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Perturbations des transformations
autoadjointes dans l'espace de Hilbert

Par Bxra de Sz. Naay, Szeged

Le calcul des perturbations, créé par Lord Rayleigh et M. E. Schro-
dinger, et dont on fait souvent usage sans la Mécanique quantique, a
pour objet de calculer les valeurs propres et les éléments propres d’une
transformation autoadjointe A (¢) de I'espace de Hilbert?!), dépendant
du parametre ¢ sous la forme d’une série entiere: 4 (¢) = A, + 4, +
e24, +---, a condition qu’on les connaisse pour la transformation ,,non-
perturbée“ A4,, correspondant & ¢ = 0. A, étant une valeur propre de 4,
et f, un élément propre normé correspondant, on fait U'hypothése que la
valeur propre A(s) et I’élément propre normé f(e) perturbés peuvent
étre cherchés également sous la forme des séries entiéres de &, commencant

par A, et fo: A(e) = Ao+ €A+ A +--- et f(e) =[fo + efy +

e?f, +- - - . Les coefficients 1, et f, peuvent alors étre calculés, I'un apreés
Vautre, a 'aide des équations ré:urrentes
Aofo = lofo, (fo»fo) =1,
Aofi+A4ifo = dofitdifo, (fo.f)+ (f1:f0) =0,

A0f2+A1f1+A2f0 :‘: 10f2+}“1f1+)'2f07 (fo’f2)+ (fl’fl)+(f21’0) ? 0 ’

équations qu’on obtient en comparant les coefficients des puissances de ¢
dans les identités

(Ao +ed+ A+ )fot+efr +fa+--0) =
=(do+ el +&4 + WMo+ efr+Efa+-)

(f0+8f1+82f2+""/0+8f1+82f2+"‘)==1 .

La premiére démonstration rigoureuse de cette hypothése est due a
M. F.Rellich2). Ses théorémes portent sur les valeurs propres de multipli-

et

1) Pour une introduction & la théorie de ’espace de Hilbert, nous renvoyons par exemple
au livre de l'auteur: Spektraldarstellung linearer Transformationen des Hil-
bertschen Raumes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. V. fasc. 5
(Springer-Verlag, Berlin 1942).

%) F. Rellich, Stéorungstheorie der Spektralzerlegung, I. Math. Annalen 113
(1936) 600—619; II. Ibidem 113 (1936) 677—685; III. Ibidem 116 (1939) 555—570;
IV. Ibidem 117 (1940) 356—382; V. Ibidem 118 (1942) 462—484. (La partie II étudie les
perturbations continues, mais non analytiques.) Voir encore la note de E. Holder, Uberdie
Vielfachheiten gestérter Eigenwerte, Math. Annalen 118 (1936) 620—629.
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cité finie, mais ils ne donnent aucun renseignement sur les valeurs
propres de multiplicité infinie ou sur la partie continue du spectre.

Notre résultat principal est le théoréme I, qui s’applique & une partie
quelconque isolée du spectre. En l'appliquant au cas particulier d’une
valeur propre isolée de multiplicité finie, on obtient une nouvelle dé-
monstration du théoréme principal de Rellich (théoréme III). Cette
démonstration a, entre autres, 'avantage de ne pas faire appel au théo-
réme de Puiseux et au théoréme de Weierstrass sur les zéros des
fonctions analytiques de plusieurs variables, dont M. Rellich a fait usage.
Pour les valeurs propres simples (théoréme I1I) ou multiples, mais dont
se détachent, déja en premieére approximation, des valeurs propres
perturbées simples (théoréeme IV), nous obtenons des renseignements
méme sur la rapidité de convergence des séries en question, plus précis
que ceux obtenus par M. Rellich par une voie tout a fait différente.

Une premiere rédaction de ce Mémoire, en langue hongroise, a été pré-
sentée en 1943 a I’Académie hongroise 3).

§ 1. Quelques définitions et théorémes auxiliaires

Dans ce qui suit, ¢ désigne toujours une quantité réelle, variant dans un
voisinage de 0. Nous disons que le nombre 4 (¢), Uélément f(e¢) de P'espace
de Hilbert § et la transformation linéaire bornée T (¢) de £ en lui-méme,
dépendant de &, sont réguliers sur l'intervalle | ¢|<p, sielles y peuvent
étre représentés par des séries entiéres convergentesde e: A(e) = A, + €4,
+Ehh+--, fle)=fot+eh+eefat---, T)=T)+ eT, + T,
+ .-+, les coefficients 4., f,, T, étant respectivement des nombres, des
éléments de § et des transformations linéaires bornées de $ en lui-méme.
Tel étant le cas, on a

1 1 1
1

T T 1 Y * 1 T &
lim |4,|* <=, Tm||f]|* <= et Iim || T ]|* < —,
k o k e k (4

ou, ce qui revient au méme, & tout r positif plus petit que ¢ on peut
trouver des constantes M, M’, M” (dépendant de r) de facon qu’on ait

M M’ M7
1l =% L= et [Tkl =

3) Imprimée dans les comptes rendus de la Classe des Sciences: Matematikai és Termé-
szettudoméanyi Ertesito 61 (1942) 755—774.
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En effet, les séries entiéres en question étant convergentes pour ¢=7, on
a nécessairement: r* 1, — 0, »*f, — 0 et r*7T, — 0, et, & plus forte
raison, |[7* A, | S M, || rFf, || S M et || 7FT, || < M Y.

