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Uber eine Klasse von Finslerschen Riaumen,
die die nichteuklidischen verallgemeinern

Von O. Varaga, Debrecen

Unter den speziellen Riemannschen Réumen verdienen wohl zunichst
die von konstanter Kriimmung (nichteuklidische Rdume) Beachtung. Ziel
der vorliegenden Note besteht in der Charakterisierung jener Finslerschen
Riume, die in der Theorie dieser Rdume!) eine entsprechende Rolle spie-
len wie die nichteuklidischen Réume und natiirlich eine einfache Verall-
gemeinerung derselben sind.

Wir betrachten — entsprechend der Cartanschen Theorie?) — den
Finslerschen Raum als Mannigfaltigkeit von Linienelementen. Der ge-
suchte Raum soll dann auf folgende Weise bestimmt werden: Wir be-
trachten einen Finslerschen Raum, in dem es einen absoluten Parallelis-
mus der Linienelemente gibt. Dann kénnen wir in dem Raume oder
einem Teil desselben ein Feld von parallelen Linienelementen auszeichnen
und diesem einen nichteuklidischen Raum der Kriimmung K zuordnen.
Verschiedenen Feldern von parallelen Linienelementen sollen verschie-
dene nichteuklidische Rdume derselben Kriimmung zugeordnet werden.
Die verschiedenen nichteuklidischen Réume stehen natiirlich in einem
Zusammenhang, der dem Finslerschen Raum von vornherein gegeben
ist 3). Stellt man dann die Forderung, dal die Vektoriibertragung stets
dieselbe ist, wie man auch die Linienelemente parallel iibertrigt, so erhilt
man den gewohnlichen nichteuklidischen Raum.

Da man den Finslerschen Raum durch seine Kriimmungstensoren und
den ProzeB der invarianten Ableitung vollsténdig charakterisieren kann,
soll in den folgenden Ausfiihrungen gezeigt werden, welche Eigenschaft
dieser Tensoren fiir unsere verallgemeinerten nichteuklidischen Réume
charakteristisch ist.

SchlieBlich wird gezeigt, dafl es zum Aufbau dieser Rdume geniigt,
von einer affinzusammenhéngenden Mannigfaltigkeit von Linienelemen-
ten %) auszugehen, wenn in dieser ein absoluter Parallelismus der Linien-
elemente existiert und ferner von den beiden Torsionstensoren der eine
symmetrisch, der andere Nulltensor ist.

1) P. Finsler (1), siehe Schriftenverzeichnis am Ende dieser Arbeit.
2) E. Cartan (3).

3) Eine solche Charakterisierung eines verallgemeinerten nichteuklidischen Raumes
entspricht den Prinzipien in O. Varga (3).

%) 0.Varga (1).
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§ 1. Die metrischen Grundformeln der Finslerschen Geometrie

Im n-dimensionalen Finslerschen Raum, der auf Koordinaten 2!, 22,
..., x™ bezogen ist, sei das Bogenelement ds durch

ds = L(x, dx) (1)

bestimmt. Von der Funktion L(x,dx) setzen wir voraus, dag sie positiv
homogen von 1-ter Dimension in den dz? ist, und dafl die quadratische
Form
1 0[L2(x,2")]
2 ox/tox’k

titk

der Hilfsvariablen ¢!, ¢2,..., " positiv definit ist. Ferner setzen wir vor-
aus, dal die Ableitungen, soweit sie gebraucht werden, stets existieren
und stetig sind.

Entsprechend der Cartanschen Theorie der Finslerschen Rdume erwei-
tern wir den Raum zu einer (272 — 1)-dimensionalen Linienelement-
mannigfaltigkeit, indem wir zu jedem Punkt 2° simtliche hindurch-
gehende orientierte Richtungen x’'!a’2... 2" betrachten. Dabei kommt
es selbstverstindlich nur auf das Verhiltnis der letzteren Grofien
an. Ein Linienelement soll kurz mit (z?, 2’?) oder noch einfacher (z, x’)
bezeichnet werden. Samtliche Groflen sind erst in bezug auf ein Linien-
element definiert und miissen daher in den z’* von nullter Dimension
homogen sein.

