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Sulla geometria degli Sk di un Sr

Di Ambbogio Longhi, a Lugano

Nello spazio Sr, ad r dimensioni, r + 1 rette sono associait secondo

Schlafli1) quando ogni $r_2 appoggiato ad r qualunque di esse lo è pure
alla restante ; e, dualmente, r ~\~ l spazi 8r_2 sono associati se le rette
che ne incontrano r risultano incidenti anche alFultimo : per r 4 si
tratta délie quintuple di piani associati di $4 considerate da C.Segre2).

Una nozione di spazi Sk associati di 8r, con r ^ 4 e 0<Jc<r — 1, fu
posta da B.Segrez) definendo corne tali gli ^-assi degli co complessi
lineari speciali esistenti in un generico sistema lineare ooe~T di complessi
lineari di spazi 8r_k^x dell' Sr : ove co è l'ordine délia varietà V™ grass-
manniana d'indici (r, k) rappresentatrice4) délia totalità degli Sk di Sri
t è la sua dimensione e q quella del suo spazio di appartenenza.

Questa nozione si riduce a quella di C. Segre per k 2 ed r 4, ma
non include afiEatto quella di Schlafli per k 1 ed r qualunque, ne la sua
duale per fc r — 2 e r^4.

Nel présente lavoro si pone (§l)una semplice nozione di spazi associati
più comprensiva di quella di B. Segre, e che conduce pure immediata-
mente, in infiniti casi particolari, alla considerazione di gruppi di spazi Sk

in posizione di Schlafli entro Sr : cioè tali che ogni Sr_k^1 incidente ad al-
cuni degli Sk di un gruppo lo è di conseguenza a tutti gli altri.

Dopo ciô, in un sistema algebrico 2!, comunque esteso, di spazi Sk sub-
ordinati di Sr, si definisce (§2) una involuzione razionale di gruppi di Sk
associati : che si riduce a quella introdotta da B. Segre 6) quando Z è la
totalità degli Skài 8r.

Supponendo, in particolare, 27eostituito dagli Sk di Sr soddisfacenti ad

una data condizione di Schubert (a0, alt..., ak), si studiano (§ 3) i
gruppi di 8k associati in 8r aventi ciascuno un Sk appartenente alla forma
fondamentale [a0, al9..., ak] e gli altri prefissabili in modo generico.

*) Cfr.: L.Schlafli, Erweiterung des Satzes, dafi zwei polare Dreiecke per-
spektivisch liegen, auf eine beliebige Zahl von Dimensionen (Journal fur
Mathematik, 65, 1866).

2) C.Segre, Alcune considerazioni elementari sull'incidenza di rette e piani
nello spazio a quattro dimensioni (Rendiconti del Circolo Matematico di Palermo,
t. 2, 1888).

8) B.Segre, Sui gruppi di Sk associati di un Sr (Rendiconto délie Sessioni del-
rAccademia délie Scienze dell'Istituto di Bologna, 1933—34).

4) F.Severi, Sulla varietà che rappresenta gli spazi subordinati, di data
dimensione, immersi in uno spazio lineare [Annali di Matematica, 24 (3), 1915].

6) B.Segre, loc. cit., n. 2.
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Sono oggetto del § 4 eerte varietà algebriche luoghi di 8k e caratteriz-
zate dalla proprietà di avère gli spazi generatori formanti a v + 1 a
v + 1 gnippi di 8k associati ; a taie classe di varietà appartengono : in
S4, oltre alla rigata F25 ellittica normale, Fipersuperficie F33 con 10 punti
doppi di C.Segre 6), e in 83 una notevole superficie F214 di B.Segre 7).

La considerazione del génère sezionale (§ 5) di un sistema algebrico di
almeno oo2 spazi 8k permette di stabilire varie proposizioni generali : le

quali si precisano maggiormente § 6) nel caso di un sistema oo1 e offrono
risultati interessanti già nelFambito délie sole superficie rigate.

Cosi, ad esempio, si riconosce corne le proprietà elementari che tre rette
di un fascio, e quattro qualunque di un regolo dello spazio ordinario, sono

sempre associate, rientrano (per r — 2 ed r 3) in quella ben più ri-
marchevole (n. 20, VII) che ogni rigata razionale normale di Sr ha le sue

generatrici ad r + 1 ad r -f- 1 associate (secondo Schlâfli) : il quai teo-
rema si generalizza a sua volta nell'altro (n. 20, III) ehe n — p -f 2

generatrici arbitrarie di una rigata di ordine n e génère p dello spazio Sr,
quando:

p — l <n — p<2r — 2

sono in posizione di Schlâfli ; corne pure nell'altro (n. 19) che in taie
posizione risultano sempre anche r — k -\- 2 spazi generatori qualsiansi
di ogni varietà razionale normale luogo di oo1 Sk e appartenente ad 8r.

§ 1. I gruppi di v spazi 8k associati di specie /jl in Sr

1. Corne è ben noto4) i già accennati caratteri g, r, co délia grass-
manniana V™ d'indici (r, k) che in SQ rappresenta la totalità degli Sk di
8r, si esprimono in funzione di r e k con le formole :

e:
1 21...k\ r!

0)
(r -k)\ (r -k + l)\...r\ '

il cui richiamo verra generalmente sottaciuto in tutto il seguito.
Ciô premesso, siano nly 7t2,- -., nv, nello spazio 8f ad r dimensioni, v

6) C.Segre, Sulla varietà cubica con dieci punti doppi (Atti dell'Accademia délie
Scienze di Torino, 22, 1887).

7) B.Segre, loc. cit., n. 4.
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spazi 8k rappresentati in 8Q, sulla grassmanniana V™, da altrettanti
punti Pl9 P2,..., Pv. Supposti questi non indipendenti e tutti conte-
nuti in almeno un iperpiano, lo spazio che li congiunge sarà un aSv_^_x

con:

se v < q + 1, e :

V — Q ^ jbt<V — 1

se v > g + 1 *> cioè, in ogni caso, con :

[X<V — 1 jil>0 fi ^ V — Q

Fra i v punti Pt se ne possono allora considerare v — fi indipendenti :

eosi che ogni iperpiano di SQ che li contiene passa anche per gli altri [i ;

mentre lo stesso non accade mai di ogni iperpiano condotto per
v — ^ — i soltanto dei punti P%.

Ciô posto, gli spazi 7it, corrispondenti in 8r ai punti Pl si diranno
costituire un gruppo di v spazi Sk assodati di specie ft.

Siccome le sezioni iperpiane di V™ rappresentano i complessi lineari di
Sk entro Sr, si puô dare, senza uscire daiï'#r, la seguente definizione :

In Sri v spazi 8k si dicono associati di specie yt (o di [i-esima
specie), con:

quando ogni complesso lineare di Sk contenente certi 8) v — ju, e non meno,
di essi, contiene di conseguenza i ju, spazi residui.

