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Sulla geometria degli §; di un S,
Di AmBrocio Loneui, a Lugano

Nello spazio 8,, ad r dimensioni, r 4 1 rette sono assoctate secondo
Schlifli') quando ogni S,_, appoggiato ad r qualunque di esse lo ¢ pure
alla restante ; e, dualmente, r 4+ 1 spazi S,_, sono associati se le rette
che ne incontrano r risultano incidenti anche all’ultimo: per r = 4 si
tratta delle quintuple di piani associatt di S, considerate da C.Segre?).

Una nozione di spazi S, associatidi S,,con r >4 e 0<k<r — 1, fu
posta da B.Segre?) definendo come tali gli S,-assi degli w complessi
lineari speciali esistenti in un generico sistema lineare co®™* di complessi
lineari di spazi S,_,_, dell’ §,: ove w & l'ordine della varieta VY grass-
manniana d’indici (r, k) rappresentatrice 4) della totalita degli S, di S,,
7 & la sua dimensione e g quella del suo spazio di appartenenza.

Questa nozione si riduce a quella di C.Segre per £k = 2 ed r = 4, ma
non include affatto quella di Schlifli per £k = 1 ed r qualunque, né la sua
duale per k =7r — 2 e r # 4.

Nel presente lavoro si pone (§1)una semplice nozione di spazi associati
pilt comprensiva di quella di B.Segre, e che conduce pure immediata-
mente, in infiniti casi particolari, alla considerazione di gruppi di spazi S,
wn posizione di Schlifli entro S, : cioe tali che ogni S,_,_; incidente ad al-
cuni degli 8, di un gruppo lo é di conseguenza a tutti gli altri.

Dopo cio, in un sistema algebrico 2, comunque esteso, di spazi 8, sub-
ordinati di S,, si definisce (§ 2) una involuzione razionale di gruppi di S,
associati: che si riduce a quella introdotta da B.Segre5) quando 2'¢ la
totalita degli S, di S,.

Supponendo, in particolare, X costituito dagli S, di S, soddisfacenti ad
una data condizione di Schubert (a,,a,,...,a;), si studiano (§ 3) i
gruppi di 8, associati in 8, aventi ciascuno un S, appartenente alla forma
fondamentale [a,, a,,..., a,] e gli altri prefissabili in modo generico.

1y Cfr.: L.Schlifli, Erweiterung des Satzes, daB zwei polare Dreiecke per-
spektivisch liegen, auf eine beliebige Zahl von Dimensionen (Journal fiir
Mathematik, 65, 1866).

2) C.Segre, Alcune considerazioni elementari sull’incidenza di rette e piani
nello spazio a quattro dimensioni (Rendiconti del Circolo Matematico di Palermo,
t. 2, 1888).

3) B.Segre, Sui gruppi di S} associati di un S, (Rendiconto delle Sessioni del-
P’Accademia delle Scienze dell’Istituto di Bologna, 1933—34).

4) F.Severi, Sulla varietad che rappresenta gli spazi subordinati, di data
dimensione, immersi in uno spazio lineare [Annali di Matematica, 24 (3), 1915].

5) B.Segre, loc. cit., n. 2.
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Sono oggetto del § 4 certe varietd algebriche luoghi di S, e caratteriz-
zate dalla proprietda di avere gli spazi generatori formanti a » + 1 a
v + 1 gruppi di S, associati; a tale classe di varietd appartengono : in
8,, oltre alla rigata V7 ellittica normale, U'ipersuperficie ¥ con 10 punti
doppi di C.Segre ®), e in S; una notevole superficie V;* di B.Segre 7).

La considerazione del genere sezionale (§ 5) di un sistema algebrico di
almeno oo? spazi S, permette di stabilire varie proposizioni generali: le
quali si precisano maggiormente (§ 6) nel caso di un sistema oo! e offrono
risultati interessanti gia nell’ambito delle sole superficie rigate.

Cosi, ad esempio, si riconosce come le proprieta elementari che tre rette
di un fascio, e quattro qualunque di un regolo dello spazio ordinario, sono
sempre associate, rientrano (per » = 2 ed r = 3) in quella ben piu ri-
marchevole (n. 20, VII) che ogni rigata razionale normale di S, ha le sue
generatrici ad » + 1 ad » 4+ 1 associate (secondo Schliflz) : il qual teo-
rema si generalizza a sua volta nell’altro (n. 20, III) che # — p + 2
generatrici arbitrarie di una rigata di ordine n e genere p dello spazio S,,
quando :

p—1<n—p<2r—2,

sono in posizione di Schlifli; come pure nell’altro (n. 19) che in tale
posizione risultano sempre anche r — k 4 2 spazi generatori qualsiansi
di ogni varietd razionale normale luogo di co! §, e appartenente ad §,.

§ 1. I gruppi di v spazi 8, associati di specie y in S,

1. Come ¢ ben noto?) i gid accennati caratteri g, 7, w della grass-
manniana V,” d’indici (r, k) che in 8, rappresenta la totalitd degli S, di
8,, si esprimono in funzione di r e k con le formole :

g:(;;:ﬁ:]l.)—-l, r=(k+1)(r—k)

1V 2!...k! 7!
T r—=k!' @ —k+1)'...0t

w

il cui richiamo verra generalmente sottaciuto in tutto il seguito.
Cio premesso, siano 7, @,,. . ., ,, nello spazio S, ad r dimensioni, »

) C.Segre, Sulla varietd cubica con dieci punti doppi (Atti dell’Accademia delle
Scienze di Torino, 22, 1887).
7) B.Segre, loc. cit:, n. 4.
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spazi §) rappresentati in §,, sulla grassmanniana V°, da altrettanti
punti P,, P,,..., P,. Supposti questi non indipendenti e tutti conte-
nuti in almeno un iperpiano, lo spazio che li congiunge sard un S,_, ,
con:
O<u<y —1
se v<Kpo+1, e:
v—po S u<y — 1

se v>p + 1; cioe, in ogni caso, con:
uw<v—1, ©w>0, Hw=v—o.

Fra i » punti P, se ne possono allora considerare » — px indipendenti :
cosi che ogn: iperpiano di §, che li contiene passa anche per gli altri u ;
mentre lo stesso non accade mai di ogni iperpiano condotto per
v — u — 1 soltanto dei punti P,.

Cio posto, gli spazi x;, corrispondenti in S, ai punti P, , si diranno
costituire un gruppo di » spazi 8, associatt di specie u .

Siccome le sezioni iperpiane di V,” rappresentano i complessi lineari di
S, entro S,, si puo dare, senza uscire dall’S,, la seguente definizione :

In 8,, v spazi S, si dicono associati di specie u (o di u-esima
specie), com:

r—+1
y<v—1, ”213 ‘u>v_(k+l)’

quando ogni complesso lineare di S, contenente certi 8) v — u, e non meno,
) esst, ) i co ) 1 u spazt residus.
di esst, contiene di conseguenza ¢ u spazi resid

2. Risulta senz’altro da quanto precede (n. 1) che:

Affinché v spazi S, di S, siano associati di specie u (n. 1) é necessario e
sufficiente che ¢ loro puntt immagini sulla grassmanniana d’indici (r, k)
appartengano ad uno spazio S,_, , (almeno v-secante rispetto ad essa,
quando non sia addirittura oo-secante o non vi giaccia per intero) con

©n>0e:
r+1
0<v-—,u——l<(k+1)——l .

