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Perturbations des transformations
autoadjointes dans l'espace de Hiibert
Par Bêla de Sz. Nagy, Szeged

Le calcul des perturbations, créé par Lord Rayleigh et M. E. Schrô-
dinger, et dont on fait souvent usage sans la Mécanique quantique, a

pour objet de calculer les valeurs propres et les éléments propres d'une
transformation autoadjointe A (e) de l'espace de Hiibert1), dépendant
du paramètre e sous la forme d'une série entière : A (e) Ao + eA1 +
e2A2 + • * •, à condition qu'on les connaisse pour la transformation ,,non-
perturbée" Ao, correspondant à e 0. Ao étant une valeur propre de AQ

et f0 un élément propre norme correspondant, on fait Vhypothèse que la
valeur propre X (e) et l'élément propre norme / (e) perturbés peuvent
être cherchés également sous la forme des séries entières de e, commençant
par Ao et /0 : X (e) Xo + *h + eH2 + • • - et f(e)=f0 + ef1 +
s2f2 + * • *. Les coefficients Xk et fk peuvent alors être calculés, l'un après
l'autre, à l'aide des équations récurrentes

o

0

équations qu'on obtient en comparant les coefficients des puissances de e

dans les identités

et

La première démonstration rigoureuse de cette hypothèse est due à

M. F.Rellich2). Ses théorèmes portent sur les valeurs propres de multipli-
1) Pour une introduction à la théorie de l'espace de Hiibert, nous renvoyons par exemple

au livre de l'auteur: Spektraldarstellung hnearer Transformationen des Hil-
bertschen Raumes, Ergebnisse der Mathematik und îhrer Grenzgebiete, Vol. V. fasc. 5

(Springer-Verlag, Berlui 1942).
2) F.Rélhch, Storungstheorie der Spektralzerlegung, I. Math. Annalen 118

(1936) 600—619, II. Ibidem 113 (1936) 677—685; III. Ibidem 116 (1939) 555—570,
IV. Ibidem 117 (1940) 356—382; V. Ibidem 118 (1942) 462—484. (La partie II étudie les
perturbations continues, mais non analytiques.) Voir encore la note de IB.Hôlder, Ûber die
Vielfachheiten gestorter Eigenwerte, Math. Annalen 113 (1936) 620—629.
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cité finie, mais ils ne donnent aucun renseignement sur les valeurs

propres de multiplicité infinie ou sur la partie continue du spectre.
Notre résultat principal est le théorème I, qui s'applique à une partie

quelconque isolée du spectre. En l'appliquant au cas particulier d'une
valeur propre isolée de multiplicité finie, on obtient une nouvelle
démonstration du théorème principal de Rellich (théorème III). Cette
démonstration a, entre autres, l'avantage de ne pas faire appel au théorème

de Puiseux et au théorème de Weierstrass sur les zéros des

fonctions analytiques de plusieurs variables, dont M. Rellich a fait usage.
Pour les valeurs propres simples (théorème II) ou multiples, mais dont

se détachent, déjà en première approximation, des valeurs propres
perturbées simples (théorème IV), nous obtenons des renseignements
même sur la rapidité de convergence des séries en question, plus précis
que ceux obtenus par M. Rellich par une voie tout à fait différente.

Une première rédaction de ce Mémoire, en langue hongroise, a été
présentée en 1943 à l'Académie hongroise 3).

§ 1. Quelques définitions et théorèmes auxiliaires

Dans ce qui suit, e désigne toujours une quantité réelle, variant dans un
voisinage de 0. Nous disons que le nombre X (s), Vêlement f(s) de l'espace
de Hilbert § et la transformation linéaire bornée T(e) de £> en lui-même,
dépendant de e, sont réguliers sur l'intervalle | e \ <q, si elles .y peuvent
être représentés par des séries entières convergentes de e : X (e) — Ao + s Xt

+ s2 A2 +• • -, f(e) U + */i + *2/2 +• ' -, T(e)=T0 + eTx + e*Tt
+ • • •, les coefficients Kh9 fk, Tk étant respectivement des nombres, des
éléments de £> et des transformations linéaires bornées de § en lui-même.
Tel étant le cas, on a

ïïm" \Xk\T^ — ïT||/||Tg tïî"||n||T^
* Q k Q k Q

ou, ce qui revient au même, à tout r positif plus petit que q on peut
trouver des constantes M, M1', M" (dépendant de r) de façon qu'on ait

M M! M"M I < __ 11/ 11 < e-fc 11 î7 11 <

8) Imprimée dans les comptes rendus de la Classe des Sciences: Matematikai es Termé-

szettudomânyi Értesito 61 (1942) 755—774.
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En effet, les séries entières en question étant convergentes pour e r, on
a nécessairement : rk Xk -> 0, rk fk -> 0 et rkTk ->¦ 0, et, à plus forte
raison, \rk Xk\ ^ M, || rk fk || ^ M1 et || rfcTfc || ^ If" 4).