2. Risulta senz'altro da quanto précède (n. 1) che :

Affinchè v spazi 8k di 8r siano associati di specie jlc (n. 1) è necessario e

sufficiente che i loro punti immagini sulla grassmanniana d'indici (r, k)
appartengano ad uno spazio 8v_[l_1 (almeno r-secante rispetto ad essa,
quando non sia addirittura oo-secante o non vi giaccia per intero) con

e :

/*• _i_ i\
— 1

8) Od anche qnalsiansi : quando i v spazi présentant) a v—ju, a v—fx le stesse particolarità
di mutua posizione (cosicchè i loro punti immagini sulla grassmanniana siano a v — fi
& v —fi indipendenti); nel quai caso il gruppo dei v spazi associati si dira genertco.
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Cosi, ad esempio, v ^ 3 spazi 8k di un fascio, cioè passanti per un S^^
e giacenti in un 8k+l9 sono associati di specie v — 2 ; mentre sono asso-
ciati di 2a specie 6 Sk di Sr, con r ^ 3, appartenenti tre ad uno e tre
alPaltro di due generiei fasci di Sk ; e risultano associate di specie n — 3,
nello spazio ordinario, n > 4 generatrici qualunque di un regolo.

3. La corrispondenza biunivoca fra i punti délia grassmanniana V™

e gli Sk di Sr si puô ritenere subordinata9) da una corrispondenza proiet-
tiva F fra i punti del suo spazio ambiente SQ e i complessi lineari di spazi
#r_fe_i entro 8r. Quando un punto P di 8Q appartiene a F", e solo in tal
caso, il complesso omologo di P in F riesce spéciale ; cioè ha tutti i suoi
Sr_k_1 incidenti ad un medesimo spazio Sk-asse : di cui P è allora l'imma-
gine su V™.

La F trasforma pertanto ogni spazio S£ di 8Q in un sistema lineare oc/
di complessi lineari di Sr^^ entro 8r ; e gli eventuali complessi speciali
di questo sistema corrispondono ai punti che SE puô avère in comune con

' t '
Si conclude quindi (n. 2) :

Se in un sistema lineare ooe (1 < e<g) di complessi lineari di /8>_fc_;i,

entro 8r, esistono più di e + 1 complessi speciali, e se ne considerano
v ^ s -f 2, di cui e + 1 linearmente indipendenti, i loro v Sk-assi sono
associati (n. 1) di specie v — e — 1.

Poichè, se e > g — r, un S£ di SQ interseca certo la V™ in una varietà
V^_e_Q, e l'ordine co di questa è il numéro dei punti che essa ha in comune
con t -\~ e — q iperpiani indipendenti, si puô enunciare :

Un generico sistema lineare ooe~T+CT, con 0<a<r, di complessi
lineari di spazi /Sr_fc_1? entro 8r, ne contiene ooa speciali : e precisamente co

se a 0. / loro Sk-assif la cui totalità, se a > 0, ne include sempre co

incidenti a a spazi Sr_k_1 genericamente prefissabili, sono tali che v generiei di
essi, quando :

v>Q-t+a+2,
risultano associati (n. 1) di specie v — q + r — a — 1.

In particolare :se v co, cr O ed r>4 si hanno i gruppi di co 8k
associati, di 8r, definiti da B.Segrez).

9) Cfr. B.Segre, loc. cit., n. 1.
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4. Dalla definizione di gruppi di 8k associati (n. 1), e da quella di
complesso lineare spéciale di Sk (cfr. n. 3), si desume :

Se v spazi Sk di Sr sono associati di specie ^ (n. 1), tutti gli eventuali
spazi Sr_k_1 incidenti a certi 8) v — [i di essi incontrano pure ciascuno dei

ju spazi restanti.

In particolare, per k — 1, v r -f 1 e p, 1 si ha che in Sr un gene-
rico 8) gruppo di r + 1 rette associate di la specie (n. 1) è taie che ogni
spazio 8r_2 appoggiantesi ad r qualunque di esse deve appoggiarsi alla
rimanente : onde le r + 1 rette sono anche associate nel senso di Schlàfli.

5. Si convenga di dire che più spazi 8k di 8r sono in posizione di
Schlàfli quando ogni spazio Sr_k_1 incidente ad alcuni, in numéro .ben
determinato ed eventualmente da scegliersi in modo spéciale, si ajjpoggia
di conseguenza anche agli altri.

Allora, siccome esistono degli Sr_k_1 incidenti a A spazi 8k appena sia
X ^ r, dal teorema del n. 4 si trae il seguente :

Se, in Sr, per un gruppo di v spazi Sk associati di specie ju (n. 1) si verifica
che :

v - li < (k + 1) (r - k)

gli spazi del gruppo sono in posizione di Schlàfli : e più precisamente ogni
spazio 8r_k_1 incontrante certi 8) v — fi di essi incontra pure i ju spazi
residui.

Ne risulta, corne corollario, che, in 8r, v spazi Sk associati qualunque
sono sempre in posizione di Schlàfli quando :

onde esiste allora un intero ii > 1 (la specie del loro gruppo : n. 1) taie
che ogni Sr_^k^_1 incidente a certi8) v — // di essi, lo è necessariamente a
tutti ; e se// non si conosce, supposto generico 8) il gruppo dei v Sk
associati, si potrà ugualmente asserire che gli Sy^^, i quali ne incontrano
v — 1 qualunque, debbono pure incontrare il restante.

Non è forse superfluo avvertire che, nell'ipotesi k 1, riescono cosi
definiti anche particolari gruppi di St in posizione di Schlàfli diversi dalle
ordinarie (r + l)-uple di rette associate in Sr : ad esempio, nello spazio a

tre dimensioni sono in posizione di Schlàfli non solo quattro rette iper-
boloidiche, ma pure cinque o più rette generiche di una congruenza
lineare.
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§ 2. Involuzione razionale di gruppi di Sk associati entro un sistema

algebrico di spazi Sk

6. Nello spazio 8r si consideri un sistema algebrico irriducibile di
spazi subordinati Sk. Se t'>0 ne è la dimensione, esiste in générale un
numéro fînito a>f di Sk generatori incidenti a xr generici spazi 8r_k_x :

esso puô dirsi Yindice del sistema, il quale si dénotera eon 0™,'.

Quando xl 1 (e k<r — 1) l'indice a/ è pure l'ordine délia varietà
luogo degli £fc di 6>f.

Sulla grassmanniana V™ la varietà di dimensione xf clie corrisponde a
0™', è una T7^' di ordine cof : dovendo avère oj; punti in comune coi xf
iperpiani (linearmente indipendenti) seganti su V? le varietà immagini
di x! generici complessi lineari speciali di 8k.

