéme de coordonnées rectangu-

laires dans l’espace euclidien, de maniére que ds®= ¥ (dz%)?, et
i
o= X A; . dz"...dz" une forme de degré p, de classe C2. On a

E E L A“ ”’dx*l ..dxip .

?zp) U

Démonstration. Dans l'espace euclidien, comme g¢;;= ¢/ = &/, on a,
UpevelpyUpyiq. .. %, 6tant une permutation paire de 12...n,

[da®r. .. da?)* = daetl, | dain .

En désignant par —g% la forme qui se déduit de « en remplagant chaque

coefficient par sa dérivée partielle par rapport & z?, on peut représenter
Popérateur d par l’expression

d = éﬁdw”—- E daﬂawz .

L’opérateur a%@ dz® indique que la forme doit étre d’abord multipliée

d
a gauche par da?, et ensuite soumise a ’opération Pl Les deux opéra-

tions sont d’ailleurs permutables:

0 0
-a—;v;dxi = dzt — Pl

Dans I’espace euclidien, I'opération -—: est permutable avec I’opération

oz’
qui consiste & prendre ’adjointe & une forme:

?ﬁ*_ éi*
oxt axi)

Ce fait, comme on le vérifie immédiatement, est lié & la constance des
coefficients g,;, du ds? et il n’a pas lieu dans un espace qui n’est pas eu-
clidien.
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En désignant par 6« la forme (dafx*)* qui se déduit de « en prenant
I’'adjointe de la forme obtenue en multipliant «* & gauche par da’, on
peut représenter l'opérateur J, dans I'espace euclidien, par ’expression

d

= YV

é > 7 3
Il résulte de 1a que, dans P'espace euclidien, 'opérateur (— 1)"?4 =

od + (— 1)*dd est représenté par l’expression

2

oxiox’ (3)

(— )4 = Y [6da’ + (— 1)*da’ 6]
tj

Considérons une forme monoéme de degré p, par exemple
u=dxtdx?...dx? .

On a, en remarquant que la permutation (1,p+1,...7n,2,...,p) est
paire ou impaire selon que (— 1)"?+* = 4-1 ou —I1 ,

u* = da?+i, | dxn , dat u* = dat da? 1. .. da”
0 p = (— 1)Ptndy?, . . da? | (— 1)yPtrdalfly = u .
D’une maniére analogue, on obtient les relations:
(— 1)rPindai®iy = p si i<p, =0 si P> p
P, si 1> P

[/‘\//\

(— )rPoidatiy = 0 si 1

d’ou résulte
[(— L)"fidat + (— 1)P+ndzifilu = u

quel que soit <.

L’opérateur qui intervient ici étant linéaire et permutable avec la
multiplication par une fonction (variable ou constante), cette formule
s’applique & une forme quelconque de degré p:

[6¢dat + (— 1)*dzif]x = (— 1)Px . (4)
Ensuite, si ¢ % j, on a
dzi0y = ldru=0 si t<p ousi j>p.
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Pour ¢ > p, dai@y = (— 1)"?+ndaidat. . .dxP,
ldriy = — (— 1)"Pdxida?. .. dx?,
d’ou résulte 0'dziu + (— 1)*dx'0lu = 0
et d’une maniére plus générale, pour ¢ > p et §j < p:

Gdxipy + (— 1)"dxi@ip = 0 .

Cette formule est encore valable si ¢ < p ou si § > p, les deux termes
étant alors nuls. On en déduit, pour une forme quelconque « de degré p,

[oidxi + (— 1)ndx7'0i]o¢ =0 pour () #7' . (5)

La formule & démontrer résulte immédiatement de (3), (4) et (5), en

remarquant que les opérateurs qui interviennent dans (4) et (5) sont
o2

permutables avec I'opérateur pyerw i

9. L’opérateur 4 dans P’espace riemannien

Soit z un point donné de 'espace de Riemann. Nous dirons qu’une
fonction f(x), définie et continue au voisinage de z, est d’ordre k, si
rkf ((:)z) est bornée au voisinage de z. Si k > 0, f(x) s’annule évidemment
au point z, tandis qu’elle peut y étre infinie si £ < 0.

Nous dirons aussi que K (x,z) appartient a Uexposant k, si K (x,z) est
d’ordre — h.

Soient 2!,..., 2" des coordonnées géodésiques en z. La métrique
euclidienne définie par ds?2 = ¥ (da?)? étant osculatrice & la métrique

1)
donnée, définie par ds* = ¥ g,,dzida!, il résulte du No. 7 que les fonc-
7]

tions g;;(x) — &, sont d’ordre 2. Cela entraine que, g étant le déterminant
94,9 —1, Vg —1, g¥ — & sont aussi d’ordre 2, comme on le vérifie
en considérant les développements du déterminant g et de ses mineurs.

Soit & = . X )A,-x.__ip dx®...dx" une forme de degré p, définie au

$1...%p

voisinage de z. Nous désignerons par «* I’adjointe & « relativement & la
métrique euclidienne:

a¥ = X A; dxie+1, |, dxin

2 Ay
(tl...lp)

(ous,,,...1,sont tels que 7,...7, est une permutation paire de 12. ..n).
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Nous désignerons encore par 8 et A les opérateurs § et A définis &
partir de la métrique euclidienne: du = (da¥*)*

A = (—1)wdd + (— 1yw+nd§ .

Nous nous proposons de comparer les formes « et a*, dx et dx, Ax et
Ao, au voisinage de z.

Les coefficients de «*, d’aprés la formule de définition (1) chap. I
No. 2, sont des combinaisons linéaires homogenes des coefficients
A=4, ,;, deo«; les coefficients des A dans ces combinaisons sont des
fonctions des g,;, polyndmes en les g,; multipliés par une puissance
de g. La forme a* se déduit de x* en remplacant, dans ces fonctions,
g.; par &,. Par suite:

les coefficients de la forme a* —o* sont des combinaisons linéasres homo-
génes des coefficients A de « ; dans ces combinaisons, les coefficients des A
sont des fonctions G, formées avec les g;;, qui sont d’ordre 2

Ces derniers coefficients sont donc des sommes de termes de la forme
G,A.

Les coefficients de d (x* — «*) sont par suite des sommes de termes de

la forme G, g‘{ aaGf A, et les coefficients de [d(x* —x*]* des sommes
de termes de la forme G, od .et G, A, ou G, est une fonction d’ordre 1,

2 0t
formée avec les g,; et leurs dérivées premiéres.

D’autre part, les coefficients de «* n’étant autres que les 4, ceux de

A

3’ et
- — = 04

ceux de (da*)* — (da*)* des sommes de termes de la forme G, -— . Par

ox®
suite, comme du — o = [d (x* — o¥)]* + (da*)* — (da*)* ,

do* sont, comme ceux de dx, des sommes de termes de la forme -—

Y|

les coefficients de dx — Ox sont des sommes de termes de la forme @, e

et G, 4 ..