1. Lorsque X(é),Xf(e) sont des nombres, /(e), f'(e) des éléments de §
e£ ^(s), ï7'^) cZes transformations linéaires bornées de £>, réguliers sur
V intervalle \s\<q, alors X (s) X'(s), X (e) / (e), 2 (e) T(e), (/ (e), /' (s)),
T(e) f (s) et T(€)T/(e) sont aussi réguliers sur le même intervalle, et

leurs séries s'obtiennent 'par multiplication formelle des séries des facteurs.

C'est une conséquence immédiate du fait que, r étant un nombre positif
arbitraire plus petit que q, les séries des facteurs sont majorées, pour

| e | <r, par des séries géométriques convergentes de la forme J£ \ e \k —-
k T

Le théorème suivant dont nous ne ferons pas usage dans la suite, a

pour but de montrer que les transformations autoadjointes A (e) que
nous allons étudier, sont précisément celles dont le domaine est indépendant

de s. Ce théorème est dû à M. Rellich 5) ; qu'il nous soit permis de le

reproduire avec sa démonstration.

2. Soit A (s) une transformation symétrique de §, bornée ou non,
dépendant du paramètre s, mais dont le domaine T) (partout dense dans £)) est

indépendant de e. De plus, A(0) soit autoadjointe. Pour tout f de î) soit
A (e)f un élément régulier sur \ e \<g. Alors il y a des transformations
symétriques AQ A (0), Al9 A29*.., définies sur le domaine X), ainsi
que des constantes p, a, b ^ 0, telles que A(e) f A0f-\-eA1fJre2A2f+ • • •

et \\Akf\\ ^p*-i(a|| /|| +6||^0/||) pour k= 1,2,..., pour tout
élément f de î) et pour | s \ <q

Soit Ak la transformation qui fait correspondre à l'élément / de î) le
coefficient de ek dans la série entière de A (e)f ; elle est évidemment
linéaire et symétrique. On a A (e)f Aof -f eAtf + £2A2f -f- • • • pour
/ de î) et pour | e \ <q. Ao A (0) étant autoadjointe, jB (Ao+il)"1
existe et transforme l'espace § dans la variété linéaire î). Les
transformations B (e) A (s)R et Bk AkR (k 0, 1, 2,...) sont donc
définies partout dans § ; pour | s \ <q on a B (e) Bo -\- e Bt -{-

-f s2 B2 -\- • • • Montrons que les Bk sont bornées.

4) Comme nous n'avons pas exigé que la série de T (e) converge au sens uniforme, c'est-à-
dire en norme, on a rk Tr. -> 0, mais non nécessairement 11 rk 2V 11 -> 0. Nous faisons

usage du fait qu'une suite convergente de transformations linéaires bornées admet une
borne commune.

6) L. c. 2) V. § 2.
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Soit h un élément quelconque de § et soit hn une suite tirée de D,
convergeant vers h. Pour tout / de § on a (Bkf, h) lim (Bkf, hn) —

n

lim (Ak B /, An) lim (f,R*Ak hn), d'où Ton voit que la suite B*Akhn
n n

(n 0, 1,... est faiblement convergente. Soit A* sa limite faible, alors

(Bkf, h) (/, /&*) ; h est donc dans le domaine de B* (et B*h h*).
Les transformations Bk, B*, et avec elles aussi la transformation
symétrique B* Bk, sont donc définies pour tous les éléments de £>.

D'après un théorème connu de Hellinger et Toeplitz, une transformation

symétrique dont le domaine est l'espace entier, est bornée.
Donc B* Bk, et avec elle Bk, sont bornées.

B (e) étant donc une transformation bornée régulière sur |e|<£,
à tout r (0 < r < q) correspond un M M(r) de façon que 11 Bk \ \ ^-~k
(i 0, 1,...). Il en vient que

pour tout / de î), ce qui achève la démonstration.
Le théorème suivant jouera un rôle important dans la démonstration

des théorèmes I—IV :

3. Soient P et Q les projections (orthogonales) sur les sous-espaces SOI et
91 de §, et soit \ \ Q — P \ \ < 1. La transformation

U= Q(I + PHPy%P= Q v ("*) (PHP)VP

où H Q — P, est ^partiellement isométrique ayant le domaine initial 9K

et le domaine final 31, c'est-à-dire que U* U P et U U* Q. Par
conséquent, 2ft et 31 owi Za même dimension 6).

