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Les formes différentielles harmoniques
Par Pierre Bidal et Georges de Rham, Lausanne

INTRODUCTION

Ce travail a été entrepris dans le but de démontrer, d'une manière à la
fois simple et rigoureuse, le beau théorème de W. V. D. Hodge, d'après
lequel le pièmG nombre de Betti d'un espace de Riemann clos et orientable
est égal au nombre de formes différentielles harmoniques de degré p
linéairement indépendantes.

Pour raison de clarté, la théorie des formes différentielles harmoniques
a été reprise dès le début et se trouve exposée au chapitre I. C'est dire
que la connaissance d'autres travaux déjà publiés sur ce sujet n'est pas
exigée du lecteur. Nous espérons y avoir apporté d'appréciables simplifications.

Grâce à l'emploi d'un opérateur différentiel A (défini au No. 3),
applicable aux formes différentielles, qui généralise les opérateurs de
Laplace et de Beltrami, les formes différentielles harmoniques sont
définies simplement comme les formes <p qui satisfont à l'équation A 99 0
Le théorème de décomposition [No. 5], qui nous paraît dominer la théorie et
dont le théorème de Hodge se déduit facilement, est déduit lui-même d'un
théorème d'existence relatif à l'équation A/u /?, dont un cas particulier
est contenu dans un théorème de Hilbert [4, p. 226—227]1), d'après lequel
la condition de possibilité de cette équation est que la forme différentielle
donnée /? soit orthogonale (au sens défini au No. 2) à toutes les solutions
de l'équation homogène A <p 0, c'est-à-dire à toutes les formes différentielles

harmoniques du même degré.
La démonstration de ce théorème, que nous appelons le théorème H, à

laquelle est consacrée la suite du travail, est faite par la méthode de la
paramétrix de E. E. Levi [15] et de Hilbert [4, p. 219—232]. Dans le
chapitre II, après avoir défini la paramétrix, nous établissons deux formules
qui jouent un rôle fondamental dans la démonstration. Bien qu'il ne soit
fait appel, le plus souvent, qu'à des méthodes d'un emploi courant dans la
théorie du potentiel et dans l'étude des équations aux dérivées partielles
du type elliptique, nous avons pensé faire œuvre utile en ne laissant aucun
point dans l'ombre. De là l'étendue relative de ce chapitre.

Dans le chapitre III, après avoir énoncé les théorèmes de Fredholm
relatifs aux équations intégrales sous la forme où ils devront être utilisés,

1) Les chiffres entre crochets [ ] renvoient à l'index bibliographique placé après
l'introduction.
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nous donnons la démonstration du théorème H. Elle ne diffère pas de celle
exposée par Hilbert pour le cas examiné par lui et mentionné ci-dessus,
sauf quelques simplifications provenant du fait que l'opérateur A est
autoadjoint.

Enfin, dans l'Appendice, nous revenons sur la théorie générale des

équations intégrales utilisées ici, où l'inconnue est une forme différentielle
ou un tenseur. Lorsque l'espace n'est pas parallélisable, ces équations ne
se ramènent pas immédiatement aux systèmes d'équations intégrales
envisagés par Fredholm. Nous montrons que la théorie s'applique
néanmoins, et nous reprenons aussi la démonstration de la validité sans restriction

du troisième théorème de Fredholm dans le cas de certains noyaux
non bornés. Tout ce qui intervient dans la démonstration du théorème H
nous paraît ainsi complètement établi.

L'idée d'appliquer la méthode de la paramétrix à la démonstration du
théorème de Hodge, due à M. Hellmuth Kneser, a été utilisée par M. Hodge
lui-même [7, 8], dont l'argumentation a été complétée sur un point essentiel

par M. Hermann Weyl [16]. La première démonstration de M. Hodge
— dont M. Weyl dit: «I find it hard to judge whether a previous proof
along différent lines is complète, or rather how much effort is needed to
make it complète » — était basée sur la méthode directe du Calcul des

Variations (Principe de Dirichlet) [5, 6].
Dans ce travail, nous utilisons comme paramétrix la même forme

cop(x, y) employée par M. Hodge, qu'il avait considérée d'abord dans le
cas d'un espace euclidien [5], et dont il remercie M. Kneser [7] de lui en
avoir communiqué l'expression générale. Mais nous l'appliquons à l'équation

différentielle A fi fi, ce qui conduit à discuter une équation
intégrale de noyau Ayœp(xy y), tandis que MM. Hodge et Weyl considèrent
l'équation différentielle ôdju, /S (avec les notations du No. 3 ci-dessous)
dont l'étude directe par cette méthode est moins simple. L'avantage de
notre opérateur A, à cet égard, tient au fait qu'il est totalement elliptique et
que, contrairement à l'équation ôd<p 0, l'équation Aq>= 0 n'a qu'un
nombre fini de solutions linéairement indépendantes partout régulières.

Le mode d'exposition de la théorie des formes différentielles harmoniques

adopté dans le chapitre I a été présenté dans ses grandes lignes par
l'un de nous dans des conférences à Budapest en 1940, à Clermont-Fer-
rand, Rome et Fribourg en 1942 et à Munich en 1944.
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CHAPITRE I

LES FORMES DIFFÉRENTIELLES HARMONIQUES SUR UN

ESPACE DE RIEMANN

1. Fonctions et tenseurs sur une variété difîérentiable

Pour commencer, nous rappellerons quelques définitions, nécessaires

pour bien préciser la notion de forme différentielle sur une variété différen-
tiable (Cf. [2] et [13]).

v désignant un entier positif, une fonction de n variables réelles est dite
de classe Cv si elle possède des dérivées partielles continues jusqu'à Tordre
v inclus. On désigne encore par C° la classe des fonctions continues, par
C°° la classe des fonctions possédant des dérivées de tout ordre, et par Cw

la classe des fonctions analytiques. (Nous conviendrons que, v étant fini,
V < OO, V < ft), OO<ft), OO iV= OO, OJ ± V (D.)

Etant donnée une variété à n dimensions F, c'est-à-dire un espace
topologique connexe dont chaque point possède un voisinage homéomorphe à

l'intérieur d'une sphère de l'espace euclidien à n dimensions, nous appellerons

système de coordonnées dans F une représentation topologique d'un
domaine D de F dans l'espace numérique à n dimensions ; D est appelé le
domaine du système. Une telle représentation associe à chaque point de

D n nombres réels, appelés les coordonnées du "point relativement au
système.

Nous appellerons variété à n dimensions de classe Cv, v désignant un
entier positif, ou oo, ou w, une variété à n dimensions F dans laquelle est
donnée une famille F de systèmes de coordonnées satisfaisant aux deux
conditions suivantes:

1. Les domaines des systèmes de la famille F recouvrent entièrement
F, c'est-à-dire que leur réunion est identique à F.

2. Un point variant dans la partie commune aux domaines de deux
systèmes de la famille-F, ses coordonnées relativement à l'un des systèmes
sont des fonctions de classe Cv et à jacobien non nul de ses coordonnées
relativement à l'autre système.

Deux familles de systèmes de coordonnées, donnés dans la même
variété F et satisfaisant toutes les deux aux conditions 1. et 2., sont
considérées comme équivalentes, et définissent la même variété de classe Cv,
si la famille formée par leur réunion satisfait aussi à la condition 2. Nous
dirons encore qu'un système de coordonnées dans F est admissible, s'il



appartient à la famille F ou si la famille obtenue en l'adjoignant à F satisfait

encore à la condition 2.

Il est clair que, si u < v, la classe Cu contient Cv.

Les variétés de classe Cœ sont les variétés analytiques, les variétés de
classe C1 sont les variétés différentiables.

Une fonction /(#), définie sur la variété F de classe Cv, est dite de
classe Cu (u étant < v), si, étant donné un système quelconque de la
famille F, pour x dans le domaine de ce système, f(x) est fonction de
classe Cu des coordonnées de x relativement à ce système. Il est clair que
le sens de cette définition ne change pas si Ton remplace F par une autre
famille équivalente (pourvu que, comme on l'a supposé, u < v).

Un tenseur est défini, en un point x de F, par ses composantes relativement

à un système quelconque de coordonnées dont le domaine contient
x; les composantes relativement à un second système se déduisent des

premières par les formules connues qui, comme on sait, font intervenir
les dérivées partielles du premier ordre des coordonnées d'un système par
rapport à celles de l'autre. Ces dérivées partielles sont des fonctions de
classe O"1, si la variété F est de classe Cv. Il en résulte que, si les composantes

du tenseur relativement au premier système sont de classe

Cu(u < v— 1), il en est de même des composantes relativement au
second système, dans toute la partie commune aux domaines des deux
systèmes. Cette remarque justifie la définition suivante:

Un tenseur, défini sur la variété F de classe Cv, est dit de classe Gu

(pour u < v— 1), si, x étant un point du domaine d'un système
quelconque de la famille F, les composantes du tenseur relativement à ce

système sont des fonctions de classe Cu dans ce domaine.
La donnée, sur une variété F de classe Cv+1, d'un tenseur covariant

symétrique à deux indices, de classe Cv, tel que la forme quadratique
(où x1,..., xn sont les coordonnées de x relativement à un certain
système et g{j les composantes du tenseur au point x relativement au
même système)

s2 JS 9a

soit définie positive en chaque point x, définit un espace de Riemann de

classe Cv.

La variété F est close si elle est un espace topologique compact. Elle est
alors complètement recouverte par les domaines d'un nombre fini de

systèmes de coordonnées, de sorte qu'on peut supposer la famille F finie.
La variété F est orientable s'il est possible de répartir les systèmes de

coordonnées en deux classes, de manière que le jacobien relatif à deux



systèmes dont les domaines empiètent soit positif si les deux systèmes
sont de la même classe, négatif dans le cas contraire. Orienter la variété,
c'est choisir l'une de ces classes, dont les systèmes sont alors appelés positifs,

ceux de l'autre classe étant appelés négatifs.

2. Formes différentielles. Forme adjointe
Sur une variété différentiable, à tout p-vecteur covariant, c'est-à-dire

à tout tenseur covariant antisymétrique à p indices, est associée une
forme différentielle extérieure de degré p, représentée dans le domaine D
d'un système de coordonnées par l'expression

où les At i sont les valeurs, au point # de D de coordonnées x1,..., xny

des composantes du 39-vecteur relativement à ce même système, et la
sommation étant étendue aux (J) combinaisons (ix.. .iv) des n indices
1, 2 n pris php.

On sait que, dans un changement de coordonnées, en vertu des règles
du calcul extérieur, les produits extérieurs dxh.. .dx{v se transforment
comme les composantes d'un p-vecteur contravariant (c'est-à-dire d'un
tenseur contravariant antisymétrique à p indices). La forme <% apparaît
ainsi comme le produit contracté (divisé par p d'un p-vecteur
contravariant indéterminé par le p-vecteur covariant auquel elle est associée.