En remplagant « par dx, on voit que les coefficients de ddx — ddx

024 04
sont des sommes de termes de la forme G, ——— et G, — , et les coeffi-
ox'ox’ ozt
2
cients de déx — ddx sont des sommes de termes de la forme GzéZTgﬁ ,
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04

Glé}{i et God, ¢/, désignant une fonction d’ordre 0, formée avec les g,;

ot leurs dérivées premieres et secondes. Par suite:

Les coefficients de Ax — Ao sont des sommes de termes de la forme G A ,
0A 0?4
19zt & 2 Gaigni *

G

Les fonctions ¢/, et (¢, s’annulant au point ¥ = z, seuls subsistent en
ce point les termes de la forme G A. Les coefficients de Ax — Ax se ré-
dursent donc, pour x = z, a des combinaisons linéaires des coefficients de o.

Si 'on pose dx —Ax= X B, ; dx*...da*», on peut écrire
(By. Ep)
il...ip
= v o .
[Bkl"'kp]a:=z [ -~ le...kp A““-*p] (6)
(11...'&p) S

i1...0p 4 . fe . ;
les Gk’ k” étant les fonctions désignées ci-dessus par G, fonctions
1-.Kp

construites algébriquement avec les g,; et leurs dérivées premiéres et
secondes, qu’il est inutile d’expliciter ici.

10. Etude de w,(x,y) au voisinage d’un point

Désignons par @ ,(z,y) la paramétrix de degré p, définie, pour x et y
voisins d’un point donné z, & partir de la distance euclidienne r(z,y) de
x et y, relativement & une métrique euclidienne osculatrice au point z.

Lemme 1. Pour y = z, les coefficients de w,(z, y) — @, (x, y) considérés
comme fonctions de x, sont d’ordre 4 — n, et leurs dérivées premiéres
et secondes sont respectivement d’ordres 3 —n et 2 —m.

L’ordre maximum des coefficients d’une forme, ainsi que celui de
leurs dérivées premiéres ou secondes, ne dépendant pas du systéme de
coordonnées, nous pouvons utiliser un systéme de coordonnées géodé-
siques au point z, de maniere que

e,y = X @ —y)*.

(4

Du théoréme du No. 7, il résulte que, pour y = z, 2 — 72 est d’ordre 4,
— &7 Qordre 2.
4 t1...%p

r—r d’ordre 3, 4, ; — &} et par suite 4,

ceeipyire..d
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Les coefficients de w,(z,y) —®,(z,y) étant

A J1.-dp
il...ip,].l...fp . ’l:l.'.?:p
ph—2 rm—2

notre lemme résulte immédiatement de la.

Lemme 2. Pour y =z, les coefficients de 6, w,(x,y) — 6,©,(z,y) et
(dy 0, (2, 9)* — (d,o,(,y))* sont d’ordre 3 — n.

Ecrivons o pour wz,_(x,y) et w pour w,(x,y) et convenons que les
opérations d, d, 9, *, * doivent étre effectués par rapport a z.

On a 6w — 60 = 6(w — ®) + (6 — ). Il résulte du lemme 1 que
les coefficients de 6 (w — @) sont d’ordre 3 — n. D’autre part, d’apreés le
No. 4, les coefficients de @ étant d’ordre 2 — n et leurs dérivées pre-
miéres d’ordre 1 — 7, les coefficients de (6 — d)@ sont d’ordre 3 — u,
ce qui établit la premiere affirmation.

On a ensuite (dw)* — (d@)* =[d(0w — @)]* +[(d®)* — (d®)*]. Les
coefficients de [d(w — ®)]* sont d’ordre 3 — n d’aprés le lemme 1, et
d’aprés le No. 4 ceux de (dw)* — (d&)* sont aussi d’ordre 3 — n, ce qui
achéve la démonstration.

En raisonnant de la méme maniére, on voit que les coefficients de
déw — déw et de ddw — ddw sont d’ordre 2 — n. Il en est donc de méme
pour la forme Aw — 4w, c¢’est-a-dire pour Aw, puisque A® = 0 (d’aprés
le No. 8). Le point z pouvant étre choisi arbitrairement, nous avons ainsi
prouvé le théoréme suivant:

Théoréme. La forme A,w,(x,y) appartient & Uexposant n — 2.

11. La formule 1.

Soient « et 8 deux formes de degré p et de classe C2. En remplacant,
dans la formule (2) du chap. I (No. 4), d’abord ux par « et » par df, en-
suite u par 8 et v par du«, et retranchant membre & membre les égalités
obtenues, il vient

do(dp)* — B(do)*] = (— 1)"P [« (ddf)* — B(ddx)*] .

En remplacant, dans la méme formule, d’abord x par dx et » par f
(qui sont des formes de degrés p— 1 et p respectivement), ensuite u
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par 88 et v par «, et retranchant membre & membre les égalités obtenues,
on obtient une relation qui peut s’écrire

d[f* 0o — x* 0f] = (— 1)P*+2[B(dd)* — o (dOf)*] .

De ces deux relations résulte enfin, comme A = (— 1)"dd 4
+ (— 1ymw+nds,

dx (dp)* — Bldo)* + a*0f — p*0x] = a(4f)* — p(dw)* . (7)

Désignons maintenant par 2 la sphere de centre y et de rayon p (au
sens de la métrique euclidienne osculatrice au point y), définie par I’équa-
tion ¥ (2f— y%)? = p?, et soient D, l'intérieur et D, I'extérieur doe X .

i

Dans la formule (7), remplagons f par v = w,(x,y) en considérant x
comme le point variable, le point y étant fixe et les (3;) produits exté-
rieurs dy™...dy"” ayant des valeurs numériques déterminées, compo-
santes d’'un p-vecteur contravariant lié au point y. Les formes w =
w,(x,y) et « = a(x) étant de classe C? dans D,, la formule de Stokes
peut étre appliquée & la relation ainsi déduite de (7) et donne, en sup-
posant X' orientée positivement par rapport & D,, et par suite négative-
ment par rapport a D, :

foc(Aw)* — w(dx)* = —~—j'oc(dw)* — o (dx)* + a*0w — w*dx . (8)
Dy >

La formule cherchée va résulter de (8) en faisant tendre g vers zéro.
La limite du premier membre est

j‘oc (Aw)* — w (Ax)*

intégrale qui a un sens puisque w = w,(r,y) et dw = 4, w,(,y) appar-
tiennent a l’exposant n — 2.

La limite du second membre va étre calculée en utilisant les résultats
du No. 10 et le lemme élémentaire ci-dessous.