1. Lorsque A(e), A’ (e) sont des nombres, f(g), {'(c) des éléments de $
et T(e), T'(e) des transformations linéaires bornées de §, réguliers sur
Vintervalle | e| <o, alors A(e) A'(e), A(e)f(e), A(e) T(e), (f(e), ' (¢),
T(e)f(e) et T(e)T' () sont aussi réguliers sur le méme intervalle, et
leurs séries s’obtiennent par multiplication formelle des séries des facteurs.

C’est une conséquence immédiate du fait que, r étant un nombre positif
arbitraire plus petit que g, les séries des facteurs sont majorées, pour

|e | <r, par des séries géométriques convergentes de la forme ¥ |¢|* % .
k T

Le théoréme suivant dont nous ne ferons pas usage dans la suite, a

pour but de montrer que les transformations autoadjointes A (¢) que

nous allons étudier, sont précisément celles dont le domaine est indépen-

dant de ¢. Ce théoréme est dit & M. Rellich %) ; qu’il nous soit permis de le

reproduire avec sa démonstration.

2. Soit A (¢) une transformation symétrique de ), bornée ou non, dé-
pendant du paramétre &, mais dont le domaine D (partout dense dans 9) est
wmdépendant de . De plus, A(0) sott autoadjointe. Pour tout f de D sout
A (e)f un élément régulier sur |¢|<g. Alors il y a des transformations
symétriqgues A, = A (0), A,, A,,..., définies sur le domaine D, ainsi
que des constantes p, a, b = 0, telles que A(e) f = Aof+ed f+e2 A f+---
e || A fl| <P @l fI| + b1 Aufl]) pour k=1,2,..., pour tout
élément [ de D et pour |e|<p .

Soit 4, la transformation qui fait correspondre a I’élément f de D le
coefficient de & dans la série entiére de A4 (¢)f; elle est évidemment
linéaire et symétrique. On a A (e)f = Aof + ¢A,f + e2A4,f +--- pour
f de ® et pour |e|<p. Ay = A(0) étant autoadjointe, R = (4,+¢I)™1
existe et transforme l'espace § dans la variété linéaire D. Les trans-
formations B(¢) = A(e)R et B,= A, R (k=0,1,2,...) sont donc
définies partout dans $; pour |e|<g on a B(¢)= B,+ ¢ B; +
+ &2 B, 4 ... ., Montrons que les B, sont bornées.

4) Comme nous n’avons pas exigé que la série de T (¢) converge au sens uniforme, c’est-a-
dire en norme, on a 7¥7T; > 0, mais non nécessairement Il kT, || > 0. Nous faisons
usage du fait qu'une suite convergente de transformations linéaires bornées admet une
borne commune.

5) L.c.2) V. § 2.
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Soit & un élément quelconque de §) et soit A, une suite tirée de D,
convergeant vers k. Pour tout f de § on a (B, f, k) = lim (B, f, k,) =

im(A4,Rf,h,) =lim(f, R*4A, h,), d’ou 'on voit que la suite R*4, h,

(n =0,1,...) est faiblement convergente. Soit A* sa limite faible, alors
(Bif, k) = (f, h*); h est donc dans le domaine de B} (et Bfh = h*).
Les transformations B,, B;: , et avec elles aussi la transformation
symétrique B} B,, sont donc définies pour tous les éléments de §).
D’aprés un théoréme connu de Hellinger et Toeplitz, une transfor-
mation symétrique dont le domaine est l’espace entier, est bornée.
Donc Bj B,, et avec elle B,, sont bornées.

B (¢) étant donc une transformation bornée réguliére sur |e|<p,

atout r (0< r<p) correspond un M = M(r) de facon que || B, || < %

(k=10,1,...). Il en vient que 4

14, fll = | Buldy + D] S 7|l (Ao + D f < o (1 Aaf || + 17])

pour tout f de D, ce qui achéve la démonstration.
Le théoréme suivant jouera un réle important dans la démonstration
des théoréemes I—1V :

3. Soient P et Q les projections (orthogonales) sur les sous-espaces IN et
Nde$H,etsowt || Q— P|| <1. La transformation

U—=QU + PHP) *P=Q ~ (})) @mPy P

ow H=0Q — P, est partiellement isométrique ayant le domaine initial IMN
et le domaine final N, c’est-a-dire que U* U =P et U U* =¢Q. Par
conséquent, M et N ont la méme dimension 8).

Tout d’abord, la condition ||P H P || < || H || <1 assure I'existence

de (I + PH P)‘% , ainsi que la convergence de son développement.
L’équation U* U = P vient immédiatement de

U*U=P(I-+PHP)tQQU+PHP) P,
-3

en observant que P est permutable avec (I + PH P) ° et que

PQQP=PQP=P(P+H)P=P+ PHP=P(I + PHP).

%) Le dernier énoncé a été démontré déja dans le livre cité de I’auteur, p. 58.
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Quant & la seconde équation, observons d’abord que

3

UU*=QU+PHP *PPUI+PHP)Q

annule tous les éléments orthogonaux a M. D’autre part, elle laisse in-
variants tous les éléments de la forme g = Uf: UU*g=UU*U f =
UWU*U)f=UPf=Uf=g. Ces éléments g forment un sous-espace
de 9, contenu dans N. La démonstration de I'équation U U* = @ sera
achevée, dés que nous aurons montré que ce sous-espace coincide avec N.
Or, en cas contraire, il y aurait un élément h £ 0 de I, tel que
(k, Uf) =0 pour tous les f de §. Mais alors (U*h,f) = 0 pour tout f,

done U*h—0, P+ PHP) YQh—=0 et
Ph— PQh— (I + PHP (I + PHP)} PQh — 0 .