8) Od anche gualsiansi: quando i v spazi presentano a v—u a v—pu le stesse particolaritd
di mutua posizione (cosicché i loro punti immagini sulla grassmanniana siano a v — u
a vy — u indipendenti); nel qual caso il gruppo dei » spazi associati si dird generico.
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Cosi, ad esempio, v > 3 spazi S}, di un fascio, cioe passanti per un S, _,
e giacenti in un §,,,, sono associati di specie ¥ — 2; mentre sono asso-
ciati di 2* specie 6 S, di S,, con r > 3, appartenenti tre ad uno e tre
all’altro di due generici fasci di §,, ; e risultano associate di specie n — 3,
nello spazio ordinario, » >4 generatrici qualunque di un regolo.

3. La corrispondenza biunivoca fra i punti della grassmanniana V"
e gli S, di S, si pud ritenere subordinata ?) da una corrispondenza proiet-
tiva I" fra i punti del suo spazio ambiente §, e i complessi lineari di spazi
8,_i_, entro §,. Quando un punto P di §, appartiene a V;°, e solo in tal
caso, il complesso omologo di P in I riesce speciale ; cioé ha tutti i suoi
S,_r_; incidenti ad un medesimo spazio S,-asse : di cui P é allora I'imma-
gine su V°.

La I trasforma pertanto ogni spazio S, di S, in un sistema lineare oo’
di complessi lineari di 8,_,_, entro S, ; e gli eventuali complessi speciali
di questo sistema corrispondono ai punti che S, pud avere in comune con

V.

T

Si conclude quindi (n. 2):

Se in un sistema lineare oo® (1 < e<p) dt complessi lineari di S,_;_,,
entro S,, esistono piu di ¢ + 1 complessi speciali, e se ne considerano
v >¢+ 2, di cut ¢ + 1 linearmente tndipendenti, ¢ loro v S,-assi sono
associati (n. 1) d¢ specie v — e — 1.

Poiché, se ¢ > p — 7, un §, di §, interseca certo la V"’ in una varieta
Vi o, © Pordine w di questa & il numero dei punti che essa ha in comune
con t -+ ¢ — g iperpiani indipendenti, si puo enunciare :

Un generico sistema lineare oo® "t con 0 <o<rt, di complessi
lineari di spazi S,_,_,, entro S,, ne contiene oo® speciali : e precisamente w
se ¢ = 0. I loro Sy-asst, la cut totalita, se 6>0, ne include sempre w in-
cidenti a o spazi S,_,_, genericamente prefissabili, sono tali che v generici di
esst, quando :

v=2e—1t+o0o+4+ 2,

risultano associatt (n. 1) di specie v — o + v — o — 1.

In particolare: se v = w, 0 =0 ed r >4 si hanno i gruppi di o S,
associati, di §,, definiti da B.Segre?).

%) Cfr. B.Segre, loc. cit., n. 1.
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4. Dalla definizione di gruppi di 8, associati (n. 1), e da quella di
complesso lineare speciale di S, (cfr. n. 3), si desume :

Se v spazi S, di S, sono associat di specie p (n. 1), tutts gli eventuali
spazy S,_,_, incidentr a certs 8) v — u di essi incontrano pure ciascuno dei
w spazi restants.

In particolare, per k =1, v =7 + 1 e p = 1 si ha che in S, un gene-
rico 8) gruppo di r 4 1 rette associate di 1* specie (n. 1) e tale che ogni
spazio 8,_, appoggiantesi ad r qualunque di esse deve appoggiarsi alla
rimanente : onde le r + 1 rette sono anche associate nel senso di Schliflz.

8. Si convenga di dire che piu spazi §; di S, sono in posizione di
Schlifli quando ogni spazio S,_,_; incidente ad alcuni, in numero-ben
determinato ed eventualmente da scegliersi in modo spemale si appoggla
di conseguenza anche agli altri. .

Allora, siccome esistono degli S,_,_, 1nc1dent1 a A spazi S, appena sia
A < 7, dal teorema del n. 4 si trae il seguente : :

Se, in S, , per un gruppo di v spazi S, associati di specie u (n. 1) si verifica

che :

gl spazi del gruppo sono in posizione di Schlifli : e piu precisamente ogni
spazio S,_,_, incontrante certt 8) v — u di essi incontra pure i u spazi
residus.

Ne risulta, come corollario, che, in S,, v spazi S, associati qualunque
sono sempre in posizione di Schlifli quando :

<@E+1)@F—Fk+1;

onde esiste allora un intero u>1 (la specie del loro gruppo: n.1) tale
che ogni 8,_;_; incidente a certi®) » — u di essi, lo & necessariamente a
tutti ; e se u non si conosce, supposto generico 8) il gruppo dei » 8, asso-
ciati, si potrd ugualmente asserire che gli S,_,_;, i quali ne incontrano
» — 1 qualunque, debbono pure incontrare il restante.

Non é forse superfluo avvertire che, nell’ipotesi k£ = 1, riescono cosi
definiti anche particolari gruppi di 8, in posizione di Schldfls diversi dalle
ordinarie (r + 1)-uple di rette associate in S, : ad esempio, nello spazio a
tre dimensioni sono in posizione di Schldfli non solo quattro rette iper-
boloidiche, ma pure cinque o piu rette generiche di una congruenza

lineare.
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§ 2. Involuzione razionale di gruppi di S, associati entro un sistema
algebrico di spazi S,

6. Nello spazio S, si consideri un sistema algebrico irriducibile di
spazi subordinati S,. Se />0 ne ¢ la dimensione, esiste in generale un
numero finito w’ di S, generatori incidenti a t’ generici spazi S,_,_,:
esso puo dirsi I'indice del sistema, il quale si denoterad con @%’.

Quando /=1 (e k<r — 1) Pindice w’ & pure l'ordine della varieta
luogo degli S, di ©%".

Sulla grassmanniana V"’ la varietd di dimensione ¢’ che corrisponde a
6% & una V9 di ordine w’: dovendo avere ’ punti in comune coi 7’
iperpiani (linearmente indipendenti) seganti su V,;° le varieta immagini
di 7’ generici complessi lineari speciali di S,.

In generale lo spazio di appartenenza della V" & quello stesso, S,, di
V¥ ; ma siriduce ad un S, , di dimensione ¢’ < quando per V" passano
o — o' iperpiani S,_; indipendenti: ossia quando O & base per un
sistema lineare oo¢-¢-1 di complessi lineari di S, entro S,.