Lemme. Si les coefficients de la forme u () de degré » — 1, définie au
voisinage de y, sont d’ordre 2 — n (au sens du No. 9, pour y = z),

lim | p(z) =0 .
e=0 »

11 suffit, pour la démonstration, de considérer le cas ou u(x) est une
forme monéme, soit par exemple u(x) = m(x)dx®dz®...dz". En dé-
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signant par dX l’élément d’aire & (n — 1) dimensions de X', par r le
cosinus de I’angle formé par la normale & X' dirigée vers ’extérieur avec
laxe des ! (ces grandeurs évaluées relativement a la métrique eucli-
dienne osculatrice en ¥), on a

[u(@) = [m@)ydE
P >

d’ott résulte, M, étant la borne supérieure de !m(x){ sur X et kon-1
laire de X,

M,
e

Uu(x)’<MQk9"‘1= ke

=

M,
2—n

et comme est borné, le lemme est établi.

Les coefficients des formes w(dx)* et w*dx étant d’ordre 2 — n,
comme ceux de w, en vertu du lemme:

lim f o(dx)* + w*dx = 0 .
=0 y
Les coefficients de dw — dw et de (dw)* — (dw)* étant d’ordre 3 — n
(No. 10), on a
lim j'oc(dw)* + a*déw = lim _f x (dw)* + x*dw .

=90 ¥ e=0 ¥

Désignons par «, la forme a coefficients constants, égaux aux coeffi-
cients correspondants de « au point y. « étant de classe (?, les formes
x —oag 6t a¥ —og* sont d’ordre 1 et les formes x (d@)¥* — x (dw)* et
x*¥0w — o * 0w d’ordre 2 — n. Par suite, en vertu du lemme, la derniére
limite ci-dessus est égale & celle de

J = [ ao(d®)¥ + oF 5 .
b
Or, comme nous allons le voir, J est indépendant de p et vaut
—n (n—2)k,o(y), k, désignant le contenu de la sphére & n» dimensions

de rayon 1 dans I’espace euclidien. Ce résultat étant admis, la formule (8)
devient & la limite pour p = 0

j' x(Adw)* — o (dx)* = ka(y)
ou bk =mn(n—2)k,. Cest justement la formule I.
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Calcul de Uintégrale J. Pour simplifier 1’écriture, nous écrirons
J = ~"oc(dco)”‘ + a*dw
3

en convenant que « = «(x) est & coefficients constants, que w = w,(x,¥)
est la forme relative a 1’espace euclidien et que les opérations * et § se
rapportent aussi & 1’espace euclidien. Nous conviendrons aussi que le
point fixe y est & l'origine des coordonnées, de sorte que y* = 0 (mais
naturellement les produits extérieurs dy®...dy’? ne sont pas nuls).

Comme 7 (x,y) = p sur X (p désignant ici la distance euclidienne), on a

J =—§1;‘f art(dw)* 4+ a*r"dw . (9)
>

Pour calculer cette derniére intégrale, nous la transformerons par la
formule de Stokes en une intégrale étendue a D, .

De l’expression de w dans l’espace euclidien (No. 6), on déduit:

rmdo = (2—n) X X xi(deida™...dx?)(dy”...dy"?) .
(i1-..9p) &
iy 5...,t, étant donnés, convenons de choisir ¢, ,..., 7, de maniére que
1 5...,1%, S0it une permutation paire de 1,...,n. Dans la sommation

3> ci-dessus, il suffit d’attribuer & ¢ les valeurs ¢,,,,...,¢, , les termes
i

s’annulant pour ¢ =1,,...,7,. En prenant I’adjointe, il vient:
mdo)*=(2—n) X I (— Dila%(dairt. . da*rdaithr ., dain) (dy™. .. dy'?)
(ty...8) k=p+1
d’oli résulte
d[rr(dw)*] = (2 —n)(n — p)(— 1)? 3 (dxir+. . .dz'r) (dy'. ..dy'?) .
(i1.. -ip)
On a aussi, d’aprés I'expression de w*,
mdo* = (2—n) X 3 zi(dridairt. . dx'n) (dy™...dy'?) .
(i1...9p) ¢

Dans la sommation ¥, il suffit ici d’attribuer a ¢ les valeurs ¢,,...,%,.
i

En prenant l’adjointe, il vient

p ;
méw = (2—mn) X X (— lprintk-lgik(dgi, | da-rdat . | | date) (dy®. . . dytr)
(iy...ip) k=1
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d’ot1 résulte

dlr"dw] = 2 —mn)p(—1)Pn ¥ (dar...dz'r)(dy". ..dy'?) .
(i1.+.ip)
Posons maintenant « = ¥ a;
(i1 .5p)
les régles du calcul extérieur,

R/ .dx*? . On obtient, selon

xd[r"(dw)*] =(2—n)(n—p)(—1)? @, o (da .. dain)(dy™. . . dy'P)=

i
(.. -ip)
= (2 —n)(n— p)(—1)Pux(y)(dal...dx") . (10)
On obtient encore, comme a* = X a; g da'P+.. . da'n,
(ir...ip)
a*d [rdw] =
=2—n)p(—=1)P" X a, o (da're .. daindah. . da'r)(dyh. . . dy'r)=
= (2—n)p(— 1)*Px(y)(d2l...dz"™) . (11)

De (10) et (11), il résulte que la différentielle de la forme figurant sous
le signe [ dans (9) est

d[arm(do)* + a*rmdo] = (—1Padri(do)*] + (— 1) Pa*d[rméw] =
= (2—n)nx(y)(dzt...dz") .

D’apres la formule de Stokes, I'intégrale figurant dans (9) est égale a
Pintégrale de cette derniére forme étendue a D,, soit & (2—n)n«(y)k, o®,
d’ou le résultat annoncé

J=2—n)nk,x(y) .

12. La formule II

Lemme 1. Soit k(x,y) une fonction des deux points x et y, continue

h(z,y)

" (@, Y)
étant donné un systéme de coordonnées de domaine D relativement

auquel les coordonnées de x sont a1,..., 2", quels que soient x dans D

oh(x,y) . . 1 oh(z,y)
et y, s soit continue pour x # ¥ et iz, g) Az

pour z # y, telle que soit bornée en valeur absolue, et que,

bornée en
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valeur absolue. Alors, la fonction 4 (x) = (A (x,y)1; est continue ainsi
dA(x) [ oh(x,y)
oxt f ox®
Ce lemme est une proposition classique de la théorie du potentiel,
dans le cas ou la variété envisagée est un domaine borné de I’espace
euclidien et ol r(x,y) est la distance euclidienne. Les méthodes connues
de démonstration s’adaptent sans difficulté au cas envisagé ici.

que ses dérivées premiéres, et

1% pour x dans D.

Considérons par exemple un arc L, contenu dans D, sur lequel seule la
coordonnée x¢ varie. On peut enfermer L dans une surface X, dont l'in-
térieur D, a un volume ¢ aussi petit qu’on veut. Soit D, I’extérieur de 2.