Die MaBbestimmung im Linienelement (z, ) wird durch den ersten

Fundamentaltensor
1 o(L?
gix(x,2') = 5 W@” (2)

festgelegt, indem dann die Linge eines Vektors & und der Cosinus des
Winkels zweier Vektoren & und #* desselben Linienelementes durch

P=g,;& & (3)
und
gir &
cos (&,n) = : . (4)
7 Vi EEVgix 7k

bestimmt sind.
Der Einheitsvektor, der dieselbe Richtung wie sein Linienelement
besitzt, hat
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(5)
zu kontravarianten und

li = _a—xT"’ (6)

zu kovarianten Komponenten.

§ 2. Die lineare Ubertragung und der Parallelismus

Die Ubertragung eines Vektors & vom beliebigen Linienelement (z,x’)
zum Nachbarlinienelement (x + dx,x’ 4+ dz’) wird durch das invariante
Differential mit kontravarianten Komponenten

D& = dgt 4 CL &* da’t + Ty, &% da? (7)
und kovarianten Komponenten
D¢ =dé; — C7 & da’t — T, €, da! (7')

bestimmt. Die Ubertragungsparameter bestimmen sich dabei aus der
Grundfunktion L(z, dz) gemil
O:'Cz = g Oy

19ga _ 1 *(LY
2 dx't 4 9x''9x’kox’t

Cikz =

I, = g™ Iy,
) (8)

_ 1 99, 991 0Fix aG’i _a_q:
Pin= 5 (a—x‘ﬁ P2t “a‘if) + Cowr g — Cunr
Gr == Gig'ir

1 ey, Al
G = 4 (ax’i oz’ T o ) '

Wie in der Riemannschen Geometrie sind auch im vorliegenden Falle die
I'l, kein Tensor, wohl ist dies aber von

A= LCyy (9)
der Fall. Aus (8) und (9) ergibt sich die hiufig beniitzte Beziehung
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Aus (7) und (8) erhilt man fiir das invariante Differential des Einheits-

vektors

1 oGt

wi(d) = DU = dli + 727

dak . (11)

Unter Einfithrung der Pfaffschen Formen w® kénnen wir das invariante
Differential (7) auch auf die Gestalt

DE = dgf + AL Frol + T ghdal = dE + ol (d) & (12)

bringen, wobei
Iy = It — O, T a'™ (13)
und

o} (d) = ii w! 4+ F;"fda:’ (14)

gesetzt wurde. Wegen (8) konnen die I'}*" auf die fiir spitere wichtige
Form

(ag,, 0911 agik) aGr aGr aGr
Ptlk

ax" + ax‘ - aZI +0ikr'a_x/7 - Oilr ax/k “‘"Olkra /1 (15

gebracht werden. Der Vektor & wird vom Linienelement (z,dz) zum
Nachbarlinienelement parallel iibertragen, falls fiir sein invariantes
Differential

DE = 0 (16)

gilt. Die Paralleliibertragung des Linienelementes, das wir ja statt durch
(z, ') auch durch (z,!) geben konnen, wird daher durch

wi(d) =0 (17)

charakterisiert. Die Paralleliibertragung von [ ist wie (11) zeigt, nur vom
Nachbarpunkt (z + dz) abhingig. Wird der Vektor & von seinem
Linienelement (z, 2’) zu dem benachbarten und parallelen Linienelement
(x + dzx, ' + da') iibertragen, so erhdlt man demnach wegen (12) und
(17) fiir das invariante Differential

D¢gt = dE - It gkdat (18)
Die Bildung des invarianten Differentials kann auch auf Tensoren aus-
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DT,

gedehnt werden, wenn man die dem Riccikalkiil zugrunde liegenden Fest-
setzungen trifft, dafl das invariante Differential eines Skalars mit dem
gewohnlichen Differential iibereinstimmt und dal ferner der Operator D
angewandt auf Tensorprodukte und Summen gleichartiger Tensoren die
gleichen Regeln befolgt, wie das gewohnliche Differential. Man erhélt so

fiir das invariante Differential des Tensors 7', ..., k1---ks die Beziehung

Ty ip

-+ w;‘l (d)Til-..g,jmks.-- e w}cs(d) Ti]_"-irkl.“j .

Die Paralleliibertragung in Finslerschen Réumen hat die wichtige
Eigenschaft, metrisch zu sein, d. h. sie erhilt die Lange und den Winkel
von Vektoren. Analytisch kommt dies durch

Dg;, =0 (20)
zum Ausdruck.