In générale lo spazio di appartenenza délia V™,' è quello stesso, SQ, di
V™ ; ma si riduce ad un 8Q,, di dimensione Qf <q quando per V™,' passano
q — qr iperpiani SQ_X indipendenti : ossia quando 0™,' è base per un
sistema lineare oo^e'"1 di complessi lineari di Sk entro Sr.

Detto in ogni caso SQ, lo spazio a cui appartiene la F^\ onde qr < q,
uno spazio variabile SQ,_t, subordinato di Se/(owero un 8Q_t, di 8Q) ha
generalmente su V™,' un gruppo di a/ punti descrivente una involuzione
razionale di dimensione t' (gf — r' + l). In corrispondenza si avrà
allora su 0™', una involuzione di gruppi di co' spazi 8k ; i quali risulteranno,
in ogni gruppo, associati di specie :

appena sia (n. 2) œr — q' + x1 — 1 >0 e :

cioè (con xr > 0) si abbia insieme xr < q' e :

a>'>gf- xr

Si puô aggiungere (n. 5) che gli spazi associati suddetti sono addirit-
tura in posizione di Schlâfli quando :

ammesso che 0™,' appartenga ad 8r.
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In conclusione :

Sia &$' unsistema algebrico ooT' di spaziSk, irriducibile10), appartenenti
ad Sr e di indice a>f : cioè avente co' dei suoi 8k appoggiantisi a rf gênerice

spazi $,._£_!.
Si supponga &"' contenuto in (non più di) a complessi lineari di Sk

(entro Sr) linearmente indipendenti, con a ^ 0, e, posto :

si abbia :

0<r'<Qf<rr + o/- 1

Aïlora qr — x1 -f- 1 spazi gêneratori di 0™,', prefissabili in modo gênerico,
ne individuano altri :

/ co' - gf + t' - 1

che insieme coi primi costituiscono un gruppo di a/ spazi Sk associati di
specie //' (n. 1), ed anzi in posizione di Schlâfli (n. 5) qualora sia :

q' - rf + 1 < (k + 1) (r - k)

Tutti i gruppi siffatti di 8k formano, entro 0™,', un'involuzione razionale
1*1 f di ordine a>f e di dimensione :

ôf =Tf(Qf -rr +1)
costruibile corne segue.

In Sr, un generico sistema lineare di complessi lineari di spazi Sr_k_ly
avente la dimensione :

\k+i
ne contiene a>/ speciali (n. 3) e coi rispettivi Sk-assi appartenenti a &"' :
questi riempiono un gruppo délia /£,'.

Altrimenti, si considerino, in Sr, rf complessi lineari di 8k, linearmente
indipendenti e non passanti per &™,' : essi hanno in comune co' spazi 8k
situati in &™,' e costituenti un gruppo délia !*£',

Osservazione la. — Quando, in particolare, 0^' è la totalità degli
8k di Sr, Finvoluzione J|/ diviene quella dei gruppi di 8k associati in Sr
secondo B. Segre 5).

10) L'irriducibilità di ogni ente algebrico, che si consideri, dovrà in seguito sempre
sottintendersi.
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Osservazione 2a. — Se xr 1, e quindi gli Sk del sistema 0™' sono
gli spazi generatori di una varietà W^f+1 di dimensione k + 1 e di ordine
cof, Finvoluzione /^' ha la dimensione ô'=gf e corrisponde in Sr alla
série lineare g£f délie sezioni iperpiane di Vx', curva immagine di 0™'

sulla grassmanniana V™ ; onde essa puô definirsi su W^'+1 corne ia série
lineare g^, staccata dai complessi lineari di 8k (entro Sr) : cioè descritta dal
gruppo degli co' Sk generatori di W^x appartenenti ad un complesso
lineare variabile (non passante per W™'+1) di spazi Sk.

Osservazione 3a. — Se un sistema algebrico 0*$ di spazi 8k9 in 8r,
ha per immagine sulla grassmanniana V™ la compléta intersezione délia
immagine V?,', appartenente ad 8Q,, di 0™' con uno spazio SQt, di SQf,

(onde xn — g" x! — g') è owio che l'involuzione 1^ dei gruppi di
co' Sk associati entro 0% risulta subordinata dall'analoga involuzione
1% entro 0™',

Osservazione 4a. — Corne corollario délia Oss. 3a si ha che Vinvoluzione
I°£, entro 0™' è subordinata dali'involuzione di B. Segre entro la totalità
degli 8k di 8r (Oss. la) quando il sistema 0™,' (con co' co) è base per
un sistema lineare oo1"*'""1 di complessi lineari di 8k in 8r.

7. Tenendo présente che lo spazio di appartenenza 8Q, délia varietà
W?,' (n. 6) ha la dimensione non maggiore di x' + œf — 1, si puô asserire
che se gf q è :

q < r'+ (of ~ 1 ;

e che quando g>xr -f cof — 1 è pure £/<£ con :

Quindi :

Se xr e œf sono la dimensione e l'indice (n. 6) di un sistema algebrico 0 di
spazi 8k, appartenente ad Sr, si verifica che, quando 0 non è contenuto in
alcun complesso lineare di Sk si ha :

xf + œ' ï

mentre 0 è necessariamente base per un sistema lineare oo*-1 di complessi
lineari di 8k, con :
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4-quando:

nd quai caso xf -f- cof + l spc&zi $fc arbitrari di O sono sempre assodati (di
la specie almeno : n. 1), ed anzi in posizione di Schlajli (n. 5) se :

x1 + ojf < (k + 1) (r - h)

In relazione alPargomento di questo n. 7 si veggano più innanzi i
§§ 5 e 6.

8. È noto11) che ogni complesso di spazi 8k, entro Sr, di grado n,
cioè avente n suoi spazi in un generico fascio di Sk, si rappresenta sulla
grassmanniana V™ d'indici (r, k) mediante la varietà VTn^ compléta
intersezione di F^ con una forma d'ordine n.

Dal teorema del n. 6 si deduce allora l'altro :

In ogni complesso di 8k, entro Sr, di grado n>l, esistono :

qqU-I) (J-ït2)

gruppi di nco spazi Sk assodati di specie (n. 1) :

n co — g + r — 2

Ciascuno di tali gruppi è individuato da g — r + 2 qualunque dei suoi
spazi ; e per q — t + 2 gênerici Sk del complesso ne passa uno solo,

I gruppi stessi constano di spazi situati in posizione di Schlâfli (n. 5)

quando : r 3 e jfe 1 ; r 4 e k 1 o k 2 ; r 5 e &=1 o
& 3. Ne segue ad esempio che :

Nello spazio a quattro dimensioni un complesso di piani, di grado n > 1,
possiede oo25 gruppi di 5n piani tali che le oo1 rette incidenti a 5 piani qual-
siansi di ciascun gruppo (e formanti una rigata ellittica del 5° ordine) risul-
tano pure incidenti agli altri 5n — 5 (E dualmente).