La fonction de z, 4, (x) = ‘f h(x, y)lj‘ est évidemment continue pour z
D,
sur L ainsi que

axi Yy

aAs(x) _ ak (.’D,y) 1*
oxt

D,

et comme pour ¢ — 0 les intégrales ci-dessus tendent uniformément pour
x sur L vers les intégrales correspondantes étendues a toute la variété,
ainsi qu’on le vérifie aisément, laffirmation du lemme résvlte d’un
théoréme classique du calcul intégral.

Lemme 2. Soit F (x,y) une fonction des deux points x et y, continue
ainsi que ses dérivées premiéres. La fonction

7-1'0—2 (x’ y) y

est continue ainsi que ses dérivées premiéres et secondes. D, étant I'ex-
térieur de la sphére X de centre z et de rayon p, définie relativement a
une métrique euclidienne osculatrice en z, et le systéme de coordonnées
utilisé au voisinage de z étant géodésique en ce point, on a

» Ewa]

y

lazA ()

— S(9__ 3
xi g L:; = 0;(2—n)k,F (z,2) + 1;:101 [a

xt oz’ 12 (x,y)
D,

Démonstration. z étant un point quelconque de V, choisi une fois
pour toutes, X la sphére de centre z et de rayon g, définie relativement &
une métrique euclidienne osculatrice en z, D, 'intérieur et D, 'extérieur
de X, nous supposons p assez petit pour que D, et X soient contenus dans
le domaine d’un systéme de coordonnées géodésique au point z, choisi
une fois pour toutes. Le point x, de coordonnées x!,..., 2" sera sup-
posé dans D,.
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D’apreés le lemme 1, A4 () est continue ainsi que ses dérivées premieres,
et I'on peut écrire

2 Flz,y) 2 F(z,y) »
s [R e (Gl o

oxt r"%(x,y) oxt 2% (x,y)

Le second terme au second membre de (12) possede une dérivée con-
tinue par rapport a «’ pour x dans D, la dérivation sous le signe j' étant
licite.

En tenant compte de la relation (2) (No. 7), relation qu’on peut écrire

or or
cr il v (13)
ou
_ _ S=,y)
T=TE9= 56y
est bornée, on obtient
o F 0 (1 1 [oF
iyt = L gy (r"“z) = [5; + - n>TF] .19

Cela permet de transformer par intégration partielle le premier terme
au second membre de (12). On a en effet

= (— 1F

FVg . .
dy(7n_2g dyt...dy" 1. dy*t. .. dy") =
1 0 -
”*y*i (VQF) 1;

y (r"— Vg

0 1
—fFa—y‘i(m)lf -

dy dyz—l dyH—l dyn+ ngrn_2ay I/_F 1*
(15)

2) 1 + (=D

d’ol résulte

~ (1 [EVS

P

t (12), (14) et (15) entrainent
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Fl/g'd 1 . i—l.dy’b'-}-l

rn—2

5 = (— 1)

o dyt

faan J1F (16)

avec

(HEES

T te—n)

ax‘ ]/ q

Pour z dans D,, chacune des trois intégrales au second membre de
(16) admet une dérivée continue par rapport a 2/ que 1’on obtient en
dérivant sous le signe j En effet, seule la seconde est une intégrale

généralisée, a laquelle le lemme 1 est applicable. L’existence et la conti-
2

; 0 .., )
nuité de —~i4— sont ainsi établies.
o0x’ 0x?

Pour obtenir I’expression cherchée de cette dérivée au point z = z,
considérons d’abord le premier terme au second membre de (16). En
tenant compte de (13), on a

o FVy — (n— 2)F Vg 8r.+w}—-2[ax? (FV/3) 2—n)F1/§T] .

oxf -2 r"2 0y’

En désignant encore par r = 7 (z,y) la distance euclidienne de z et y,
r2= ¥ (2! — %2, on sait que r%(z,y)—72(2,y) est d’ordre 4 et

i

or ar

rg-gﬁ — 6y7 d’ordre 3.

Comme F% = ¢/ — 2/, en remarquant que F(z,y) — F(z,z) est

d’ordre 1 et }/g — 1 d’ordre 2, on voit que l'on a

[a. FVy ] (n——2)F(zz)y7:z’+...

ox'r2(z,y) | ,-

les termes non écrits étant d’ordre > 2 —n .

En utilisant le lemme du No. 11, on en déduit que la dérivée par
rapport & 27 du premier terme au second membre de (16), calculée pour
x = 2z, a la méme limite pour g = 0 que

dyt...dy . dyt. . dy" .

(]
(— it — 9F e [
2
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Cette derniére intégrale se calcule immédiatement et sa valeur ne
dépend pas de p. En mettant

LS 1
™y, o

en évidence et appliquant la formule de Stokes, en vertu de
d(y' —2)dyt...dy"Ldy™. . . dy" = & (—1)-ldyt. .. dy" ,
on obtient pour la limite cherchée la valeur
Ol F (2,2)k, (2 —mn) .

En remarquant que la dérivée par rapport & 2/ du deuxiéme terme
au second membre de (16), calculée pour x = z, tend vers zéro avec o,

on obtient finalement 1’expression cherchée de [—"—4«] .
ox*ox?],_,

Théoréme. Soit u une forme de degré p, de classe C'. La forme

x(x) = [ o(z,y)p*(y)
est de classe C? et satisfait a Uéquation

Ax(z) = [ 4,0 (@ ,y)u*(y) — kp (@) . (II)

o k=n(n—2)k,, k, étant le contenu de la sphére a n dimensions de
rayon 1.

Démonstration.

Posons u(y) = X M, . dy"*...dy".
(i1...ip)
En tenant compte de l'expression de w = w,(x,y) (No. 6), on a, en

posant

Fkl...kp(x’y) = . )Akl...Icp,il...i,,(x’?/)Mil"'ip(y) ’
.lp

(1.

@Yo uty) = X )Fkl...k,,(w,y)(dw’“. .. dakr) 15
(ky...kp

En posant encore 4 . (z) = f F';f,;;‘z"(’; (y;’)y ) 1¥ , on peut écrire
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“(x) = E Ak k dxkl. . .d:b'kp
1-++Kp
(k1...kp)
et d’aprés les lemmes 1 et 2 les coefficients 4, , ont des dérivées
premiéres et secondes continues.
Nous nous proposons de calculer les coefficients Cp ;. de

A“ - E Ckl...kpdxkl oo dxkp
(ky. .. kp)

en un point x = z, en supposant le systéme de coordonnées géodésique
en ce point.

