Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 19 (1946-1947)

Artikel: Sulla geometria degli Sk di un Sr.

Autor: Longhi, Ambrogio

DOI: https://doi.org/10.5169/seals-17350

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sulla geometria degli S_k di un S_r

Di Ambrogio Longhi, a Lugano

Nello spazio S_r , ad r dimensioni, r+1 rette sono associate secondo $Schläfli^1$) quando ogni S_{r-2} appoggiato ad r qualunque di esse lo è pure alla restante; e, dualmente, r+1 spazi S_{r-2} sono associati se le rette che ne incontrano r risultano incidenti anche all'ultimo: per r=4 si tratta delle quintuple di piani associati di S_4 considerate da $C.Segre^2$).

Una nozione di spazi S_k associati di S_r , con $r \geqslant 4$ e 0 < k < r-1, fu posta da $B.Segre^3$) definendo come tali gli S_k -assi degli ω complessi lineari speciali esistenti in un generico sistema lineare $\infty^{\varrho-\tau}$ di complessi lineari di spazi S_{r-k-1} dell' S_r : ove ω è l'ordine della varietà V_{τ}^{ω} grassmanniana d'indici (r, k) rappresentatrice 4) della totalità degli S_k di S_r , τ è la sua dimensione e ϱ quella del suo spazio di appartenenza.

Questa nozione si riduce a quella di C.Segre per k=2 ed r=4, ma non include affatto quella di Schläfli per k=1 ed r qualunque, nè la sua duale per k=r-2 e $r\neq 4$.

Nel presente lavoro si pone (§1) una semplice nozione di spazi associati più comprensiva di quella di B.Segre, e che conduce pure immediatamente, in infiniti casi particolari, alla considerazione di gruppi di spazi S_k in posizione di Schläfli entro S_r : cioè tali che ogni S_{r-k-1} incidente ad alcuni degli S_k di un gruppo lo è di conseguenza a tutti gli altri.

Dopo ciò, in un sistema algebrico Σ , comunque esteso, di spazi S_k subordinati di S_r , si definisce (§ 2) una involuzione razionale di gruppi di S_k associati: che si riduce a quella introdotta da $B.Segre^5$) quando Σ è la totalità degli S_k di S_r .

Supponendo, in particolare, Σ costituito dagli S_k di S_r soddisfacenti ad una data condizione di Schubert (a_0, a_1, \ldots, a_k) , si studiano (§ 3) i gruppi di S_k associati in S_r aventi ciascuno un S_k appartenente alla forma fondamentale $[a_0, a_1, \ldots, a_k]$ e gli altri prefissabili in modo generico.

¹⁾ Cfr.: L. Schläfli, Erweiterung des Satzes, daß zwei polare Dreiecke perspektivisch liegen, auf eine beliebige Zahl von Dimensionen (Journal für Mathematik, 65, 1866).

²) C. Segre, Alcune considerazioni elementari sull'incidenza di rette e piani nello spazio a quattro dimensioni (Rendiconti del Circolo Matematico di Palermo, t. 2, 1888).

³) B. Segre, Sui gruppi di S_k associati di un S_r (Rendiconto delle Sessioni dell'Accademia delle Scienze dell'Istituto di Bologna, 1933—34).

⁴⁾ F. Severi, Sulla varietà che rappresenta gli spazi subordinati, di data dimensione, immersi in uno spazio lineare [Annali di Matematica, 24 (3), 1915].

⁵) B. Segre, loc. cit., n. 2.

Sono oggetto del § 4 certe varietà algebriche luoghi di S_k e caratterizzate dalla proprietà di avere gli spazi generatori formanti a $\nu+1$ a $\nu+1$ gruppi di S_k associati; a tale classe di varietà appartengono: in S_4 , oltre alla rigata V_2^5 ellittica normale, l'ipersuperficie V_3^3 con 10 punti doppi di C.Segre 6), e in S_5 una notevole superficie V_2^{14} di B.Segre 7).

La considerazione del genere sezionale (§ 5) di un sistema algebrico di almeno ∞^2 spazi S_k permette di stabilire varie proposizioni generali : le quali si precisano maggiormente (§ 6) nel caso di un sistema ∞^1 e offrono risultati interessanti già nell'ambito delle sole superficie rigate.

Così, ad esempio, si riconosce come le proprietà elementari che tre rette di un fascio, e quattro qualunque di un regolo dello spazio ordinario, sono sempre associate, rientrano (per r=2 ed r=3) in quella ben più rimarchevole (n. 20, VII) che ogni rigata razionale normale di S_r ha le sue generatrici ad r+1 ad r+1 associate (secondo Schläfli): il qual teorema si generalizza a sua volta nell'altro (n. 20, III) che n-p+2 generatrici arbitrarie di una rigata di ordine n e genere p dello spazio S_r , quando:

$$p-1\leq n-p<2r-2,$$

sono in posizione di *Schläfli*; come pure nell'altro (n. 19) che in tale posizione risultano sempre anche r-k+2 spazi generatori qualsiansi di ogni varietà razionale normale luogo di $\infty^1 S_k$ e appartenente ad S_r .