Les relations Q@ h = h et P h = 0 entrainent que H h = k, en contra-
diction avec || H || <1.

§ 2. La perturbation d’une partie isolée quelconque du spectre

Dans ce § nous allons démontrer le

Théoréme I. Sotent A,, A,, 4,,... des transformations linéaires
symmétriques de §, ayant le méme domaine D ; de plus, A, soit auto-
adjointe et Von ait ||A,f| < p*(a|fl| +0||4of]]) (k=1,2,...)
pour tout f de D; p, a et b étant des constantes réelles non négatives.

. 1
a) La série A, + e A, + 2 A, +--- converge pour |e|< —p—etapow*
somme une tmnsformation symétriqgue A (¢) ayant le domaine . Du moins
+ — A (&) est méme autoadjointe. Soit alors | A dE) () sa

représentation spectrale.

pour |e| <——

b) Supposons que Uintervalle A = |u,, py] renferme une partie isolée du
spectre de A,, ou, d’une maniére plus précise, qu’il existe deux intervalles
ouverts de longueur d, 0<d < u, — pt,, ayant comme centres u, et p, et

ne contenant aucun point du spectre de A,. Alors, pour |e|<— les

p+a’
vntervalles de longueur d(e) =d ( 1 — ] _l_sll 7 ) autour des centres Uy et g,

ne contiennent aucun point du spectre de A (€) ; ict on a posé

|4 ) Aoz‘ul——gﬁ—?etdzluz—ul——d.

2a

3561



Les transformations P,(e) = E, () — B, (c) et A(e)Pyle) sont
régulieres: Py(e) = Py+ e P, + 2 Py+---, A(e)Py(e) = Ao Py(e)

+ By, + ¢ B, + €2 B, +---, et les coefficients satisfont aux inégalités
20 0+d 246
1Pl = (14 2g) s+ ar (1Bl = 252 (14 29) atp+ o

(k=1,2,...) .
La dimension du sous-espace M, (e) = P,(e) H est indépendante de ¢.

Démonstration. a) Comme
| X aufll S X e P @lIfll + 51140/ 1) (O<m<n),

la série X &k 4, f converge sur Uintervalle |e|< —;)- , quel que soit f
k=0
de D; A(e)= A, + A4, +e2A4,+--- est donc une transformation

symétrique, ayant le domaine D.

Soit z un point dans le plan complexe G, ayant une distance positive
l, au spectre de 4,. La transformation R, = (4, — 2z I)~! est alors par-
tout définie et bornée : 1

L

Il BR[| = (1)
Comme R, transforme I’espace entier dans D, les produits 4, B, (k = 0,
1,...) ont pour domaine l'espace entier. Il s’ensuit de la représentation
intégrale

o
40R, = [ dByO)

que -
A
A—z

|
:::.mz,

|4, R, || = max
A
A parcourant le spectre de 4,. Pour £ = 1, 2,... et pour tout f de Hon a

1L RIS P (all RSN+ Bl A RoAN) < 9574 (4 bm) 11711

4

donc a
14, R, < 9 (7 + bm) @

et
hed a
14 — )Rl = || 3 e ARl < 1T (F o)
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Soit 7 une valeur arbitraire fixée de ¢ telle que |7 |< m; pour 7
suffisamment grand on aura encore |7 |< ——1—— . Pour z=+41r
bt 2
ona l,=r et m, <1, donec P +
_dml (e _
l|(A(77 O)Rﬁ:zrl I’HP 7+b \1

Il s’ensuit que la transformation 7' = I 4 (4 (y) — 4,) R_;, admet une
inverse partout définie et bornée ; il en est alors de méme pour le produit

T(A,TF irl) = A(n) F irl. La transformée cayleyenne de H = —:.—A(n),

cest-a-dire Vy=(H —¢I)(H + ¢ I)"! est partout définie et ses va-
leurs remplissent ’espace entier. Cela entraine que §), et avec elle aussi
A (n), sont autoadjointes.

b) Soit C le lieu des points du plan complexe G qui ont la distance g
4 l’intervalle {,ul -+ g—, e — %] de ’axe réel. C’est une courbe fermée,

composée de deux segments de longueur § et de deux demi-cercles de

rayon sa circonférence est donc 20 + nd .

27
Dans ce qui suit, z veut désigner toujours un nombre complexe situé sur

la courbe C. Alors [, = i

2—2 2
|
m,= max| 14 ;7 (oG —4) | S1+ (|z|+‘“’d),
A A—2z
donc—?——l—bngoz. Donce, par (1) et (2),
2
“Rzllg—d' et IIAkRzH§pk-10‘ (k:1323"°)' (3)

Un calcul formel fournit :

R.(e) = (A(e) —2I)t=[(4o —2I) + (A — 4] =
=[(I+(A(e) — 4)) R) (4o — 2D) | =R.[I + (4(s) — 4,) B, =
_ R ®© B B , R o0 B 0 . .