En tenant compte de I’expression des coefficients de Ax — Ax (for-
mule (6), No. 9) et de celle de 4 (qui est celle de 4 donnée No. 8), on a

024 1,1 X
Ckl...kp(z) = [ al;;b)2 < + Z p A?'l p]

Or, le lemme 2 étant applicable a lintégrale 4, , (), on a

rT=2z

*
1 y
=2

[9.2_4’“1;"lf??]x=z:(2“‘n)kan1-— » (%5 z)+hm é(

= 0% [Fk1 kp (%5 y)]

axz)z yn—2 (x , ?/)

Dz
9 \ ’ \ ’ L
d’oli résulte, comme F (2,2) = My, 4 (2,2) (d’aprés la définition
i — - ip T, . ip
de Fkl...kp , parce que, au point z, Akl_“kp’z.l.__ip,_ 5k o et M ip —

=M, ) Cy 2, (&) =n@2—n)k, My, (2) +
0% [Fr,.. 1p(@,y iv.vip Fry. i
i [ 2 o e+ 2 G T N

L’expression {---},_, , sous le signe |, n’est pas autre chose que le
coefficient de dz*...dx*r dans la forme A, w,(x,y)u*(y), calculé pour
x = z. Comme il est d’ordre 2 — n (No. 10), il est intégrable par rapport

a4 y et lim | peut étre remplacé par {. En multipliant par dz*...da*r
e=0 Dy

et sommant, il vient

[A “]x=z= - ]G‘Lt(x)x___.z + I[Axw(x’y)lu'* (y)]a::z .

Le point z étant un point quelconque relativement aux opérations qui
interviennent dans cette formule, on peut le remplacer par x et 1'on a
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la formule que nous voulions établir, la formule 11,

Au(x) = —k p(x) + [ A, 0(x,y)u*(y)

ou k = n(n — 2)k,, k, = contenu de la sphére de rayon 1 dans I’espace
euclidien & n dimensions.

CHAPITRE III
DEMONSTRATION DU THEOREME H

13. Les théorémes de Fredholm pour une équation intégrale portant sur
une forme différentielle

Soit K (z,y) une forme de degré p en x et de méme degré p en y, définie
sur I’espace de Riemann clos et orientable & n dimensions V. Nous con-
sidérons I’équation intégrale

p(x)— 4 [K(z,9)9*(y) = [(2) (1)

ou f(x) est une forme donnée de degré p et ¢(x) une forme inconnue de
méme degré p.

A co6té de (1), nous considérons aussi les deux équations homogénes
associées

p(x) — 24 fK(x,y) g*(y) = 0 (2)
p(x)— A [K(y,2)p*(y) = 0. (3)

Comme nous le montrons dans 1’Appendice, la théorie de Fredholm
s’applique a 1’équation (1), avec quelques petites modifications.

Disons qu’une forme différentielle, définie sur V, est bornée, si, étant
donnée une famille finie F' de systéemes de coordonnées dont les domaines
recouvrent V, ses coefficients relativement & un systéme quelconque de
la famille ' sont bornés. (Il est clair que cette définition est indépendante
de F'.) La double forme K (x,y) sera dite bornée, si ses coefficients relati-
vement a un couple quelconque de systémes de F sont bornés. Nous
dirons encore que K (x,y) appartient ¢ Uexposant e, si la forme
r¢ (x,y) K (x,y) est bornée (r désignant la fonction distance).

On a alors la proposition suivante (pour la démonstration, voir I’Appen-
dice).
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Théoréme ¥. La forme K(x,y) appartenant @ un exposant e < n et
ayant des coefficients continus pour x +# y, et A ayant une valeur numé-
rique déterminée, les deux équations homogénes (2) et (3) ont le méme nombre,
toujours fine et pouvant se réduire & zéro, de solutions linéairement indé-
pendantes.

La condition mécessaire et suffisante pour que I’équation (1) soit possible
est que la forme f(x) soit orthogonale & toute solution de (3).

Remarquons que la forme sous le signe _f dans (1) est égale a

p(y) K («, ;}), K (x, ;) désignant la forme adjointe relativement & y de
K (x,y).

14. Démonstration du théoréme H.

L’étude de 1’équation
Au =, (4)

ou u et B sont des formes différentielles de degré p sur 1’espace de Rie-
mann ¥V, qui nous conduira au théoréeme H énoncé au chap. I, No. 5,
va étre faite suivant la méthode due & Hilbert et présentée par lui [4,
p. 219—232] dans le cas out V est la surface de la sphére ordinaire, 8 et u
des fonctions sur cette surface (p = 0), mais 4 étant, plus généralement
qu’ici, un opérateur différentiel linéaire du second ordre de type ellip-
tique.

Cette méthode est basée sur les formules I et IT établies au chap. II,
énoncées No. 6, et sur 'étude de l’équation

Ju@ld, 0@, 9I* —ku(2) = fo(z,y)p*(y) (5)
et des deux équations homogénes associées

fu)d,0@@,y)* —ku(x) =0 (6)
fud, 0@, y)]* —ku(z) = 0 (7)

ot w = w,(,y) est la paramétrix de degré p et k a la méme signification
que dans les formules I et IT du chapitre II. Comme dans ces formules,
* désigne I'adjointe relativement & y.

Le noyau 4,w(z,y) appartenant (d’aprés le théoréeme du No. 10) &
l’exposant » — 2, le théoréme F s’applique. Le parametre 1 a la valeur

1
A:E'
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Relation entre (4) et (5). En partant de (4), o 'on désigne par y le
point argument, prenant ’adjointe, multipliant & gauche par w(x,y) et
intégrant, on obtient I’équation

Jo i, p(m* = folz,y)p*y) (5%)

qui, en vertu de la formule I, est équivalente & (5). Donc: toute solution
de (4) satisfart a (5).

La réciproque n’est en général pas exacte. Mais si u satisfait a (5), on
a (5’) qui peut s’écrire

fo(z,y)[4, nly) —BH)I* =0

et qui exprime que Au — f est orthogonale & la paramétrix.

Discussion des équations (6) et (7). En vertu de la formule I, (6) peut
se mettre sous la forme équivalente

Jo(@,y)[4py1* (6)
et en vertu de la formule IT, (7) est équivalente a
4 fo@y)u*y)=0. (7)
En introduisant 'opérateur 2 défini par

Qu= [o(z,y)ps*{y)
ces deux équations peuvent s’écrire encore

QAp=0 (8") e  AQu=0, (7")

Parmi les solutions de (6), il y a toutes les formes harmoniques de
degré p, c’est-a-dire les formes u telles que 4u = 0. D’apres le théoreme
F, I'équation (6) n’a qu’'un nombre fini de solutions linéairement indé-
pendantes, par suite ¢l n’y a qu'un nombre jini de formes harmoniques de
degré p linéairement indépendantes (nous avions établi ce fait par voie
topologique au No. 5, Remarque 2). Soit R ce dernier nombre, B + S le
nombre des solutions linéairement indépendantes de (6). On peut alors
trouver S solution de (6), @,,..., P,, dont aucune combinaison linéaire
a coefficients non tous nuls n’est harmonique.
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Les S formes X, = A4®; (j=1,...,8) sont linéairement indépen-
dantes, car si elles ne I’étaient pas, il y aurait une combinaison linéaire
des @, qui serait harmonique. Elles sont orthogonales & la paramétrix,
c’est-a-dire qu’elles satisfont & 2 X, = 0. Il peut y avoir encore d’autres
formes orthogonales & la paramétrix, mais comme elles satisfont & (77),
il n’y en a qu’un nombre fini de linéairement indépendantes. Soit § + s
ce nombre. On peut alors trouver s formes orthogonales & la paramétrix,
X1 X2s- - > Xs qui constituent avec les X; un systéme complet de formes
linéairement indépendantes orthogonales & la paramétrix. Toutes ces
formes satisfont a (7), mais (7) peut admettre d’autres solutions. Sup-
posons que (7) admette ¢ solutions dont aucune combinaison linéaire (&
coefficients non tous nuls) ne soit orthogonale a la paramétrix, soient

d15 925+ +-59; -
Les § + s + ¢ formes X, y,, q; constituent alors un systéme com-
plet de solutions linéairement indépendantes de (7).