§ 1. I gruppi di ν spazi S_k associati di specie μ in S_r

1. Come è ben noto 4) i già accennati caratteri ϱ , τ , ω della grassmanniana V_{τ}^{ω} d'indici (r, k) che in S_{ϱ} rappresenta la totalità degli S_{k} di S_{r} , si esprimono in funzione di r e k con le formole :

$$\varrho = {r+1 \choose k+1}-1$$
 , $au = (k+1)(r-k)$

e:

$$\omega = \frac{1 ! 2! \ldots k! \tau!}{(r-k)! (r-k+1)! \ldots r!},$$

il cui richiamo verrà generalmente sottaciuto in tutto il seguito.

Ciò premesso, siano $\pi_1, \pi_2, \ldots, \pi_{\nu}$, nello spazio S_r ad r dimensioni, ν

⁶) C. Segre, Sulla varietà cubica con dieci punti doppi (Atti dell'Accademia delle Scienze di Torino, 22, 1887).

⁷⁾ B. Segre, loc. cit., n. 4.

spazi S_k rappresentati in S_ϱ , sulla grassmanniana V_τ^ω , da altrettanti punti P_1, P_2, \ldots, P_ν . Supposti questi non indipendenti e tutti contenuti in almeno un iperpiano, lo spazio che li congiunge sarà un $S_{\nu-\mu-1}$ con:

$$0 < \mu < \nu - 1$$

se $v \leq \varrho + 1$, e:

$$v - \varrho \leqslant \mu < v - 1$$

se $v > \varrho + 1$; cioè, in ogni caso, con:

$$\mu < \nu - 1$$
 , $\mu > 0$, $\mu \geqslant \nu - \varrho$.

Fra i ν punti P_i se ne possono allora considerare $\nu-\mu$ indipendenti : così che ogni iperpiano di S_ϱ che li contiene passa anche per gli altri μ ; mentre lo stesso non accade mai di ogni iperpiano condotto per $\nu-\mu-1$ soltanto dei punti P_i .

Ciò posto, gli spazi π_i , corrispondenti in S_r ai punti P_i , si diranno costituire un gruppo di ν spazi S_k associati di specie μ .

Siccome le sezioni iperpiane di V_i^{ω} rappresentano i complessi lineari di S_k entro S_r , si può dare, senza uscire dall' S_r , la seguente definizione :

In S_r , r spazi S_k si dicono associati di specie μ (o di μ -esima specie), con:

$$\mu < v-1$$
 , $\mu \geqslant 1$, $\mu > v- {r+1 \choose k+1}$,

quando ogni complesso lineare di S_k contenente certi 8) $v - \mu$, e non meno, di essi, contiene di conseguenza i μ spazi residui.

2. Risulta senz'altro da quanto precede (n. 1) che:

Affinchè v spazi S_k di S_r siano associati di specie μ (n. 1) è necessario e sufficiente che i loro punti immagini sulla grassmanniana d'indici (r, k) appartengano ad uno spazio $S_{\nu-\mu-1}$ (almeno ν -secante rispetto ad essa, quando non sia addirittura ∞ -secante o non vi giaccia per intero) con $\mu>0$ e:

$$0 < \nu - \mu - 1 < {r+1 \choose k+1} - 1$$
.

⁸) Od anche qualsiansi: quando i v spazi presentano a $v - \mu$ a $v - \mu$ le stesse particolarità di mutua posizione (cosicchè i loro punti immagini sulla grassmanniana siano a $v - \mu$ a $v - \mu$ indipendenti); nel qual caso il gruppo dei v spazi associati si dirà generico.

Così, ad esempio, $v \geqslant 3$ spazi S_k di un fascio, cioè passanti per un S_{k-1} e giacenti in un S_{k+1} , sono associati di specie v-2; mentre sono associati di 2^a specie 6 S_k di S_r , con $r \geqslant 3$, appartenenti tre ad uno e tre all'altro di due generici fasci di S_k ; e risultano associate di specie n-3, nello spazio ordinario, $n \geqslant 4$ generatrici qualunque di un regolo.

3. La corrispondenza biunivoca fra i punti della grassmanniana V_{τ}^{ω} e gli S_k di S_r si può ritenere subordinata 9) da una corrispondenza proiettiva Γ fra i punti del suo spazio ambiente S_{ϱ} e i complessi lineari di spazi S_{r-k-1} entro S_r . Quando un punto P di S_{ϱ} appartiene a V_{τ}^{ω} , e solo in tal caso, il complesso omologo di P in Γ riesce speciale; cioè ha tutti i suoi S_{r-k-1} incidenti ad un medesimo spazio S_k -asse: di cui P è allora l'immagine su V_{τ}^{ω} .