X [-UE-4)R] =R 3 [~ X4, R ] (4)

23 Commentarii Mathematici Helvetici 353



Les coefficients de ce développement sont, en vertu de (3), majorés en
norme par ceux de 1’expression

2 o0 o0 v
= PErENE
(r

k=1

Or cette expression converge pour || <p j_ - et a pour somme
F(e) = 2 (1 -+ i
- d 1—e(p+ao)/) -~

Pour ces valeurs de ¢, notre calcul est donc justifié ; de plus, le dernier
membre de (4) peut étre arrangé suivant les puissances de ¢:

Rz(8)=R20+8Rzl+82R22+"' ’ (5)

et les coefficients R,, sont majorés en norme par ceux de la série entiére
de F' (¢), done

IRall S = [1Ball S o alp+ o (k=1,2,...)  (6)
et
2
nmwnggwr+l_¢ﬂ;+w). )

La relation évidente
Rk'g(e) — Rzl(s) = (2, — 21) Rzz(s) Rz1 (¢)
montre, vu aussi que R, (¢) admet la borne (7) indépendante de z, que

R, (¢) est une fonction continue de z. En particulier, R,, = R, (0) est
continue en z. Il en est de méme pour les autres coefficients R,,. Suppo-

n—1
sons que cela est établi pour k<n. T, (c) = ™ [ R,(e) — X & Rzk] est
k=0

alors une fonction continue de z pour toute valeur fixe ¢ £0. D’apreés (6):

2 lel(pt o
= 104
a1 [el (nt )

o0
2 sk—n Rzk

k= n+1

“Tz(g) '—’Rzn“ =

?

donc T, (¢) converge, pour ¢ - 0, vers R,,, et cela uniformément en z
(sur C). Par conséquent, aussi R,, est une fonction continue de z.
Envisageons les transformations

1 1
P,(e) = ~§E¢R,(a)dz, Pk=mm¢3zkdz k=1,2,...);
] C
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les intégrales étant définies d’une maniére évidertte. Il s’ensuit de (5) et

1
6 s
(6) que, pour |el<p+oc
2 d?2
Pye) = Po+ Pt 2Pyt ... ot [Pyl = 2070 2% 4 gy
(k=1,2,...) .  (8)

Comparons P'inégalité (7) avec la formule
" 1
R,(e) = J"}.—-:—é ar,(e) .

11 s’ensuit que les points de I’axe réel 1, pour lesquels

e (e =ieea)

ou, ce qui revient au méme, pour lesquels

d le| & __d(g)
'l_”<3(1“1~4ﬂp)* 5

forment un ensemble de mesure O par rapport & E)(¢). En particulier,
les intervalles

d (&)

A=l < B et 2y <2

2

ne contiennent aucun point du spectre de A(e).
Cela nous permet & intervertir ’ordre des intégrations dans la formule

1 y; 1
PA(S) = ——-2—;;,—&4¢‘ dede,\(e) o
C —00

ce qui donne, vu que
1 1 i 1 pour A intérieur & C ,
= 3 2 ==
2nz.c¢ A—2z 0 pour A extérieur & C,

B .

la relation P,(¢) = i dE)(e) = B, () — K, (¢) . Py(e) est donc la
I

projection au ,,sous—e;pa.ce propre M, (e) de A(e), correspondant &

la partie du spectre de A (¢) contenue dans l'intervalle 4 = [u,, 4,] -
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Envisageons maintenant la relation

(A(e) — A1) B, (e) = I + (z — L) R, (¢)
=14+ @E—A) (B +eB,+ & Ry+---);

on en obtient en intégrant sur C':

(A(E)— )‘DI) Pye) =By + e¢B, + & By +- - -
ou
By = (do— A1) Pa(0) et By=— o () (z — &) Rurdlz
c
donc

I1B,|| < 20 +dm 0 +d 2«

27 s g @t (k=1,2,..) .

Quant a la dimension du ,,sous-espace propre“ IR,(¢), il suffit d’ob-
server, grace au théoréme auxiliaire 4, que || P,() — P,(¢) || <1 pour

| n — €| assez petit, quelle que soit la valeur fixée 7, telle que |7 | < » _[1_ ;

&
Or cela s’ensuit, immédiatement de la régularité de P,(¢) dans cet inter-
valle.

Le théoréme I se trouve démontré.

§ 3. Cas d’une valeur propre simple

Nous obtenons du théoreme I presque immédiatement le

Théoréme II. Soit A4 (c) comme dans le théoréme I, mais les hypothéses
dans b) soient spécialisées comme il suit: Soit A, une valeur simple propre
de A, et soit @, un élément propre nmormé correspondant. Supposons que
Vintervalle Ay —d <A <<Ado+d ne contienne pas d’autres points du spectre
de A,. Posons

— [ 2o
x= +2b(1+7l“) :

Alors, pour |e| < L , le spectre de A4 (¢) consiste, dans intervalle

P+
d |e|la
KL N Y

b

d’une seule valeur propre A(e), de multiplicité 1, et la distance de A(e) @ A,

o el

ne dépasse pas la valeur T T—|elp "
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A(e) est régulier, du moins sur DUintervalle | e | < , et les coeffi-

1
P2
cients de sa série entiére Ay + € Ay -+ €2 A, +- -+ satisfont aux inégalités

d
bl < S (p+ 200 (h=1,2,...) .