Les ¢t formes f, = 2q, (k= 1,...,t) sont linéairement indépendantes,
car si elles ne I’étaient pas, il y aurait une combinaison linéaire des ¢,
qui serait orthogonale & la paramétrix. Elles sont harmoniques, puisque
Af, = 0. (6) et (7) ayant le méme nombre de solutions linéairement in-
dépendantes, on a: S +s+ ¢t =8 + R, d’ot R = s 4 t. Par suite, on
peut trouver s formes harmoniques ¢,, ¢,,..., ¢, qui constituent avec
les f, un systéme complet de formes harmoniques linéairement indépen-
dantes. Les S + s + ¢t formes ®;, ¢;, f, constituent alors un systéme
complet de solutions linéairement indépendantes de (6).

Nous pouvons résumer cette discussion dans le tableau suivant:

formes harmoniques
Solutions de (6) D,,..., D Prseeer  Pg fiseoosfy
40; = X, 24, = [fi
Solutions de (7) Xy, Xg Tiseses s Gis- -5 Gy
l formes orthogonales & la paramétrix

Discussion de Uéquation (5). D’aprés le théoréme F, la condition né-
cessaire et suffisante pour la possibilité de (5) est que le second membre
soit orthogonal aux solutions de (7), soit aux formes X;, x;, ¢;. Cela se
traduit par les équations
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[fo@.9pr@Xf@ =0 (G=1,..,589) (8)
ffo@.9*yxf@) =0  @G=1,..59) (9)

Les conditions (8) et (9) sont satisfaites quelle que soit # comme on le
voit en échangeant I'ordre des intégrations, parce que les formes X,(x)
et y.(x) sont orthogonales a la paramétrix. En vertu de la définition de
fi, les équations (10) peuvent se mettre sous la forme

[h@p*y) =0 (k=1,...,1% (10')

Elles expriment que f est orthogonale aux formes f,. Ce sont les condz-
tions nécessaires et suffisantes pour la possibilité de (5).

Discusston de Uéquation (4). Supposons d’abord que f soit orthogonale,
non pas a toutes les formes harmoniques, mais seulement aux formes f,.
Les conditions de possibilité (10’) de (5) sont alors satisfaites. Soit u,
une solution particuliére de cette équation; la solution générale s’en dé-
duit par addition d une solution quelconque de (6), soit d’une combinaison
linéaire quelconque des D;, ¢,, f..

D’aprés la remarque faite plus haut, 4y, — B est orthogonale & la para-
métrix, et par suite égale & une combinaison linéaire de xy,..., x,,

Xi,oo., Xg:
dpy,—B=cipn 4+ cxs + C1 Xy 4+ -+ Cg X

La forme u, = p, — C, 9, —- - -— C; D4 est aussi une solution de (5),
et comme X, =4, ,

Aug— B =1cy g1+ -+ C %, -

Pour déterminer les constantes c,,. .., ¢,, multiplions les deux membres

de cette derniére équation par ¢¥* et intégrons. Il vient, en remarquant
2

que Au, est orthogonale & toutes les formes harmoniques, par suite a ¢, ,

— JBof = fmef + -+ S8 G=1,...,9). (11)

D’aprés la maniere dont il a été obtenu, ce systeme de s équations
linéaires en les s inconnues c,,. . ., ¢, admet toujours une solution, pourvu
que les conditions (10”) soient remplies.
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Or, on peut disposer de 8, tout en respectant ces conditions, de maniére
que les premiers membres de (11) aient des valeurs arbitrairement
données a,, a,,..., a,. En effet, en supposant, comme il est permis de
le faire, que les formes @, sont normées, orthogonales deux a deux et
orthogonales aux formes f,, la forme f = —a,¢, —- - -— a,p, satisfait
aux conditions (10’) et — | B¢ = a,.

Cela entraine que le déterminant du systéme (11), dont 1’élément
général est |y, ¢, est différent de zéro. Les constantes c,,.. ., ¢, sont
par suite univoquement déterminées par (11).

En particulver, si f est orthogonale & toutes les formes harmoniques,
c’est-a-dire non seulement aux formes f,, mais aussi aux formes g,, les
premiers membres des équations (11) étant tous nuls, les ¢, le sont aussi
et Adu, = f: Uéquation (1) admet une solution. Cette forme u, satisfaisant
a (5), est de classe (2, pourvu que la paramétrix w(x,y) soit de classe
C3 et f de classe C?, chacune des deux intégrales figurant dans (5) étant
alors de classe C? en x. Le théoreme H est ainsi établi.

APPENDICE

SUR QUELQUES POINTS DE LA THEORIE DES EQUATIONS
INTEGRALES

1. Equations intégrales tensorielles

SiX,,..., Xy sont les composantes, relativement & un certain systéme
de coordonnées, d’'un tenseur défini sur ’espace de Riemann & » dimen-
sions V, d’un certain type R caractérisé par une représentation linéaire
de degré N du groupe linéaire homogéne & n variables, et si Y1,..., Y¥
sont les composantes relativement au méme systéme d’un tenseur du

N

type contragrédient R’, on sait que ¥ X,Y* est un invariant: c’est une
i=1

fonction définie sur V, indépendante de tout systéme de coordonnées.

Soit un double tenseur, du type R en = et du type R’ en y, dont les
composantes K’ (x,y) sont, pour y et j fixés, les composantes d’un ten-
seur du type R en z, et pour z et ¢ fixés, celles d’un tenseur du type R’
en y. Nous allons considérer I’équation intégrale

N .
¢:(2) — A fglmx,y)%(y)l;: —fi(@) . (1)
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Les @, (x) sont les composantes d’un tenseur inconnu du type R, les f,(x)
celles d’un tenseur connu du méme type, 1 1'élément de volume relatif
au point y, 1 le parameétre, et 1’équation doit étre vérifiée pour tout z et

tout i. Remarquons que x et ¢ étant fixés, 3 K’ (x, y) ¢;(y) est un scalaire
i

en y, de sorte que l'intégrale a un sens parfaitement clair.
A coté de (1) se présentent les deux équations homogénes associées

@i (2) — 2 f}.}Kif(x,y)%(y) 1y =0 (2)
pi(2) — 4 fE_Kﬁ (Y, 2)p (yly = 0. (3)

Dans (3), les p?(x) sont les composantes d’un tenseur du type R’.