Sur un espace de Riemann orienté à n dimensions, on peut faire
correspondre à toute forme différentielle extérieure de degré p, ou, comme
nous dirons dorénavant pour abréger, à toute forme de degré p, une forme
de degré n — p qu'on appelle la forme adjointe. Nous allons en rappeler
la définition en établissant ses principales propriétés.

Nous utiliserons les symboles de Kronecker <5 l";p
f égaux à 1 (respecta.

.%p

tivement — 1) lorsque jx.. ,jp est une permutation paire (respectivement
impaire) des indices tous distincts ix.. ,iP, et à 0 dans tous les autres cas.

On sait que ces nombres dH"*7p peuvent être considérés comme les^ H...ip r
composantes d'un tenseur covariant antisymétrique par rapport aux
indices i et contravariant antisymétrique par rapport aux indices j.

Nous utiliserons aussi le n-vecteur covariant e (tenseur e de Levi-Civita
[9, p. 78]), dont les composantes e^.. .in sont définies par

où g est le déterminant || gtj \\ des coefficients de la forme quadratique
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fondamentale ds2 £ Vu dxl dx7, et où il faut prendre le signe -f ou le
v

signe — selon que le système de coordonnées est positif ou négatif. La
forme de degré n associée à ce n -vecteur,

ex... n dx1... dxn

représente Vêlement de volume de l'espace de Riemann.
On sait que, dans un espace de Riemann, à tout tenseur covanant est

associé un tenseur contravariant. En particulier, à tout p-vecteur cova-
riant de composantes Ati...t est associé un p-vecteur contravariant
dont les composantes A%1 lv sont définies par les relations

qui peuvent aussi s'écrire

les g11 étant les composantes du tenseur contravariant associé au tenseur
fondamental gl7 et définies par les formules

2 9*9*, *]
k

Nous pouvons maintenant définir la forme adjointe à la forme oc, que
nous désignerons par <%*, en posant, ix.. ,in désignant une permutation
paire de 1.. .n,

A* e% %
Atl %* et

**= S A* Jt^dx>*...d*?»+
(1)

(H In-p)

II est évident que les A*x>. ,Jn sont les composantes d'un (n — p)-
vecteur covariant, qui est le produit contracté (divisé par p ') du n-vecteur

covariant e avec le p-vecteur contravariant associé à la forme oc.

Remarquons que, d'après cette définition, la forme adjointe à la forme
de degré 0 qui se réduit à la fonction constante égale à 1 est la forme qui
représente Vêlement de volume, et que nous désignerons dorénavant par
1* (ou 1* s'il y a lieu de préciser le point variable x):

1* ex n,où ex n y g si le système de coordonnées est positif.



Propriétés de la forme adjointe

a et p étant deux formes de même degré p, f et h des fonctions, on a

a) (foc + KP)* foc* + h$*
b) (oc*)* (—l)*>n+*>oc

c) ocp* poc*

d) oc oc* — F-l*, où F est une forme quadratique définie positive
des coefficients de oc.

La propriété a) est évidente, l'opération * étant linéaire.
En désignant par BH t les coefficients de /?, Ati t étant toujours

ceux de oc, d'après la définition de l'adjointe et d'après les règles du
calcul extérieur, on a

Supposons qu'au point considéré gtj Ô[ ce qu'on peut toujours
obtenir en choisissant un système convenable de coordonnées. Alors,
comme on sait, AH A A*1'"** et BH { 5il>tf|p, de sorte

que les propriétés c) et d) résultent immédiatement de l'expression de
ocp*.

Pour établir b), il suffit de remarquer que, au point considéré où

gxi ff.
y on a, ix... in étant une permutation paire de 1... n et le système

de coordonnées étant positif,

et
(dxtp+i... dxj* (— 1)»*+* dxH... dxtp

la permutation iv+1... in ix... iP étant paire ou impaire selon que
(_ \)np+p + 1 ou — 1.

Produit scalaire de deux formes

oc et /S étant toujours deux formes de même degré p, nous appellerons
produit scalaire de oc et p et nous désignerons par (oc, fi), la valeur de

l'intégrale étendue à F de ocp*:

Nous supposons que l'espace F est clos, de manière que l'intégrale ait

8



toujours un sens, et sauf indication contraire, le signe J désignera dorénavant

une intégrale étendue à F.

Si (oc, /8) 0, on dira que oc et /? sont orthogonales,

II est clair que ce produit est commutatif, en vertu de c), et distributif.
En vertu de d), le carré scalaire (oc, oc) d'une forme oc (à coefficients continus)
ne peut s'annuler que si cette forme est identiquement nulle:

(oc, oc) 0 entraîne oc 0

3. Les opérateurs d, ô et A

On appelle différentielle extérieure, ou simplement différentielle, de la
forme oc de degré p, la forme de degré p + 1

doc v dAh i dxh.., dx{p
di...iP) 1'" P

Comme on le vérifie immédiatement, d'après les règles du calcul
extérieur, le coefficient de dx{l.. .dxiv + 1 dans la forme doc est

x ...kp

Les coefficients Aix A de la forme oc sont naturellement supposés
différentiables, c'est-à-dire que la forme oc est de classe C1. Dans le cas
d'une forme de degré 0, c'est-à-dire d'une fonction, c'est la différentielle
habituelle. On sait que l'on a la formule de Stohes

J oc J doc

FCP+1 CP+1

où cp+1 est un champ d'intégration à p -\- 1 dimensions et F cp+1 sa
frontière. On sait aussi que la différentielle seconde d'une forme
(supposée de classe C2) est toujours nulle. La différentielle d'une forme de

degré n est toujours nulle.

L'opérateur ô. Nous désignerons par à oc la forme

ôoc (doc*)*

Le degré de oc étant p, celui de ôoc est p — 1. L'opérateur ô abaisse le

degré d'une unité, tandis que l'opérateur d l'augmente d'une unité.



Il est clair que ôôoc ô2oc 0, parce que ddoc* d2oc* 0. Si oc est
de degré 0, c'est-à-dire une fonction, l'opération ô n'a pas de sens, mais
ce qui sera commode, nous conviendrons alors d'écrire ôoc — 0.

On dit que la forme oc de degré p, supposée de classe G1, est fermée,
si doc 0. S'il existe une forme /S de degré p — 1 telle que oc dfi, on
dit que oc est homologue à zéro et l'on écrit oc >—' 0 Il est clair que si

«^0, oc est fermée.

Utilisant des termes de la topologie combinatoire, nous dirons que oc

est cofermée si ôoc 0, et que oc est cohomologue à zéro, s'il existe une
forme y de degré p + 1 telle que ôy oc. Il est clair que la forme
adjointe oc* est fermée (ou homologue à zéro), si la forme oc est cofermée
(ou cohomologue à zéro), et réciproquement.

Dans des cas particuliers, les opérations *, d et ô et leurs combinaisons,
fournissent les opérations bien connues de l'analyse vectorielle. Une
forme oc de degré 1 peut être interprétée comme le travail élémentaire d'un

—> —>

vecteur v ; oc est la forme associée à v (dans le sens où, selon le No. 2,

une forme de degré p est associée à un p-vecteur).
La forme <x*, de degré n — 1, représente alors le flux élémentaire de

v tandis que doc est la divergence de v

->
doc div v

Si / est une fonction, df est la forme associée au gradient de /, et par
suite ôdf est la divergence du gradient de /:

ôdf div grad /

Remarquons que l'opérateur ôd, appliqué à une forme de degré p
(de classe C2), fournit une forme du même degré p. Si p 0, dd se réduit

au laplacien div grad (ou paramètre différentiel du second ordre de

Beltrami). Ainsi, en un certain sens, dd apparaît comme un opérateur
qui, pour les formes de degré p > 0, généraliserait le laplacien. Mais
d'autres généralisations sont possibles. En effet, dàoc est aussi une forme
de même degré p que oc, qui se réduit à zéro si p 0, mais en général
pas si ^ > 0. Par suite, si a et 6 désignent deux nombres, pouvant
dépendre de p et n, mais a se réduisant à 1 pour p 0, l'opérateur aôd

+ bdô généralise le laplacien au même titre que l'opérateur dd. Pour
des raisons qui apparaîtront au chapitre II, nous avons été conduits à

10



préférer l'opérateur obtenu en posant a (— l)np et b (— i)np+nt
mais ce qui importe avant tout, c'est que ni a ni b ne soient nuls.

L'opérateur A. Nous désignerons par A Vopérateur A =(— l)npôd +
(— l)np+ndd. Appliqué à une forme oc de degré p (et de classe C2)

cet opérateur fournit une autre forme de même degré p,

A<x (— l)npôdoc + (— l)np+ndôoc

Nous dirons qu'une forme oc de degré p est harmonique si elle est de

classe C2 et si Aoc 0.

Pour p 0, A se réduisant comme ôd au laplacien généralisé de

Beltrami, cette définition coïncide avec la définition classique des fonctions

harmoniques. Pour p > 0, nous verrons que, si l'espace est clos,
elle est équivalente à la définition de M. Hodge, d'après laquelle oc est
dite harmonique si doc 0 et ôoc 0.

Si oc est une forme de degré 1, dans l'espace euclidien à 3 dimensions,

associée au vecteur v les formes dôoc et ôdoc sont respectivement associées

aux vecteurs grad div v et rot rot v et la forme A oc est par suite
-> —> —y

associée au vecteur lap v grad div v — rot rot v qu'on appelle

précisément le laplacien de v Cela suggère que notre opérateur A est
bien la généralisation convenable du laplacien, fait qui sera confirmé
au chapitre II.

4. Relations d'orthogonalité

Soit [i une forme de degré p, v une forme de degré p + 1, toutes deux
de classe C1. juv* est de degré n — 1, et, en vertu de la règle de diffé-
rentiation d'un produit, d(/uv*) dju, .v* + (— l)p judv*, ce qu'on peut
écrire, comme dv* (— l)vn+v(dv)*,

d(fxv*) dfxv* + (— \)*»>ii(dv)* (2)

D'après la formule de Stokes, la variété V étant close et constituant
un champ à n dimensions fermé, dont la frontière se réduit à zéro, l'intégrale

étendue à V d'une forme de degré n homologue à zéro est nulle.
On a donc
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ce qui, en tenant compte de (2), donne la relation

ôt) (3)

On en déduit les théorèmes suivants.

Pour qu'une forme /ll soit fermée, il faut et il suffit qu'elle soit orthogonale
à toutes les formes cohomologues à zéro.

La condition est en effet nécessaire, car si dji 0, en vertu de (3),
(fjt, ôv) 0 quelle que soit la forme v de degré p + 1 (©t de classe C1).

Elle est aussi suffisante, car si la forme fi (supposée de classe C2) est

orthogonale à toutes les formes cohomologues à zéro, elle est orthogonale
à ôdfi> (/bCjôdfx) 0, ce qui entraîne en vertu de (3) {d^,dfx) 0, et l'on
sait que cela n'est possible que si d/n 0.