Ona Ay = (A, @, @o). 1l existe un élément propre ¢(c) correspondant a

et tel que ||p(e)l =1,

1
A fquli Uint
(€), régulier sur Uintervalle | e | <p T oa
(p(e), @o) = 0. Les coefficients de sa série entiére @q + € @, -+ €2 @y -+ - -
satisfont aux inégalités :

oell = (@ + 2a)* (k=1,2,...)7 .

Partons du théoréme I, en y posant

d d
.“1::20—? et ﬂzzlo+‘§‘

(alors § = 0 et a a la valeur donné dans le théoréme II). Il s’ensuit que,

pour |e|< 1 , la dimension du sous-espace propre M, (e) =L, (e)H

P+«

correspondant & lintervalle A = [u,, u,], est indépendante de ¢, donc
égale a celle de I, (0), c’est-a-dire & 1. Le spectre de A4(¢) consiste
donc dans 4 d’une seule valeur propre A(e), de multiplicité 1. Les

segments
<i 1_._£Lx_.
2 1—|e|p

ne contenant aucun point du spectre de A (¢), la distance de A(g) & 4,
ne peut pas dépasser la valeur donnée dans le théoreme.
p(e) = P,(e) ¢, étant un élément propre correspondant & A(e), on a

((4e) = 2 1) p(e), go) = ((Ale) — &) (e), 9)

((A(e) - ZOI) P4 (¢) ‘Po:%) .
(PA (€) o ‘PO)

Or, nous savons du théoréme I que P,(¢) = Py + e P, + &2 Py +--- et
(A(S) - lol)ﬂ(e)’—:Bo +¢eB, + By +--- ot By= (4, — 4 I)F

|4 — wql
|4 — usl

d’ou

Alg) — Ay =

?) Dans une forme moins précise, ce théoréme a été déja démontré par Rellich, 1. c. ?),
IV. § 2. En partant des formules explicites pour les coefficients 1, et ¢y, il n’établit la con-
1

vergence des séries en question que pour | £ l < m .
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d
= 4ePo— APo=0 ot [|PllSa(p+ ), |[Blls T (p+ o

(k=1,2,...). En désignant la différence P, (¢) -- P, par H(g), nous
obtenons par un calcul formel :

((4(s) = %I) Ps(e) 9o, 90) _
1+ (H (¢) g0, %o)

— ((A(0) — 40I) Ps(e) 90, 90) 3 [ — (H(#) 70, 90)]” =

v=0

= 12:1 8k('Blc Po > Po) §) [‘“k§ 8k(Pk ‘Pm‘Po)]v

Ale) — 4y =

Les coefficients de ce développement sont majorés par ceux du dévelop-
pement

do € o b B N TR k-1 v
?1—e(p+2o¢)"’,§18 5 (P+ ) E[Elea(zwa) |

valable pour |¢|< . Pour ces valeurs de ¢, notre calcul est donc

1
P+ 2«
légitime. De plus, le développement de A(s) — A, peut étre arrangé sui-
vant les puissances de ¢:

Ale) — Ao = €Ay + 45+ -+,
et | A,| ne peut pas dépasser le k-iéme coefficient de la série entiére
de la fonction majorante, c’est-a-dire fl—zﬁ (p + 2a)1.

Pour obtenir un élément propre normé, posons -

(8) — '/)(8) — PA (8) ‘Po — Pd(e) (pO —_
(v(@), (&) (Ps®) 9o, 00)t  [L+(H () @0, 90)]

2( )(H(s)(po ‘Po) P,(e) pp = i( )[;——:gk Pk¢03‘p0)]§8ll)tq)o-

1=0

Les coefficients de ce développement son majorés par ceux de I’expression

S PSEE i S et a-

ayant pour 1
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la somme

1 —ep
G (e) =
“ V1—elp+ o) V1 —&(p + 24)
Done, ¢(e) est régulier sur |s|<——-~l.—~—-
¥ . p+2a

p(e) =@o+e@,+@a+- - -,

et || @, || ne peut pas dépasser le k-iéme coefficient de la série entiére
de la fonction G(e¢), et, & plus forte raison, celui de la fonction

1 — 8(; T o) c’est-a-dire (p + 2a)¢. Comme
Py(e 0570
((p(s), (po) = ( 2(€) 90, 0] =(PA(8) ‘Poa?’o)éz I| Py (&) @oll

(P4 (2) @0, @0)t

ona (p(e), ) =0.

Enfin, en comparant les coefficients de ¢ dans les deux membres des
équations identiques (p(¢),p(e)) =1 et (A (e) p(e), ¢ (e)) = A(e),
nous obtenons: (@y, @o) + (o, 1) = 0 et (A; @0, Po) + (4o @1, Po) +
(Ao@o,p1) =4, d’ou il vient (ayant vu que (4, @;,90) = (@1, Ao @o) =
Ao (p1, @o) €t (Ao @o, @1) = Ao(@o, 1)) que 4; = (A, @0, @o), ce qui
achéve la démonstration. ‘

§ 4. Cas d’une valeur propre de multiplicité finie

Voici une nouvelle démonstration du théoréme fondamental de M. Rel-
lich 8), basée sur notre théoréme I. 1l s’agit du