Tout d'abord, la condition ||P#P|| ^ || H \\ <1 assure l'existence

de (/ + PHP) ainsi que la convergence de son développement.
L'équation U* U P vient immédiatement de

U* U P(I + PHPy * QQ(I + PHPylp

en observant que P est permutable avec (/ + PHP) et que

PQQp^PQp^ P(P + H)P= P + PHP P(/
6) Le dernier énoncé a été démontré déjà dans le livre cité de Fauteur, p. 58.
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Quant à la seconde équation, observons d'abord que

UU* Q(I + PH P)~ * PP(I -f PH P)~*Q

annule tous les éléments orthogonaux à 9t. D'autre part, elle laisse
invariants tous les éléments de la forme g U f : U U* g U U* U f —
U (U* U) f U P f U f g. Ces éléments g forment un sous-espace
de §, contenu dans 91. La démonstration de l'équation U £7* Q sera
achevée, dès que nous aurons montré que ce sous-espace coïncide avec 91.

Or, en cas contraire, il y aurait un élément h =£ 0 de 91, tel que
(h, Uf) O pour tous les / de §. Mais alors (U*h, f) 0 pour tout /,
donc U*h= 0, P(I + PHPf * Qh - 0 et

Ph PQft (/ + P#P)i (/ + Pif P)~ è PÇA - 0

Les relations Q h h et P h 0 entraînent que H h h, en contradiction

avec 11H \ | < 1.

§ 2. La perturbation d'une partie isolée quelconque du spectre

Dans ce § nous allons démontrer le

Théorème I. Soient Ao, Aly A2,... des transformations linéaires
symmétriques de <?), ayant le même domaine X) ; de plus, Ao soit
autoadjointe et Von ait \\Akf\\ ^ pk~1(a \\f\\ + b \\Aof\\ (fc=l,2,...)
pour tout f de î); p, a et b étant des constantes réelles non négatives.

a) La série Ao + s Ax + s2 A2 + • • • converge pour \ e\< — et a pour

somme une transformation symétrique A (e) ayant le domaine 35. Du moins

—7, A (e) est même autoadjointe. Soit alors J k dE^ (s) sapour \'\<-p+b
représentation spectrale.

b) Supposons que Vintervalle A [fi1, /bt2] renferme une partie isolée du
spectre de Ao, ou, d'une manière plus précise, qu'il existe deux intervalles
ouverts de longueur d, 0<d ^ jbi2 — /ilf ayant comme centres /â1 et ju2 et

ne contenant aucun point du spectre de Ao. Alors, pour \e\< —-— les

(I I \ jP ~l ^
1 _ — I autour des centres yt,x et fx2,

ne contiennent aucun point du spectre de A (e) ; ici on a posé

2a „, /, .1 An I ô \ n, 4- y* «
__
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Les transformations Pà(e) ^^(e) — E^e) et A(e)PA{e) sont

régulières : PA (s) Po + e Px + £* P2 + • • • \ A(e) PA (s) Ao PA (e)

+ Bo + s B\ + £2 B% + - • -, ^ fe coefficients satisfont aux inégalités

(4=1,2,...)
i^t dimension du sous-espace yjld (e) Pj (e) § es< indépendante de s.

Démonstration, a) Comme

|| S ekAkf\\ ^£ | e l*^-1 (a || /|| +ô||4./||) (0<m<«)

00 1
la série ^ ek Akf converge sur l'intervalle | s \ < — quel que soit /
de î); ^4(e) ^404-e^i + £2^2+*** es^ donc une transformation
symétrique, ayant le domaine î).

Soit z un point dans le plan complexe G, ayant une distance positive
lz au spectre de Ao. La transformation Rz (Ao — z I)-1 est alors
partout définie et bornée :

Comme Bz transforme l'espace entier dans X), les produits AkRz (k 0,
1,... ont pour domaine l'espace entier. Il s'ensuit de la représentation
intégrale

que
X

AnBJ\ max0 Z ™>z »

A parcourant le spectre de Ao. Pour fc 1, 2,... et pour tout / de § on a

donc
(2)

et
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Soit r\ une valeur arbitraire fixée de e telle que | r\ | < j ; pour r

suffisamment grand on aura encore | r\ | < Pour z ± i r
on a lz ^ r et mz ^ 1, donc r

\\(A („) - Ao) R±ir\\ ^ ï^i^ ("7" + *) < 1 -

Il s'ensuit que la transformation T I -\- (A (y)) — Ao) E±ir admet une
inverse partout définie et bornée ; il en est alors de même pour le produit

T(A0 =p irl) A (rj) =F irl. La transformée cayleyenne de H —A(rj),

c'est-à-dire VE (H — i I) (H + i I)~x est partout définie et ses
valeurs remplissent l'espace entier. Cela entraîne que §, et avec elle aussi
A (r)), sont autoadjointes.