Pour qu'une forme soit cofermée, il faut et il suffit qu'elle soit orthogonale
à toutes les formes homologues à zéro.

Ce théorème peut se démontrer d'une manière analogue, les rôles des

opérateurs d et ô étant simplement permutés. Mais il se déduit aussi du
précédent, en l'appliquant à la forme adjointe.

Chacun de ces deux théorèmes entraîne en particulier que les formes
homologues à zéro sont orthogonales aux formes cohomologues à zéro (de
même degré naturellement).

Cela étant, soit oc une forme harmonique, de degré p,

A oc (— l)n*ôd<x + (— l)n*>+ndàot 0

ôda et dôoc sont deux formes orthogonales, par suite â<x 0 entraîne
ôda 0 et dôoc O. Comme, d'après (3), (doc,doc) (—l)pn+1(oc, ôdoc),

ddoc 0 entraîne doc — 0, et de même dôoc 0 entraîne doc 0. Ainsi :

Les formes harmoniques sont les formes de classe C2 à la fois fermées et

cofermées.

Pour qu'une forme de classe C2 soit harmonique, il faut et il suffit qu'elle
soit orthogonale à toutes les formes homologues à zéro et à toutes les formes
cohomologues à zéro.

Sur un espace clos, l'équation A oc 0 est ainsi équivalente au système
des deux équations doc 0 et àoc 0, qui correspondent à la définition
des formes harmoniques de M. Hodge. Pour une forme de degré 0, cette
équivalence traduit le fait bien connu qu'une fonction harmonique sur
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un espace clos se réduit à une constante. Il n'en est naturellement plus de

même sur un espace ouvert non clos, ni sur un domaine ayant des points
frontières.

Les formes de degré p, pouvant être additionnées et multipliées par un
nombre, constituent un espace vectoriel (à une infinité de dimensions).
Désignons cet espace par Fp et désignons par F\, F% et F% les sous-

espaces de Fp constitués respectivement par les formes homologues à

zéro, par les formes cohomologues à zéro, et par les formes harmoniques.
Cela posé, les deux dernières propositions ci-dessus peuvent s'énoncer de

la manière suivante:

Les sous-espaces F\, F\ et F\ de Fp sont deux à deux totalement

perpendiculaires : deux formes appartenant à deux distincts de ces sous-espaces
sont orthogonales.

Ils forment dans Fp un système complet, dans le sens qu'une forme
orthogonale à chacun de ces sous-espaces se réduit nécessairement à zéro.

Nous pouvons illustrer cet énoncé par le schéma suivant, où les espaces

Ff, FI et FI sont représentés par les trois axes d'un trièdre trirectangle,
l'un des plans coordonnés représentant l'espace vectoriel des formes
fermées, un autre celui des formes cofermées:

formes harmoniques
p

3

formes l

homologues à zéro

2 formes
cohomologues

à zéro
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Ces propositions, comme le théorème de décomposition dont il va être
question, correspondent à des théorèmes connus de Topologie combina-
toire. (Cf. [14, p. 430], [12] et [17].)

5. Le théorème de décomposition et le théorème de Hodge

Les relations d'orthogonalité qui viennent d'être établies conduisent
à se demander si toute forme de degré p se laisse décomposer en la somme
de trois formes appartenant respectivement à Ff, F\ et F\. Pour répondre
à cette question (qui serait évidente si Fp n'avait qu'un nombre fini de

dimensions), nous utiliserons les deux propositions suivantes.

Théorème H. /? étant une forme de degré p et de classe C2, la condition

nécessaire et suffisante pour qu'il existe une forme ju telle que

est que p soit orthogonale à toutes les formes harmoniques de degré p.

Ce théorème sera établi au chapitre III.
La seconde proposition est la suivante: il n'y a qu'un nombre fini de

formes harmoniques linéairement indépendantes de degré p. Elle sera établie
ci-dessous par voie topologique, et d'une autre manière, indépendante,
au chapitre III.

Pour l'instant, admettons ces deux propositions. On peut alors trouver
un nombre fini h de formes harmoniques de degré p, linéairement
indépendantes, cpx, ç?2,..., <ph, et toute autre forme harmonique de degré p
est égale à une combinaison linéaire de celles-là. On peut supposer aussi

que ces formes sont normées et deux à deux orthogonales, c'est-à-dire

que (Vi, y;) b\

Soit alors oc une forme quelconque de degré p et de classe C2. La forme

h

«3 -£ (* > <Pi) <Pi

est harmonique et oc — oc% est évidemment orthogonale à toutes les formes
harmoniques. D'après le théorème H, il existe une forme fi telle que
A ju oc — a3. En posant (— l)nv ôdjLt oc2 et (— l)n^+ndô/i oc1, cette
équation s'écrit ocx + oc2 oc — <x3, ou

OC 0C1
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oc1 étant homologue à zéro, <x2 cohomologue à zéro et oc% harmonique. Il
résulte immédiatement des relations d'orthogonalité du No. 4 qu'une
telle décomposition n'est possible que d'une seule manière. Nous avons
ainsi établi le

Théorème de décomposition. Toute forme oc, de degré p, de classe C2,

peut être décomposée, d'une manière unique, en la somme oc ocx + oc2 + oc3

de trois formes respectivement homologue à zéro, cohomologue à zéro et

harmonique.

Le théorème de Hodge va se déduire aisément de là, mais il convient
de rappeler d'abord quelques propositions générales indépendantes de
toute métrique, relatives aux formes différentielles sur une variété close.

oc étant une forme fermée de degré p, on appelle période de oc relativement

au champ d'intégration fermé à p dimensions Cp la valeur de l'intégrale

Rp étant le pième nombre de Betti de la variété, toutes les périodes
d'une forme fermée se déduisent de Rv d'entre elles, appelées périodes
fondamentales, qui sont les périodes relatives à un système fondamental
de Rp champs fermés à p dimensions.

On a alors les théorèmes suivants [10].

À. Il existe toujours une forme fermée ayant comme périodes fondamentales

des nombres arbitrairement donnés.

B. Une forme fermée dont toutes les périodes sont nulles est homologue
à zéro.

Cela rappelé, nous pouvons établir le

Théorème de Hodge. Il existe une forme harmonique de degré p, et

une seule, ayant des périodes fondamentales données arbitrairement.

Soit oc une forme fermée ayant les périodes fondamentales données.
Une telle forme existe d'après A. D'après le théorème de décomposition,
oc oct + oc3, la composante oc2 étant nulle parce que oc est fermée et par
suite orthogonale à F\. Comme ocx ~0, les périodes de ocx sont nulles,
et la forme harmonique ocz, ayant les mêmes périodes que oc, est la forme
cherchée.

Pour établir l'unicité, il suffit de prouver qu'une forme harmonique
dont toutes les périodes sont nulles se réduit à zéro. Or cela résulte im-
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médiatement de B et des relations d'orthogonalité, car cette forme serait
à la fois harmonique et homologue à zéro.

Corollaire. Le nombre des formes harmoniques linéairement indépendantes

de degré p est égal au pième nombre de Betti.

En effet, soit oci la forme harmonique de degré p dont toutes les périodes
fondamentales sont nulles, sauf la itème qui vaut 1 (i 1,..., Rp). Toute
forme harmonique de degré p dépend linéairement de ces Rp formes, qui
sont linéairement indépendantes.

Remarque 1. Pour établir Vexistence de la forme harmonique ayant
des périodes fondamentales données, nous avons utilisé le théorème A et
le théorème H (par l'intermédiaire du théorème de décomposition). Mais

pour établir ensuite Vunicité, seul le théorème B est intervenu : il n'a pas
été fait appel aux théorèmes A et H.

On peut aussi, comme Fa fait M. Hodge [7 et 8], établir l'unicité sans
faire usage du théorème B et en déduire ensuite le théorème B. On se

base alors sur le théorème C .* si les périodes de la forme fermée oc de degré p
sont nulles, (<%,/?) 0 quelle que soit la forme cofermée p de degré p. Ce dernier

théorème résulte d'une proposition générale [10 et 11] d'après
laquelle les périodes du produit de deux formes fermées sont des fonctions
bilinéaires des périodes fondamentales de ces dernières (en appliquant
cette proposition à la forme tx fi* dont (oc, /?) est une période, on obtient le
théorème C). Admettons-le. Si alors oc est une forme harmonique à

périodes nulles, (oc ,oc) 0 et par suite l'unicité est établie.

Voici maintenant comment B se déduit de H et C. Soit une forme
fermée à périodes nulles. D'après le théorème de décomposition, oc —

<*i +^3Î <*3 étant harmonique et à périodes nulles, ocz 0. Par suite
oc ax qui est homologue à zéro.

Remarque 2. Le complément au théorème H, énoncé ci-dessus, d'après
lequel le nombre des formes harmoniques de degré p linéairement
indépendantes est fini, et qui sera établi au chapitre IV sans faire usage de A,
B ni C, est inclus dans le corollaire au théorème de Hodge, qui nous dit
que ce nombre est égal à Rv. Mais les raisonnements faits pour établir
l'unicité, basés uniquement sur B ou sur C et ne faisant pas intervenir
le théorème H, nous montrent déjà que ce nombre est au plus égal à Rp.
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CHAPITRE II
LA PARAMÉTRIX ET LES FORMULES I ET II

6. Définition de la paramétrix. Enoncé des formules I et II
Nous appellerons fonction distance (cf Hodge[8], p 119—122), sur

l'espace de Riemann V, une fonction r(x,y) de deux points de F satis
faisant aux conditions suivantes

1° r(x y) — r(y x) > 0 pour x ^ y r(x x) 0

2° r2(x, y) est fonction de classe C2

3° Les coordonnées de x et y étant, relativement à un même système,
x1 xn, y1 yn, la fonction

se réduit, pour x y dans le domaine du système, au coefficient gl0 de
la forme quadratique fondamentale ds2

Ati, (z,x) gt, (x)

La condition 3°, qui est invariante vis-à-vis des changements de
coordonnées, signifie simplement, comme cela résulte des propriétés
établies plus loin, que lorsque y est infiniment voisin de x, r (x, y) est égal
a la longueur ds de Tare xy

Dans l'espace euclidien, la distance euclidienne est une fonction
distance Dans un espace de Riemann clos de classe Cv, pour v assez grand,
l'existence d'une fonction distance sera établie plus loin

Définition de la paramétrix

Soient x1 et y^ les coordonnées de x et y, relativement à deux systèmes
en général distincts Pour y et y fixés, les n fonctions

A i 32^2)

sont les composantes d'un vecteur covariant lié à #, pour i qï x fixés,
on a les composantes d'un vecteur covariant hé à y Nous dirons que les

At3 sont les composantes d'un double vecteur covariant, lié aux deux
points x et y

17
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Nous dirons plus généralement que les Q2 fonctions

l»l.Jl • • • A.

sont les composantes d'un double p-vecteur covariant lié aux deux points x
et y, et nous appellerons paramétrix de degré p la forme de degré p tant
en x qu'en y

pour n > 2. Pour n 2, le facteur -^ doit être remplacé par log -
Il est clair que cette forme est complètement déterminée par la fonction

distance r(x,y).
Dans l'espace euclidien, r étant la distance euclidienne,

àl Ati tp_H .)p à{\ l et, pour n > 2

Le but de ce chapitre est d'établir les formules I et II ci-dessous:

$cop(x,y)[Aoc(y)]* Soc(y)[Avœ9(x9y)]* - koc(x) (I)

A$œp(x,y)[i*(y) $Axcop(x,y) • p*(y) — Jeju(x) (II)

a et /a désignent des formes quelconques de degré p, oc de classe C2 et fi
de classe C1; * désigne l'adjointe relativement k y et Je n(n — 2)Jcn, Jcn

étant le contenu de la sphère de rayon un dans l'espace euclidien à n
dimensions.
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Nous supposerons n > 2 ; les modifications qu'il y aurait lieu
d'apporter aux démonstrations pour n — 2 étant presque évidentes, nous
n'y insisterons pas.