Detto in ogni caso S, lo spazio a cui appartiene la V', onde o’ <p,
uno spazio variabile §,, _,, subordinato di S, (ovvero un §,_,, di §,) ha
generalmente su V' un gruppo di o’ punti descrivente una involuzione
razionale di dimensione /(o' — 7’ -+ 1). In corrispondenza si avra
allora su ©@% una involuzione di gruppi di w’ spazi S, ; i quali risulteranno,
in ogni gruppo, associati di specie :

/

o' — (@ —1'+1)

appena sia (n. 2) o' — o'+ 1/ —1>0 e:

’ / r 41
0<p ——'c<(k+1)—~1,

cio¢ (con 7/ > 0) si abbia insieme 1/ <p' e:
(J),>Q/ . T/ + 1 .

Si puo aggiungere (n. 5) che gli spazi associati suddetti sono addirit-
tura in posizione di Schlifli quando :

' — 7+ 1I<k+ ) —k),
ammesso che @% appartenga ad S, .
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In conclusione :

Sia 0% un sistema algebrico co” di spazi S, irriducibile'®), appartenents
ad 8, e di indice o’ : cioé avente w’ dei suoi S, appoggiantisi a v’ generice
spazi S,_;_1-

Si supponga O contenuto in (non pin di) o complessi lineari di S,
(entro 8,) linearmente indipendenti, con o = 0, e, posto:

1
le(;;:{i:l)——o'——l 5

st abbia :
0<t'<o’'<t’"+ o' —1.

Allora o' — v/ 4 1 spazi generatori di O% , prefissabili in modo generico,
ne individuano altri :
M/=w,"“91+7,” 1

che insieme cov primi costituiscono un gruppo di o’ spazi S, associati di
specie p’ (n. 1), ed anzi in posizione di Schlifli (n. 5) qualora sia :

o/ — '+ 1< (k+1D)(r—k) .

Tutts i gruppi siffatts di S, formano, entro O, un’involuzione razionale
I3 di ordine w’ e di dimensione :

6,2 _r/(el__ T,+ 1) .
costruibile come seque.
In 8,, un generico sistema lineare di complessi lineari di spazi S,_;_,,
avente la dimensione :
(r -+ 1) 1,

k+1

ne contiene o’ speciali (n. 3) e coi rispettivi S,-assi appartenenti a OF :
questi riempiono un gruppo della Iy, . _

Altrimentt, si considerino, in S,, v/ complessi lineari di S,,, linearmente
indipendenti e non passanti per @Y : essi hanno in comune o’ spazi S,
situati in 07, e costituenti un gruppo della Iy .

Osservazione 1*. — Quando, in particolare, @ & la totalitd degli
8 di 8,, I'involuzione I3, diviene quella dei gruppi di 8, associati in S,
secondo B. Segre %).

10) L’irriducibilitd di ogni ente algebrico, che si consideri, dovra in seguito sempre
sottintendersi.
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Osservazione 2°. — Se 7’ = 1, e quindi gli S, del sistema @ sono
gli spazi generatori di una varietd W4, di dimensione £+ 1 e di ordine
o’, V'involuzione 4. ha la dimensione 6’=p’ e corrisponde in S, alla
serie lineare g2, delle sezioni iperpiane di V%', curva immagine di @
sulla grassmanniana V¢ ; onde essa puo6 definirsi su Wi, , come la serie
lineare g2, staccata dai complessi lineari di S,, (entro S,) : cioé descritta dal
gruppo degli w’ S, generatori di W4, appartenenti ad un complesso
lineare variabile (non passante per W¢,,) di spazi 8,.

Osservazione 3*. — Se un sistema algebrico 6% di spazi S,, in S,,
ha per immagine sulla grassmanniana V¥ la completa intersezione della
immagine V3, appartenente ad S, , di 6% con uno spazio S, di S,
(onde 77 — ¢” = 7’ — p’) & ovvio che l'involuzione I, dei gruppi di
w’ S, associati entro @% risulta subordinata dall’analoga involuzione

I entro @,

Osservazione 4*. — Come corollario della Oss. 3* si ha che I’tnvoluzione
I entro O ¢ subordinata dall’involuzione di B. Segre entro la totalita
degli S, di S, (Oss. 1*) quando il sistema OF (con w’' = w) é base per
un sistema lineare oo™~ "~ di complessi lineari di S, in S,.

7. Tenendo presente che lo spazio di appartenenza §, della varieta
“’" (n. 6) ha la dimensione non maggiore di 7’4 @’ — 1, si puo asserire
chese o/ =p ¢&:
o<t + o —1;

e che quando p>1' 4+ w’ — 1 & pure p’<p con:
o—0o' =Zp—17 -0 +1.
Quindi :

Se v’ ¢ v’ sono la dimensione e U'indice (n. 6) di un sistema algebrico @ di
spazi S,, appartenente ad S,, si verifica che, quando @ non é contenuto in
alcun complesso lineare di S, si ha:

f+d>(+j;

k41

mentre O & necessariamente base per un sistema lineare co®-1 di complesss

lineari di S, con :
r+ 1 ; :
c = (k 1) — 17 —w,
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quando :

t’+w’<(7+l) ;

k41

nel qual caso v/ + o’ + 1 spazi S, arbitrart di @ sono sempre associati (di
1% specie almeno : n. 1), ed anzi in posizione dv Schlifli (n. 5) se :

Vo < (k4 1)@ —k) .

In relazione all’argomento di questo n.7 si veggano pil innanzi i
§§ 5 e 6.

8. E noto!!) che ogni complesso di spazi §,, entro 8,, di grado =,
cioé avente » suoi spazi in un generico fascio di S,, si rappresenta sulla
grassmanniana V? d’indici (r, k) mediante la varietd V'4 completa
intersezione di V7’ con una forma d’ordine =.

Dal teorema del n. 6 si deduce allora ’altro :
In ogni complesso di S,, entro S,, di grado n>1, esistono :

oot—D (e—7+2)

gruppt di nw spazi S, associati di specie (n.1):
nw—p+71—2.

Crascuno di tali grupps é individuato da ¢ — t© + 2 qualunque det suot
spazi; e per o — Tt + 2 generici S, del complesso ne passa uno solo.

I gruppi stessi constano di spazi situati in posizione di Schlifli (n. 5)
quando: r=3 e k=1; r=4e k=10 k=2;r=5ek=1o0
k = 3. Ne segue ad esempio che :

Nello spazio a quattro dimensioni un complesso div pians, dv grado n>1,
possiede co®® gruppi di 5n piani tali che le oo! rette incidents a 5 piani qual-
sianst dv ciascun gruppo (e formanti una rigata ellittica del 5° ordine) risul-
tano pure incidents agli altri 5n — 5 (E dualmente).

Ed ancora :

In S5 un complesso di rette, di grado n>1, contiene oo gruppr dv 14n
rette ciascuno, caratterizzats dalla proprieta che i 14 spazi S, appoggiantisi
ad 8 rette qualunque di ogni gruppo incontrano pure le rimanenti 14n — 8
(£ dualmente).