Ed ancora :

In S5 un complesso di rette, di grado n>l, contiene oo56 gruppi di 14n
rette ciascuno, caratterizzati dalla proprietà che i 14 spazi Sz appoggiantisi
ad 8 rette qualunque di ogni gruppo incontrano pure le rimanenti 14^ — 8

(E dualmente).

u) F.Severi, loc. cit., n. 6.
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§ 3. Gruppi di Sk associati aventi un Sk in una data forma fondamentale

e gli altri Sk preassegnabili

9. In Sr si consideri il sistema 0 di tutti gli Sk soddisfacenti alla
condizione di Schubert {a0, ax,..., ak), cioè la forma fondamentale
[a0,«!,..., ak] costituita dagli spazi Sk di Sr situati in un dato SaJc e

aventi in comune : un punto con un dato Sa una retta con un dato

Sai,.. un 8Je_1 con un dato Saki ; essendo :

0 ^ a0 <«!<•••< ak < r

e appartenendo sempre lo spazio Sa. ad 8a.

La dimensione di 0 è :

A J n ¦ I
/fc + J\zl a0 + aH h afc — I

g
I ;

mentre il suo indice (n. 6), ossia il numéro degli $fc di 0 incidenti
ciascuno a A generici spazi Sr_k__1, è 12) :

A ' " (o. - a,)
a0! ax! afc! ^/

Sulla grassmanniana Ve? d'indici (r, k) il sistema 0 è rappresentato da

una varietà di dimensione A e di ordine Q : infatti è precisamente Q il
numéro dei punti comuni a taie varietà e & A iperpiani indipendenti,
seganti ciascuno V™ nella varietà immagine di un complesso lineare
spéciale di 8k.

10. Dati in Sri genericamente, v spazi Sty (i 1, 2,..., v) esistono
certo altri 8k completanti ciascuno con essi un gruppo di v + 1 spazi
associati di prima specie (n. 1), appena sia q ^ v>q — r. Infatti i punti
P% immagini in 8Q degli 8$ giacciono in un 8V_X che sega allora V™ in
una varietà F£ se :

(e 0 < a < r) : ogni punto délia quale, diverso dai Pi, rappresenta un
Sk con la proprietà suddetta.

Alla F£ corrisponde in 8r un sistema algebrico ooa, d'indice co (n. 6),
di spazi 8k, e quindi la varietà di punti Wk+a luogo degli 8k di taie
sistema : la quale invade V 8r quando g ^ r — k.

12) H.Schubert, Anzahl-Bestimmung fur lineare Râume beliebiger Dimension

(Acta mathematiea, 8, 1886).
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In ogni caso, supposto cr>0, sulla Wl+u gli eventuali Sk generatori
soddisfacenti alla condizione di Schubert (aOi al9.., ak) riempiono una
varietà Wr rappresentata in SQ dalla sezione dello spazio 5V-1 con la Ff
immagine (n. 9) délia forma fondamentale fa0, a1?..., ak] ; onde, in
générale, la W esiste solo se A + v>q, ossia A > r — o1 : e consta
allora di un sistema algebrico ooA~xJr<3, d'indice Q (n. 9), di spazi SL.

Si puô dunque intanto concludere :

Fissati nello spazio Sr ad r dimensioni v generici spazi S^ (i 1,

2,..., v) di dimensions k, con

/ra gli Sk di Sr soddisfacenti alla condizione [a0, ax,..., ak) di Schubert

(n. 9), quando sia :

ove:

esiswno :
A

aol ax\ ak\ ,>/
incidenti a :

(r+l

generici spazi S^^.^ e formanti ciascuno coi v spazi S^ un gruppo di v + 1

Sk associati di la specie (n. 1).

11. In 8r si consideri uno spazio subordinato Sr,, e in Sr, una stella di
centro 8k,. L'appartenenza di un 8k di Sr a taie stella si esprime con la
condizione di Schubert :

ed applicando allora il teorema del n. 10 si perviene al risultato che se-

gue**):

ls) Ove, per semplicità di enunciato, si è posto r' k -j- l e k' k — h.
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Nello spazio Sr ad r dimensioni si prefissino genericamente uno spazio
Sk+li un 8k_h entro Sk+l e v spazi S^ (i 1, 2,..., v). Se allora è :

0<h^k<r, 0<Z<r — k
e :

esistono :
0 1 2 (h - 1) (hl)
l\ (1+1)1... (l + h-1) l

spazi Sk passanti per V8k_h, giacenti nelVSk+l, formanti ciascuno un gruppo
di v + 1 spazi assodati di la specie (n. 1) con gli S^ e inoltre incidenti a :

v+hl-\k+l
dati spazi Sr^Jc_l generici di Sr, ossia ad altrettanti spazi Sl_^l generici di

Casi particolari notevoli del teorema sono :

A) Per uno spazio Sk_h generico (1 <h<k)diSr passano :

0! 1 2 {h- 1) (hr-hk)
(r - k)\ (r - k + 1) (r - k + h - 1)

«)

spazi 8k costituenti ciascuno un gruppo di Sk assodati di la specie (n. 1)

con :

dati 8k generici.

B) In Sr gli oo1 spazi Sk (k < r — 2) passanti per uno spazio Sk^h

generico (1 < h < k) e formanti ciascuno un gruppo di Sk assodati di
la specie (n. 1) con :

spazi Sk genericamente assegnati, riempiono una varietà (di dimensione
k + 1 e) di ordine oc).
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12. Il teorema del n. 10, applicato nell'ipotesi che la condizione di
Schubert imposta agli Sk di Sr sia :

(1,1+ 1,1+2,...,l + k)
conduce al seguente :

In Sr, supposto 0<l<r — le e :

gli Sk appartenenti ad un dato spazio $ *+ z, e formanti ciascuno un gruppo
di v + 1 spazi assodati di la specie (n. 1) con v spazi Sk genericamente
assegnati fuori di S*+1, costituiscono un sistema algebrico di dimensions :

e di indice (n. 6) :

1! 2! k\(kl

In particolare è % il numéro degli Sk di S*+l completanti ciascuno un
gruppo di spazi assodati di la specie (n. 1) con :

k+ 1

dati Sk generid di Sr ; e se k < r — 2 è pure % Vordine délia varietà (di
dimensione k + 1) luogo degli oo1 Sk di S*+t costituenti ciascuno un
gruppo di spazi assodati di la specie (n. 1) con :

spazi Sk prefissabili in modo generico (fuori di S*+l).