La Γ trasforma pertanto ogni spazio S_{ε} di S_{ϱ} in un sistema lineare ∞^{ε} di complessi lineari di S_{r-k-1} entro S_r ; e gli eventuali complessi speciali di questo sistema corrispondono ai punti che S_{ε} può avere in comune con V_{τ}^{ω} .

Si conclude quindi (n. 2):

Se in un sistema lineare ∞^{ε} $(1 \leq \varepsilon < \varrho)$ di complessi lineari di S_{r-k-1} , entro S_r , esistono più di $\varepsilon + 1$ complessi speciali, e se ne considerano $v \geqslant \varepsilon + 2$, di cui $\varepsilon + 1$ linearmente indipendenti, i loro $v S_k$ -assi sono associati (n. 1) di specie $v - \varepsilon - 1$.

Poichè, se $\varepsilon \geqslant \varrho - \tau$, un S_{ε} di S_{ϱ} interseca certo la V_{τ}^{ω} in una varietà $V_{\tau+\varepsilon-\varrho}^{\omega}$, e l'ordine ω di questa è il numero dei punti che essa ha in comune con $\tau + \varepsilon - \varrho$ iperpiani indipendenti, si può enunciare:

Un generico sistema lineare $\infty^{\varrho-\tau+\sigma}$, con $0 \leq \sigma < \tau$, di complessi lineari di spazi S_{r-k-1} , entro S_r , ne contiene ∞^{σ} speciali : e precisamente ω se $\sigma=0$. I loro S_k -assi, la cui totalità, se $\sigma>0$, ne include sempre ω incidenti a σ spazi S_{r-k-1} genericamente prefissabili, sono tali che ν generici di essi, quando :

$$v \geqslant \varrho - \tau + \sigma + 2$$
 ,

risultano associati (n. 1) di specie $v - \varrho + \tau - \sigma - 1$.

In particolare: se $v = \omega$, $\sigma = 0$ ed $r \geqslant 4$ si hanno i gruppi di ωS_k associati, di S_r , definiti da $B.Segre^3$).

⁹⁾ Cfr. B. Segre, loc. cit., n. 1.

4. Dalla definizione di gruppi di S_k associati (n. 1), e da quella di complesso lineare speciale di S_k (cfr. n. 3), si desume:

Se ν spazi S_k di S_r sono associati di specie μ (n. 1), tutti gli eventuali spazi S_{r-k-1} incidenti a certi 8) $\nu - \mu$ di essi incontrano pure ciascuno dei μ spazi restanti.

In particolare, per k = 1, $\nu = r + 1$ e $\mu = 1$ si ha che in S_r un generico *) gruppo di r + 1 rette associate di 1* specie (n. 1) è tale che ogni spazio S_{r-2} appoggiantesi ad r qualunque di esse deve appoggiarsi alla rimanente: onde le r + 1 rette sono anche associate nel senso di Schläfli.

5. Si convenga di dire che più spazi S_k di S_r sono in posizione di Schläfli quando ogni spazio S_{r-k-1} incidente ad alcuni, in numero ben determinato ed eventualmente da scegliersi in modo speciale, si appoggia di conseguenza anche agli altri.

Allora, siccome esistono degli S_{r-k-1} incidenti a λ spazi S_k appena sia $\lambda \leqslant \tau$, dal teorema del n. 4 si trae il seguente:

Se, in S_r , per un gruppo di v spazi S_k associati di specie μ (n. 1) si verifica che :

$$\nu - \mu \leq (k+1)(r-k) ,$$

gli spazi del gruppo sono in posizione di Schläfli: e più precisamente ogni spazio S_{r-k-1} incontrante certi 8) $v-\mu$ di essi incontra pure i μ spazi residui.

Ne risulta, come corollario, che, in S_r , ν spazi S_k associati qualunque sono sempre in posizione di Schläfli quando:

$$v \leq (k+1)(r-k)+1$$
 ;

onde esiste allora un intero $\mu \geqslant 1$ (la specie del loro gruppo : n. 1) tale che ogni S_{r-k-1} incidente a certi *) $\nu - \mu$ di essi, lo è necessariamente a tutti ; e se μ non si conosce, supposto generico *) il gruppo dei ν S_k associati, si potrà ugualmente asserire che gli S_{r-k-1} , i quali ne incontrano $\nu - 1$ qualunque, debbono pure incontrare il restante.

