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Ûber eine Klasse von Finslerschen Râumen,
die die nichteuklidischen verallgemeinern

Von O. Varga, Debrecen

Unter den speziellen Riemannschen Râumen verdienen wohl zunâchst
die von konstanter Krummung (nichteuklidische Ràume) Beachtung. Ziel
der vorliegenden Note besteht in der Charakterisierung jener Finslerschen
Râume, die in der Théorie dieser Râume1) eine entsprechende Rolle spie-
len wie die nichteuklidischen Râume und naturlich eine einfache Verall-
gemeinerung derselben sind.

Wir betrachten — entsprechend der Cartanschen Théorie2) — den
Finslerschen Raum als Mannigfaltigkeit von Linienelementen. Der ge-
suchte Raum soll dann auf folgende Weise bestimmt werden: Wir
betrachten einen Finslerschen Raum, in dem es einen absoluten Parallelis-
mus der Linienelemente gibt. Dann kônnen wir in dem Raume oder
einem Teil desselben ein Feld von parallelen Linienelementen auszeichnen
und diesem einen nichteuklidischen Raum der Krummung K zuordnen.
Verschiedenen Feldern von parallelen Linienelementen sollen verschie-
dene nichteuklidische Râume derselben Krummung zugeordnet werden.
Die verschiedenen nichteuklidischen Râume stehen naturlich in einem
Zusammenhang, der dem Finslerschen Raum von vornherein gegeben
ist3). Stellt man dann die Forderung, daB die Vektorûbertragung steta
dieselbe ist, wie man auch die Linienelemente parallel ûbertrâgt, so erhâlt
man den gewôhnlichen nichteuklidischen Raum.

Da man den Finslerschen Raum durch seine Krûmmungstensoren und
den Prozefi der invarianten Ableitung vollstândig charakterisieren kann,
soll in den folgenden Ausfuhrungen gezeigt werden, welche Eigenschaft
dieser Tensoren fur unsere verallgemeinerten nichteuklidischen Râume
charakteristisch ist.

SehlieBlieh wird gezeigt, daB es zum Aufbau dieser Râume genligt,
von einer affinzusammenhângenden Mannigfaltigkeit von Linienelementen

4) auszugehen, wenn in dieser ein absoluter Parallelismus der
Linienelemente existiert und ferner von den beiden Torsionstensoren der eine

symmetrisch, der andere Nulltensor ist.

*) P.Finsler (1), siehe Schrifbenverzeichnis am Ende dieser Arbeit.
2) E. Cartan (3).
8) Eine solche Charakterisierung eines verallgemeinerten nichteuklidischen Raumes

entspricht den Prinzipien in O. Varga (3).
*) O. Varga (1).
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§ 1. Die metrischen Grundformeln der Finslerschen Géométrie

Im w-dimensionalen Finslerschen Raum, der auf Koordinaten x1, x2,

xn bezogen ist, sei das Bogenelement ds durch

ds L(x,dx) (1)

bestimmt. Von der Funktion L(x, dx) setzen wir voraus, dafi sie positiv
homogen von 1-ter Dimension in den dx1 ist, und daB die quadratische
Form

1 d[L*(x,x>)]
2 dx'*dxfk

der Hilfsvariablen t1, t2,..., tn positiv définit ist. Ferner setzen wir voraus,

da6 die Ableitungen, soweit sie gebraucht werden, stets existieren
und stetig sind.

Entsprechend der Cartanschen Théorie der Finslerschen Râume erwei-
tern wir den Raum zu einer (2n — l)-dimensionalen Linienelement-
mannigfaltigkeit, indem wir zu jedem Punkt x% samtliehe hindurch-
gehende orientierte Richtungen x'\x!*.. .,xfn betrachten. Dabei kommt
es selbstverstandlich nur auf das Verhaltnis der letzteren GroBen

an. Ein Linienelement soll kurz mit (xl, xH) oder noch einfacher (x, xr)
bezeichnet werden. Samtliehe GrôBen sind erst in bezug auf ein
Linienelement definiert und mussen daher in den x/l von nullter Dimension
homogen sein.