Théoréme III. Soit A (c) comme dans le théoréme I, mais les hypothéses
dans b) sotent spécialisées comme suit: Soit A, une valeur propre de A, de
multiplicité finie m, et supposons que Uintervalle Ay — d<A<<ldy+ d me
contienne pas d’autres points du spectre de A,. Il existe alors m valeurs
numériques réelles A9 () et m éléments @'¥ (¢) de §, fonctions réguliéres
de & sur un certain intervalle |e|<p:

KNe) = ot edP+ 20 + -, () =9 + ep + epP+ - - -
(1::1,2, ...,m) ’

et cela de fagon que les AV (¢) sont .des valeurs propres de A (e) et que les
@' (e) sont des éléments propres correspondants formant, pour toute valeur

8) L. c. ) I (théordme 2) et III (théoréme 3).
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N d .
donnée de ¢, un systéme orthonormal. A tout n, O<n<§ , on peut faire

correspondre un r = r(n) >0, de sorte que, pour |¢e|<r, le spectre de la
transformation autoadjointe A (c) consiste, dans Uintervalle A, — d + n<
A<ho+ d — m, précisément des points A (¢), chaque valeur propre étant
comptée autant de fois que Uindique sa multiplicité.

Ona (¢, ¢f) =KD e (A, ¢, ¢f) =0 pour ij. Cesti
dure que, P, désignant la projection sur le sous-espace M, (de dimension m)
des éléments propres de A, correspondant & la valeur propre A,, la trans-
formation P,A,P, aura les ¢\ pour éléments propres correspondant
respectivement auzx valeurs propres A" (v = 1, 2,...,m).

Nous raisonnons par récurrence par rapport a m.

Pour m = 1, le théoréme est évidemment contenu dans le théoréme 11.
Supposons qu’il se trouve déja démontré pour les valeurs propres de multi-
plicités inférieures a m.

Le théoreme I (avec u, = 1, — %, e = Ao + fz—l-, 0 = 0) fournit tout

d’abord l'existence d’une quantité positive g, de sorte que pour |¢|<<p:
1) A(e) est une transformation autoadjointe, 2) la projection P,(e) sur
le , sous-espace propre I, (e) correspondant & la partie du spectre de
d
"é‘)
A (e) P,(e), sont des transformations bornées réguliéres, 3) I,(¢) a la
dimension constante m, 4) & tout >0 correspond un r = r(n)>0 de
facon que, pour |e| <7, le spectre de 4 (¢) dans 'intervalle 1, —d 4 #
<A<ZAy+d—mn est concentré dans Vintervalle A, —n<i<i,+ 7.

P,(¢) étant réguliére, on pourra choisir p méme de fagon que pour
| | <o, la norme de H(e) = P,(¢e) — P,(0) = P,(¢) — P, soit infé-
rieure & 1, et que la transformation

A(e) contenue dans lintervalle A = [lo — Ao + %], ainsi que

U6 =B, X (7)) (P Pr) Po=Pate) 3 () [g &Py P, Po]"Po

soit réguliére. D’apreés le théoréme auxiliaire 3, U (e) est partiellement
isométrique ayant le domaine initial IR, = M ,(0) et le domaine final
P, (e), donc U*(e)U(e) = Py, Ule)U*(e) = Py(e) et U(0) = U*(0)
= P,. La régularité de U (¢) entrainant celle de U*(¢), la transforma-
tion autoadjointe bornée C(e)=U*(e) A(e) U (e)= U*(e)A(e) P4(e) U(e)
est aussi réguliére sur l'intervalle |e|<p: C(e)=Co+eC,+2Cy +---.
C(¢) transforme IR, en lui-méme et annule tous les éléments orthogonaux
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a M,. Il en est de méme, par conséquent, aussi pour les coefficients C,.
On a, en particulier, Cy = Py4,P, = A, P, et C; = P,A,P,. La pre-
miére équation est évidente, la seconde s’obtient en comparant les coeffi-
cients de ¢ dans les identités U* (¢) U (¢) = Py et C(e) = U*(e)A (e) U (¢),
ce qui donne U} U, + U, Uf = UfP, 4 P,U, =0 et C,=UXA4,U,
+ U A, U, + UFA, Uy = UfA, Py + P, A, U, + P, A, P, =
ZO(UI*PD—*_POUl)—{—POA]_PO:POAIPO'

Lorsque tous les coefficients C,, sont des multiples numériques de P,,
C, = A, P,, alors C( ) = A(e) Py avec A(e) = Ay + e Ay - €245 +--- .
tomme U (&) C(e)=U (¢) U*(e) A (e) U () = Py () A () U () =4 (&) U (e), il
s’ensuit que A(e)U(e) = A(e) U (e) P, = A(e) U (¢). Quel que soit donc le

systéme orthonormal ¢’ dans M, (¢ = 1,2,..., m), les éléments ¢V (¢)
= Ule) iV et les valeurs A9 (e) = A(e) (¢ = 1, 2,...,m) satisfont aux

exigences du théoréme.

Passons maintenant au cas ol il y a des coefficients €', qui ne sont pas
des multiples de P, ; soit C, le premier d’entre eux, s= 1. Pour k<s on
adonc Cp = A, P,.