7. Fonctions distances et métriques osculatrices

Sur tout espace de Riemann clos de classe O3, on peut construire une
fonction distance de la manière suivante. Soit q{x,y) la borne inférieure
des longueurs des arcs de courbe joignant les points x et y. On sait qu'il
existe alors un nombre positif e tel que, si g(x,y) ^e, les points x et

y sont les extrémités d'un arc de géodésique de longueur g(x,y) et
d'un seul, et la fonction g2 (x, y) est de classe C2 pourg(#, y) <e. Soit
alors F(t) une fonction de la variable réelle t, de classe C°°, non
décroissante, égale à t pour 0^£^| et à £e pour t > e. (On sait
construire une telle fonction.) La fonction F(g(x,y)) est alors une fonction
distance, comme on le vérifie aisément.

Remarquons que, si l'espace de Riemann est de classe C°° ou Ow, la
fonction distance ainsi construite est de classe C°°. Si l'espace de Riemann
consiste en une variété régulière plongée dans un espace euclidien à N > n
dimensions, la distance euclidienne (relativement à l'espace ambiant) de
deux points de la variété fournit une fonction distance.

Pour établir quelques propriétés de la fonction distance, nous supposerons

que x et y restent dans le domaine d'un même système de
coordonnées. A — —-|r2 (x, y) est alors fonction des 2 n coordonnées xx et y1
de x et y relativement à ce système. Nous désignerons, dans ce No.
uniquement, les dérivées partielles de cette fonction jusqu'à l'ordre 3 en affectant

la lettre A des indices des variables par rapport auxquelles s'est faite
la dérivation, les indices des variables x étant placés à gauche et ceux des

variables y à droite d'une virgule. Ainsi:

A -M A -M A - d*A
A - dA

x>~~d* ' >~9^ ' A^~d*di ' Aii*- d^^d* > '

La signification de At concorde avec celle donnée ci-dessus. Les dérivées
d'ordre ^ 4 n'intervenant pas dans la suite, aucune confusion n'est à

craindre au sujet des symboles tels que At^kl qui désigneront toujours
les déterminants introduits plus haut.

La fonction A étant maxima pour y x, on a :

At (x,x) 0 et Atl(x,x) 0.
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En dérivant ces identités par rapport à x7, on obtient:

A%h(x,x) + A%i,(x,x) 0 et Ah%(x,x) + At%J(x,x) 0

La symétrie de r(x ,y) entraîne d'ailleurs A%1(x,x) A? (x,x) Il en
résulte les identités.

A,,(*>*) — AJX>X) — \i(x>x) ^fW(»»«) •

Considérons la fonction

les identités ci-dessus montrent que cette fonction qui est définie dans
le domaine du système de coordonnées envisagé, s'annule ainsi que ses

dérivées premières pour y x. Son développement par la formule de

Taylor autour du point y suivant les puissances des xl — y% ne contient
par suite pas de terme de degré inférieur à 2 II en résulte que l'on a.

dr _ dr 8(x,y) S(x,y)
9&-~dtf + Tfc) ' M^) tan b° {)

Métrique euclidienne osculatrice. On dit que les métriques définies par
les éléments linéaires

ds2 £gl3 dx* d& et ds* J£ gl3 dx% dx>

sont osculatrices en un point, si, en ce point,

g%>= y** et ë^M (pour tous li^k) -

Comme on le vérifie aisément, ces relations sont invariantes vis-à-vis
de tout changement du système de coordonnées.

On sait qu'il existe des métriques euclidiennes, définies au voisinage
d'un point z quelconque, occulatrices en ce point à la métrique rieman-
nienne donnée (voir[l], p. 94—96; [9], p. 82—87).

Théorème. Soit r(x ,y) la distance euclidienne des points x et y relativement

à une métrique euclidienne osculatrice à la métrique donnée au
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point z de coordonnées z1,..., zn ; le développement taylorien de la fonction

r2(x, y)— r2(x, y) autour du point z, suivant les puissances des

y1 — z1 et des xl — z1, ne contient pas de termes de degré inférieur à 4.

Démonstration, Nous pouvons supposer le système de coordonnées tel
que l'élément linéaire de la métrique euclidienne osculatrice se réduise à

ds2 __ jg (dx1)2 Un tel système de coordonnées est dit gêodésique au

point z.

On a alors gt3 ff% identiquement et gt} ô\ ^t 0 au point z.

Comme

en tenant compte des identités (1) appliquées au point z, on voit que
dans le développement taylorien de r2(x,y), où les termes de degré 0

et 1 manquent évidemment, les termes du second degré se réduisent à

r2(x,y) Pour achever la démonstration, il suffira par suite de prouver
que toutes les dérivées troisièmes de r2 (x, y), ouA(x,y), s'annulent pour
x y z.

En dérivant par rapport à xk l'identité (1) et remarquant que

il vient

Aijjc, + Al}k -4t*,j AtJk Aktti + Atoh 0

pour x y z

La symétrie de A(x,y) entraîne d'autre part

At>k, A,»k et \ok A3jc,t pour y x

Il en résulte en particulier Atk} — A^3k — A3kt — AkJ^ et par
permutation circulaire Atk } —AkJ^ An k —Alk3 0 et l'on
voit que toutes les dérivées troisièmes s'annulent pour x — y — z

Remarque. Il résulte de ce théorème que si rx(x,y) et r2(x,y) sont
des fonctions distances associées à deux métriques osculatrices au point z,

rl(x,y) — rl(%>y) s'annule ainsi que ses dérivées jusqu'à l'ordre trois
inclusivement pour x y z
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8. L'opérateur A dans l'espace euclidien

Théorème. Soient x1, x2,..., xn un système de coordonnées rectangulaires

dans l'espace euclidien, de manière que ds2 J£ (dx1)2 et
i

<x — JS Ati %
dx*1... dxtp une forme de degré p, de classe C2. On a

Aoc= V^
Démonstration. Dans l'espace euclidien, comme gl3= g11 à\ on a,

ix... iv, iP+i-.. in étant une permutation paire de 12...%,

[d^1... dx1?]* dxlv+1... dxln

En désignant par ^-- la forme qui se déduit de a en remplaçant chaque
ox

coefficient par sa dérivée partielle par rapport à a;1, on peut représenter
l'opérateur d par l'expression

L'opérateur — dx1 indique que la forme doit être d'abord multipliée

à gauche par dx1, et ensuite soumise à l'opération r-^ Les deux opérations

sont d'ailleurs permutables.

—- dx1 dx1 ^—dx1 dx1

Dans l'espace euclidien, l'opération ^—% est permutable avec l'opération

qui consiste à prendre l'adjointe à une forme:

doc*
__

/doc\*
dx1 ~ [dx1) '

Ce fait, comme on le vérifie immédiatement, est lié à la constance des
coefficients gl3 du ds2 et il n'a pas lieu dans un espace qui n'est pas
euclidien.
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En désignant par 0*oc la forme (dxJoc*)* qui se déduit de oc en prenant
l'adjointe de la forme obtenue en multipliant <%* à gauche par dx7, on
peut représenter l'opérateur ô, dans l'espace euclidien, par l'expression

II résulte de là que, dans l'espace euclidien, l'opérateur (—
ôd -f- (— \)ndè est représenté par l'expression

(3)

Considérons une forme monôme de degré p, par exemple

^ dxldx2. ..dxP

On a, en remarquant que la permutation (1, p + 1,... n 2 p) est

paire ou impaire selon que (— \)np+n _ _|_ j ou —i ^

p dxn rfa;1 /i* dx1

O1fj, (— l)n*>+ndx2. ..dx» (— l^+M

D'une manière analogue, on obtient les relations:

(— l)n*>+ndxldl/Li fx si i < ^ y ^ sî * > P

(— l)nPdldxljLt 0 si i < p y ^ sî * > P

d'où résulte

[(_ ljnpgt^a* -f (_ 1)»p

quel que soit i.
L'opérateur qui intervient ici étant linéaire et permutable avec la

multiplication par une fonction (variable ou constante), cette formule
s'applique à une forme quelconque de degré p:

[6ldxl + (— l)ndxl6%](K (— l)npoc (4)

Ensuite, si i =£ j, on a

dxl6? \a — fydx%n 0 si i ^ p ou si j > p
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Pour i > p, dxWfi (— l)n^)+ndxidx2... dx* >

61dxiju — (— \)n^dxldx2, ..dx*>,
d'où résulte 61dxifjL + (— l^dx^ju 0

et d'une manière plus générale, pour i > p et j ^. p:

O^dx^ + (— l^dxWju 0

Cette formule est encore valable si i ^ p ou si j > p, les deux termes
étant alors nuls. On en déduit, pour une forme quelconque oc de degré p,

[(Pàrf + (— l)w(fa*0*]<* 0 pour i yé: j (5)

La formule à démontrer résulte immédiatement de (3), (4) et (5), en
remarquant que les opérateurs qui interviennent dans (4) et (5) sont

d2
permutables avec l'opérateur {

9. L'opérateur A dans l'espace riemannien

Soit z un point donné de l'espace de Riemann. Nous dirons qu'une
fonction f(x), définie et continue au voisinage de z, est d'ordre k, si

f(x)
J; ' est bornée au voisinage de z. Si k > 0, f(x) s'annule évidemment

rK (x, z)

au point z, tandis qu'elle peut y être infinie si k < 0.

Nous dirons aussi que K(x,z) appartient à l'exposant h, si K{xyz) est
d'ordre — h.

Soient xx,...,xn des coordonnées géodésiques en 2. La métrique
euclidienne définie par de2 J£ (dx1)2 étant osculatrice à la métrique

i
donnée, définie par ds2 J£ giidxidxj, il résulte du No. 7 que les fonc-

tions gij(x) — S^ sont d'ordre 2. Cela entraîne que, g étant le déterminant
19at II 9 — 1

> V^— 1
> 01' — &i son^ aussi d'ordre 2, comme on le vérifie

en considérant les développements du déterminant g et de ses mineurs.