b) Soit G le lieu des points du plan complexe G qui ont la distance -^

à l'intervalle u^ + —, //2 ^- de l'axe réel. C'est une courbe fermée,

composée de deux segments de longueur ô et de deux demi-cercles de

rayon —, sa circonférence est donc 2 ô + n d

Dans ce qui suit, z veut désigner toujours un nombre complexe situé sur

la courbe G. Alors lz ^> —

mz max

donc -r—h 6 m,,, ^ a Donc, par (1) et (2)

Un calcul formel fournit :

Rz (s) (A (e) - zl)-1 [ (Ao - zl) + (A(s) - 40) ]~l

[(/ + {A (s) - Ao) Rz) (Ao - zl) ]~l =RZ [i + (A (e) - A,) Rz]~l

(4)

23 Commentarii Mathematici Helvetici ^Do



Les coefficients de ce développement sont, en vertu de (3), majorés en
norme par ceux de l'expression

et a pour sommeOr cette expression converge pour | e | <

Pour ces valeurs de £, notre calcul est donc justifié ; de plus, le dernier
membre de (4) peut être arrangé suivant les puissances de e :

Bz(e) Bz0 + eBzl + e*Bz2+.-. (5)

et les coefficients Bzk sont majorés en norme par ceux de la série entière
de F (e), donc

et

(6)

(7)

La relation évidente

EZ2(e) - BZi(e) (z% - zx) B.t(e) RZl(e)

montre, vu aussi que Rz (e) admet la borne (7) indépendante de z, que
Bz (e) est une fonction continue de z. En particulier, BzQ Bz (0) est
continue en z. Il en est de même pour les autres coefficients Bzk. Suppo-

r n~1 isons que cela est établi pour k<n. Tz(e) e~n Bz(e) — £ ek Bzk\ est

alors une fonction continue de z pour toute valeur fixe e ^ 0. D'après (6) :

(«)-¦««. 11 7ai
l«l (p + «)"

l«l (n+«) '

donc Tz (e) converge, pour e -> 0, vers Bzn, et cela uniformément en z

(sur C). Par conséquent, aussi Bzn est une fonction continue de z.
Envisageons les transformations
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les intégrales étant définies d'une manière éviderite. Il s'ensuit de (5) et

(6) que, pour | e \ < ^

Comparons l'inégalité (7) avec la formule
(£ 1,2,...) (8)

II s'ensuit que les points de l'axe réel A, pour lesquels

1

A — z c

ou, ce qui revient au même, pour lesquels

d(l |e|" \-2\1 l-\B\p)-
d(e)

2 '

forment un ensemble de mesure 0 par rapport à Ex (e). En particulier,
les intervalles

ne contiennent aucun point du spectre de ^i(e).
Cela nous permet à intervertir l'ordre des intégrations dans la formule

ce qui donne, vu que

1 /» 1

X — z

1 pour A intérieur à C

0 pour X extérieur à C

la relation PA(e) J dEx(e) PA(e) est donc la

projection au ,,sous-espace propre" <SRa(e) de A(e), correspondant à
la partie du spectre de A (e) contenue dans l'intervalle A — [^i./Mg]
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Envisageons maintenant la relation

(A (e) - X,I) Bz (e) I + (z- A.) B, (e)

/ + (z -
on en obtient en intégrant sur C :

(A(s) - A,/) PA{e) B0

donc

Bo (A, - Ao/) Pà(0) et £& _ tf) (z _ Ao) Rzkdz
C

Quant à la dimension du ,,sous-espaee propre" SOÎj(e), il suffit
d'observer, grâce au théorème auxiliaire 4, que 11 Pà (rj) — PA (s) \ | < 1 pour

| yj — e\ assez petit, quelle que soit la valeur fixée r\, telle que | rj | <
p -f- oc

Or cela s'ensuit immédiatement de la régularité de Pà (e) dans cet
intervalle.

Le théorème I se trouve démontré.