Die MaBbestimmung im Linienelement (x, xf) wird durch den ersten
Fundamentaltensor

festgelegt, indem dann die Lange eines Vektors £l und der Cosinus des

Winkels zweier Vektoren |* und r\x desselben Linienelementes durch

l- g* <P lfc (3)
und

cos (£,«)= gtk^f (4)

bestimmt sind.

Der Einheitsvektor, der dieselbe Richtung wie sein Linienelement
besitzt, hat
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zu kontravarianten und

zu kovarianten Komponenten.

§ 2. Die lineare tJbertragung und der Parallelismus

Die Ûbertragung eines Vektors f* vom beliebigen Linienelement (x, x1)

zum Nachbarlinienelement (x -f- dx,x' -f- dx') wird durch das invariante
Differential mit kontravarianten Komponenten

Z)<p dÇl + C\x Çk dx'l + r\t ik dx1 (7)

und kovarianten Komponenten

(7')

bestimmt. Die Ûbertragungsparameter bestimmen sich dabei aus der
Grundfunktion L(x, dx) gemâB

C\t g»C%rl

2 dx" 4 dx'idz'kdz"

_
1 (dgt[ Bglk dg,k

Wie in der Riemannschen Géométrie sind auch im vorliegenden Falle die

Flk kein Tensor, wohl ist dies aber von

AM LCM (9)

der Fall. Aus (8) und (9) ergibt sich die hâufig benutzte Beziehung
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AmV=LCmV=H (10)

Aus (7) und (8) erhâlt man fur das invariante Difïerential des Einheits-
vektors

a>Hd) DP dP + ^-—^ dxk (11)

Unter Einfûhrung der Pfaffschen Formen œi kônnen wir das invariante
Differential (7) auch auf die Gestalt

bringen, wobei

/?/ /T*-OÏ./ïtx/» (13)
und

i ' î (14)

gesetzt wurde. Wegen (8) kônnen die 7^*' auf die fur spâtere wichtige
Form

- 2" \
l/dgu dglk

gebracht werden. Der Vektor p wird vom Linienelement (x,dx) zum
Nachbarlinienelement parallel ubertragen, falls fiir sein invariantes
Differential

Dp 0 (16)

gilt. Die Parallelûbertragung des Iinienelementes, das wir ja statt durch
(#, xf) auch durch (x, l) geben kônnen, wird daher durch

œHd) 0 (17)

charakterisiert. Die Parallelûbertragung von ll ist wie (11) zeigt, nur vom
Nachbarpunkt (x + dx) abhângig. Wird der Vektor p von seinem
Linienelement (x, xr) zu dem benachbarten und parallelen Linienelement
{x + dx, x' + dxr) ubertragen, so erhâlt man demnach wegen (12) und
(17) fiir das invariante Differential

Dp dp + r%ièkdxi (18)

Die Bildung des invarianten Differentials kann auch auf Tensoren aus-
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gedehnt werden, wenn man die dem Riceikalkul zugrunde liegenden Fest-
setzungen trifft, da8 das invariante Differential eines Skalars mit dem
gewôhnlichen Differential ûbereinstimmt und daB ferner der Operator D
angewandt auf Tensorprodukte und Summen gleichartiger Tensoren die
gleiehen Regeln befolgt, wie das gewôhnliche Differential. Man erhàlt so

fur das invariante Differential des Tensors TH.• .tfkl 'k* die Beziehung

„ *•" *• dTk>"k° - <(d)T^- *• - K(d)T..,1*- -k° (19)

Die Parallelubertragung in Finslerschen Raumen hat die wichtige
Eigenschaft, metrisch zu sein, d. h. sie erhâlt die Lange und den Winkel
von Vektoren. Analytisch kommt dies durch

A/a* 0 (20)
zum Ausdruck.