1) P.Severi, loc. cit., n. 6.
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§ 3. Gruppi di S, assoeciati aventi un S, in una data forma fondamentale
e gli altri S, preassegnabili

9. In S, si consideri il sistema @ di tutti gli S, soddisfacenti alla
condizione di Schubert (a,, a,,...,a;), cioé la forma fondamentale
[@0, @y, .., a;] costituita dagli spazi S, di S, situati in un dato S, e
aventi in comune: un punto con un dato S, , una retta con un dato

S, ..., un 8, _; con un dato §,, ; essendo:

a k-1’

0 a<a,<---<ap <7,

e appartenendo sempre lo spazio S, ad §,, .

La dimensione di @ ¢&:

k41
A-—"ao+a1+---+ak—( M );

mentre il suo indice (n. 6), ossia il numero degli S, di @ incidenti cia-
scuno a A generici spazi S,_;_;, ¢ 12):
4!

a'o! al!--.ak! 1:/\",

Sulla grassmanniana V; d’indict (r, k) il sistema @ é rappresentato da
una varieta di dimensione A e di ordine £2: infatti ¢ precisamente £ il
numero dei punti comuni a tale varieta e a A iperpiani indipendenti,
seganti ciascuno V¢ nella varietd immagine di un complesso lineare
speciale di §,,.

10. Dati in S,, genericamente, » spazi 8¢ (1 = 1, 2,..., ) esistono
certo altri 8, completanti ciascuno con essi un gruppo di » -+ 1 spazi
associati di prima specie (n. 1), appena sia p > v>p — 7. Infatti i punti
P, immagini in §, degli 8¢ giacciono in un §,_, che sega allora V¢ in
una varieta Vg se:

v=9p—1+ 0+ 1

(e 0 <o<7): ogni punto della quale, diverso dai P,, rappresenta un
S, con la proprieta suddetta.

Alla V¢ corrisponde in S, un sistema algebrico oo, d’indice w (n. 6),
di spazi §,, e quindi la varietd di punti W, ., luogo degli S, di tale
sistema : la quale invade I’ §, quando ¢ > r — k.

12) H.Schubert, Anzahl-Bestimmung fiir lineare Raume beliebiger Dimen-
sion (Acta mathematica, 8, 1886).
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In ogni caso, supposto ¢>0, sulla W,,, gli eventuali S, generatori
soddisfacenti alla condizione di Schubert (a,,a,,..,a,) riempiono una
varietd W' rappresentata in S, dalla sezione dello spazio S,_; con la V3
immagine (n.9) della forma fondaimnentale [a,,a,,...,a,]; onde, in
generale, la W’ esiste solo se 4 + »>p, ossia 4> 7 — ¢: e consta
allora di un sistema algebrico oco? ~**?, d’indice 2 (n. 9), di spazi §,.

Si puo dunque intanto concludere :

Fissati nello spazio S, ad r dimensioni v generici spazi S (1 = 1,
2,...,v) di dimensione k, con

(r—i—l

r+1
et )

)—(k+ 1)(r—k)<”<(k+1

fra gli S, di S, soddisfacent alla condizione (a,, a,,...,a,) di Schubert
(n. 9), quando sia :

r+1
(k-l- 1)—v<A<(k+1)(r—k) ,
k E+1
e ()
i=0

!
4! II (a; — a;)

ove

ne es1Sono :

incidents a :

A+v——(r+1)

k41

generici spazi S,_,_, e formanti ciascuno cos v Spazi 8¢ un gruppodi v + 1
S, associaty dv 1* specie (n. 1).

11. In 8, si consideri uno spazio subordinato §,,, e in §,, una stella di
centro S;,. L’appartenenza di un 8, di S, a tale stella si esprime con la
condizione di Schubert :

0,1,... =1,k —k+k +1,9 —k+ k' +2,...,7 —1,7);

ed applicando allora il teorema del n. 10 si perviene al risultato che se-
guels) :

13) Ove, per semplicitd di enunciato, si & posto »' =k +1 e k' =k —h.
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Nello spazio S, ad r dimensioni si prefissino genericamente uno spazio

Siir> Un Sy_, entro Sy, e v spazi S (1 =1,2,...,v). Se allora é:
o<h <k<r, o<li<r—k&
e:
r+ 1 r+1
(i)~ =r=<(ii)
esistono :

011! 2!...(h—1)! (B!
NI+ nt...(0+r—-1)"

spazi S, passants per 'S, _,, giacenti nell’S,,, ;, formanti ciascuno un gruppo
di v + 1 spazi associati di 1° specie (n. 1) con gli 8§ e inoltre incidents a :

v+hb—(+l)

k4 1

dati spazi S,_,_, generict di S,, ossia ad altrettanti spazi S,_, generici di
Siepr-

Casi particolari notevoli del teorema sono :
A) Per uno spazio S,_, generico (1 < h < k) di S, passano :

o' 1! 2!'...(h—1)! (hr — hk)!
r—k!'(r—k+1)!...(r—k+h—1)!

x)

spazi 8, costituents ciascuno un gruppo di S, associati div 1* specie (n. 1)

con !
() -re

dati S, generici.

B) In 8, gli oo spazi S, (k <r — 2) passanti per uno spazio S,;_,
generico (1 < h < k) e formant ciascuno un gruppo di S, associati di

1* specie (n. 1) con :
r+1
(k+ l)——h(r——k)—}-l

spazi S, genericamente assegnati, riempiono una varietd (dv dimensione
k+ 1 e)diordine x).
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12. 1l teorema del n. 10, applicato nell’ipotesi che la condizione di
Schubert imposta agli S, di S, sia:

014+ 1,014 2,1+ ),

conduce al seguente :

In 8,, supposto 0<l<r —k e:

(r+1

k+1)—(k+1)l<v<(

r—+ 1

k+1)°
gli S, appartenenti ad un dato spazio S, ,;, e formanti ciascuno un gruppo
dv v+ 1 spazi associatt di 1* specie (n. 1) con v spazi S, gemericamente
assegnati fuori di Sy, ,, costituiscono un sistema algebrico di dimensione :
r41
v+ (k+ 1)1 — (k+ l)

e div vndice (n. 6):

_oIr 2t kN (kL4 0!
S A VAN ) N I A A

In particolare € y il numero degli S, di Sy, , completanti ciascuno un
gruppo di spazi associaty di 1* specie (n. 1) con :

(r+1

k+l)_(k+1)z

dati 8, generici dv S,; ese k <r — 2 ¢ pure y Uordine della varieta (de
dimensione k -+ 1) luogo degli oo' S, di Sj 1 costituenti ciascuno un
gruppo di spazi associaty di 1* specie (n. 1) con :

(r—}—l

k+1)—(k+l)l+1

spazi S, prefissabili in modo generico (fuori di S¢., ).