§ 3. Cas d'une valeur propre simple

Nous obtenons du théorème I presque immédiatement le

Théorème II. Soit A (s) comme dans le théorème I, mais les hypothèses
dans b) soient spécialisées comme il suit : Soit Ao une valeur simple propre
de A 0 et soit <p0 un élément propre norme correspondant. Supposons que
Vintervalle Xo — d < A < Ao + d ne contienne pas d'autres points du spectre
de Ao. Posons

Alors, pour \ e \ < ——- le spectre de A (e) consiste, dans l'intervalle
p -j- <x

I A — Âo I < d
2 1 — |e| p

d'une seule valeur propre A(e), de multiplicité 1, et la distance de X(e) à Ao

7/ 77 oc \ e\ oc
ne dépasse vas la valeur — -r--——:—^ 2 1 - \s\p
356



A(e) est régulier, du moins sur V intervalle \e\< ^— et les

coefficients de sa série entière Ao + e Xx -\- e2 A2 + • • • satisfont aux inégalités

On a Xx {Ax cpOy cp0). Il existe un élément propre q){e) correspondant à

A(e), régulier sur Vintervalle \ e \ < ^— et tel que || q?(e) || 1

(<p(e), <p0)^0. Les coefficients de sa série entière <p0 + e cpx + e2 q>2 + • • •

satisfont aux inégalités :

\\<pk\\ ^(p
Partons du théorème I, en y posant

7
d

1 -

d
Pi h — y et /^2 >lo + ~2

(alors à 0 et a a la valeur donné dans le théorème II). Il s'ensuit que,

pour | s | < la dimension du sous-espace propre 50îj(e) =P/i(e)^
p -\- oc

correspondant à l'intervalle A [^^L es^ indépendante de s, donc
égale à celle de SQÎ^ (0), c'est-à-dire à 1. Le spectre de A (e) consiste
donc dans A d'une seule valeur propre A(e), de multiplicité 1. Les
segments IA1 \ d \e\oc \

2 l I-UIP/
ne contenant aucun point du spectre de A(e), la distance de A(e) à Ao

ne peut pas dépasser la valeur donnée dans le théorème.
ip(e) Pà(e) (p0 étant un élément propre correspondant à A(e), on a

((A(s) - A./) V(e), ç>0) ((A(c) - Ao)

d'où

Or, nous savons du théorème I que Pé(e) PQ + s P± -\- e2 P2 + • - - et

- Ao /) /i(c) Bo + eB1 + £252 + • • • où J50 (40 - Ao I)P0

7) Dans une forme moins précise, ce théorème a été déjà démontré par Rellich, 1. c. 2),

IV. § 2. En partant des formules explicites pour les coefficients Xk et (pk, il n'établit la

convergence des séries en question que pour I e \ < — ¦—-
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AoPo — A0P0 0 et IIP* 11^ alp + a)*-1 l|J5x.||^ — (v 4- a)*""10 0 0 0 II *|l — WT- i H *||_ 2 \i/ -T /

(fc 1, 2,... En désignant la différence PA (s) — Po par H(e), nous
obtenons par un calcul formel :

— Ao/) Pj (s) <p0, <p0) "S [ -

Les coefficients de ce développement sont majorés par ceux du développement

doc e * kdoc ^
~2~ i _ e(p+ 2a) "" fcrxfi 2 ^o k=i

valable pour I e i < — Pour ces valeurs de e, notre calcul est donc
p + 2<x

légitime. De plus, le développement de X (e) — Ao peut être arrangé
suivant les puissances de e:

et | Afc | ne peut pas dépasser le ifc-ième coefficient de la série entière

de la fonction majorante, c'est-à-dire -^- (p -f- 2oc)k~1

Pour obtenir un élément propre norme, posons

<p (e)
V(e) _ P* (g) ^0 Pa(b) <p0

2 (V)(HW ^.vo)'-^^) ^o=2 (-„*)[ 2

Les coefficients de ce développement son majorés par ceux de l'expression

[ É2
ayant pour

'£|<
p + 2*
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la somme
O(e) - l~*lYl — e(p + oc) Vl - e(p + 2a)

Donc, cp (e) est régulier sur | e | < -

et || <pk || ne peut pas dépasser le ifc-ième coefficient de la série entière
de la fonction G(e) et, à plus forte raison, celui de la fonction

-r — c'est-à-dire (p + 2a)fc. Comme

(<p(e),<p0) J^l^l^^(PAe) ?.,yo)*= Hft

on a (ç?(e),^0) ^ 0.
Enfin, en comparant les coefficients de e dans les deux membres des

équations identiques (<p (e), cp (e) 1 et (^4 (e) <p (e), <p (e) A (e),
nous obtenons : (9^, ç>0) + (<Po> <Pi) 0 et (^ çj0, ç)0) + (-^o ^i, Ç^o)* +
(^o^cç^) Aj, d'où il vient (ayant vu que (-40 9>i>?>o) (<Pi> Ao Ç?o)

h (<Pi, <Po) et (Ao (p0, cpx) Ao(^o, <Pi)) que Ax (^! ç>0, 9?o), ce qui
achève la démonstration.