Soit oc £ A{ t- dxix... dx1* une forme de degré p, définie au
(n...t'p) 1"' P

voisinage de z. Nous désignerons par oc* l'adjointe à oc relativement à la
métrique euclidienne:

oc"* J£ Ah iv dx{p+i... dxin
(ii...<p)

(où i3H.1... in sont tels que ^... in est une permutation paire de 12... n).
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Nous désignerons encore par ô et A les opérateurs ô et A définis à

partir de la métrique euclidienne: ôoc (doc*)*

Z (— 1 )n*àd + (— l)n*>+ndd

Nous nous proposons de comparer les formes oc et oc* ôoc et doc, zl& et
^d#, au voisinage de z.

Les coefficients de a*, d'après la formule de définition (1) chap. I
No. 2, sont des combinaisons linéaires homogènes des coefficients
A Ati { de oc ; les coefficients des A dans ces combinaisons sont des

fonctions des gt3, polynômes en les gt} multipliés par une puissance
de g. La forme oc* se déduit de oc* en remplaçant, dans ces fonctions,
gt} par ô\. Par suite:

les coefficients de la forme oc*—oc* sont des combinaisons linéaires homogènes

des coefficients A de oc; dans ces combinaisons, les coefficients des A
sont des fonctions G2 formées avec les gl}, qui sont d'ordre 2.

Ces derniers coefficients sont donc des sommes de termes de la forme
G2A.

Les coefficients de d(oc* — oc*) sont par suite des sommes de termes de

la forme 6?2^—^ et yf-4> et les coefficients de [d(oc*—oc*]* des sommes

de termes de la forme G2^—i e^ ®\A > °ù $1 est une fonction d'ordre 1,

formée avec les gl} et leurs dérivées premières.

D'autre part, les coefficients de oc* n'étant autres que les A, ceux de

doc* sont, comme ceux de doc, des sommes de termes de la forme w—., et
oxl

ceux de (doc*)* — (doc*)* des sommes de termes de la forme G2 ^ Par

suite, comme ôoc — doc [d(oc* — oc*)]* + (doc*)* — (doc*)*

les coefficients de ôoc — <5& sont des sommes de termes de la forme O2 ^-{
et GXA

X

En remplaçant oc par doc, on voit que les coefficients de ôdoc — ôdoc

sont des sommes de termes de la forme G2 ._ et G, ^— et les coeffi-
oxlox7 oxx

— d2A
cients de dôoc — dôoc sont des sommes de termes de la forme G2 ~ ,_ :
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dA
Gi -^—%

et G0A, Go désignant une fonction d'ordre 0, formée avec les gl3

et leurs dérivées premières et secondes. Par suite:

Les coefficients de Aoc — Aoc sont des sommes de termes de la forme GqA

GdA et G
d2A

Les fonctions Gx et G2 s'annulant au point x z, seuls subsistent en
ce point les termes de la forme G0A. Les coefficients de Aoc — Aoc se

réduisent donc, pour x z, à des combinaisons linéaires des coefficients de oc.

Si l'on pose Aoc — Aoc J£ Bki k dxkl...dxkv, on peut écrire

les G%1 ' lp étant les fonctions désignées ci-dessus par Go, fonctions
K\ .Kp

construites algébriquement avec les gt0 et leurs dérivées premières et
secondes, qu'il est inutile d'expliciter ici.

10. Etude de cop(x,y) au voisinage d'un point

Désignons par <àv{x,y) la paramétrix de degré p, définie, pour x et y
voisins d'un point donné z, à partir de la distance euclidienne r(x,y) de

x et y, relativement à une métrique euclidienne osculatrice au point z.

Lemme 1. Pour y z, les coefficients de coP(x,y) — ïï>P(%,y) considérés

comme fonctions de x, sont d'ordre 4 — n, et leurs dérivées premières
et secondes sont respectivement d'ordres 3 — n et 2 — n.

L'ordre maximum des coefficients d'une forme, ainsi que celui de
leurs dérivées premières ou secondes, ne dépendant pas du système de
coordonnées, nous pouvons utiliser un système de coordonnées géodé-
siques au point z, de manière que

Du théorème du No. 7, il résulte que, pour y z,r2— r2 est d'ordre 4,

r — r d'ordre 3, At} — &% et par suite A%1
# %piJl ?p—

tf* 7* d'ordre 2.
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Les coefficients de œp(x,y)— œv(x,y) étant

^H-- ip,7i- Jp H" lp

notre lemme résulte immédiatement de là.

Lemme 2. Pour y z, les coefficients de ôxa>p(xfy)— ôxcôp(x,y) et
{dxcop(x,yj)* — (dx~â)p(x,y))* sont d'ordre 3 — n.

Ecrivons œ pour a>p(x,y) et cô pour 7ôp(x,y) et convenons que les

opérations d, ô, ô, *, * doivent être effectués par rapport à x.

On a ôco — ôTô — ô(co — cô) + (ô — ô)œ. Il résulte du lemme 1 que
les coefficients de ô(co — œ) sont d'ordre 3 — n. D'autre part, d'après le
No. 4, les coefficients de o> étant d'ordre 2 — n et leurs dérivées
premières d'ordre 1 — n, les coefficients de (à — ô)"ô) sont d'ordre 3 — n,
ce qui établit la première affirmation.

On a ensuite (dœ)* — (dœj* [d(a> — œ)]* + [(dcô)* — (dlô)*]. Les
coefficients de[d(co — cô)]* sont d'ordre 3 — n d'après le lemme 1, et
d'après le No. 4 ceux de (dcô)* — (rfëô)* sont aussi d'ordre 3 — n, ce qui
achève la démonstration.

En raisonnant de la même manière, on voit que les coefficients de
dôco — dÔc3 et de ôdco — &#*> sont d'ordre 2 — n. Il en est donc de même

pour la forme Aco — Acô, c'est-à-dire pour Aco, puisque 2fct> 0 (d'après
le No. 8). Le point z pouvant être choisi arbitrairement, nous avons ainsi
prouvé le théorème suivant:

Théorème. La forme AxœP{x,y) appartient à Vexposant n — 2.

11. La formule I.

Soient oc et p deux formes de degré p et de classe C2. En remplaçant,
dans la formule (2) du chap. I (No. 4), d'abord /j, par oc et v par dp,
ensuite ju par p et v par doc, et retranchant membre à membre les égalités
obtenues, il vient

En remplaçant, dans la même formule, d'abord /u par doc et v par p
(qui sont des formes de degrés p — 1 et p respectivement), ensuite \i
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par dp et v par oc, et retranchant membre à membre les égalités obtenues,
on obtient une relation qui peut s'écrire

— <*(ddp)*]

De ces deux relations résulte enfin, comme A (—

+oc*ôp — p*âoc] *(Ap)* — p(A<x)* (7)

Désignons maintenant par Z la sphère de centre y et de rayon q (au
sens de la métrique euclidienne osculatrice au point y), définie par l'équation

J£ (x1 — y*1)2 g2, et soient Dx l'intérieur et D2 l'extérieur de S.
i

Dans la formule (7), remplaçons p par co cop(x,y) en considérant x
comme le point variable, le point y étant fixe et les (£) produits
extérieurs dyix.. .dy^ ayant des valeurs numériques déterminées, composantes

d'un ^-vecteur contravariant lié au point y. Les formes oo

cop(x,y) et oc oc(x) étant de classe C2 dans D2, la formule de Stokes

peut être appliquée à la relation ainsi déduite de (7) et donne, en
supposant £ orientée positivement par rapport àD1; et par suite négativement

par rapport à D2 :

$ot(Aœ)* — co(Aot)* —$oc(dco)* — co(doc)* + oc*ôco — oo*ôoc. (8)

La formule cherchée va résulter de (8) en faisant tendre g vers zéro.
La limite du premier membre est

$<x(Aco)* — <d(Aoc)*

intégrale qui a un sens puisque a> a)p(x ,y) et Aœ Axcop(x,y)
appartiennent à l'exposant n — 2.

La limite du second membre va être calculée en utilisant les résultats
du No. 10 et le lemme élémentaire ci-dessous.

Lemme. Si les coefficients de la forme fi(x) de degré n — 1, définie au
voisinage de y, sont d'ordre 2 — n (au sens du No. 9, pour y z)

lim J fx(x) 0

II suffit, pour la démonstration, de considérer le cas où ju(x) est une
forme monôme, soit par exemple fj,(x) m(x)dx2dxz.. ,dxn. En dé-
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signant par dS l'élément d'aire à (n— 1) dimensions de 27, par r le
cosinus de l'angle formé par la normale à E dirigée vers l'extérieur avec
l'axe des x1 (ces grandeurs évaluées relativement à la métrique
euclidienne osculatrice en y), on a

$m{x)ydZ

d'où résulte, MQ étant la borne supérieure de | m(x) | sur Z et lcQn~l

l'aire de Z

Mo
et comme -r-^- est borné, le lemme est établi.

Q

Les coefficients des formes m {doc)* et co*ôoc étant d'ordre 2 — n,
comme ceux de co, en vertu du lemme:

lim J a)(doc)* -f- co*ôoc 0

Les coefficients de ôœ — Ôœ et de (dco)* — (ciïô)* étant d'ordre 3 — n
(No. 10), on a

lim J oc(dœ)* + oc*ôco lim J oc(dû>)* -f- oc* Ôcô

Désignons par oco la forme à coefficients constants, égaux aux coefficients

correspondants de oc au point y. oc étant de classe C1, les formes

a—oc0 et oc*—oco* sont d'ordre 1 et les formes oc(djcô)*~—oco(dtô)* et
oc*8œ —oco* TOêô d'ordre 2 — n. Par suite, en vertu du lemme, la dernière
limite ci-dessus est égale à celle de

J — J oco(dtô)* -f- oc£ Sôô

2

Or, comme nous allons le voir, J est indépendant de q et vaut
—n(n—%)knoc(y) kn désignant le contenu de la sphère à n dimensions
de rayon 1 dans l'espace euclidien. Ce résultat étant admis, la formule (8)
devient à la limite pour q 0

J oc(Aco)* — co(Aoc)* Jcoc(y)

où k n(n — 2)kn C'est justement la formule I.
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Calcul de Vintégrale J. Pour simplifier récriture, nous écrirons

J $<x(dco)* +<x*ôco

en convenant que oc oc(x) est à coefficients constants, que co coP(x,y)
est la forme relative à l'espace euclidien et que les opérations * et ô se

rapportent aussi à l'espace euclidien. Nous conviendrons aussi que le

point fixe y est à l'origine des coordonnées, de sorte que y* — 0 (mais
naturellement les produits extérieurs dyil...dyiv ne sont pas nuls).