13. La condizione affinché, in S,, uno spazio S, incontri un dato
spazio S,, in uno spazio S,_; non dato, si esprime col simbolo di Schubert :

m+1i—k, m4+1l—-Lk4+1,....m, r—1+1, r—1-F+2,...,7).
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Se allora si applica il teorema generale del n. 10, si trova che :

Posto :
O=m-+1—k)k—1+1)+1(r—k)

W =24! (r;m) (r——?ln+ 1) (r——m_l;_k._l) (l!)k——l{—l’

fatte inoltre le ipotess :
O<li <k<l+m<r

r+ 1 r-+1
i) o= ()

nello spazio S, ad r dimensiont esistorio :

ol1l2l...@i—1)tel 1l 2l ...(k—1]!

(m-+1—k)! (m-}—l-—k—}—l)!...‘vm! (r—141)! (r—l+2)!...7'!'W

spaz Sy, incidenti in un Sy_; (non dato) ad un dato spazio S,,, appoggian-
st a: . ’
r+1 -

" —

o (k;t; )

N

generict spazi S,_,_,, € formanti ciascuno un gruppo di v + 1 spazi asso-
ciati di 1% specie (n. 1) con v spazi S, genericamente prefissabils.

Come corollari :

«) In S, gli S, incidents (in un punto) ad un dato S,, e formanti ciascuno
un gruppo di S, associati di 1* specie (n.1) con :

r-+1

(Li 1) —k(r—k)—m+ ¢

spazi S, genericamente prescelti, sono in numero di N se ¢ = 0, e riem-
prono una varieta di dimensione k -+ 1 e d’ordine N se ¢ = 1; ove:

N 1020 kY (m+rk — k2) ! (r—m).

ml(r—k+ D1 (r—k+2)!...7! k

B) In 8, gli S, incidenti ad un dato S,, in un S,_, (non dato) e formants
ctascuno un gruppo di S, associati di 1* specie (n. 1) con :
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(21})—-]5(7!&—-]0)——7’—{-—8’

spazi S, genericamente prescelti, sono in numero di N' se ¢’ = 0, e riem-
prono una varieta di dimensione k + 1 e d’ordine N’ se ¢/ =1; ove:

N =

L2k mk— k) (r—m—}—lc——l
ritm—k+ D! (m—k+2)!...m! k )

Notevole ¢ il caso particolare, del teorema g), in cui m = k : allora si ha

semplicemente per N’ il valore (r —I_c 1) .

§ 4. Varieta algebriche costituite da S, a » + 1 a » - 1 associati

14. Riprendendo in considerazione la varieta W, , di cui al n. 10, si
supponga 0<<o<r — k. L’ordine di essa € allora il numero dei suoi S,
incidenti ad un 8,_,_,, cioé appartenenti alla forma fondamentale :

[r—k—0o, r—k+1, r—k+2,..., r—1,1],

e quindi si calcola col teorema del n. 10. Inoltre » 4 1 generici S, di
W .o risultano (n. 2) associati di 1* specie, giaccheé i loro punti immagini
sulla grassmanniana V? giacciono nell’S,_; congiungente i punti P, rap-
presentativi dei » spazi S{’ che individuano (n.10) la varietd stessa.
Questa, come sistema algebrico oo d’indice w (n. 10) dei propri S, gene-
ratori, contiene poi un’involuzione razionale di gruppi di 8, associati in
base al teorema del n. 6.

Osservando infine (cfr. n. 3) che lo spazio §,_, ¢ 'immagine in §, di un
sistema lineare co¥—! di complessi lineari di spazi S,_;_, entro §,, mentre
la sua sezione con V¢ rappresenta la varietd base di un sistema lineare
00 ¥ di complessi lineari di §,, si perviene al teorema seguente :

Nello spazio S, ad r dimensionz, se :

vz(’,;ii)—(k+1)(r_k)+a

con 0<o<r — k, esistono:
r+1y s
oov (k+ 1) v
varieta W, (di dimensione k + o <<r) costituite ctascuna da oo spazi S,
e caralterizzate dalla proprieta di avere gli S, generatori formantia v + 1 a

v + 1 gruppi dv spazi associati : generalmente dv 1* specie (n. 1).
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Per v spazi S (1 = 1, 2,...,v) generici1?) di S, passa una ed una sola
di tali varieta W, ., la quale :

1) Ha Uordine eguale a :

) 12t ..k (kr— k%) ((k+1)(r—~k)~—0' (k—{—o
r—k+0)'@r—k+2)!...0! kr — k2 ) k )

2) E il luogo degli S,-assi di tutti © complessi lineari speciali di spazi
Sr_r_1, entro 8,, contenuti in un sistema algebrico cov—1 di complessi linears
di S,_,_1: quello individuato dai v complessi lineari speciali di S,_,_,
avents per asss gli spazi 8.

3) E il luogo degli S, comuni a tutti + complessi lineari di spazi S,,, entro
S, , passanti per ¢ v spazi S .

Ognuna delle suddette varieta W, contiene un’involuzione razionale di
grupm di S, avente la dimensione o (v — o) e lordine w (n. 1) : subordina-
tavi dalla involuzione dei gruppi di S, associati in S, secondo B.Segre
(n. 6, Oss. 1* e 4%); onde v — o spazi generatori, SOpPra Ciascuna varierd
Wiio, genericamente assegnati, ne individuano altri o — v + o costi-
tuente cot primi un gruppo di o 8, associati (n. 1) di specie w — v + o, @l
quale coincide col gruppo determinato in S, da quegli stesst v — o spazi
entro U'itnvoluzione di B.Segre'®) fra gli S, di S,.

Osservazione 1>. — Avuto riguardo alla notal?) si vede che fra le
Wiros dt cui al teorema precedente, puo annoverarsi la varieta luogo degls
oo’ spazi S, di S, incidenti a :

k+ 1)(r —k)— o0
spazi S,_,_, genericamente dati, quando 0<o<r — k.
Per £k = o =1 si ha in particolare una superficte d’ordine :
2 (2r — 3
r\r—2
14) Qui e in seguito si dice che A spazi S, sono genericiin S, nel senso che i rispettivi A
punti immagini sulla grassmanniana V:’ d’indici (r, k) sono indipendenti, e il loro spazio

congiungente S)-1 non incontra altrove la V:’ se A < p— 1, noé la taglia in varietd di

dimensione superiore & A+ 7—pg—1 se A>9—r7.

15) Si noti che ¥y — o =9 — 7 + 1, e che ogni gruppo di §), associati in S, secondo
B.Segre (n. 6, Oss. 12) & precisamente individuato da ¢ — 7 4+ 1 qualunque dei suoi w
spazi.
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costituita dalle rette di S, appoggiantisi a 2r — 3 generici spazi S,_,; la
quale si riduce in S5 ad una notevole rigata V3* considerata da B. Segre 7).

Osservazione 2*. — Nell'ipotesi £ = 1 il teorema concerne alcune
varieta rigate, di S,, aventr la dimensione o + 1 <r, Uordine :

c+1(2r —o—2
r r—1 ’

e individuate ciascuna da :
r—1
. ( 9 ) + o+ 1
rette generatrici prefissabili in modo generico*).

Se r=4 e o =1 sitratta della rigata ellittica normale V; di §,.