13. La condizione affinchè, in Sr, uno spazio Sk incontri un dato
spazio Sm in uno spazio 8%^ non dato, si esprime col simbolo di Schubert :

(m + l — k, m + l — k+l,...,m, r — l+l, r — l + 2,..., r).
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Se allora si applica il teorema générale del n. 10, si trova che :

Posto :
ô (m + l — k)(k — l + 1) + l(r — k)

faite inoltre le ipotesi :

0l < k<l + m<r

nello spazio Sr ad r dimensioni esistono :

0! 1! 2 1 (l- 1) !3#! 1 2! (k-l)\
)!...w! (r —1+1)1 (r — l + 2)l...r\ W

spazi Sk incidenti in un $fc_j (non dato) ad un dato spazio 8m, appoggian-
tisi a : -

v + d —

generici spazi Sr_k_1, e formanti ciascuno un gruppo di v + 1 spazi associati

di la specie (n. 1) con v spazi Sk genericamente prefissabili.

Corne corollari :

oc) In Sr gli Sk incidenti (in un punto) ad un dato Sm e formanti ciascuno

un gruppo di Sk associati di la specie (n. 1) con :

spazi Sk genericamente prescelti, sono in numéro di N se 6 0, e riem-
piono una varietà di dimensione k + 1 e d'ordine N se s 1 ; ove :

1 2 k (m +rh - k2)
xV — ¦—

m (r - k + 1) (r - k + 2)

s) Ir — m\
777rT\ & / '

P) In Sr gli Sk incidenti ad un dato Sm in un Sk_1 (non dato) e formanti
ciascuno un gruppo di Sk associati di la specie (n. 1) con :
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k+v-k(m-k)-r
spazi Sk genericamente prescelti, sono in numéro di N' se e' 0, e riem-
piono una varietà di dimensione k + 1 e d'ordine Nr se ef 1 ; ove :

A7/ l!2!...i!(r + mi-A2)! (r-m + k-l
r (m — k + 1) (m — k + 2) m \ k

Notevole è il caso particolare, del teorema /?), in cui m — k : allora si ha

semplieemente per Nr il valore I I

§ 4. Varietà algebriche costituite da Sk a v + 1 a r + 1 associati

14. Riprendendo in considerazione la varietà Wk+a di cui al n. 10, si

supponga 0 < a < r — k. L'ordine di essa è allora il numéro dei suoi Sk
incidenti ad un Sr_k_a, cioè appartenenti alla forma fondamentale:

L ' ~Tî T~ > • • • > > J '

e quindi si calcola col teorema del n. 10. Inoltre v + 1 generici Sk di
Wk+(T risultano (n. 2) associati di la specie, giacchè i loro punti immagini
sulla grassmanniana Vf giacciono nelVSv_1 congiungente i punti Tt rap-
presentativi dei v spazi S^ che individuano (n. 10) la varietà stessa.

Questa, corne sistema algebrico ooa d'indice o> (n. 10) dei propri Sk gène-
ratori, contiene poi un'involuzione razionale di gruppi di Sk associati in
base al teorema del n. 6.

Osservando infine (cfr. n. 3) che lo spazio #„_! è Fimmagine in SQ di un
sistema lineare oo11"1 di complessi lineari di spazi Sr_k_1 entro Sr, mentre
la sua sezione con Vf rappresenta la varietà base di un sistema lineare

di complessi lineari di 8k, si perviene al teorema seguente :

Nello spazio Sradr dimensioni, se :

con 0<a<r — k, esistono :

varietà Wk+a (di dimensione k + a<r) costituite ciascuna da ooCT spazi Sk

e caratterizzate dalla propriété di avère gli Sk generatori formanti a v + 1 a
v + 1 gruppi di spazi associati : generalmente di la specie (n. 1).
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Per v spazi Skl) (i 1, 2 ,...,*>) generid u) di Sr passa una ed una sola
di tali varietà Wk+a, la quale :

1 Ha Vordine eguale a :

1 2 k (kr - k2) / (k + 1) (r - k) - a
(r _ k + 1) (r - k + 2) r

_/(k+l)(r-k)-a\(k + a\
ï \ kr-k2 \ k '

2) È il luogo degli Sk-assi di tutti i complessi lineari speciali di spazi
>Sr_fc_1? entro Sr, contenuti in un sistema algebrico oo1'-1 di complessi lineari
di 8r_k_1 : quello individuato dai v complessi lineari speciali di Sr_k_1
aventi per assi gli spazi Skl).

3) È il luogo degli Sk comuni a tutti i complessi lineari di spazi Sk, entro
Sr, passanti per i v spazi S{hl).

Ognuna délie suddette varietà Wk+a contiene un*involuzione razionale di
gruppi di 8k avente la dimensione a (v — a) e Vordine co (n. 1) : subordina-
tavi dalla involuzione dei gruppi di 8k associati in 8r secondo B. Segre

(n. 6, Oss. la e 4a) ; onde v — a spazi generatori, sopra ciascuna varieià
Wk+a, genericamente assegnati, ne individuano altri co — v + o costi-
tuenti coi primi un gruppo di co Sk associati (n. 1) di specie co — v + g ; il
quale coïncide col gruppo determinato in Sr da quegli stessi v — g spazi
entro Vinvoluzione di B. Segre15) fra gli Sk di Sr.

Osservazione la. — Avuto riguardo alla nota14) si vede che fra le

Wk+a, di cui al teorema précédente, puà annoverarsi la varietà luogo degli
ooCT spazi Sk di Sr incidenti a :

(k + l)(r — k) — g

spazi Sr_k_1 genericamente dati, quando 0<G<r — k.

Per k g 1 si ha in particolare una superficie d'ordine :

2 /2r — 3\

14) Qui e in seguito si dice che A spazi Sk sono genericiin<Sy nel senso che i rispettivi A

punti immagini sulla grassmanniana V^ d'indici (r,k) sono indipendenti, e il loro spazio

congiungente £x-i non incontra altrove la V™ se A < g — t, ne la taglia in varietà di
dimensione superiore a A-J-t — g — 1 se A > ç — t.

16) Si noti che v — a Q — t -f- 1, e che ogni gruppo di Sk associati in Sr secondo
B.Segre (n. 6, Oss. la) è precisamente individuato da q — t + 1 qualunque dei suoi œ

spazi.
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costituita dalle rette di 8r appoggiantisi a 2r — 3 generici spazi 8r_2; la
quale si riduce in 85 ad una notevole rigata F£4 considerata da B. Segre 7).