Fredholm a montré comment un systéme d’équations intégrales, de la
forme (1), se rameéne & une seule équation, par l’artifice suivant. Soit W
une variété mon connexe, constituée par N exemplaires de 1’espace V.
A chaque point & de W correspond un point x de V et un indice i, le
numéro de ’exemplaire de V qui porte &, et la correspondance entre & et
les couples (z, ¢) est biunivoque. Soit 7 le point de W qui correspond &
(y,7). En posant

K:(xa?/)=K(5,77) ) (Pz(x):@(‘s) s fz(x):F(‘S) ’
le systéme (1) se raméne a I’équation unique

¢(§)~Avj;K(§,n)¢(n)1: =F(¢) .

Mais ce raisonnement suppose que 1’on a affaire & des fonctions définies
individuellement sur I’espace V, et non & des tenseurs, et il ne semble
pas applicable dans ce dernier cas sauf pour les espaces V tres parti-
culiers, dits parallélisables, ou il existe » champs de vecteurs continus et
linéairement indépendants en chaque point.

Cependant, la théorie de Fredholm s’applique directement & I’équa-
tion (1). On définit la déterminante D (1) et ses mineurs en posant

Zy... z,, Kiljl. (xl Y1) .- Kﬁ'jm (xl s Ym)
?:1 o . 'im *

i _ @)
i - m Ko @) .- Ky m (@, Y)
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OU Xy,eves Xy Yyse o oy Y SONDL 2m pomts de V, rapportés a certains

systémes de coordonnées, ¢,,..., %, 1,- - -, Im 2 m entiers compris entre 1
et INV;
Tyeo Loy
U oo v by
ahzf...f y K 17 ...10 ,ag=1
’i] ,...,ih x x
1 T 5
i (5)
> (— At
D(ﬂ) 2_ ! ay
=0 Ib:

El 'Em xl xh
kl"‘km Py« ih N %
b= (.. [ X K xooar
155 A 771"'77m xl"'xh
ll lm 7/1 zh
(6)
L avs By
k1~°'km oo h
D A =2bh(—~,ﬂ)
My e =
I ... 1, J

La convergence des séries (5) et (6) s’établit comme dans le cas habituel,
a l’aide du théoréme de M. Hadamard, en supposant le tenseur noyau
Ki(x,y) borné. (On dit qu'un tenseur est borné si, étant donnée une
famille finie ' de systéme de coordonnées dont les domaines recouvrent V,
ses composantes relativement & un systéme quelconque de F sont bor-
nées; cette définition est indépendante de F'.)

En apportant aux formules classiques de Fredholm la petite modifica-
tion qui consiste a adjoindre & chaque point variable sur ¥ un entier
variable de 1 & N, I'intégration sur V relativement au point étant accom-
pagnée toujours de la sommation de 1 & N par rapport a ’entier, on ob-
tient la résolution de I’équation (1) lorsqu’elle est possible et les conditions
de cette possibilité:

Si D(4) # 0,(1) a une solution unique. Si D(4) = 0, (2) et (3) ont le
méme nombre, fini et positif, de solutions linéairement indépendantes,
et la condition de possibilité de (1) est que
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[ = L@@} =0 (7)

pour toute solution yi(x) de (3).

2. Equations de Fredholm portant sur une forme différentielle

Partons d’une double forme K (x, %), de degré p en x et de méme degré p

en y. Ses coefficients sont les composantes K, ; ;  ;(¢,y) dun

double p-vecteur, covariant en x et en y. Par le procédé d’élévation des

indices, en faisant intervenir la métrique riemannienne, on en déduit un

double p-vecteur covariant en x et contravariant eny, K, . 17 (z,y),
1.

qui peut jouer le rbéle de tenseur noyau.

L’équation (1) s’écrit alors

(Pil...ip(x) — AJ‘ > 'K’il,,.ipjl...y'p(x7y)qofl...jp(y) 1; zfil...’ip(x) .

(1 .- 7p)

En multipliant les deux membres par dz®...dz'? et sommant par
rapport & (¢,...¢,), on obtient I’équation équivalente

p(x) —Afp(y) K(z, y) = (@) (8)

®(®) = 2 %l,..ip(x)dxil,,,dxip

(il ...1@)

[0 = 5 _fu. @ da®

(1 ...

et K(x,yj) est la forme adjointe relativement a y de K (xz,y).
La forme sous le signe j' peut évidemment s’écrire encore K (x,y) ¢p* (y).

L’équation (3), ou intervient un p-vecteur contravariant en x, est
équivalente & une équation ou intervient le p-vecteur associé covariant
en x, qui s’en déduit par abaissement des indices. En désignant par v (x)
la forme différentielle correspondante, elle s’écrit

p@)— 2 fp@EE,2) =0 (9)
C’est I’équation associée a
p(@) — 2 [K(z,)¢*(y) =0. (10)
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La condition (7) s’écrit f f(x)p*(x) = 0, elle exprime que f(x) et
¥ (x) sont orthogonales.

Les théoremes de Fredholm peuvent alors s’énoncer de la maniére
suivante:

Si D(A) = 0, (8) possede une solution et une seule, (9) et (10) n’ont
pas d’autre solution que ¢(x) = 0 et p(x) =0 .

Si D(4) = 0, (9) et (10) possédent le méme nombre m, fini et positif,
de solutions linéairement indépendantes; la condition nécessaire et suffi-
sante pour que (8) posséde une solution est que f(x) soit orthogonale &
toute solution de (9).

On peut énoncer ce résultat de la maniére suivante, sans faire inter-
venir explicitement D(A):

Les deux équations homogénes (9) et (10) ont le méme nombre m, toujours
fini et pouvant se réduire a zéro, de solutions linéairement indépendantes.
La condition nécessaire et suffisante pour que (8) posséde une solution est
que f(x) sott orthogonale a toute solution de (9).

Si m = 0, aucune restriction n’est imposée a f(x). Si m > 0 et si
v(),..., 9, (x) est un systéme de m solutions linéairement indépen-
dantes de (9), les conditions imposées & f(x) s’expriment par

[f@pf@)=0 (@G=1,...,m).

Comme on sait, m est ’ordre du premier mineur de D (1) non identique-
ment nul, et les solutions des équations (9) et (10) s’expriment par des
formules qu’il est inutile d’écrire ici, tout-a-fait analogues aux formules
classiques, & ’aide de D (1) et de ses mineurs.