§ 4. Cas d'une valeur propre de multiplicité finie

Voici une nouvelle démonstration du théorème fondamental de M. Rel-
lich 8), basée sur notre théorème I. Il s'agit du

Théorème III. Soit A (s) comme dans le théorème I, mais les hypothèses
dans b) soient spécialisées comme suit: Soit Ao une valeur propre de AQ de

multiplicité finie m, et supposons que Vintervalle Ao — d<X<Â0 + d ne
contienne pas d'autres points du spectre de Ao. Il existe alors m valeurs

numériques réelles A{t){e) et m éléments q>(i)(e) de £), fonctions régulières
de e sur un certain intervalle \ s\<q:

lo + e #> + e* Xf + • • • <pW (e) çtf>

et cela de façon que les A(t) (e) sont des valeurs propres de A (e) et que les

q>(t)(e) sont des éléments propres correspondants formant, pour toute valeur

8) L. c. 2) I (théorème 2) et III (théorème 3).
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donnée de e, un système orthonormal. A tout r\, 0<t]<— on petit faire
2

correspondre un r ~ r(rj)>0, de sorte que, pour \ e | <r, le spectre de la
transformation autoadjointe A(e) consiste, dans Vintervalle Ao — d + rj<
A<A0 + d — r], précisément des points A(4)(£), chaque valeur propre étant

comptée autant de fois que l'indique sa multiplicité.

On a (Axq^\ q$) 4° et (Ai 9>S°, <P{o?)) 0 pour i^j. C'est-à-
dire que, Po désignant la projection sur le sous-espace 3Qîo (de dimension m)
des éléments propres de Ao correspondant à la valeur propre XQ, la
transformation PQA1PQ aura les cp^ pour éléments propres correspondant
respectivement aux valeurs propres X^ (i 1, 2,.. m).

Nous raisonnons par récurrence par rapport à m.
Pour m 1, le théorème est évidemment contenu dans le théorème II.

Supposons qu'il se trouve déjà démontré pour les valeurs propres de
multiplicités inférieures à m.

Le théorème I (avec jut Ao —, /lc2 ^o + -5r> à 0) fournit tout

d'abord l'existence d'une quantité positive q, de sorte que pour | e \ <q :

1) A(e) est une transformation autoadjointe, 2) la projection Pj(e) sur
le ^sous-espace propre" 9Jtj (s) correspondant à la partie du spectre de

A(e) contenue dans l'intervalle A \à0 —, Ào + -«" ainsi que

A(e)PA(s), sont des transformations bornées régulières, 3) 3RA(s) a la
dimension constante m, 4) à tout r\ > 0 correspond un r r (rj) > 0 de

façon que, pour |e|<r, le spectre de A (e) dans l'intervalle Ao — d + rj

<A<A0+ d — rj est concentré dans l'intervalle Ao — rj<A<Ao + V •

PA(e) étant régulière, on pourra choisir g même de façon que pour
\e\<Q, la norme de H(e) PA(e) — PA{0) PA(e) — Po soit
inférieure à 1, et que la transformation

soit régulière. D'après le théorème auxiliaire 3, U(e) est partiellement
isométrique ayant le domaine initial 9JÎ0 9ftj (0) e^ ^e domaine final
3W», donc U*(e)U(e) Po, U(e) U*(e) PA(e) et U (0) U*(0)

PQ. La régularité de U (e) entraînant celle de U*(e), la transformation

autoadjointe bornée C{e) U*(e)A(e)U(e)=U*(e)A{e)PA(e)U{e)
est aussi régulière sur l'intervalle | g| <g : C(e)=C0-\-eC1-\-E2C2 + • •

C(s) transforme 9K0 en lui-même et annule tous les éléments orthogonaux

360



k.à $R0. Il en est de même, par conséquent, aussi pour les coefficients C
On a, en particulier, Co P0.40P0 ioPo et Ct P^A1PQ. La
première équation est évidente, la seconde s'obtient en comparant les coefficients

de e dans les identités *7* (e) U{e) Po et C(e) U* (e)A (e) U(e),

ce qui donne U* Uo + U0U? U*P0 + P0U1 0 et Cx U*A0U0

-r U*A0U± + VtA,U0 V*A,P, + P0A0U1 + P.A.P,
ko(U*P0 + Po UJ + Po A, Po Po A± Po

Lorsque tous les coefficients Ck sont des multiples numériques de Po,
Ck AfcP0, alors C(e) X{e)P0 avec l{e) Ao + g ^ + £2 A2 H

Comme ^(e)(7(fi)==Ur(e)^*(e)-4(e)Dr(e)=PJ(e)^(fi)?7(e)===il(e)ï7(e), il
s'ensuit que ^4 (e) Z7 (e) A (g) C7 (e) Po — X (e) £7 (f Quel que soit donc le

système orthonormal $> dans 3CR0 (i 1, 2,. m), les éléments ç)(t)(e)

U(e) q>$ et les valeurs X{t)(e) K(e) (i 1, 2,. m) satisfont aux
exigences du théorème.