Posons D(e) =C,+¢Cy,+---. D(0)=C,, regardée comme une
transformation autoadjointe du sous-espace IR, de dimension m en lui-
méme, n’est pas un multiple de 1'identité, par conséquent elle admet au
moins deux valeurs propres différentes. Désignons ses valeurs propres
différentes par %y, ®a,. .., %, ; leurs multiplicités soient respectivement
My, My,...,m, (My-+ my+---+ m, =m). Chaque valeur propre x
étant évidemment isolée et de mulmphcl’ce inférieure & m, on peut appli-
quer le théoréme, par hypotheése faite, & chacune d’elles. Il s’ensuit
Pexistence de m valeurs réelles x¥(¢) et de m éléments orthonormaux
p'¥(e), réguliers dans un certain intervalle |¢|<p' (o' <p):

%”’(8):%8”—{—6%({5)+ £2 %(21)_}_ ... et w(z)( )= %)_Jr_sw(%)_*_e w(z)+
(t=1,2,...,m),

et tels que x{"=1, pour i =<m,,x)=1x, pour m;<i < m,+m,,...,
et que Di(e) pW(e) = xD(e)pP(e) (1 =1,2,...,m).

Il en vient que

C(e) 99 (e) = [ N kA, Py & D(s)] 0 (g) =

- kE &% A, 9 (e) + & D (&) p D (e)
=0
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donc, en posant
A=Ay + €A +-+-+ & 1A, + ¢ %ff) + gt xgi) Foeee

on a C(e) p'?(e) = A9 () p'¥(e) et, par conséquent, A (&)U (e) p'? (&)
= AD(e)U(e) p'(e) (¢ =1,2,...,m). Les valeurs A" (e) et les élé-
ments ¢ (e) = U(e) ‘¥ (¢), réguliers sur | ¢|<p, satisfont donc aux
exigences du théoréme. L’assertion relative aux valeurs propres et élé-

ments propres de Py,4,P, est vérifiée par la construction méme des
A () et @' (e).

§ 6. Cas d’une valeur propre multiple dont se détache, déja en premidre
approximation, une valeur propre perturbée simple

Le théoréeme III ne donne pas des renseignements sur le rayon de con-
vergence et des estimations pour les coefficients des séries en question.
Nous allons le perfectionner dans cette direction, du moins dans le cas
particulier d’une valeur propre non perturbée multiple 4, dont se détache
une valeur propre perturbée simple A, + &4, +---, différant, pour
e # 0, de toutes les autres valeurs propres provenant de 4,, et cela déja
en premiére approximation, c’est-a-dire dans le terme ¢ A,. Cela revient
& supposer que A, est une valeur propre simple de P,4,P,, regardée
comme une transformation du sous-espace propre I,. Voici le théoréme,
formulé de fagon qu’il s’applique aussi & des valeurs propres A, de multi-
plicité infinie :

Théoréme 1V. Soit A(c) comme dans le théoréme I, mais les hypothéses
dans b) soient spécialisées comme suit: Soit A, une valeur propre de A, de
multiplicité finie ou infinie, et telle que Uintervalle 1, —d<A<<A, + d me
contient d’autres points du spectre de A,. Soit P, la projection sur le sous-
espace I, des éléments propres de A, correspondant & A,. La transformation
P,A,P,, regardée comme une transformation de MM, en lui-meme, est auto-
adjointe et bornée. Supposons qu’elle a une valeur propre simple A, et que
Pintervalle A, — d' <A< 2, + d’ ne contient d’autres points de son spectre ;
enfin, soit o, un élément propre normé de P,A4,P,, correspondant & A,.

Dans ces hypothéses, il existe une valeur propre A(e) de A(e), réguliére

1
pour |£|<-07 ou

2
a+(l+g(%§)(p+2a) et “‘_‘7}‘*‘25(14— Mdo‘)’
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et dont la série entiére commence par A,+€l,:

Ale) = Ao+ €A+ 2hp+- - - ;

les autres coefficients satisfont aux inégalités
d
|zk|§—§-(p+2a)ak—2 k=2,3,...) .

Il existe un élément propre (&) correspondant & la valeur propre A(e),

. >e 1
régulier sur Uintervalle |e| < o

¢(e) =@ + ey + @y +- - -,
tel que

le@E =1, ¢0) =9, e |lgll=k+1c* (k=1,2,...).

En multipliant par un facteur numérique convenable de module 1, dépendant
de ¢, on en peut obtenir un élément propre @(g), régulier au moins sur
Pintervalle 92 nd

1 .
|£|<~{ o 1:(2+7)(p+2oc) ;

et qui satisfait, outre aux conditions @ (0) = @, et || p(e) || =1, aussiala
sutvante: (@ (£), o)= 0. Les coefficients de son développement @ (e) =
Yo+ €@y +--- satisfont aux inégalités: || @i || 2(27)¢ (k= 1,
2,...)9).

Démonstration. Quel que soit f de &, P, f est dans le domaine D de 4,
et ||A;Pofl||sallPof|l+ 0|l Ao Pofll=(@a+bli)IIfIl; A1Po
est donc partout définie et bornée. Il en est de méme pour P, A4, P,.

D’aprés le théoreme I, la projection P,(e) = EA.,+ a (8)_E10- d (&)
2 2

est réguliére pour |e|<§ql_?: P(e)=Py+eP,+ --- avec
HP.l|£alp+ )t (k=1,2,...). De plus, on a:

(A) — A I)Py(e) =B, + 2B, + - - -
avec

1Bl =25 o+ op k=1,2,...)