Comme r(x,y) g sur S (g désignant ici la distance euclidienne), on a

J ~ f ocrn(dœ)* + oc*rnô(o (9)

2

Pour calculer cette dernière intégrale, nous la transformerons par la
formule de Stokes en une intégrale étendue à Dx

De l'expression de co dans l'espace euclidien (No. 6), on déduit:

rndœ (2 — n) J£ J£ xi (dxidxil... dx*p) (dyil.. dy^)

ix,..., ip étant donnés, convenons de choisir ip+1,..., in de manière que
ix,..., in soit une permutation paire de 1 n. Dans la sommation
J£ ci-dessus, il suffit d'attribuer à i les valeurs ip+1,..., in les termes

s'annulant pour i ix,..., ip. En prenant l'adjointe, il vient:

rn (dcu)* (2 — n) X -S — l)*"1»**(dx***1.. dxik~*dxik+*... dx**

d'où résulte

d[rw(do>)*] (2 - n) (» — p) (— 1)» i; (dte**+1.
(H...ip)

On a aussi, d'après l'expression de co*

rndco* (2 — n) ^ ^ tfidxidx****... fe
(<i...ip) <

Dans la sommation J£> ^ suffit ici d'attribuer à i les valeurs il9.. ,,i9.
i

En prenant l'adjointe, il vient
p

rnôco (2 — w) JS ^ (— l)»»+»+*-1aj*(d^1. dx^dx1**1... dx**) {dyh...
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d'où résulte

d[rnôœ] (2 — n)p{— l)vn+n J£ {dxlK dxlv
(h ip)

Posons maintenant oc ]£ atl t
dœ11. .dx1? On obtient, selon

les règles du calcul extérieur,

(d(o)*] (2-n)(n—p)(-l)p J£ a t (dxl1. dx

(2 — n){n — p)(— I)*oc(y)(dz1...dxn) (10)

On obtient encore, comme a* X a«1 t ^*p+1.. dxln

(2—w)p(— l)*>n+n £ aH %v(dx%r>+K ,.dxlndxH.

(2 — n)p(—l)n+*>ot(y)(dx1...dxn) (11)

De (10) et (11), il résulte que la différentielle de la forme figurant sous
le signe J dans (9) est

d[ocrn(dco)* +oc*rnôco] (—l)»<xd[rn{dco)*] + (— l)n-*>oc*d[rnôœ]

(2 — n)noc(y)(dxl...dxn)

D'après la formule de Stokes, l'intégrale figurant dans (9) est égale à

l'intégrale de cette dernière forme étendue à Dx, soit à (2 — n) noc (y) kn qn,
d'où le résultat annoncé

J (2 — n)nknoc(y)

12. La formule II
Lemme 1. Soit h(x,y) une fonction des deux points x et y, continue

Ji (x î/^
pour x ^ y, telle que n

^ \ soit bornée en valeur absolue, et que,

étant donné un système de coordonnées de domaine D relativement
auquel les coordonnées de x sont x1,..., xn, quels que soient x dans D

dh(x,y) 1 dh(x,y)et y, —^—— soit continue pour x ^ y et — r —^—— bornée en
dx% ^n""1(»,y) dx%
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valeur absolue. Alors, la fonction A (x) §h(x, y)l* est continue ainsi

que ses dérivées premières, et i / —J: iÎJI 1* pour # dans D.

Ce lemme est une proposition classique de la théorie du potentiel,
dans le cas où la variété envisagée est un domaine borné de l'espace
euclidien et où r(x,y) est la distance euclidienne. Les méthodes connues
de démonstration s'adaptent sans difficulté au cas envisagé ici.

Considérons par exemple un arc L, contenu dans D, sur lequel seule la
coordonnée xl varie. On peut enfermer L dans une surface Z, dont
l'intérieur Dx a un volume e aussi petit qu'on veut. Soit D2 l'extérieur de E.
La fonction de x, Ae(x) § h(x,y)l* est évidemment continue pour x

sur L ainsi que
dA£(x) _ fdxi J dxi

et comme pour e -> 0 les intégrales ci-dessus tendent uniformément pour
x sur L vers les intégrales correspondantes étendues à toute la variété,
ainsi qu'on le vérifie aisément, l'affirmation du lemme résulte d'un
théorème classique du calcul intégral.

Lemme 2. Soit F(x,y) une fonction des deux points x et y, continue
ainsi que ses dérivées premières. La fonction

dh(x,y)
v

(x)- f F{*)- J r«-

est continue ainsi que ses dérivées premières et secondes. D2 étant
l'extérieur de la sphère Z de centre z et de rayon q, définie relativement à

une métrique euclidienne osculatrice en z, et le système de coordonnées
utilisé au voisinage de z étant géodésique en ce point, on a

a2 F(z,y)

Démonstration, z étant un point quelconque de V, choisi une fois

pour toutes, S la sphère de centre z et de rayon q, définie relativement à

une métrique euclidienne osculatrice en z, Dt l'intérieur et Z>2 l'extérieur
de 27, nous supposons g assez petit pour que D± et U soient contenus dans

le domaine d'un système de coordonnées géodésique au point z, choisi

une fois pour toutes. Le point x, de coordonnées x1,. xn sera
supposé dans Dx.
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D'après le lemme 1, A (x) est continue ainsi que ses dérivées premières,
et Ton peut écrire

dAi+ f a, f (*>y> i* f \ l^y) x* (12)

Le second terme au second membre de (12) possède une dérivée
continue par rapport à xj pour x dans D1, la dérivation sous le signe J étant
licite.

En tenant compte de la relation (2) (No. 7), relation qu'on peut écrire

dxl dyi
où

T^Tlr «\ 8{x'y}
'U> r*(x,y)

est bornée, on obtient

d F „ 9

Cela permet de transformer par intégration partielle le premier terme
au second membre de (12). On a en effet

d'où résulte

2>i

V

#1 (15)

et (12), (14) et (15) entraînent
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avec

Pour x dans Dl9 chacune des trois intégrales au second membre de

(16) admet une dérivée continue par rapport à xj que Ton obtient en
dérivant sous le signe J. En effet, seule la seconde est une intégrale
généralisée, à laquelle le lemme 1 est applicable. Uexistence et la conti-

d2A
nuité de _ _ sont ainsi établies.

dxldx}

Pour obtenir l'expression cherchée de cette dérivée au point x z,
considérons d'abord le premier terme au second membre de (16). En
tenant compte de (13), on a

dxj rn~2

En désignant encore par r r (z,y) la distance euclidienne de z et y,
r2 J£ (z{ — y1)2, on sait que r2(z,y)—r2(z,y) est d'ordre 4 et

i
dr - dr

r——, — r -—. d ordre 3.
dyJ a y1

_ fi?
Comme r ^—- yj — ^, en remarquant que F(z ,y) — F(z,z) est

d'ordre 1 et \/g — 1 d'ordre 2, on voit que l'on a

les termes non écrits étant d'ordre ^2 — n

En utilisant le lemme du No. 11, on en déduit que la dérivée par
rapport à xJ' du premier terme au second membre de (16), calculée pour
x z, a la même limite pour g 0 que

(-l)i(n- 2)F(z,z)
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Cette dernière intégrale se calcule immédiatement et sa valeur ne
dépend pas de g. En mettant

rn(y,z) gn

en évidence et appliquant la formule de Stokes, en vertu de

d(yi — z^dy1.. .dy^dy1*1.. .dyn <5J (— ly^dy1. ..dyn

on obtient pour la limite cherchée la valeur

ô>%F(z,z)kn(2 — n)

En remarquant que la dérivée par rapport à x7 du deuxième terme
au second membre de (16), calculée pour x z, tend vers zéro avec g,

on obtient finalement l'expression cherchée de -—^—~
ldx%dx'jXwKg

Théorème. Soit ju une forme de degré p, de classe C1. La forme

oc(x) =$u)(x,y)[**(y)

est de classe C2 et satisfait à Véquation

$ (II)

où h n(n — 2)&n, lcn étant le contenu de la sphère à n dimensions de

rayon 1.

Démonstration.

Posons fi (y) £ M%1 lpdyl*.. dy%v
(H ip)

En tenant compte de l'expression de co coP(x,y) (No. 6), on a, en
posant

Fkl kp{x,y) S Aki ^hp%Hm tp(x

(il *p)

En posant encore Âki tmtp(x) J **nJ(x ^ K » on Peut écrire

35



*(*)= Z Aki_kdx*"...dxkv
(*i...*p)

et d'après les lemmes 1 et 2 les coefficients Aki^ k ont des dérivées

premières et secondes continues.

Nous nous proposons de calculer les coefficients Cki k de

Aoc £ Ck k dxkl...dxkv

en un point x ~ z, en supposant le système de coordonnées géodésique
en ce point.

En tenant compte de l'expression des coefficients de Aoc — Aoc

(formule (6), No. 9) et de celle de A (qui est celle de A donnée No. 8), on a

.1
" p\ '

Or, le lemme 2 étant applicable à l'intégrale Ak k (x), on a

d'où résulte, comme i^. k (z,z) Mk k (z,z) (d'après la définition
de **!...*„ ' Parce ^J f

lim
I>2 i L J

L'expression { • • • }x==z sous le signe J, n'est pas autre chose que le
coefficient de dx*1.. .d^ dans la forme Axcov(x,y)iJ,*(y), calculé pour
x z. Comme il est d'ordre 2 — n (No. 10), il est intégrable par rapport
à y et lim J peut être remplacé par f. En multipliant par dxkl... dxkv

e=-0D2

et sommant, il vient

Le point 2 étant un point quelconque relativement aux opérations qui
interviennent dans cette formule, on peut le remplacer par x et l'on a
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la formule que nous voulions établir, la formule II,

Aoc(x) —Jcjll(x) + $Axœ{x,y)/ji*(y)

où k n(n — 2)&w, kn contenu de la sphère de rayon 1 dans l'espace
euclidien à n dimensions.

CHAPITRE III
DÉMONSTRATION DU THÉORÈME H

13. Les théorèmes de Fredholm pour une équation intégrale portant sur
une forme différentielle

Soit K(x,y) une forme de degré p en x et de même degré p en y, définie
sur l'espace de Riemann clos et orientable à n dimensions F. Nous
considérons l'équation intégrale

v(z) — X$K(x,y)ip*(y) f(z) (1)

où f(x) est une forme donnée de degré p et cp (x) une forme inconnue de
même degré p.

A côté de (1), nous considérons aussi les deux équations homogènes
associées

fy)ip*(y) O (2)

x)v*(y) 0. (3)

Comme nous le montrons dans l'Appendice, la théorie de Fredholm
s'applique à l'équation (1), avec quelques petites modifications.

Disons qu'une forme différentielle, définie sur F, est bornée, si, étant
donnée une famille finie F de systèmes de coordonnées dont les domaines
recouvrent F, ses coefficients relativement à un système quelconque de
la famille F sont bornés. (Il est clair que cette définition est indépendante
de F.) La double forme K(x,y) sera dite bornée, si ses coefficients
relativement à un couple quelconque de systèmes de F sont bornés. Nous
dirons encore que K(x,y) appartient à Vexposant e, si la forme
r6 (x,y)K(x,y) est bornée (r désignant la fonction distance).