Im folgenden benétigen wir noch den ProzeB der kovarianten Ablei-
tung eines Tensors. Dazu zerlegen wir das invariante Differential (19)
nach den Pfaffschen Formen ?(d) und dz?. Es gibt sich dann bei Beach-
tung von (11) bis (19)

By--oke Byoook . . Eioook j
DT":;"'?:T . § = Til.-.i,’. 1 S/jdx:’ +?+ Til"'if B J;Jw (d) ’ (21)
wobei

kyeook Ry
R . SO C
ety /1 ox? ox'm ox’1
km ok km ook
——Fh? Tm % s "“PzﬂT d
* vk %k m
+- I’m,lT,-l...z-, e Fm,sT (22)
und
. . kyeeokg
Fyoook . aTt,---zr m kyoook
Tilo--i,- vt =1L oz’ A“;T s ...
m ---L‘ k m,..k
- AzryT 8 + Am‘; Til...ir e,
kye-om
;WA P (23)

(22) ist derjenige Tensor, der das invariante Differential bestimmt,
wenn das Linienelement parallel iibertragen wird, (23) derjenige, der die
Anderung des Tensors bei bloBer Drehung des Linienelementes angibt.
Dies geht aus (21) und der Bedeutung der o* und da’ unmittelbar hervor.
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§ 3. Die Kriimmung und Torsion

Um die Kriimmung und Torsion des Raumes einfach beschreiben zu
konnen, erweist es sich als zweckméiBig, die Cartansche w-Symbolik der
dufleren Produkte und duBerer Ableitungen Pfaffscher Formen zu ver-
wenden. Wir schicken zunéchst das wenige voraus, das hier von diesem
Kalkiil verwendet wird 5).

Sind d,,d,,...,d, miteinander vertauschbare Differentiationssym-
bole, so wird das duBere Produkt der Differentiale dx*', da*,. .. daz*»
durch den Ausdruck

[dxkl dxkz . .. dka] e (24)

definiert. Das dubBere Produkt wechselt somit sein Vorzeichen, wenn zwei
Differentiale vertauscht werden. Das dullere Produkt von Pfafischen For-
men wird nun dadurch erklirt, dafl man bei Beachtung der Reihenfolge
der Formen diese formal ausmultipliziert, die Produkte der Differentiale
aber als duflere Produkte betrachtet. Es ergibt sich so

(@1, @a5. .y 0p] = Gy Bag, - - - By [A2* . dh?]
wy(dy). .. 0,(d,)
N , (25)

wobei die w, durch

erklirte Pfaffsche Formen sind. Im hé#ufig auftretenden Falle p = 2

kommt demnach
[w 7] = w(d) 7n(d) — w(d) n(d) . (25")

Die dulere Ableitung der Pfaffschen Form w wird durch

aak

(0) = = [da, da*] (27)

definiert und entsprechend fiir eine dullere Form p-ten Grades

5) Fiir eine weitergehende Begriindung sei etwa auf E. Cartan (1), (2) und E. Kdhler (1)
verwiesen.
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® = Q. oo, [d2M . daPP] (27)

(@) = [day,. . .4, da* .. da*?] .

Hieraus ergeben sich sofort folgende Regeln :
[o 2] = [(0)'7] — [@(@)], (28)
(Aw)' = A(0) + [d4- o]

In (28) ist A eine Funktion, die nur von den Veridnderlichen, aber nicht
von den Differentialen derselben abhingt.

Sind D und A4 die invarianten Differentiale, die den vertauschbaren
Differentialen d und & entsprechen, so ist die Torsion des Raumes durch
das Koeffizientensystem der Form

(AD — DA) zt = Q¢ (29)

definiert. Man kann fiir (29) auf Grund der Definition (12) des invarianten
Differentials und (25) die Form Q¢ als duBlere Form 2-ten Grades

Q= [da* ol = A},[da* o] (29')

darstellen. Die Torsion ist also durch den symmetrischen Tensor A},

bestimmt.
Die Kriimmung des Raumes wird durch das Koeffizientensystem der

Form
(AD — DA) & = O & (30)

definiert, wobei &' ein beliebiger Vektor ist. Eine entsprechende Rech-
nung, die von (29) zu (29) fiihrt, erlaubt es auch hier, die 2% mittels einer
auBeren Form darzustellen. Man erhilt so:

QF = [of of] — (a}) . (31)

Wir kénnen die duBlere Form (31) entsprechend (29) auf eine Gestalt
bringen, in der ihre Differentiale auftreten, entsprechend der Zerlegung:

Qf = } 80" o] + Pl [da '] + § R, [dah dat] . (32)
Es muf} aber bemerkt werden, dal diese Zerlegung wegen der Beziehung
lw,=0
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nicht eindeutig ist. Sie wird es, wenn wir die Forderung

tho

S%kyly = Szho =0

= O,
(33)

stellen ¢). Entsprechend der Schreibweise in (33) wollen wir die Uber-
schiebung einer GroBe mit dem Einheitsvektor I* durch Setzen einer Null
andeuten.

§ 4. Finslersche Riume mit absolutem Parallelismus
von Linienelementen

Damit wir in der Finslerschen Mannigfaltigkeit ein Linienelement
(z,z") [genauer (z%, I{)] beliebig, d. h. unabhingig vom Weg parallel ver-
schieben konnen, miissen die Differentialgleichungen (17) der Parallel-

iibertragung
wt=0

vollsténdig integrabel sein. Nach dem Theorem von Frobenius ?) ist dazu
notwendig und hinreichend, daBl auf Grund von (17)

(0% =0 (34)

wird. Uberschieben wir (32) mit I*, wobei wir die linke Seite durch (31)
ersetzen, so kommt zunéchst

U0} wF] — U () = § 8%, [0 o] + Pk, [dot o]
|- % oh,[dx"daﬂ] . (35)
Wegen
It = ok — di¥
und der Rechenregel (28) hat man dann

li[]}] — I (o}) = [of 0!] — (o¥)'.

Auf der rechten Seite von (35) verschwindet der erste Posten, da die
Berechnung der rechten Seite von (31)

%) Vgl. hiezu den Satz iiber alternierende Formen in den w® bei 0. Varga (2), insbesondere
S. 203—206.
7) Vgl. etwa E. Cartan (4) S. 193.
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St = A% Ay, — A% AL (36)

1

ergibt und (10) gilt. Man erhilt demnach aus (35):

(0¥)" = [0* 0¥] — P, [da® of] — L RE,; [da® dai] . (35")

(35’) zeigt nun, daBl die Frobeniussche Bedingung dann und nur dann
erfiillt ist, wenn

RE.=0 (36")

wird. (36’) ist also die notwendige und hinreichende Bedingung dafiir, daB3
ein absoluter Parallelismus der Linienelemente existiert$). Wir wollen
die wichtigen Differentialgleichungen (17) und Integrabilitdtsbedingun-
gen noch in ausfiihrlicherer Form anschreiben. Beachtet man die Defini-
tionsgleichung (11) der w® und die Beziehungen (8), so erhilt man die mit
(17) dquivalenten Gleichungen

dz't = ﬁx’”‘ — DX a'rdar = %];— 2/

L

oG*
ox'r

dar . (177)

Durchfiihrung der Rechnungen auf der rechten Seite von (31) ergibt

P orXxk oI}k oGe  (oI'X* orX* aqe
i i T ox’s 9x’T dzk  ox’® ox'h
o 02 8 02 G* 2Gs oGr
+ G ox'hox’i ~ ox'Tox* oz’ ox'P ox’i

02Gs o0G»
+ ox'i ox'? ozx'*

) "!' Fia;zs F:;'h - Fi*;'s P:;ak (37)

Uberschieben wir (37) mit I, so ergibt sich

02G¥ 02 G* 092Gk  oG» 2G* oQr

1
ax/haxf - ax/y axh - ax/h ax/p ax/7 + ax/j ax,p ax,h). (37’)

thjzz‘(

Wir konnen demnach Rf,. auch so darstellen :

orxk oryr oG (81",-";-" 61’{';’“ aG‘)
9xf ~ ox’¢t ox'i ~ \ ox* ~ 9x’s ox'*

+ Fi";ts F:;'k - Fi’;s F:;zk + Al'cs thy' . (37”)

?

ko
By =

8) Siehe E. Cartan (3) S. 38.
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In einem Finslerschen Raum mit absolutem Parallelismus der Linien-
elemente gilt demnach fiir den Kriimmungstensor

aTXx  aIXk age (arg;k arX* aas)

o0z’ ox's dx’i  \ 9xt = ox’s oz'h

+ I L5 — T LS (37")

B
By =

Die Bedingung fiir die vollsténdige Integrabilitit von (17), (17') ist dem-
nach durch

e Y 26k aGr Gk v
oM o0 daTont | dx'hew' oxl T dxiaws awh 0 (30)
bestimmt.