Passons maintenant au cas où il y a des coefficients Ck qui ne sont pas
des multiples de Po ; soit C8 le premier d'entre eux, s^ 1. Pour k<s on
a donc Ck XkPQ.

Posons D(e) — Cs-\- s Cs+1 + • • • D(0) Cs, regardée comme une
transformation autoadjointe du sous-espace 50ÎO de dimension m en lui-
même, n'est pas un multiple de l'identité, par conséquent elle admet au
moins deux valeurs propres différentes. Désignons ses valeurs propres
différentes par xl9 x2,..., xn ; leurs multiplicités soient respectivement
ml9 ra2,..., mn (m1 + m2 + • • • + mn m). Chaque valeur propre x
étant évidemment isolée et de multiplicité inférieure à m, on peut appliquer

le théorème, par hypothèse faite, à chacune d'elles. Il s'ensuit
l'existence de m valeurs réelles x{t)(e) et de m éléments orthonormaux
y>(t)(e), réguliers dans un certain intervalle | s \ <gr (q' fg g) :

x^(e) x^+ex^+e2x^-\ et v(t)(e) Vo)

(i= 1,2,..., m)

et tels que x^= xx pour i gm1? x^= x2 pour m1 <i ^ m1 + m2,...,
et que D(e) y){l)(e) x{l)(e) y)(l)(e) (i 1, 2,. m).

Il en vient que

C(e) y(t)(e)
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donc, en posant

Xo + eXx

on a C{e)y>{t)(e) X{1) (e) <p{t) (e) et, par conséquent, A (e) U (s) y){t) (e)
A<*> (s) U(e) ip{t> (e) (i 1, 2,..., m). Les valeurs A<*> (e) et les

éléments q){t)(e) Ï7(e) y(t)(e), réguliers sur | e \<q, satisfont donc aux
exigences du théorème. L'assertion relative aux valeurs propres et
éléments propres de PqAj^Pq est vérifiée par la construction même des

X^(e) et

§ 5. Cas d'une valeur propre multiple dont se détache, déjà en première

approximation, une valeur propre perturbée simple

Le théorème III ne donne pas des renseignements sur le rayon de

convergence et des estimations pour les coefficients des séries en question.
Nous allons le perfectionner dans cette direction, du moins dans le cas
particulier d'une valeur propre non perturbée multiple Ao dont se détache
une valeur propre perturbée simple Ao + e Kx + • • •, différant, pour
s z^z 0, de toutes les autres valeurs propres provenant de Ao, et cela déjà
en première approximation, c'est-à-dire dans le terme e Xx. Cela revient
à supposer que Àt est une valeur propre simple de P0A1P0, regardée
comme une transformation du sous-espace propre 9Jl0. Voici le théorème,
formulé de façon qu'il s'applique aussi à des valeurs propres Ao de
multiplicité infinie :

Théorème IV. Soit A (s) comme dans le théorème I, mais les hypothèses
dans b) soient spécialisées comme suit: Soit XQ une valeur propre de Ao de

multiplicité finie ou infinie, et telle que Vintervalle Xo ~ d<X<X0 + d ne
contient d'autres points du spectre de Ao. Soit Po la projection sur le sous-

espace 2R0 des éléments propres de AQ correspondant à Xo. La transformation
PqAj^Pq, regardée comme une transformation de 3JlQ en lui-même, est

autoadjointe et bornée. Supposons qu'elle a une valeur propre simple Xx et que
Vintervalle Xx — d1 < X < Xx -f df ne contient d'autres points de son spectre ;

enfin, soit ç?0 un élément propre norme de P0A1P0, correspondant à Xx.

Dans ces hypothèses, il existe une valeur propre X (e) de A (e), régulière

pour I e I < — ou

+ + £)<,+ » e, »=
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et dont la série entière commence par

A(e) A0 + eA1 + €2A2

les autres coefficients satisfont aux inégalités

Il existe un élément propre q?(e) correspondant à la valeur propre A(e),

régulier sur Vintervalle \e\< —
a

tel que

<Po et

En multipliant par un facteur numérique convenable de module 1, dépendant
de e, on en peut obtenir un élément propre <p(e), régulier au moins sur
intervalle l 2ocd\\*\<- où r==\2 + ~pj(p+2oc)

et qui satisfait, outre aux conditions y (0) <p0 et \ \ q> (e) \ | 1, aussi à la
suivante: {(p(s), 9^0)^ 0. Les coefficients de son développement q>(e)

9^0 + £<P 1 + * • * satisfont aux inégalités : 11 <pk 11 ^ 2 (2 x)k (Je 1,

Démonstration. Quel que soit / de §, Po / est dans le domaine î) de Ao
et |M1P./||^a||P./|| + &|M.P9/||ï£(a + &|A.|)||/||; A1 P.
est donc partout définie et bornée. Il en est de même pour PQA1P0.