On a alors la proposition suivante (pour la démonstration, voir l'Appendice).
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Théorème F. La forme K(x,y) appartenant à un exposant e<n et

ayant des coefficients continus pour x ^ y, et X ayant une valeur numérique

déterminée, les deux équations homogènes (2) et (3) ont le même nombre,
toujours fini et pouvant se réduire à zéro, de solutions linéairement
indépendantes.

La condition nécessaire et suffisante pour que Véquation (1) soit possible
est que la forme f(x) soit orthogonale à toute solution de (3).

Remarquons que la forme sous le signe J dans (1) est égale à

<p(y)K(x,y), K(x,y) désignant la forme adjointe relativement à y de

K{x,y).

14. Démonstration du théorème H.

L'étude de l'équation
(4)

où ii et fi sont des formes différentielles de degré p sur l'espace de Rie-
mann F, qui nous conduira au théorème H énoncé au chap. I, No. 5,

va être faite suivant la méthode due à Hilbert et présentée par lui [4,

p. 219—232] dans le cas où F est la surface de la sphère ordinaire, (3 et ju
des fonctions sur cette surface (p 0), mais A étant, plus généralement
qu'ici, un opérateur différentiel linéaire du second ordre de type
elliptique.

Cette méthode est basée sur les formules I et II établies au chap. II,
énoncées No. 6, et sur l'étude de l'équation

$y) (5)

et des deux équations homogènes associées

-Jc/,(x) 0 (6)

— kp(x) 0 (7)

où a) o)p(x, y) est la paramétrix de degré p et le a la même signification
que dans les formules I et II du chapitre II. Comme dans ces formules,
* désigne l'adjointe relativement à y.

Le noyau Aya)(x,y) appartenant (d'après le théorème du No. 10) à

l'exposant n — 2, le théorème F s'applique. Le paramètre A a la valeur
iÀ i ¦
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Relation entre (4) et (5). En partant de (4), où l'on désigne par y le
point argument, prenant l'adjointe, multipliant à gauche par œ(x,y) et
intégrant, on obtient l'équation

S a>(x,y)[à,/*&)]*= $œ(x,y)p*(y) (5')

qui, en vertu de la formule I, est équivalente à (5). Donc: toute solution
de (4) satisfait à (5).

La réciproque n'est en général pas exacte. Mais si fx satisfait à (5), on
a (57) qui peut s'écrire

$co(x,y)[Aïf*(y)-p(y)]* 0

et qui exprime que A /ll — /? est orthogonale à la paramétrix.

Discussion des équations (6) et (7). En vertu de la formule I, (6) peut
se mettre sous la forme équivalente

5 (6')

et en vertu de la formule II, (7) est équivalente à

A $«>(x,y)v*(y) 0 (70

En introduisant l'opérateur Q défini par

Q ju Ja>(a,y) p*(y)

ces deux équations peuvent s'écrire encore

(67/) et

Parmi les solutions de (6), il y a toutes les formes harmoniques de

degré p, c'est-à-dire les formes /u, telles que A /u 0. D'après le théorème
F, l'équation (6) n'a qu'un nombre fini de solutions linéairement
indépendantes, par suite il n'y a qu'un nombre fini de formes harmoniques de

degré p linéairement indépendantes (nous avions établi ce fait par voie
topologique au No. 5, Remarque 2). Soit R ce dernier nombre, R + S le
nombre des solutions linéairement indépendantes de (6). On peut alors
trouver 8 solution de (6), 0lt..., <PS, dont aucune combinaison linéaire
à coefficients non tous nuls n'est harmonique.
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Les S formes X} A &3 (j 1,..., S) sont linéairement indépendantes,

car si elles ne l'étaient pas, il y aurait une combinaison linéaire
des 03 qui serait harmonique. Elles sont orthogonales à la paramétrix,
c'est-à-dire qu'elles satisfont à Q X} 0. Il peut y avoir encore d'autres
formes orthogonales à la paramétrix, mais comme elles satisfont à (7/;),

il n'y en a qu'un nombre fini de linéairement indépendantes. Soit 8 -f- s

ce nombre. On peut alors trouver s formes orthogonales à la paramétrix,

^,^2,...,^ qui constituent avec les X} un système complet de formes
linéairement indépendantes orthogonales à la paramétrix. Toutes ces

formes satisfont à (7), mais (7) peut admettre d'autres solutions.
Supposons que (7) admette t solutions dont aucune combinaison linéaire (à
coefficients non tous nuls) ne soit orthogonale à la paramétrix, soient

Les S + s + t formes X}, %t, qk constituent alors un système complet

de solutions linéairement indépendantes de (7).

Les t formes fk Qqk(k 1,..., t) sont linéairement indépendantes,
car si elles ne l'étaient pas, il y aurait une combinaison linéaire des qk

qui serait orthogonale à la paramétrix. Elles sont harmoniques, puisque
Afk 0. (6) et (7) ayant le même nombre de solutions linéairement
indépendantes, on &: S -{- s -{- t S -\- R, d'où R s -f- t. Par suite, on
peut trouver s formes harmoniques <px, ç>2 >. • •, <ps qui constituent avec
les fk un système complet de formes harmoniques linéairement indépendantes.

Les S + «5 + t formes &}, cpt, fk constituent alors un système
complet de solutions linéairement indépendantes de (6).

Nous pouvons résumer cette discussion dans le tableau suivant:

Solutions de (6)

Solutions de (7)

<Z>15..., 0S

A03 X3

xx,..., xs

formes harmoniques

Ç>! (ps

Xl 9 * * * > Xs

formes orthogonales à la paramétrix

/lvjf
aq> h

qi"'-qt

Discussion de Véquation (5). D'après le théorème F, la condition
nécessaire et suffisante pour la possibilité de (5) est que le second membre
soit orthogonal aux solutions de (7), soit aux formes X3, %t9 qk. Cela se

traduit par les équations
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(x) O {j=l,...,8) (8)

$$x) =0 (i=l,...,s) (9)

$$<a{x,y)p*{y)q*{x) 0 (4=1,...,«). (10)

Les conditions (8) et (9) sont satisfaites quelle que soit /? comme on le
voit en échangeant l'ordre des intégrations, parce que les formes Xs(x)
et Xl(x) sont orthogonales à la paramétrix. En vertu de la définition de

fk, les équations (10) peuvent se mettre sous la forme

Elles expriment que fi est orthogonale aux formes fk. Ce sont les conditions

nécessaires et suffisantes pour la possibilité de (5).

Discussion de Véquation (4). Supposons d'abord que fi soit orthogonale,
non pas à toutes les formes harmoniques, mais seulement aux formes fk.
Les conditions de possibilité (10') de (5) sont alors satisfaites. Soit [ix
une solution particulière de cette équation; la solution générale s'en
déduit par addition d'une solution quelconque de (6), soit d'une combinaison
linéaire quelconque des &3, <pz, fk.

D'après la remarque faite plus haut, A /^ — fi est orthogonale à la
paramétrix, et par suite égale à une combinaison linéaire de #i>" ••>#«>
Jf Xs :

La forme /u2 pix — Ci^i — • — Cs &s est aussi une solution de (5),
et comme X3 A &,

P Ci Xi H

Pour déterminer les constantes c1,..., c8, multiplions les deux membres
de cette dernière équation par <p* et intégrons. Il vient, en remarquant
que Aju2 est orthogonale à toutes les formes harmoniques, par suite à q?t

D'après la manière dont il a été obtenu, ce système de s équations
linéaires en les s inconnues cx,..., c8 admet toujours une solution, pourvu
que les conditions (10') soient remplies.
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Or, on peut disposer de /?, tout en respectant ces conditions, de manière

que les premiers membres de (11) aient des valeurs arbitrairement
données ax, a2,..., as. En effet, en supposant, comme il est permis de
le faire, que les formes cpt sont normées, orthogonales deux à deux et
orthogonales aux formes fk, la forme /? —a1cp1— • —a8(ps satisfait
aux conditions (10') et — J/? ç?* ax.

Cela entraîne que le déterminant du système (11), dont l'élément
général est J#fc ç>*, est différent de zéro. Les constantes cl5..., cs sont

par suite univoquement déterminées par (11).

En particulier, si p est orthogonale à toutes les formes harmoniques,
c'est-à-dire non seulement aux formes fk, mais aussi aux formes q>t, les

premiers membres des équations (11) étant tous nuls, les ct le sont aussi

et Ajbt2 /?: Véquation (1) admet une solution. Cette forme //2 satisfaisant
à (5), est de classe O2, pourvu que la paramétrix œ(x,y) soit de classe
C3 et /? de classe C2, chacune des deux intégrales figurant dans (5) étant
alors de classe C2 en x. Le théorème H est ainsi établi.

APPENDICE

SUR QUELQUES POINTS DE LA THÉORIE DES ÉQUATIONS

INTÉGRALES

1. Equations intégrales tensorielles

Si Xx,..., XN sont les composantes, relativement à un certain système
de coordonnées, d'un tenseur défini sur l'espace de Riemann à n dimensions

V, d'un certain type R caractérisé par une représentation linéaire
de degré N du groupe linéaire homogène à n variables, et si Y1,..., YN

sont les composantes relativement au même système d'un tenseur du
N

type contragrédient J2;, on sait que £ XiY1 est un invariant: c'est une

fonction définie sur V, indépendante de tout système de coordonnées.

Soit un double tenseur, du type R en x et du type R! en y, dont les

composantes K\ (x, y) sont, pour y et j fixés, les composantes d'un
tenseur du type jR en x, et pour x et i fixés, celles d'un tenseur du type R!
en y. Nous allons considérer l'équation intégrale
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Les <pt(x) sont les composantes d'un tenseur inconnu du type B, les ft(x)
celles d'un tenseur connu du même type, 1* l'élément de volume relatif
au point y, X le paramètre, et l'équation doit être vérifiée pour tout x et
tout i. Remarquons que x et i étant fixés, 2-fiTJ (x, y)q>3 (y) est un scalaire

j
en y, de sorte que l'intégrale a un sens parfaitement clair.

A côté de (1) se présentent les deux équations homogènes associées

o • (3)

Dans (3), les y)i(x) sont les composantes d'un tenseur du type Rf.

Fredholm a montré comment un système d'équations intégrales, de la
forme (1), se ramène à une seule équation, par l'artifice suivant. Soit W

une variété non connexe, constituée par N exemplaires de l'espace F.
A chaque point f de W correspond un point x de F et un indice i, le
numéro de l'exemplaire de F qui porte f, et la correspondance entre f et
les couples (x, i) est biunivoque. Soit rj le point de W qui correspond à

(y,j). En posant

i) <pt(x)

le système (1) se ramène à l'équation unique

Mais ce raisonnement suppose que l'on a affaire à des fonctions définies
individuellement sur l'espace F, et non à des tenseurs, et il ne semble

pas applicable dans ce dernier cas sauf pour les espaces F très
particuliers, dits parallélisables, où il existe n champs de vecteurs continus et
linéairement indépendants en chaque point.