Lorsque la forme noyau K(z,y) n’est pas bornée pour z = y, les
séries (5) et (6) ne sont plus utilisables, leur convergence n’étant pas
assurée.

Toutefois, si K (x,y) appartient & un exposant inférieur a n, I’énoncé
ci-dessus est encore valable. Ce fait, qui constitue le théoreme ¥ (No. 13,
chap. III), étant essentiel pour 'application que nous avons faite, nous
nous permettons de revenir sur sa démonstration, certains points ne nous
paraissant pas traités d’une maniére tout-a-fait compléte dans la plupart
des exposés classiques.

Lemme 1. Sv K(x,y) et L(x,y) appartiennent aux exposants e, el e,
(e, < m, e, <m)
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M(z,y) = [K(z,2) L(z,y)

appartient a Uexposant e, + e, —n.

Nous pouvons supposer que z et y restent dans un domaine contenu avec
sa frontiére dans le domaine D d’un systéme de coordonnées. En dési-

gnant par ¥V — D la portion de V extérieure & D, | K(x,z)L(z,y)
VD

est évidemment une forme en z et y a coefficients bornés, puisque, lorsque
%
z reste dans V— D, les coefficients de K (x,2) L(z,y) sont bornés. Il suffit
*
par suite de prouver que j' K(x,2)L(z,y) est une forme qui appartient
D
a Pexposant e, 4+ e, —n. Soient zl...2", y'...y", 2t...2" les coor-
données de z, y et z dans le systéme choisi, de domaine D. Les coefficients

de la forme en x et y j'K (x,z)L(;,y) sont des sommes d’un nombre
D
fini de fonctions de x et y de la forme

_fA(x,z) B(z,y) dz'...dz"
D

ou 4 (x,z) et B(z,y), coefficients des formes K (x ,2) et L(: ,Y) respective-
ment, sont des fonctions qui, par hypothése, appartiennent aux expo-

sants e, et e, respectivement, c’est-a-dire qu’elles sont comparables &

(e 2] (;:,z) et e rectivement. Il suffit par suite, pour établir notre
dz...dz"

rée1(x,2)r% (2, y)
D

qui appartient a ’exposant e; 4+ ¢, — n, et comme le choix de la fonction
distance n’importe pas, on peut supposer qu’elle se réduit a

assertion, de prouver que est une fonction de z et y

w9 = VEG— g

La fin du raisonnement est classique (Cf.[3] p. 362—363), nous la re-
produisons néanmoins.

Soient D’ et D” les portions de D ou r(x,2) <2r(x,y) et
r(x,z) > 2r(x,y) respectivement (z est le point variable tandis que z
et y sont fixes). L’intégrale se décompose en deux, étendues & D’, et D”.
:EZ’ 2 reste compris entre } et §; 'intégrale éten-

due & D” est par suite comparable &

Dans D", le rapport
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dzt...dz"
rate(x,z)’
D
ou encore, en désignant par k " le volume de la sphére de rayon ¢ dans

Pespace & » dimensions et par B un nombre tel que r(x,z) < R en tout

point z de D, &
R

kn j Qn——l—e1—ezd9

27(z,y)

ce qui est une fonction de = et y appartenant a I’exposant e, + e, — n.

Quant & lintégrale étendue & D’, une transformation homothétique
qui transforme la «sphére» D’ en une «sphére» D, de méme centre x et
de rayon un, la raméne & une intégrale de méme forme étendue & D, , mul-
tipliée par [27(z,y)]"*—¢ | la nouvelle intégrale ayant une valeur finie
indépendante de r(x,y). Le lemme est ainsi démontré.

Les noyaux itérés successifs de la forme noyau sont définis, pour
n=1,2,,.., par la formule

K,(x,9) = (K@ 2K, 1(z,y) , K, (2,9)=K(,y) .

Lemme 2. K(z,y) étant un noyaw appartenant a Uexposant e (e < n),
et A un nombre donné, il existe un entier positif § tel que le 7°™ noyau itéré
ait des coefficients bornés et que, 2, étant une racine primitive j¥™ de
Punité, aucune des j— 1 équations

* .
(P(x)'——lg: j?(y)K(%y):O (8:1;23"‘:?_1) (11)
n’ait d’autre solution que la solution banale ¢(x) = 0.

D’aprés le lemme 1, K,(x,y) appartient & I'exposant j(e — n) 4+ n.

Soit m le plus petit entier supérieur &

n . Sij=m,jle—n)+n<0

et les coefficients de K, (x,y) sont bornés. Nous pouvons ensuite supposer
A F#O0.
Remarquons que (11) entraine

P(2) — 3™ (o(y) K, (2,5) = 0 (12)

et désignons par D, (A) la série correspondant a la forme noyau K, (z,y),
série qui converge puisque K, (z,y) est & coefficients bornés.
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Si ’équation (11) est satisfaite par une forme ¢ (x) non identiquement
nulle, pour une certaine valeur de s, (12) ayant lieu, A™ $!™ est un zéro de
D,.(4). Si & chaque entier j > m correspondait un entier s tel que (11)
ait une solution non identiquement nulle, la fonction entiere D, (1)
admettrait alors une infinité de zéros de méme module | 1 |™, les zéros
Am 3™ correspondant aux nombres j qui sont premiers étant nécessaire-
ment distinets. La fonction D,, (1) serait par suite identiquement nulle, ce
qui est impossible puisque D,,(0) = 1.

Démonstration du théoréme F, pour un noyau K (x,y) appartenant & un
exposant e < n. Supposons l’entier j choisi comme il est indiqué au
lemme 2. Les équations (10) et (9) ont alors respectivement les mémes
solutions que les équations (13) et (14) ci-dessous (voir [3], page 399 - 400,
note 1):

o@)—¥ (o) K,(x,9) =0 (13)
p(@)— ¥ [p@) K@y, 2) =0 . (14)

Or, le théoréme F étant applicable au noyau K,(x,y) dont les coeffi-
cients sont bornés, ces deux équations ont le méme nombre, fini, de solu-
tions linéairement indépendantes. Il en est donc de méme pour (10)
et (9).

D’autre part, les équations (8) et (9) entrainent

JF(@) p*(x) =0

comme on le vérifie immédiatement. La condition énoncée pour que (8)
admette une solution est donc bien nécessaire. Pour prouver qu’elle est
aussi suffisante, considérons I’équation

D(x) — i [OW)K,(x,y) = f(=) (15)

La condition formulée pour la possibilité de (8) est en fait la condition
de possibilité de (15), puisque (9) et (14) ont les mémes solutions et que
le théoréme F est applicable au noyau K,(x,y), et si @ (x) satisfait & (15),
la forme

9(2) = O(2) + [[AK(z,y) + L2 Ky(x,y) +- -+ V1K, (2,9)]P*(y)

satisfait & (8) qui admet ainsi une solution.

(Recu le 10 janvier 1946.)
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