Se r=5 e =1 siritrova la V! di S; studiata da B.Segre 7).

Osservazione 3*. — Nell'ipotesi ¢ =r — k — 1 il teorema carat-
terizza una estesa classe di ipersuperficie, dello spazio S,, costituite da
oo —k-1 S, | tutte dv ordine :

12t kN kr—Rk2+1)! r—1
r—k+1)!'(r—k+2)!...7! ( k )’

e talv che per :
r+1 ‘
(k+l)—k(r—k)~l
S, generici?) di S, ne passa una ed una sola.

A questa classe di ipersuperficie appartiene in particolare (cfr. Oss. 1%)
Vipersuperficie luogo degli S, di S, incidentti a k(r — k) + 1 spazi S,_;_,
generice.

Osservazione 42 — Se . =1 e o =1r — 2 il teorema diviene :

Nello spazio 8,, ad r dimensioni, (;) rette generiche'*) appartengono
sempre ad una ipersuperficie rigata Vi_1 d’ordine r — 1, sulla quale

(;) + 1 generairici qualunque formano un gruppo di rette associate di

1° specie almeno (n. 1) ; mentre (r _2— 1) -+ 1 generatrici generiche ne deter-

minano altre :
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_2_ 2r — 3 r—1 1

r\r—2/) \ 2 -
completanti con le prime un gruppo di rette associate in S, (r>3) secondo
B.Segre (n. 6, Oss. 1%).

In particolare (cfr. Oss. 3*) la VI~1 puo essere 'ipersuperficie luogo delle
rette di S, incidenti ad r generici spazi S,_, : la quale si riduce in S, alla ¥
con 10 punti doppi di C. Segre ®).

16. 1l teorema del n. 14 offre senz’altro la completa risoluzione del
problema seguente :

Determinare in S, le varieta, 1rriducibili e non invadenti 'S, , costituite da
spazi subordinatt div dimensione non inferiore a 1 né superiore @ r — 2, e
caratterizzate dalla proprieta che per ciascuna, W, di esse esista un intero v
tale che v spazi generici di W siano pure generici in S,14), mentre v + 1
spazy generict di W siano associaty di 1* specie (n. 1).

Se k & la dimensione degli spazi generatoridi W,e k 4 o quelladi W,
deve essere (cfr. n. 14):
v=p—717+0+1, O<o<r —k, O<k<r —1;

quindi al variare di £ si ottengono per o (e per ») in tutto :

r—2
Str—k—1)=3Fr—-1) (r—2)
k=1

valori. Pertanto :

—1 . .«
11 problema suddetto ammette (r 9 ) soluzioni omograficamente distinte,

date dalle varieta W, del teorema del n. 14 : fra di esse le varieta di dimen-
stone h (con h =2,3,...,7r — 1) sono in numerodi h — 1.

La sola (a meno di trasformazioni omografiche) superficie rigata solu-
zione del problema ha per immagine sulla grassmanniana delle rette di S,
una generica sezione curvilinea di questa (cfr. n. 14) : onde il suo genere si
desume da un teorema del Severi ).

Si trova cosi, ad esempio, che :

In 8, il problema ha per unica soluzione un regolo V} (v = 3).

18) F.Severi, loc. cit., n. 17.
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In 8, si hanno come soluzioni : la rigata ellittica normale V3 (v = 5);
Uipersuperficie cubica rigata V3 (v = 6), con 10 punts doppt, di C.Segre ¢) ;
ela Vi (v = 5), luogo di piani, duale della V3.

In S; le sei soluzions sono : tre varieta rigate, cioé la V' (v = 8), avente il
genere 8, di B.Segre?), una V; (v = 9) ed una V; (v = 10); due varieta,
una V3* (v = 12) e una Vi (v = 13), di piani ; e la V' (v = 8), luogo di
spazi S,, duale della V3*.

In 8 le dieci soluziont sono : quattro varieta rigate, ossia una Vi: (v = 12)
di genere 43, una V¥(v = 13), una V}' (v = 14) ed una Vi(v = 15); tre
variets, una V3% (v = 24), una V¥? (v = 25) ¢ una V3 (v = 26), di
piani ; due varieta, la Vi® (v = 24) duale della V3% e una VZ*° (v = 25), di
spazi S, ; ed infine la V2 (v = 12), luogo di spazi S,, duale della V3:.

§ 5. Genere sezionale di un sistema algebrico di spazi S,

16. Sia @' un sistema algebrico oo di spazi §,, appartenente ad S,
e d’indice @’ (n. 6) : cosicché esistano w’ suoi S, generatori incidenti a 7’
generici spazi S,_;_,.

Se 7/ =1 (e k<r — 1) si tratta di una varieta d’ordine ', luogo di
ool spazi S,,.

Se /> 2, un generico sistema lineare 0o =" ™1 di complessi lineari di
S,_x—1,entro 8., ne contiene oo! speciali coi rispettivi assi S, appartenenti
al sistema O, e ivi formanti una varietd W¢,, di ordine o’ : abbia essa,
quale serie semplicemente infinita di S,, il genere x.

La W, , si puo anche definire come il luogo degli co! S, comuni al
sistema @ e a 7' — 1 complessi lineari di S, genericamente assegnati
in S, .

Sulla grassmanniana V¢ d’indici (r, k) il sistema @% ¢& rappresentato
da una varietd V%’ di ordine w’ e la W{., da una generica sezione curvi-
linea V5" di V¥ : avente lo stesso genere x che in S, ha la W¢,,.

Estendendo una denominazione di C.Segre e G. Fano'?) si dira che x & il
genere sezionale sia del sistema algebrico @% di spazi S, che della sua
varietd immagine V¢ sulla grassmanniana V.

17. Fral’indice w’ e il genere sezionale 7 (n. 16) del sistema, algebrico @2’
(con z’/>1) di spazi S, si supponga intercedere la relazione w’>2x — 2.

Se allora & un 8., lo spazio di appartenenza della varieta V{ immagine di

17) @.Fano, Nuove ricerche sulle congruenze di rette del 3% ordine prive di
linea singolare [Memorie dell’Accademia delle Scienze di Torino, 51 (2), 1902], n. 2.
Cfr. pure: A.Longhi, Sulla intersezione di due o pit1 varieta algebriche (Commen-
tarii math. Helvetici, 18, 1945—486).
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’ . . . aqe ’ . .
©;, sulla grassmanniana V7', la generica sezione curvilinea V3 , di ordine
o’ e genere x, della V< appa,rtéem,a adun S,,_.., ,; e siccome per I'ipotesi

- . - 14 . . LY
w’>2nx — 2 la serie lineare g¢,~*'*! segata su V" dagli iperpiani & certo
non speciale, dev’essere :

o/ — 1+ 1< —n
ossia :
A ; /
g =17 4+ —m—p

con u>1; ese v=1"4+ w' —xn+ 1, risulta:
ol =v—p—1;

onde si conclude (n.2) che v spazi S, generici di @“ sono associati di
specie u (n. 1) appena sia o’ <p.