Im folgenden benotigen wir noch den ProzeB der kovarianten Ablei-
tung eines Tensors. Dazu zerlegen wir das invariante Differential (19)
nach den Pfaffschen Formen œi1 (d) und dxi. Es gibt sich dann bei Beaeh-

tung von (11) bis (19)

Hr H rf Ttl.. lrk- 'l'tta/(d) (21)

wobei

i Â mj ¦* iX' '%r i L mi x iX"*%r
und

2/7T kx-'-lg
rp kx~-k8 t 01 %i — tr Am m lv~k8¦* %i'"*r »« dx'? l7 m'"lr

Am m kf'ls _j_ Ali rp ni"-ls

¦ ¦ ¦ + A%,TH...tr*>-m (23)

(22) ist derjenige Tensor, der das invariante Differential bestimmt,
wenn das Linienelement parallel ubertragen wird, (23) derjenige, der die
Ânderung des Tensors bei bloBer Drehung des Linienelementes angibt.
Dies geht aus (21) und der Bedeutung der coi1 und dx1 unmittelbar hervor.

371



§ 3. Die Kriïmmung und Torsion

Um die Knimmung und Torsion des Raumes einfach beschreiben zu
kônnen, erweist es sich als zweckmâBig, die Cartansche co-Symbolik der
âuBeren Produkte und âuBerer Ableitungen Pfaffscher Formen zu ver-
wenden. Wir schicken zunâchst das wenige voraus, das hier von diesem
Kalkûl verwendet wird5).

Sind dl9di9.. dp miteinander vertauschbare Differentiationssym-
bole, so wird das àuBere Produkt der Differentiale dxkl, dx*2,..., dxkv

durch den Ausdruck
d1 xk

dxk* dxkP]

d1 xkv dP

(24)

definiert. Das âuBere Produkt wechselt somit sein Vorzeichen, wenn zwei
Differentiale vertauscht werden. Das âuBere Produkt von Pfaffscheïi Formen

wird nun dadurch erklart, daB man bei Beachtung der Reihenfolge
der Formen dièse formai ausmultipliziert, die Produkte der Differentiale
aber als âuBere Produkte betraehtet. Es ergibt sich so

o>8,..., cop] alhi a2k2.. .ap ,dxkp]

wobei die a>t durch

oi aik dxk

(25)

(26)

erklarte Pfaffache Formen sind. Im haufig auftretenden Falle p 2

kommt demnach

O »] a(d) n(ô) - m (à) n{d) (25')

Die âuBere Ableitung der Pfaffschen Form œ wird durch

(27')

definiert und entsprechend fur eine âuBere Form p-ten Grades

*) Fur eine weitergehende Begriindung sei etwa auf E. Cartan (1), (2) und E. Kdhler (1)
verwiesen.
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<o aki...kp[dxk>...dxkP] (27)

(o)'=[daki...kpdxkK..dzkP]

Hieraus ergeben sich sofort folgende Regeln :

[œ*Y=l(œ)'n]-[œ(n)'] (28)

(Aœ)'= A(œY + [dA-œ]

In (28) ist A eine Funktion, die nur von den Verânderlichen, aber nicht
von den Differentialen derselben abhàngt.

Sind D und A die invarianten Differentiale, die den vertauschbaren
Differentialen d und ô entsprechen, so ist die Torsion des Baumes durch
das Koeffizientensystem der Form

(AD - DA) xl Qi (29)

definiert. Man kann fur (29) auf Grund der Définition (12) des invarianten
Differentials und (25) die Form Ql als àuBere Form 2-ten Grades

Qi [dxk col] Alh[dxk œh] (29')

darstellen. Die Torsion ist also durch den symmetrischen Tensor Alh
bestimmt.