Osservazione 2\ — Nell'ipotesi k 1 il teorema concerne alcune
varietà rigate, di Sr, aventi la dimensione g + 1 <r, Vordine :

a + 1 /2r — <x - 2\
r \ r-1 / '

e individuate ciascuna da :

generatrici prefissabili in modo generico1*).

Se r 4 e <; 1 si tratta délia rigata ellittica normale V\ di /S4.

Se r 5 e g 1 si ritrova la F^4 di $5 studiata da B. Segre 7).

Osservazione 3a. — Nell'ipotesi g r — Je — 1 il teorema carat-
terizza tma estesa classe di ipersuperficie, dello spazio 8ry costituite da
oor-&-i $

l\ 2\ ...k\(Jer - 1) (r - l\T7777t( k )>(r _ fc + 1) (r __ ^ + 2)
* cAe per :

/Sfc genericiu) di Sr ne passa una ed una sola.

A questa classe di ipersuperficie appartiene in particolare (cfr. Oss. la)
Vipersuperficie luogo degli 8k di 8r incidenti a k (r — k) + 1 spazi Sr^^
generici.

Osservazione 4a. — Se k 1 e g r — 2 il teorema diviene :

spazio 8r, ad r dimensioni, (L) rette generiche1*) appartengono

s&mpre ad una ipersuperficie rigata Vrri\ d'ordine r — 1, sulla quale

\L\ + 1 generatrici qualunque formano un gruppo di rené associate di

9 + 1 generatrici generiche ne deter-

minano altre :
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2 lit - 3\ (r - 1\

completanti con le prime un gruppo di rette associait in Sr (r>3) secondo

B.Segre (n. 6, Oss. la).

In particolare (cfr. Oss. 3a) la Vrrz\ puo essere Vipersuperficie luogo délie
rette di Sr inddenti ad r generici spazi Sr_2 : la quale si riduce in $4 alla V£

con 10 punti doppi di C.Segre 6).

15. 11 teorema del n. 14 offre senz'altro la compléta risoluzione del
problenia seguente :

Determinare in Sr le varietà, irriducibili e non invadenti V8r, costituite da

spazi subordinati di dimensione non inferiore a 1 ne superiore a r — 2, e

caratterizzate dalla propriété che per ciascuna, W, di esse esista un intero v
taie die v spazi generici di W siano pure generici in Sru), mentre v + 1

spazi generici di W siano associati di la specie (n. 1).

Se h è la dimensione degli spazi generatori di W, e k + a quella di W,
deve essere (cfr. n. 14) :

r ç — r-j-cr-f-1, 0<a<r — k 0<k<r ~ I ;

quindi al variare di k si ottengono per a (e per v) in tutto :

i;V-*-l)=:£(r--l) (r-2)
valori. Pertanto :

II problema suddetto ammette l I soluzioni omograficamente distinte,

date dalle varietà Wk+a del teorema del n. 14 : fra di esse le varietà di dimensione

h (con h 2,3,.. ,,r — 1) sono in numéro di h — 1.

La sola (a meno di trasformazioni omografiehe) superficie rigata solu-
zione del problema ha per immagine sulla grassmanniana délie rette di Sr
una generica sezione curvilinea di questa (cfr. n. 14) : onde il suo génère si
desume da un teorema del Severi16).

Si trova cosi, ad esempio, che :

In S3 il problema ha per unica soluzione un regolo F22 (v 3).

16) F.Severi, loc. cit., n. 17.
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In $4 si hanno corne soluzioni : la rigata ellittica normale V\ (y 5) ;

Vipersuperficie cubica rigata V\ (v 6), con 10 punii doppi, di C.Segre6) ;
e la V\ (v 5), luogo di piani, duale délia V\.

In S5 le sei soluzioni sono : tre varietà rigate, cioè la F^4 (v 8), avente il
génère 8, di B.Segre 7), una V\ (v 9) ed una V\ {v 10) ; due varietà,
una Vf (v 12) e una Vf (v 13), di piani ; e la F" (v 8), teo^o di
spazi $3, duale délia V\*.

In S6 le dieci soluzioni sono : quattro varietà rigate, ossia una Vf (v 12)
di génère 43, una V\?(y 13), una F*4 (v 14) ed una V\(y 15) ; tre
varietà, una Vf2 (v 24), una Vf2 (v 25) e wa Ff (v 26), di
piani ; due varietà, la Vf2 (v 24) duale délia Vf2 e una Vf° (v 25), di
spazi S3 ; ed infine la Vf (v — 12), luogo di spazi £4, duale délia Vf.

§ 5. Génère sezionale di un sistema algebrico di spazi Sk

16. Sia <9f/ un sistema algebrico oo*' di spazi Sk, appartenente ad 8r
e d'indice co; (n. 6) : cosicchè esistano co; suoi Sk generatori incidenti a r;
generici spazi Sr^k_1.

Se x1 1 (e k<r — 1) si tratta di una varietà d'ordine a>', luogo di
oo1 spazi Sk.

Se x' ^ 2, un generico sistema lineare ooc~T'+1 di complessi lineari di
$r-*-i, entro Sr, ne contiene oo1 speciali coi rispettivi assi 8k appartenenti
al sistema @f/ e ivi formanti una varietà W^'+1 di ordine cof : abbia essa,

quale série semplicemente infinita di Sk, il génère n.
La W*£'+1 si puô anche definire corne il luogo degli oo1 8k comuni al

sistema 0f' e a x!— 1 complessi lineari di 8k genericamente assegnati
in Sr.

Sulla grassmanniana Vf d'indici (r, Je) il sistema @f è rappresentato
da una varietà Ff' di ordine wf e la W^'+1 da una generica sezione curvi-
linea Ff ' di Vf! : avente lo stesso génère n che in Sr ha la W^'+1.

Estendendo una denominazione di C.Segre e G.Fano11) si dira che n è il
génère sezionale sia del sistema algebrico <9f/ di spazi Sk che délia sua
varietà immagine Vf! sulla grassmanniana Vf.

17. Fra l'indice cof e il génère sezionale n (n. 16) del sistema algebrico ©f,'
(con t'> 1) di spazi Sk si supponga intercedere la relazione cof>27t — 2.
Se allora è un 8Q,, lo spazio di appartenenza délia varietà Vf/ immagine di

17) G.Fano, Nuove ricerche sulle congruenze di rette del 3° ordine prive di
linea singolare [Memorie delFAccademia délie Scienze di Torino, 51 (2), 1902], n. 2.
Cfr. pure: A.Longhi, Sulla intersezione di due o più varietà algebriche (Commen
tarii math. Helvetici, 18, 1945—46).