Se invece si suppone o/ — ' +1>0’ — 7 (6 0w’ < 2x — 2), la serie
g%~ " *1 delle sezioni iperpiane di V¢ & speciale, e si ha quindi :

ol — T+ 1< —1.

D’altra parte, se @' non ¢ contenuto in alcun complesso lineare di S,
(ossia la varietd V% non giace in nessun iperpiano di S,) & ¢’ = ¢ ; mentre
per @ passano ¢ = ¢ — p’, e non pil, complessi lineari di S, linear-
mente indipendenti, allorché o’ <p.

Dopo cio, da quanto precede si traggono subito 1 risultati seguenti :

Sia %' un sistema algebrico oo di spazi S,, appartenente ad S,, con la
dimensione t'>1, di indice o’ (n.86) e di genere sezionale n (n. 16):
cosicché, se k<r — 1, sono pure o’ e m Uordine e il genere della varietd
luogo degli oot spazi S, di O incidenti a v’ — 1 generici spazi S,_j_,.

Indicht poi o il massimo numero, positivo o nullo, di complesss linear: di
S, entro S,, linearmente indipendents e contenenti ciascuno tutti glv S, del
ststema O .

St ha allora che :
A) Se w'>2x — 2 vale la limitazione :

r+1
e+ )

B) Quando ¢>0 e w'>2x — 2 il sistema O ha la proprieta che :

a+t’—l—w’—~n>(

A A R |
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suot spazi S, generict sono sempre associati di specie (n.1):

, r+41
g+ 1 4+ w ~—7z+1—(k+1) ,

ed anzi in posizione di Schlifly (n. 5) se :

02(21;)—(k+1) (r—k) .

C) Verificandosi la relazione :
r+1
[ |

il sistema OF risulta mecessariamente contenuto in complessi linear: di
spazt Sy, formanti un sistema lineare di dimensione non inferiore a :

r+ 1
(ks

2:7z——2<w’<( )——T’-}-n,

)—~r’—~w’+n—~1 ;

inoltre v/ + o’ — m + 1 spazi generatori S, arbitrari di O% sono sempre
fra loro associati di 1% specie almeno (n. 1), ed anzi in posizione di Schlifli
(n. 5) se:

'+ o —a<E+ 1)k .

D) Supposta soddisfatta la diseqguaglianza :

y . r+1
c+ 1+ w ——n<(k+1) )

deve pure esserlo Ualtra :

r+1
o7 (1)

§ 6. Sulle varieta algebriche luoghi di oo' spazi S,

18. Una varieta W%_,, di dimensione k£ - 1, di ordine » e apparte-
nente ad §,, sia costituita da un sistema ool di spazi S, (0<k<r — 1):
ed abbia, come luogo di S,, il genere p.

Sulla grassmanniana V'’ d’indici (r, k) la W7, si rappresenta con una
curva C? di ordine n e genere p.

Gli iperpiani dello spazio ambiente S, della V7’ segano sopra C% una
certa serie lineare g%, di dimensione 4 e di ordine », di gruppi di punti;
alla quale corrisponde su W}, la serie lineare g, di gruppi di S, stac-
cata dai complessi lineari di S, entro S, (n. 6, Oss. 2%).
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In generale la dimensione 4 della g’ & uguale a ¢ (n. 1) ; ma pud essere
A<<p: il che si verifica quando per la C? passano ¢ — A= ¢ iperpiani
S, indipendenti, ossia quando la C}, appartiene ad un S, subordinato di
S,. Allora la Wy, ¢ contenuta in complessi lineari di S, costituenti in
S, un sistema lineare co” !,

Sulla C%, e quindi anche sulla W7 ,, si puo considerare la serie canonica
9,575 (effettiva solo se p>1): cioé l'unica serie lineare avente la
dimensione p — 1 e l'ordine 2p — 2.

Se per un gruppo generico G, della serie g, passano j(> 0) gruppi
canonici indipendenti, ma non j + 1, per il teorema di Riemann- Roch &
n — p + j la dimensione della serie completa |@, |; e quindi si puo
scrivere :

A<n—p+7j,
ossia :
A=n—p+j—p+1

con u > 1. Posto allora:

v=n—p+j+2,
risulta :
A=v—p—1,

e ne deriva (n. 2) che » spazi S, generici di W%, sono associati di specie
@ (n. 1) quando A<p: cio che anzi si verifica per » S, generatori arbitrar:
di Wi,, se j 4+ 2>p (altrimenti esisterebbero iperpiani di §, incon-
tranti C? in piu di » punti).

Si puo aggiungere che nell’ipotesi 4 =n — p 4+ j la curva C? riesce
normale, essendo completa la serie delle sue sezioni iperpiane.

Notando poi che é sicuramente j = 0 se n>2p — 2 oppure A>p—1,
mentre ¢ j>0 (equindi 2 < p — 1) se A>n — p, siperviene alle con-
clusioni seguenti :

Sia W3, una varieta di dimensione k -+ 1 e d’ordine n, appartenente ad
S,, luogo div oo spazi S; (con 0<k<r — 1) e, come tale, di genere p.

St chiams ¢ 1l massimo numero, positivo o nullo, di complesst linear: di S,,,
entro S, , lincarmente indipendentt e passanti ciascuno per la Wy, .

Sull’ente (co! e di genere p) costitusto dagls S, generatori dv W, st consi-
deri la serie canonica g,%~; , e si supponga che per gli n spazi S, di W4,
giacenti in un generico complesso lineare dv S, entro S, passino j (= 0)

gruppi indipendenti della g,2~5: ma non j + 1.
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Allora :
o) Vale la limitazione :

n~p+7‘+a+1>("+l) ,

k+1

ove Ueguaglianza caratterizza il caso in cut la serie lineare (d’ordine n) di
grupps di S, generators staccata (n. 6, Oss. 2*) sulla varieta W, dai com-
plessy lineari dv 8, entro S,, é completa con Uindice di specialita §18).

f) Quando >0 si ha che:
n—p-+j+ 2

spazy S, generici della varieta W3 ., o addirittura arbitrari se p <<j + 2
(sn particolare se la Wi, € razionale o ellittica), sono sempre associaty di
specie (n. 1):

r -+ 1)

ed anzi wn posizione dv Schlifli (n. 5) se:

a>(Zii)~—-(k+1)(r-k) .

y) Verificandost la diseguaglianza :

. 1
n—pt+i+1<(; 1)

la varieta Wy, risulta necessariamente contenuta in complessi linear: di
spazi 8, formanti un sistema lineare di dimensione non inferiore a :

r+1 .
inollre n — p + j + 2 spaz generatory S, arbitrary dv W3, sono sempre
fra loro associats di 1% specie almeno (n. 1), ed anzi vn posizione di Schlifli
(n. 5) se:
n—p+j+1<(k+1)(r—Fk).