Die Krummung des Raumes wird durch das Koeffizientensystem der
Form

(AD - DA)ii Q{ik (30)

definiert, wobei £* ein beliebiger Vektor ist. Eine entsprechende Rech-

nung, die von (29;) zu (29) fiihrt, erlaubt es auch hier, die Q\ mittels einer
âuBeren Form darzustellen. Man erhâlt so :

Wir kônnen die auBere Form (31) entsprechend (29) auf eine Gestalt
bringen, in der ihre Difïerentiale auftreten, entsprechend der Zerlegung:

û? \ Sihi [^ ^] + p1iV \à*h <oj] + * &iu ld*h dxi] (32)

Es muB aber bemerkt werden, daB dièse Zerlegung wegen der Beziehung

V ait 0
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nicht eindeutig ist. Sie wird es, wenn wir die Forderung

stellen6). Entsprecliend der Schreibweise in (33) wollen wir die Ûber-
schiebung einer GrôBe mit dem Einheitsvektor Ie durch Setzen einer Null
andeuten.

§ 4. Finslersehe Baume mit absolutem Parallelismus

von Linienelementen

Bamit wir in der Finslerschen Mannigfaltigkeit ein Linienelement
(x,xr) fgenauer (xi, l*)] beliebig, d. h. unabhângig vom Weg parallel ver-
schieben kônnen, mûssen die Differentialgleichungen (17) der Parallel-
ûbertragung

o)i 0

vollstândig integrabel sein. Nach dem Theorem von Frobenius7) ist dazu
notwendig und hinreiehend, daB auf Grund von (17)

(a><)' 0 (34)

wird. Ûberschieben wir (32) mit P, wobei wir die linke Seite durch (31)
ersetzen, so kommt zunàchst

+ i ^ohj [dxh dx1] (35)

Wegen
V 0% œk - dlk

und der Rechenregel (28) hat man dann

Auf der rechten Seite von (35) versehwindet der erste Posten, da die

Berechnung der rechten Seite von (31)

•) VgLhiezu den Satz ûber alternierende Formen in den co* bei O. Varga (2), insbesondere
S. 203—206.

7) Vgl. etwa E. Cartan (4) S. 193.
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8kh} Al}Akh~A^hA^ (36)

ergibt und (10) gilt. Man erhalt demnach aus (35) :

(»*)' [a>* <ok] - Pkoh} [«fa* a*] - $ Rkoh} [dx*dx>] (35')

(35') zeigt nun, daB die Froben^ussche Bedingung dann und nur dann
erfullt ist, wenn

RU » (36')

wird. (36;) ist also die notwendige und hinreichende Bedingung dafur, daB

ein absoluter Parallelismus der Linienelemente existiert8). Wir wollen
die wichtigen Differentialgleichungen (17) und Integrabilitâtsbedingun-
gen noch in ausfuhrlicherer Form anschreiben. Beachtet man die Défini-
tionsgleichung (11) der col und die Beziehungen (8), so erhàlt man die mit
(17) âquivalenten Gleichungen

dx'* ~x'*- r*r% x'*dx* ^-x^-p^ dx*. (170
JLj J-J OX

Durchfuhrung der Rechnungen auf der rechten Seite von (31) ergibt

*?*
dr™ dr?»k dG° - (dr*h dr*" dG°\

tk> dx> dx'a dx'r \ dxh dx'* dx'h)

dx'hdx'P

tiberschieben wir (37) mit P, so ergibt sich

4 1 / d*Gk d*Gk diGk dQP 3» g* dQP\
ohl ~ L \dx'hdx' dx'>dxh dx'hdx'P dx1' + dx'idx1» dxfh)'

Wir konnen demnach Bkh) auch so darstellen :

¦ti. h, —
ar,y ar,V *?' /w1**

¦•* ~ dx* dx" dx'i \ dxh dx'*

r,y r*k - r*; r*hk + a\, R>oh),

8) Siehe E. Cartan (3) S. 38.
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In einem Finslerschen Raum mit absolutem Parallelismus der Linien-
elemente gilt demnach fur den Krummungstensor

Blh) dx* dxfs dxfi \ dxh dx/s dxfh

"T * %k l 8j — L i) Â sh ' (o*

Die Bedingung fur die vollstândige Integrabilitat von (17), (17') ist demnach

durch

d2Gk
+ dx"

bestimmt.