D'après le théorème I, la projection PA (e) E d (e) — E. a (e)
Xo+ T x*~ "2

est régulière pour | e \ < ——— : PA (e) Po + e Px + • - • avec

H Pk\\ ^oc(p + af'1 (k= 1,2,...) De plus, on a:

(A(e) - k0I)PA(e) bBx + e*B2+<- •

avec

l|5»ll^-^L(P + «)*-1 (* =1.2,...)
•) En se servant des formules explicites du calcul des perturbations, M. Rellich a obtenu

ce théorème (1. c.2)IV. §3) sous une forme moins précise. Les quantités qui jouent, dans
son théorème, le rôle de nos or et t dépendent aussi de la multiplicité m de la valeur
propre non perturbée et croissent indéfiniment avec m. Son théorème ne porte donc que
sur les valeurs propres non perturbées de multiplicité finie.
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Pour | e \ < — on a donc 11 PA (e) — Po \ \ < 1 et on peut former

la transformation partiellement isométrique

U(e) PA (e) Po)

Elle est régulière ; et les coefficients de sa série entière sont majorés par
ceux de la fonction

\lM - e* 1 [l eoc 1

1 — sp

et, à plus forte raison, par ceux de la fonction ; —-
1 — s (p + 2 oc)

On a déjà vu que la série entière de la transformation régulière

U*(e)A (e) U(e) commence par Ao Po + e Po Ax Po. Comme, d'autre

part, U*(e) X0PA{e) U(e) - A. U*(e) U(e) Ao Po, on a

D'une manière plus détaillée,

D(e) />„[/ + P0(PA(e) -P l-po)popp,=

d'où il s'ensuit que les coefficients Dk sont majorés par ceux de la série
entière de la fonction

(7) SsMp + a)*-1
X 7 I L*«l J

r °° iv

1

c'est-à-dire que
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Pour cette transformation D (e) de $0to en lui-même, les hypothèses du

théorème II sont donc vérifiées avec pr p + 2a, a1 — -—- (p -f 2 a),
b! 0, Âx et dr respectivement au lieu de p, a, b, Ao et rf. Il s'ensuit donc

que D(e) a une valeur propre simple Xf(E) Ax + £ A2 + • • • et un
élément propre norme correspondant q>r{e) (p0 -\- e cp[ + e2 <p'2 + • • •,

réguliers pour I e I < —t ^—r où& r ' ' ^9; + 2 oc!

donc pour | e | < — De plus,
G

\K\ ^^(p'+ 2ot>)*~2 ^(V + 2oc)o*-* (fc=2,3,...) (9)

et

L'équation D(e) ^^e) A'(e) 9?7(e) multipliée par e U{e) donne

(A(e) - k0J)PA(e) U(e) <p'{e) e ï{e) U(e) <p>'(s)

donc
A(e)<p(e) X(e)<p{s)

avec
A(c) Ao + £ A7(e) - Ao + e Ax + e2 A2 H

et
ç>(fi) Î7(e) q>'(e) (f0 + e cpx + e2 (p2-]

Pour les kk nous avons déjà les inégalités (9). Les coefficients de la série
de U(e) et de q>'(e) étant majorés respectivement par ceux des fonctions

1
et

]
1 - e(p + 2a) 1 — ea '

les <pk seront majorés par les coefficients de la série entière de leur produit

___^J L_ (ml-e(p+ 2<x) 1-ea K '

et, vu que a>p -\- 2a, à plus forte raison par ceux de

:-) 2 ek{k+ l)ak
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q>'(e) était un élément norme de S0lo .Par Fisométrie de U(e), <p(e) est
aussi norme. Pour en obtenir l'élément ç? (e) exigé par le théorème, on n'a
qu'à poser

=y: + + e2(p2-{
e(<Pi><Po) + &(<Pi><P*) +' * •

les racines carrées étant déterminées de façon qu'elles prennent la valeur 1

pour s 0. Pour arriver à une fonction majorante, partons de la fonction
majorante (10) de <p(e), d'où nous obtenons sans peine que

On a donc pour <p (s) la majorante

l-ex) \\ l-ex) l-ex Vl - ex Vl - 2xe 1-
2

et, à plus forte raison, — — ce qui achève la démonstration dul — Je x e

théorème.

(Reçu le 30 août 1946.)

ex
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