338



0^' sulla grassmanniana Vf, la generica sezione curvilinea FJ*', di ordine
a/ e génère n, délia F£' appartiene ad un SQf_%, + 1;e siccome per Fipotesi
a)f> 2 7i — 2 la série lineare g^"*'4*1 segata su FJ*' dagli iperpiani è certo
non spéciale, dev'essere :

Qf — x1 + 1 < cof — n
ossia :

q' — xf -f- cof — n — [à,

con jt* > 1 ; ese r^r'+co'—-:zz;+l, risulta :

onde si conclude (n. 2) che v spazi Sk generici di &%l sono associati di
specie /jl (n. 1) appena sia q'<q.

Se invece si suppone £; — r' + 1 > oj' ~ n (e co; < 2jr — 2), la série
9cû'~~%I +1 délie sezioni iperpiane di FJ*' è spéciale, e si ha quindi :

D'altra parte, se &$ non è contenuto in alcun complesso lineare di Sk

(ossia la varietà FJJ' non giace in nessun iperpiano di 8Q) è £7 ^ ; mentre

per &%' passano a — q — ^r, e non più, complessi lineari di Sk linear-
mente indipendenti, allorchè gf <q

Dopo ciô, da quanto précède si traggono subito i risultati seguenti :

Sia &%! un sistema algebrico oox' di spazi Sk, appartenente ad Sri con la
dimensione t7>1, di indice cor (n. 6) e di génère sezionale n (n. 16) :

cosicchè, se k<r — 1, sono pure oyr e n Vordine e il génère délia varietà
luogo degli oo1 spazi Sk di &%! incidenti a rr — 1 generici spazi Sr_k^1.

Indichi poi a il massimo numéro, positivo o nullo, di complessi lineari di
Sk, entro Sr, linearmente indipendenti e contenenti ciascuno tutti gli Sk del

sistema &%!.

Si ha allora che :

A) Se cof>27i — 2 vale la limitazione :

B) Quando cr>0 e oy'>2n — 2 il sistema Q™,' ha la proprietà che:
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suoi spazi Sk generici sono sempre associati di specie (n. 1)

ed anzi in posizione di Schlafli (n. 5) se :

C) Verificandosi la relazione :

il sistema &f, risulta necessariamente contenuto in complessi lineari di
spazi Sk, formanti un sistema lineare di dimensione non inferiore a :

inoltre rf + cor — n + 1 spazi generatori 8k arbitrari di 0^,' sono sempre
fra loro associati di la specie almeno (n. 1), ed anzi in posizione di Schlafli
(n. 5) se :

xf + co' - n < (k + 1) (r - k)

D) Supposta soddisfatta la diseguaglianza :

deve pure esserlo Valtra :

§ 6, Sulle varietà algebriche luoghi di oo1 spazi Sk

18. Una varietà W^+li di dimensione k + 1, di ordine n e apparte-
nente ad Sr, sia costituita da un sistema oo1 di spazi 8k (0<fc<r — 1) :

ed abbia, corne luogo di Sk, il génère p.
Sulla grassmanniana F^ d'indici (r, k) la TF^+1 si rappresenta con una

curva Cvn di ordine n e génère p.
Gli iperpiani dello spazio ambiente 8Q délia Vf segano sopra Cvn una

certa série lineare g\, di dimensione A e di ordine n, di gruppi di punti ;

alla quale corrisponde su TFJ+1 la série lineare g* di gruppi di Sk stac-
cata dai complessi lineari di Sk entro 8r (n. 6, Oss. 2a).
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In générale la dimensione X délia g\ è uguale a ç (n. 1) ; ma puô essere
X < g : il che si verifica quando per la Gvn passano q — X g iperpiani
SQ_1 indipendenti, ossia quando la Cvn appartiene ad un Sx subordinato di
SQ. Allora la Wfjc+1 è contenuta in complessi lineari di Sk, costituenti in
Sr un sistema lineare oo*7"1.

SullaCJJ, e quindi anche sulla W^+1, si puô considerare la série canonica

#2p-2 (effettiva solo se p>l): cioè Funica série lineare avente la
dimensione p — le l'ordine 2p — 2

Se per un gruppo generico Gn délia série g* passano j(^ 0) gruppi
canonici indipendenti, ma non j + 1, per il teorema di Riemann-Roch è

n — p + j la dimensione délia série compléta | Gn | ; e quindi si puô
scrivere :

A <n — p + j
ossia :

con ju ^ 1. Posto allora :

risulta :

X v — [à — 1

e ne dériva (n. 2) che v spazi Sk generici di TF2+1 sono associati di specie

jit (n. 1) quando X <q : ciô che anzi si verifica per v Sk generatori arbitrari
di W%+1 se jî + 2>p (altrimenti esisterebbero iperpiani di Sx incon-
tranti Cvn in più di n punti).

Si puô aggiungere che nelFipotesi X n — p + ; la curva Cvn riesce

normale, essendo compléta la série délie sue sezioni iperpiane.
Notando poi che èsicuramente j 0 se n>2p — 2 oppure X>p— 1,

mentre è ?">0 (e quindi X < p — 1) se X>n — p, siperviene aile con-
clusioni seguenti :

Sia Wtjsjrl una varietà di dimensione Je + l e d'ordinen, appartenente ad
Sr, luogo di oo1 spazi Sk (con Q<k<r — 1) e, corne taie, di génère p.

Si chiami a il massimo numéro, positivo o nullo, di complessi lineari di Sk,
entro Sr, linearmente indipendenti e passanti ciascuno per la WrlJrl.

SulVente (oo1 e di génère p) costituito dagli 8k generatori di W^+1 si consi-
deri la série canonica g2*Zl, e si supponga che per gli n spazi 8k di W%+1

giacenti in un generico complesso lineare di 8k entro 8r passino j ^ 0)

gruppi indipendenti délia g2*Z\ - ma non j + 1.
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Allora :
oc) Vale la limitazione :

-f- cr -f- (r+l\
ove Veguaglianza caratterizza il caso in cui la série lineare (d'ordine n) di
gruppi di Sk generatori staccata (n. 6, Oss. 2a) sulla varietà Wr^+1 dai com-
plessi lineari di Sk entro Sr, è compléta con Vindice di specialità j18).

(}) Quando a>0 si ha che :

n — p + j + 2

spazi Sk generici délia varietà Wl+1, o addirittura arbitrari se p < j -j- 2

(in particolare se la W%+1 è razionale o ellittica), sono sempre associati di
specie (n. 1) :

ed anzi in posizione di Schlafli (n. 5) se :

y) Verificandosi la diseguaglianza :

la varietà Wl+1 risulta necessariamente contenuta in complessi lineari di
spazi Sky formanti un sistema lineare di dimensione non inferiore a :

inoltre n — p -{- j + 2 spazi generatori Sk arbitrari di W^+1 sono sempre
fra loro associati di la specie almeno (n. 1), ed anzi in posizione di Schlafli
(n. 5) se :

n — p + j + 1 < (k + 1) (r — h)

18) Taie circostanza équivale all'altra che l'immagine di W^+1 sulla grassmanniana

d'indici (r, h) è una curva normale C* di uno spazio ad n — p -(- j dimension!.
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ô) Supposta soddisfatta la relazione :

deve pure esserlo Valtra :

e) Se n>2p — 2 oppure :

nette proposizioni oc), /?), y) è da porre j 0.