§ 5. Zuordnung der nichteuklidischen Râume der Kriimmung K
Es sei

xft= x'^x1,..., xn) (38)

eine Losung von (17), die in dem Raume oder einem Teile desselben
definiert ist. Dabei konnen in einem Punkt xl0 die Anfangswerte x%q be-

liebig vorgeschrieben werden.
In dem betrachteten Gebiet definiert der Feldvektor (38) ein Feld von

parallelen Linienelementen. In diesem Felde werden samtliche GroBen

Ortsfunktionen, insbesondere gilt dies fur den MaBtensor

glk(x\..., x«, x*'{x),..., &'(x)) gt]t(x\...9 *") (39)

Wir stellen nun die Forderung, daB glk der MaBtensor eines nichteuklidischen

Raumes der Krummung K sei. Wir fuhren die bekannte Forderung
an, der in diesem Falle die glk genugen mussen. Bezeichnen wir die aus
den gtk abgeleiteten Christoffelschen Symbole mit Fkl7, so gilt

(40)

Wir wollen nun untersuchen, welche Relationen die Beziehungen (40) im
Finslerschen Raume nach sich ziehen. Dazu mussen wir feststellen, wie
sich die Tk9 und deren Ableitungen durch GroBen der Finslerschen Geo-
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metrie ausdrùcken. Aus der Bedeutung der Christoffelsehen Symbole und
der Gestalt (39) des Fundamentaltensors gtk folgt zunàchst

Fuie
\UJD VJU~ UJC" /

-i
da;fc ^ 3*< dx1 ^ 2 dxf™ dxk ^ * dz™ 3s<

fo» ds/m

Beachten wir, daB der Feldvektor (38) der Differentialgleichung (17')

geniigt, daB ferner fur die Ableitungen J^ die erste Relationengruppe

(8) gilt und beriicksichtigen weiter (10) und (15), so ergibt sich

r~ (rvA ry.2 /y.tl\ P* r»l ry.71 ^V( ~\ Tn! y\\ (4-%\

Hieraus ergibt sich durch Differentiation bei nochmaliger Berûcksichti-

gung von (17') und hieraus, daB die F*k von nullter Dimension homogen
in den xfi sind.

(43)
9A»t _dxr dxr dxrm dxrr '

Wegen der Beziehungen (42) und (43) gilt demnach auf Grund von (39)
und (40) identisch in x1,..., xn,

{xK ..x«, xfl(x).. .*'»(*)) K[ô^gth(xK ..*", x'*(x).. .xr«(x))

(xK ,x", x'Hx).. .x'»(x))] (44)

Beachten wir nun, daB wir entsprechend der Bemerkung zu (38) die
Werte der xtl willkurlich wâhlen kônnen, so folgt, daB die Beziehung (44)
auch eine Identitàt in den xi und xH wird, d. h. es gilt

R% K($g,h - ôkb9ll) (45)

identisch in x{, xH.

Die Tensorrelationen (36) und (45) sind die notwendigen und hinrei-
chenden Bedingungen dafûr, dafi ein Finslerscher Raum ein in unserem
Sinne verallgemeinerter nichteuklidischer Raum wird.

Wir zeigen nun noch — wie einleitend bemerkt — daB fur den Fall, in
dem die Parallelùbertragung unabhângig von dem Linienelement ist,
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falls dasselbe parallel mitûbertragen wird, der Raum in den gewôhnlichen
nichteuklidischen Raum tibergeht. In unserer Deutung heiBt dies, daB
aile irgendeiner Richtung zugeordneten nichteuklidisehen Râume zu-
sammenfallen, falls die Parallelubertragung dieser die gleiche ist. Die
Parallelubertragung bei parallel mitgefuhrtem Linienelement genugt we-

gen (18) der Gleichung
o. (180

Soll dieselbe unabhàngig von xH sein, so muB

dx"

Wàhlt man in (45) ô k aber h =£ k, dann folgt, daB die gik nur
Funktionen des Ortes sind w. z. b. w.