18) Tale circostanza equivale all’altra che I'immagine di W;’ +1 sulla grassmanniana

d’indici (r, k) & una curva normale C‘ﬁ di uno spazio ad n — p + § dimensioni.
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d) Supposta soddisfatia la relazione :

1<("”‘Ll

deve pure esserlo Ualtra :
r + l)

p+o>(k+l

€) Se n>2p — 2 oppure:

p+a<(r+l),

k+1
nelle proposizioni x), f8), v) é da porre j = 0.

19. Se n>2p — 2, la sezione della varietd W, , (n. 18) con un gene-
rico spazio S,_; € una curva, d’ordine = e di genere p, avente per spazio
normale un S,_,. Pertanto € r — k <n — p; ossia lo spazio piu ele-
vato a cui puo appartenere la Wi ,, nell'ipotesi n>2p — 2, bha la
dimensione n — p + k.

Si supponga appunto r = n — p + k, oltre che n>2p — 2.

I1 carattere j (n.18) della varietd W73 _, & allora nullo (n. 18, ¢); e
inoltre la curva C% immagine della W%, sulla grassmanniana V" é nor-
male, ossia appartiene ad un §,_,. Infatti se O% esistesse in un S:_p_l,
cioé in un 8} ;_,, ogni iperpiano di S, per r —k punti generici di C?
conterrebbe la C? stessa ; e quindi ogni complesso lineare di S;,, entro §,,
passante per r — k generici spazi generatori di W7, dovrebbe passare
per tutti: donde seguirebbe in particolare (supponendo speciale un tale
complesso) che lo spazio S,_,_, congiungente r — k punti generici della
varietd W73, , la incontrerebbe in infiniti altri: mentre non pud incon-
trarla che in p ulteriori punti.

Ne risulta (n. 18, x) che W}_, appartiene alla base di un sistema lineare
00?1 di complessi lineari di §,, con ¢ definito dall’eguaglianza :

n——p—}—k—}-l) .

n—p+o+l:( k1

e deducendosi :

r+1 r-+1
G:(Ic—i— 1)—~r—+—k——l>(k+1)-(15—{—1)(7"——/0) ,

st puo concludere (n. 18, 8, ¢):
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Ogni varieta irriducibile luogo di ool spazi 8,, di genere p, di ordine
n>2p — 2 e appartenente ad uno spazio S,_,.., ha la proprieta che
n —p + 2 suot S, generatory arbitrart sono sempre vn posizione dv Schlifli
(n. 5).

Se p>0 vale anzi per la varietda W7, in discorso una proprieta an-
cora piu particolare : gid nota nel caso k = 1. Infatti, un teorema di
C.Segre assicura che la rigata, di cui trattasi quando £ = 1, é un cono).
Segando allora la W%, con un generico S8 ., si ottiene una rigata di
genere p>0 e appartenente ad uno spazio di dimensione » — p 4+ 1,
cioé, in base al teorema suddetto, una superficie conica : per il vertice SV
della quale passano quindi tutti gli S, generatori di Wj_,.

Tagliando ora la W3, con un 8 ., non contenente il punto S§" si ha
un secondo cono, di vertice S : e tutti gli §; di W}, , passano per la
retta SV 8.

Si intersechi di nuovo la W%, con un 8%, sghembo rispetto a tale
retta : il vertice 8§ del cono cosi risultante, e percio anche il piano che le
congiunge con S{V e SP, giace in tutti gli 8, di W%, ,. Cosi proseguendo si
perviene alla conclusione che gli S, generatori di W7, passano tutti per

un medesimo §,,_,. Dunque :

Una varieta vrriducibile luogo di oo! spazi S, di genere p>0 e di ordine
n>2p — 2, la quale appartenga ad uno spazio 8,_,.,, € sempre un
S,._1-cono.

Se invece p = 0, il teorema prima dimostrato si riferisce alle varieta
razionali normali S,- V%% luoghi di oo 8, dello spazio S, ; e puo anche
enunciarsi :

Sopra una varieta razionale normale dello spazio S,, costituita da ool
spazt S, (e quindy dv ordine r — k), r — k + 2 spazi generatori arbitrar:
sono sempre tn posizione dv Schlifls : cost che ogni S,_,_; tncidente ad
r — k 4+ 1 qualunque di esst incontra pure il rimanente.

20. Vale la pena, terminando, di applicare esplicitamente le propo-
sizioni generali che precedono al caso particolare (k = 1) delle superficie
rigate algebriche 29). Si ottengono cosi, fra altri, i seguenti risultati.

19) O.Segre, Recherches générales sur les courbes et les surfaces reglées al-
gébriques (Math. Annalen, 34, 1889), n. 14.

20) In una nota al n. 3 del lavoro dianzi citato, C.Segre avverte che la considerazione
delle rigate di S; come curve dello spazio di dimensione ?}—d(d + 1) — 1 puo dare dei
risultati utili e interessanti, gia per d = 3.
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I

Se una rigata di genere p e ordine n>2p — 2, appartenente allo spazio
8., non é contenuta in alcun complesso lineare di rette, si ha necessaria-
mente :

n—p>=kr—1)(r+2) .

11

Quando per una rigata di genere p e ordine n>2p — 2, appartenente ad
S,, passano ¢ + 1 (con ¢ = 0) complessi lineart di rette linearmente
imndipendents, deve essere :

n—p>3(r—2)(r+3)—¢ ;
e n— p+ 2 reite generiche della rigata sono sempre assoctate dv specie

(n.1):
n—p+e—}or—2)(+3),

/

anzt in posizione div Schlifli (n. 5) se ¢ > (T —2— 1) .

111

Se per una rigata di ordine n e genere p, appartenente ad S,, si verifica
che :

p—1<n—p<$@r—1)(r+2),
essa risulta contenuta in almeno :

Fr—1)(r+2)—n+p

complesst linears di rette linearmente tndipendenti ; e n — p + 2 sue gene-
ratrict arbitrarie sono sempre fra loro associate (di 1° specie almeno : n. 1),
anzi tn posizione di Schlifli (n. 5) quando n — p<2r — 2.

1v

Se una rigata di ordine n e genere p, appartenente ad S,, non sta n
nessun complesso lineare di rette, ed é

n—p<hlr— 1) +2),

p>(r4}2—l)

deve pure essere :
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Se una rigata di ordine n e genere p, appartenente ad 8S,, sta in ¢ + 1
(con € = 0) complessi lineari drv rette linearmente indipendentr, ed é :

n——pgé(r-2)(r+3)——s ’
deve pure essere :
p=dr—(r+2)—e .

V1
Nello spazio S, ad r dimensioni ogni rigata razionale normale (0ssia dz

T
. \ . . . -1 . . . -
ordine r— 1) é base dv un sistema lineare oo(z) dv complessi linears di

retre.
VII
Ogni rigata razionale normale di S, ha le sue generatrici ad r + 1 ad
r + 1 assoctate secondo Schlifls : cost che glv S,_, incontranty r qualunque
fra r + 1 generatrici arbitrarie della rigata debbono ciascuno incontrare
anche la rimanente.

(Regu le premier septembre 1946.)
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