) En se servant des formules explicites du calcul des perturbations, M. Rellich a obtenu
ce théoréme (1. ¢.2) IV. § 3) sous une forme moins précise. Les quantités qui jouent, dans
son théoréme, le réle de nos o et v, dépendent aussi de la multiplicité m de la valeur
propre non perturbée et croissent indéfiniment avec m. Son théoréme ne porte donc que
sur les valeurs propres non perturbées de multiplicité finie.
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Pour |¢|<- on adone || P,(e) — P,}| <1 et on peut former

P+ 2«
la, transformation partiellement isométrique

Ule) = P, (e) [I + Po(Pi(e) — Po) P] 2P, .

Elle est réguliére ; et les coefficients de sa série entiére sont majorés par
ceux de la fonction

[+ el [ rdieal -
"1 " e(p + ) 1 —e(p+o |
1 —ep

T Vi—ep+ o) VI—e(p+ 20 °

. s 1
et, & plus forte raison, par ceux de la fonction I —e(p ¥ 20

On a déja vu que la série entiere de la transformation réguliére
U*(e)A(e)U(e) commence par Ay Py + e Py 4, P,. Comme, d’autre
part, U*(e) 20 P,(e) U(e) = A, U*(e) U (e) = Ay Py, On a

D(e) = U*(e) (A(S)"“}»OI)PA(F«) U(S)ZPOAIR,—}-EDI—I—SZD2+--. .

&€

D’une maniere plus détaillée,

3 (4 (e) — A1) B, (¢)

&

[I-+Py(Pye)—B) B] 'R =

D(e) =Po[I+P0(PA(8)"Po)Po]_

oo

=P X (‘j‘)[}j ekPoPkPo] - X Bia - X (7) [2 g% Py P, P.,] P, ,

k=1 k=1

d’ou il s’ensuit que les coefficients D, sont majorés par ceux de la série
entiere de la fonction

°°_‘ -1 : ! v o‘: d 03‘ _ 2 ' y
() [2.s’€a(p+oc)’~~l] BOCESUERILED ‘(f) [}.e’"oc(j!?*f—fx)k"l] _
v =1 L v=0 |\ " /| Lk=1
. dx 1
T2 1—s(p+20a)

c’est-a-dire que || D,|| = %‘—x— (p + 2a)k (k=1,2....).
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Pour cette transformation D () de i, en lui-méme, les hypothéses du
théoréme II sont donc vérifies avec p' = p 4+ 2a, o’ = dT“ (p +2«a),

b’ = 0, A,etd respectivement au lieude p, a, b, i, et d. Il s’ensuit donc

que D(g) a une valeur propre simple A'(¢) = 4, 4+ ¢ 4, +--- et un élé-

ment propre normé correspondant ¢’(e) = @, - e ¢ + &2 ¢, +- -+, 1é-
. 1

guliers pour |e| < Py ou

2a’ A 2a/ d
o = 7‘?‘ 25'(1‘|— lﬁl)=‘éf—:—‘gg(ﬁ7+2“),

donc pour |ée|< %; . De plus,

[ 4] = d?(x(p’ - 20c’)"*2=~@2—0~c(p+20c)0k‘2 (k=2,3,...) (9)
et
lop IS + 24 =0 (k=1,2,...).
L’équation D(e) ¢’(¢) = A'(¢) ¢’ (), multipliée par & U(e), donne
(A(e) — A J) Bye) Ule) ¢'(e) = e A (e) Ule) ¢'(e)
done
A(e) ple) = Ale) p(e)
avec
2(8):}m‘i‘«’il,(s):‘/10"1""3/']-1‘}‘82/12”%""
et

pe) =Ule)p'(e) =0+ e + Py + -+ .

Pour les 4, nous avons déja les inégalités (9). Les coefficients de la série
de Uf(e) et de ¢’(e) étant majorés respectivement par ceux des fonctions
1 1

b
I—ep+20) O T—eq’

les ¢, seront majorés par les coefficients de la série entiére de leur produit

1 1

1 —e(p+2a) 1—co (10)

et, vu que o>p + 2«, a plus forte raison par ceux de

( ! ~)2= 3 ek (k + 1) of .

1l —¢o k=0
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¢’ (¢) était un élément normé de I, . Par I'isométrie de U (¢), @(e) est
aussi normé. Pour en obtenir ’élément @ (¢) exigé par le théoréme, on n’a
qu’a poser
_]/{pe2@)
(9(2), ®o)

_]/1+3(990a¢1)+82(970,‘P2)+"' (Po+ €9 + 2y + - - +)
- ° 1 2 ’

v (e) (e) =

1+ &(@y, @o) + (P25 Po) +- - -

les racines carrées étant déterminées de fagon qu’elles prennent la valeur 1
pour & = 0. Pour arriver & une fonction majorante, partons de la fonction
majorante (10) de ¢(¢), d’otr nous obtenons sans peine que

leell= @+ 20 + o) = ¥

On a donc pour @(¢) la majorante
-3
y=0 (”)
_ 2____(1__ ET )% (1__ ET )-% 1 2 1
1—ert 1 —e7 l—et V1 —er V1 —27¢ 1 —e7

. 2 . . , .
et, & plus forte raison, T 93: ce qui achéve la démonstration du

(> <]

(Her+eet 3

v=0

oo
(et e+ - - ) e Yekrh=
k=0

théoréme.

(Regu le 30 aolit 1946.)
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