19. Se 7i > 2p — 2, la sezione délia varietà TF2+1 (n. 18) con un gene-
rico spazio 8r_k è una curva, d'ordine n e di génère p, avente per spazio
normale un 8n_p. Pertanto è r — Je <n -— p; ossia lo spazio più ele-

vato a cui puô appartenere la tFï+1, nell'ipotesi n>2p — 2, ha la
dimensione n — p + k •

Si supponga appunto r n — p + &, oltre che n>2^ — 2.

Il carattere ?' (n. 18) délia varietà Wrje+1 è allora nullo (n. 18, e) ; e

inoltre la curva Gvn immagine délia W%+1 sulla grassmanniana F^ è

normale, ossia appartiene ad un 8n__p. Infatti se Cvn esistesse in un aS*_;p_1,

cioè in un S*_k_l9 ogni iperpiano di Se per r — k punti generici di Cvn

conterrebbe la Gvn stessa ; e quindi ogni complesso lineare di Sk, entro Sr,
passante per r — k generici spazi generatori di WJ+1 dovrebbe passare
per tutti : donde seguirebbe in particolare (supponendo spéciale un taie
complesso) che lo spazio 8r^k_1 congiungente r — k punti generici délia
varietà Wl+1 la incontrerebbe in infiniti altri : mentre non puô incontraria

che in p ulteriori punti.
Ne risulta (n. 18, oc) che Wvjc+1 appartiene alla base di un sistema lineare

oo^1 di complessi lineari di Sk, con a definito dalFeguaglianza :

e deducendosi :

si puô concludere (n. 18, /?, e) :
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Ogni varietà irriducibile luogo di oo1 spazi Sk, di génère p, di ordine

n>2p — 2 e appartenente ad uno spazio 8n__p+k, ha la proprietà che

n — p + 2 suoi 8k generatori arbitrari sono sempre in posizione di Schlâfli
(n. 5).

Se p>0 vale anzi per la varietà Wl+l in discorso una proprietà an-
cora più particolare : già nota nel caso Je 1. Infatti, un teorema di
C.Segre assicura che la rigata, di cui trattasi quando Je 1, è un cono19).
Segando allora la W1je+1 con un generico 8^LP+1 si ottiene una rigata di
génère p > 0 e appartenente ad uno spazio di dimensione n — p -f- 1,
cioè, in base al teorema suddetto, una superficie conica : per il vertice 8^
délia quale passano quindi tutti gli Sk generatori di W%+1.

Tagliando ora la W%+1 con un $(n2!p+1 non contenente il punto 8^ si ha
un secondo cono, di vertice S^ : e tutti gli Sk di W^+1 passano per la

Si intersechi di nuovo la W^+1 con un S(*LP+1 sghembo rispetto a taie
retta : il vertice 8^ del cono cosi risultante, e perciô anche il piano che lo
congiunge con 8^ e $(02), giace in tutti gli 8k di W^+1. Cosi proseguendo si
perviene alla conclusione che gli Sk generatori di Wl+1 passano tutti per
un medesimo 8k_x. Dunque :

Una varietà irriducibile luogo di oo1 spazi 8k, di génère p > 0 e di ordine

n>2p — 2, la quale appartenga ad uno spazio Sn_v+k, è sempre un
8k_rcono.

Se invece p 0, il teorema prima dimostrato si riferisce aile varietà
razionali normali 8k- Vrk~l\ luoghi di oo1 8k dello spazio ST ; e puô anche
enunciarsi :

Sopra una varietà razionale normale dello spazio Sr, costituita da oo1

spazi Sk (e quindi di ordine r — Je), r — A + 2 spazi generatori arbitrari
sono sempre in posizione di Schlâfli : cosi che ogni >Sr_fc_1 incidente ad
Y _ fo _|_ i qualunque di essi incontra pure il rimanente.

20. Vale la pena, terminando, di applicare esplicitamente le propo-
sizioni generali che precedono al caso particolare (Je 1) délie superficie
rigate algebriche20). Si ottengono cosi, fra altri, i seguenti risultati.

19) G.Segre, Recherches générales sur les courbes et les surfaces réglées
algébriques (Math. Annalen, 34, 1889), n. 14.

20) In una nota al n. 3 del lavoro dianzi citato, C.Segre avverte che la considerazione
délie rigate di Sd corne curve dello spazio di dimensione ^d(d + 1) — 1 puô dare dei
risultati utili e interessanti, già per d 3.
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I
Se una rigata di génère p e ordine n>2p — 2, appartenente allô spazio

ST, non è contenuta in alcun complesso lineare di rette, si ha necessaria-
rnente :

II
Quando per una rigata di génère p e ordine n>2p — 2, appartenente ad

Sr, passano e + 1 [con e ^ 0) complessi lineari di rette linearmente
indipendenti, deve essere :

e n — p -f- 2 rette generiche délia rigata sono sempre associate di specie

(n.1):

anzi in posizione di Schlàfli (n. 5) se e ~^( ~Z

III
Se per una rigata di ordine n e génère p, appartenente ad 8r, si verifica

che :
% 2)

essa risulta contenuta in almeno :

J(r-l)(r+ 2)-n + p

complessi lineari di rette linearmente indipendenti ; e n — p + 2 sue gene-
ratrici arbitrarie sono sempre fra loro associate (di la specie almeno : n. 1),
anzi in posizione di Schlàfli (n. 5) quando n — p<2r — 2.

IV
Se una rigata di ordine n e génère p, appartenente ad Sr, non sta in

nessun complesso lineare di rette, ed è

deve pure essere :
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V
Se una rigata di ordine n e génère p, appartenente ad Sr, sta in e + 1

(con e ^ 0) complessi lineari di rette linearmente indipendenti, ed è :

n - p <£(r - 2)(r + 3)

VI
spazio Sr ad. r dimensioni ogni ngata razionale normale (ossia di

ordine r— 1) è base di un sistema lineare ooV2/ di complessi lineari di
rette.

VII
Ogni rigata razionale normale di 8r ha le sue generatrici ad r + 1 od

r -f- 1 associate secondo Schlafli : cosi che gli Sr_2 incontranti r qualunque
fra r + 1 generatrici arbitrarie délia rigata debbono ciascuno incontrare
anche la rimanente.

(Reçu le premier septembre 1946.)
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