Cependant, la théorie de Fredholm s'applique directement à l'équation

(1). On définit la déterminante D (A) et ses mineurs en posant

Kj»(xm,ym)
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où xx,..., xm, y1,..., ym sont 2 m points de F, rapportés à certains
systèmes de coordonnées, ix,..., im, j1,..., jm 2 m entiers compris entre 1

et N;

«> f.-f. 2

h=o "¦¦

1* l*h a0 1

(5)

(¦¦¦(. 2. K
^m «i
L ii

.1:

(6)

La convergence des séries (5) et (6) s'établit comme dans le cas habituel,
à l'aide du théorème de M. Hadamard, en supposant le tenseur noyau
K\{x,y) borné. (On dit qu'un tenseur est borné si, étant donnée une
famille finie F de système de coordonnées dont les domaines recouvrent F,
ses composantes relativement à un système quelconque de F sont
bornées; cette définition est indépendante de F.)

En apportant aux formules classiques de Fredholm la petite modification

qui consiste à adjoindre à chaque point variable sur V un entier
variable de 1 à JV, l'intégration sur V relativement au point étant accompagnée

toujours de la sommation de 1 à JV par rapport à l'entier, on
obtient la résolution de l'équation (1) lorsqu'elle est possible et les conditions
de cette possibilité:

Si D{X) ^ 0,(1) a une solution unique. Si D(X) 0, (2) et (3) ont le
même nombre, fini et positif, de solutions linéairement indépendantes,
et la condition de possibilité de (1) est que



pour toute solution ipl(x) de (3).

2. Equations de Fredholm portant sur une forme différentielle

Partons d'une double forme K (x, y), de degré p en x et de même degré p
en ?/. Ses coefficients sont les composantes KH % n (x ,y) d'un
double ^-vecteur, covariant en x et en y. Par le procédé d'élévation des

indices, en faisant intervenir la métrique riemannienne, on en déduit un
double p-vecteur covariant en x et contravariant en y, KH x

n Cp (x, y),
qui peut jouer le rôle de tenseur noyau.

L'équation (1) s'écrit alors

Oi ip)

En multipliant les deux membres par dxl1... dx1* et sommant par
rapport à (i1...ip), on obtient l'équation équivalente

9(x)- k$<p{y)K{z,y) f(z) (8)
où

et K(x,y) est la forme adjointe relativement à y de K(x,y).
La forme sous le signe J peut évidemment s'écrire encore K{x ,y)cp* (y).

L'équation (3), où intervient un p-vecteur contravariant en x, est

équivalente à une équation où intervient le p-vecteur associé covariant
en x, qui s'en déduit par abaissement des indices. En désignant par tp(x)
la forme différentielle correspondante, elle s'écrit

C'est l'équation associée à

<p(x) — X $K(xiy)cp*(y) 0. (10)
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La condition (7) s'écrit $f(x)y*(x) 0, elle exprime que f(x) et
y>(x) sont orthogonales.

Les théorèmes de Fredholm peuvent alors s'énoncer de la manière
suivante :

Si D(X) ^ 0, (8) possède une solution et une seule, (9) et (10) n'ont
pas d'autre solution que cp{x) 0 et y(x) 0

Si D{X) 0, (9) et (10) possèdent le même nombre m, fini et positif,
de solutions linéairement indépendantes ; la condition nécessaire et
suffisante pour que (8) possède une solution est que f(x) soit orthogonale à

toute solution de (9).

On peut énoncer ce résultat de la manière suivante, sans faire intervenir

explicitement D(A):

Les deux équations homogènes (9) et (10) ont le même nombre m, toujours
fini et pouvant se réduire à zéro, de solutions linéairement indépendantes.
La condition nécessaire et suffisante pour que (8) possède une solution est

que f(x) soit orthogonale à toute solution de (9).

Si m 0, aucune restriction n'est imposée à f(x). Si m > 0 et si

y>i(x),..., ipm(x) est un système de m solutions linéairement indépendantes

de (9), les conditions imposées à f(x) s'expriment par

$f(x)y,*(x) 0 (*=l,...,m)
Comme on sait, m est l'ordre du premier mineur de D(k) non identiquement

nul, et les solutions des équations (9) et (10) s'expriment par des

formules qu'il est inutile d'écrire ici, tout-à-fait analogues aux formules
classiques, à l'aide de D(X) et de ses mineurs.

Lorsque la forme noyau K(x,y) n'est pas bornée pour x y, les

séries (5) et (6) ne sont plus utilisables, leur convergence n'étant pas
assurée.

Toutefois, si K(x ,y) appartient à un exposant inférieur à n, l'énoncé
ci-dessus est encore valable. Ce fait, qui constitue le théorème F (No. 13,

chap. III), étant essentiel pour l'application que nous avons faite, nous
nous permettons de revenir sur sa démonstration, certains points ne nous
paraissant pas traités d'une manière tout-à-fait complète dans la plupart
des exposés classiques.

Lemme i. Si K(x ,y) et L(x ,y) appartiennent aux exposants ex et e2

{ex< n, e2< n)
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M{x,y)= $K(x,z)L(z,y)

appartient à l'exposant ex -f- e2 — n-

Nous pouvons supposer que x et y restent dans un domaine contenu avec
sa frontière dans le domaine D d'un système de coordonnées. En

désignant par V — D la portion de V extérieure à D, f K(x ,z)L(z ,y)

est évidemment une forme en x et y à coefficients bornés, puisque, lorsque

z reste dans V— D, les coefficients deK(x,z)L(z y) sont bornés. Il suffit

par suite de prouver que § K (x ,z)L(z ,y) est une forme qui appartient
D

à l'exposant e1 + ez — n. Soient x1.. ,xn y1.. .yn z1.. ,zn les
coordonnées de x, y et z dans le système choisi, de domaine D. Les coefficients

de la forme en a; et y JK(x ,z)L(z ,y) sont des sommes d'un nombre
D

fini de fonctions de x et y de la forme

$A(x,z) B(z,y) dz1.. ,dzn
D

où A(x, z) et B(z,y), coefficients des formes K (x z) et L (z y) respectivement,

sont des fonctions qui, par hypothèse, appartiennent aux exposants

ex et e2 respectivement, c'est-à-dire qu'elles sont comparables à

—; r et —; rectivement. Il suffit par suite, pour établir notre

/dz1 dzn
—-—y * est une fonction de x et yr*i(x,z)re*(z,y) *

D

qui appartient à l'exposant e1 -f e2 — n, et comme le choix de la fonction
distance n'importe pas, on peut supposer qu'elle se réduit à

i

La fin du raisonnement est classique (Cf. [3] p. 362—363), nous la
reproduisons néanmoins.

Soient Dr et Drr les portions de D où r(x,z)^.2r(x,y) et

r(x,z)^ 2r(x,y) respectivement (z est le point variable tandis que x
et y sont fixes). L'intégrale se décompose en deux, étendues à D\ et D".

Dans D7/, le rapport | ' reste compris entre \ et f ; l'intégrale éten-
T (X Z)

due à D" est par suite comparable à
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dz1... dzn

ou encore, en désignant par Je qu le volume de la sphère de rayon g dans

l'espace à n dimensions et par R un nombre tel que r(x,z) < R en tout
point z de D, à

R

Jcn J ^n~1-ei-e2^
2r(s,y)

ce qui est une fonction de x et y appartenant à l'exposant ex + e2 — n.

Quant à l'intégrale étendue à D'', une transformation homothétique
qui transforme la «sphère» Dr en une «sphère» Dx de même centre # et
de rayon un, la ramène à une intégrale de même forme étendue à Dx,
multipliée par [2r(x,y)]n~ei-e2 la nouvelle intégrale ayant une valeur finie
indépendante de r(#,?/). Le lemme est ainsi démontré.

Les noyaux itérés successifs de la forme noyau sont définis, pour
n 1, 2,..., par la formule

Kn(x,y)= §K(x9z)Kn^(i9y) Kx(x,y) K(x,y)

Lemme 2. K(x,y) étant un noyau appartenant à Vexposant e (e < n),
et X un nombre donné, il existe un entier positif j tel que le fème noyau itéré
ait des coefficients bornés et que, g3 étant une racine primitive jlème de

Vunité, aucune des j — 1 équations

*y) $ (* l,2,...,j —1) (11)

n'ait d'autre solution que la solution banale cp{x) 0.

D'après le lemme 1, K3(x,y) appartient à l'exposant j(e — n) + n.
Soit m le plus petit entier supérieur à Si j > m, j (e — n) + n < 0

n — e

et les coefficients de Ko {x, y) sont bornés. Nous pouvons ensuite supposer
A^O.

Remarquons que (11) entraîne

<p(x)-X»$m $<p(y)Km(x,*y) 0 (12)

et désignons par Dm{X) la série correspondant à la forme noyau Km(x,y),
série qui converge puisque Km(x,y) est à coefficients bornés.
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Si l'équation (11) est satisfaite par une forme cp (x) non identiquement
nulle, pour une certaine valeur de s, (12) ayant lieu, Xm g8™ est un zéro de

Dm(X). Si à chaque entier j > m correspondait un entier s tel que (11)
ait une solution non identiquement nulle, la fonction entière Dm(X)
admettrait alors une infinité de zéros de même module X m, les zéros
Xm£*m correspondant aux nombres j qui sont premiers étant nécessairement

distincts. La fonction Dm(X) serait par suite identiquement nulle, ce

qui est impossible puisque J5m(0) 1.

Démonstration du théorème F, "pour un noyau K(x,y) appartenant à un
exposant e<n. Supposons l'entier j choisi comme il est indiqué au
lemme 2. Les équations (10) et (9) ont alors respectivement les mêmes
solutions que les équations (13) et (14) ci-dessous (voir [3], page 399-400,
note 1) :

<p(x) —V $<p(y)K,(x,î) 0 (13)

y,x) 0 (14)

Or, le théorème F étant applicable au noyau K} (x, y) dont les coefficients

sont bornés, ces deux équations ont le même nombre, fini, de
solutions linéairement indépendantes. Il en est donc de même pour (10)
et (9).

D'autre part, les équations (8) et (9) entraînent

comme on le vérifie immédiatement. La condition énoncée pour que (8)
admette une solution est donc bien nécessaire. Pour prouver qu'elle est
aussi suffisante, considérons l'équation

(15)

La condition formulée pour la possibilité de (8) est en fait la condition
de possibilité de (15), puisque (9) et (14) ont les mêmes solutions et que
le théorème F est applicable au noyau K} {x, y)f et si 0 (x) satisfait à (15),
la forme

V(x) 0(x)

satisfait à (8) qui admet ainsi une solution.

(Reçu le 10 janvier 1946.)
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