§ 6. Zuordnung der nichteuklidischen Riume der Kriimmung K

Es sei
't = z'i(2l,. .., ) (38)

eine Losung von (17), die in dem Raume oder einem Teile desselben
definiert ist. Dabei konnen in einem Punkt af die Anfangswerte ¢’ be-
liebig vorgeschrieben werden.

In dem betrachteten Gebiet definiert der Feldvektor (38) ein Feld von
parallelen Linienelementen. In diesem Felde werden simtliche GroBen
Ortsfunktionen, insbesondere gilt dies fiir den MaBtensor

9@, .. 2n, 2V (2),. .., 2% (x)) = gp(at,..., 27) . (39)

Wir stellen nun die Forderung, daB g,, der MaBtensor eines nichteuklidi-
schen Raumes der Kriimmung K sei. Wir fithren die bekannte Forderung
an, der in diesem Falle die g,, geniigen miissen. Bezeichnen wir die aus

den g,, abgeleiteten Christoffelschen Symbole mit I'};, so gilt

= ory, ory

hi T gl T Jah + Tthfj — Tfj Tfh = K(aﬁih - 52‘%) . (40)

Wir wollen nun untersuchen, welche Relationen die Beziehungen (40) im
Finslerschen Raume nach sich ziehen. Dazu miissen wir feststellen, wie
sich die I'}; und deren Ableitungen durch GroéBen der Finslerschen Geo-
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metrie ausdriicken. Aus der Bedeutung der Christoffelschen Symbole und
der Gestalt (39) des Fundamentaltensors g,, folgt zunichst

= a i a a i a i ax"’” a ax,m
Iv”k:_%(agx,:_*_ 91x gk)_*_%_ 9 +_% Gix

oxt X ox'™ gak dx™ oxt
1 09 0™
2 0x'm oxt
Beachten wir, daB der Feldvektor (38) der Differentialgleichung (17’ )
geniigt, daB ferner fiir die Ableitungen aigf; die erste Relationengruppe

(8) gilt und beriicksichtigen weiter (10) und (15), so ergibt sich
Io(at,22,. .., 2" = Ih(a,. .., 27, 2V (x),. .., 2% (2)) . (42).

Hieraus ergibt sich durch Differentiation bei nochmaliger Beriicksichti-
gung von (17’) und hieraus, daB die I';¥, von nullter Dimension homogen
in den z’% sind.

Ty, oIfy oIy, om

ox"  oxr  ox'm dx’r (43)

Wegen der Beziehungen (42) und (43) gilt demnach auf Grund von (39)
und (40) identisch in «!,..., a2®,

Ry (2t ..an, 2"V (z). . .2 (x)) = K[& g,p (2. . .27, 2/ (2). .. 2" (2))
— &Fgy(at...an, 2 (2).. .2/ (2))] . (44)
Beachten wir nun, da wir entsprechend der Bemerkung zu (38) die
Werte der z'* willkiirlich wihlen konnen, so folgt, da8 die Beziehung (44)
auch eine Identitit in den 2 und z’* wird, d. h. es gilt
thj = K((S;c Gin — 0,945 (45)
identisch in z?, 2%,

Die Tensorrelationen (36) und (45) sind die notwendigen und hinrer-
chenden Bedingungen dafir, daf3 ein Finslerscher Raum ein in unserem
Sinne verallgemeinerter nichteuklidischer Raum wird.

Wir zeigen nun noch — wie einleitend bemerkt — daf fiir den Fall, in
dem die Paralleliibertragung unabhingig von dem Linienelement ist,
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falls dasselbe parallel mitiibertragen wird, der Raum in den gewdhnlichen
nichteuklidischen Raum iibergeht. In unserer Deutung heif3t dies, dafB3
alle irgendeiner Richtung zugeordneten nichteuklidischen Réume zu-
sammenfallen, falls die Paralleliibertragung dieser die gleiche ist. Die
Paralleliibertragung bei parallel mitgefiihrtem Linienelement geniigt we-
gen (18) der Gleichung

d&i + I Edaxl = 0 . (18)

Soll dieselbe unabhiingig von ’? sein, so muf3

ol
LI 46
ox'" (46)
Wihlt man in (45) 6 = k& aber h # k, dann folgt, daB die g,, nur
Funktionen des Ortes sind w. z. b. w.