§ 6. Aufbau des Baumes

ausgehend von einer affin-zusammenhângenden Mannigfaltigkeit

Im Vorangehenden wurde gezeigt, dureh welche Bedingungen ein
Finslerscher Raum zu einem verallgemeinerten nichteuklidischen wird.
Zum Aufbau des Raumes mussen wir aber nicht von einem Finslerschen
Raum ausgehen. Es soll nun gezeigt werden, wie man, ausgehend von
einer affinzusammenhàngenden Mannigfaltigkeit von Linienelementen9),
diesen Raum bestimmen kann. Eine (2n — l)-dimensionale Mannigfaltigkeit

von Linienelementen heiBt dabei affinzusammenhângend, wenn das
invariante Differential eines Vektors £* im Linienelement (x,xf) beim
Ûbergang zum Nachbarlinienelement (x + dx, xr + dx') von der Ge-

stalt
D? d? + Ci%(x9xf) ik dx1 + rUiXtx') Sk dx'i (47)

ist. Durch
0 (48)

ist die Parallelubertragung des Vektors |* erklârt. Aus der Forderung,
daB das invariante Differential eines Linienelementes (x,x') mit dem

gewôhnlichen Differential zusammenfàllt, falls dièses sich nur um seinen

Mittelpunkt dreht, folgt
Cj, x'k 0 (49)

•) Der Begrifï einer solchen tritt zuerst auf bei O. Varga (1).
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Die Parallelubertragung von Linienelementen ist durch

dx'* - r%klxfk dxl (50)

bestimmt. Das invariante Differential eines Vektors hat fur den Fall, daB
das Naehbarlinienelement im obigen Sinne parallel ubertragen wird, die
Gestalt

rt (51)

und der Parallelismus ist durch

dÇ* rii£k dxl (52)

bestimmt. In (51) wurde dabei

kl — J- kl ^krx l ml

gesetzt.
Der affinzusammenhangende Raum besitzt eine Krummung und

Torsion, die entsprechend wie oben durch (28) und (30) erklârt wird. Die
Torsion wird dann durch die beiden Tensoren

JrIV) (53)
bestimmt.

Die Krummungstensoren sind die Koeffizienten der aufîeren Form

(54)

In (54) ist 7tl(d) das invariante Differential der Richtung x'1. Soll die
Parallelubertragung der Linienelemente unabhangig vom Weg sein, so

mussen ihre Differentialgleichungen (50) vollstandig integrabel sein. Wie
oben findet man als Bedingung fur die vollstândige Integrabilitat

2im *"Z%rlm=0. (55)

Wir setzen nun noch voraus, daB von den beiden Torsionstensoren der
erste symmetrisch

Ch=C\t, (56)
der zweite Nulltensor sei d. h.

rv r%. (57)
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Wir ordnen nun jedem Feld von parallelen Linienelementen wie oben
einen nichteuklidischen Raum der gleichen konstanten Krummung K zu.
Dies heiBt, da6 wir :

erstens jedem Linienelement (x, xf) eine positiv definite quadratische Mafi-
bestimmung zugeordnet hahen ;

zweitens fordern wir, dafi die Ùbertragung metrisch sei.

Dadurch wird der affin zusammenhângende Raum von Linienelementen

zu einem euklidisch zusammenhângenden Raum von Linienelementen.
In diesem drucken sich die Ûbertragungsparameter, wie unmittelbar ein-
zusehen ist, genau so durch die gtk aus, wie im obigen Fall. Die Grund-
funktion L(x,xr) unseres verallgemeinerten nichteuklidischen Raumes
ist durch

L*(x,x') gth(x,x')xf*x''> (58)
bestimmt.
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