§ 6. Aufbau des Raumes
ausgehend von einer affin-zusammenhingenden Mannigfaltigkeit

Im Vorangehenden wurde gezeigt, durch welche Bedingungen ein
Finslerscher Raum zu einem verallgemeinerten nichteuklidischen wird.
Zum Aufbau des Raumes miissen wir aber nicht von einem Finslerschen
Raum ausgehen. Es soll nun gezeigt werden, wie man, ausgehend von
einer affinzusammenhéngenden Mannigfaltigkeit von Linienelementen ?9),
diesen Raum bestimmen kann. Eine (27 — 1)-dimensionale Mannigfaltig-
keit von Linienelementen hei3t dabei affinzusammenhéngend, wenn das
invariante Differential eines Vektors &' im Linienelement (x,z’) beim
fjbergang zum Nachbarlinienelement (x + dz, ' 4+ dz’) von der Ge-
stalt

D¢t = dEt 4 Cfy(x,2") & dat 4 Ty (x, 2") &8 da’? (47)
ist. Durch
D& =0 (48)

ist die Paralleliibertragung des Vektors &% erklidrt. Aus der Forderung,
daB das invariante Differential eines Linienelementes (x,x’) mit dem
gewodhnlichen Differential zusammenfillt, falls dieses sich nur um seinen
Mittelpunkt dreht, folgt

Ci,x'k =0 . (49)

?) Der Begriff einer solchen tritt zuerst auf bei O. Varga (1).
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Die Paralleliibertragung von Linienelementen ist durch
da't = — I, a'* da? (50)

bestimmt. Das invariante Differential eines Vektors hat fiir den Fall, daB
das Nachbarlinienelement im obigen Sinne parallel iibertragen wird, die
Gestalt

DE = d&t + I} £ da? (51)

und der Parallelismus ist durch
d&t = ' F} ek dat (52)

bestimmt. In (51) wurde dabei

kv t t Jm r
w =41 5y — Cpx ml

gesetzt.

Der affinzusammenhidngende Raum besitzt eine Kriimmung und Tor-
sion, die entsprechend wie oben durch (28) und (30) erklirt wird. Die
Torsion wird dann durch die beiden Tensoren

i, Tp=3Ty—T} (63)
bestimmt.
Die Krimmungstensoren sind die Koeffizienten der duferen Form

(4D — DA & = {} 3k, [t am] + 1T}, [dat 2]

(54)
+ % Rf, . [datdam]} & .
In (54) ist =!(d) das invariante Differential der Richtung z’¢. Soll die
Paralleliibertragung der Linienelemente unabhéingig vom Weg sein, so
miissen ihre Differentialgleichungen (50) vollstdndig integrabel sein. Wie
oben findet man als Bedingung fiir die vollsténdige Integrabilitat

E:lm:—_—-—x’r zﬁlm:‘_' 0 . (55)

Wir setzen nun noch voraus, daBl von den beiden Torsionstensoren der
erste symmetrisch
= C;k ’ (56)
der zweite Nulltensor sei d. h.

%1

7 A fki . (67)
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Wir ordnen nun jedem Feld von parallelen Linienelementen wie oben
einen nichteuklidischen Raum der gleichen konstanten Kriimmung K zu.
Dies heif3t, dafl wir:

erstens jedem Linienelement (x,x’) eine positiv definite quadratische Map-
bestimmung zugeordnet haben ;
zweitens fordern wir, daf die Ubertragung metrisch sei.

Dadurch wird der affin zusammenhingende Raum von Linienelemen-
ten zu einem euklidisch zusammenhéngenden Raum von Linienelementen.
In diesem driicken sich die Ubertragungsparameter, wie unmittelbar ein-
zusehen ist, genau so durch die g,, aus, wie im obigen Fall. Die Grund-
funktion L(z,z’) unseres verallgemeinerten nichteuklidischen Raumes
ist durch

L2 (x,2") = ¢, (x,2') 2/ 2% (58)
bestimmt.
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