Non è forse superfluo avvertire che, nell'ipotesi k=1, riescono così definiti anche particolari gruppi di S_1 in posizione di *Schläfli* diversi dalle ordinarie (r+1)-uple di rette associate in S_r : ad esempio, nello spazio a tre dimensioni sono in posizione di *Schläfli* non solo quattro rette iperboloidiche, ma pure cinque o più rette generiche di una congruenza lineare.

\S 2. Involuzione razionale di gruppi di S_k associati entro un sistema algebrico di spazi S_k

6. Nello spazio S_r si consideri un sistema algebrico irriducibile di spazi subordinati S_k . Se $\tau' > 0$ ne è la dimensione, esiste in generale un numero finito ω' di S_k generatori incidenti a τ' generici spazi S_{r-k-1} : esso può dirsi l'indice del sistema, il quale si denoterà con $\Theta_{\tau'}^{\omega'}$.

Quando $\tau' = 1$ (e k < r - 1) l'indice ω' è pure l'ordine della varietà luogo degli S_k di $\Theta_1^{\omega'}$.

Sulla grassmanniana V_{τ}^{ω} la varietà di dimensione τ' che corrisponde a $\Theta_{\tau'}^{\omega'}$ è una $V_{\tau'}^{\omega'}$ di ordine ω' : dovendo avere ω' punti in comune coi τ' iperpiani (linearmente indipendenti) seganti su V_{τ}^{ω} le varietà immagini di τ' generici complessi lineari speciali di S_k .

In generale lo spazio di appartenenza della $V_{\tau'}^{\omega'}$ è quello stesso, S_{ϱ} , di V_{τ}^{ω} ; ma si riduce ad un $S_{\varrho'}$, di dimensione $\varrho' < \varrho$ quando per $V_{\tau'}^{\omega'}$ passano $\varrho - \varrho'$ iperpiani $S_{\varrho-1}$ indipendenti: ossia quando $\Theta_{\tau'}^{\omega'}$ è base per un sistema lineare $\infty^{\varrho-\varrho'-1}$ di complessi lineari di S_k entro S_r .

Detto in ogni caso $S_{\varrho'}$ lo spazio a cui appartiene la $V_{\iota'}^{\omega'}$, onde $\varrho' \leq \varrho$, uno spazio variabile $S_{\varrho'-\iota'}$ subordinato di $S_{\varrho'}$ (ovvero un $S_{\varrho-\iota'}$ di S_{ϱ}) ha generalmente su $V_{\iota'}^{\omega'}$ un gruppo di ω' punti descrivente una involuzione razionale di dimensione $\tau'(\varrho'-\tau'+1)$. In corrispondenza si avrà allora su $\Theta_{\iota'}^{\omega'}$ una involuzione di gruppi di ω' spazi S_k ; i quali risulteranno, in ogni gruppo, associati di specie:

$$\omega' - (\varrho' - \tau' + 1)$$

appena sia (n. 2) $\omega' - \varrho' + \tau' - 1 > 0$ e:

$$0\!<\!arrho'- au'\!<\!inom{r+1}{k+1}-1$$
 ,

cioè (con $\tau' > 0$) si abbia insieme $\tau' < \varrho'$ e :

$$\omega' > \varrho' - \tau' + 1$$
.

Si può aggiungere (n. 5) che gli spazi associati suddetti sono addirittura in posizione di *Schläfli* quando:

$$\varrho'-\tau'+1\leqslant (k+1)(r-k),$$

ammesso che $\Theta_{\tau'}^{\omega'}$ appartenga ad S_{τ} .

In conclusione:

Sia $\Theta_{\iota'}^{\omega'}$ un sistema algebrico $\infty^{\tau'}$ di spazi S_k , irriducibile 10), appartenenti ad S_r e di indice ω' : cioè avente ω' dei suoi S_k appoggiantisi a τ' generice spazi S_{r-k-1} .

Si supponga $\Theta_{\tau'}^{\omega'}$ contenuto in (non più di) σ complessi lineari di S_k (entro S_r) linearmente indipendenti, con $\sigma \geqslant 0$, e, posto:

$$arrho' = inom{r+1}{k+1} - \sigma - 1$$
 ,

si abbia:

$$0 < \tau' < \varrho' < \tau' + \omega' - 1$$
.

Allora $\varrho' - \tau' + 1$ spazi generatori di $\Theta_{\tau'}^{\omega'}$, prefissabili in modo generico, ne individuano altri :

$$\mu' = \omega' - \varrho' + \tau' - 1$$

che insieme coi primi costituiscono un gruppo di ω' spazi S_k associati di specie μ' (n. 1), ed anzi in posizione di Schläfli (n. 5) qualora sia:

$$\varrho' - \tau' + 1 \le (k+1)(r-k)$$
.

Tutti i gruppi siffatti di S_k formano, entro $\Theta_{\tau}^{\omega'}$, un'involuzione razionale $I_{\delta}^{\omega'}$, di ordine ω' e di dimensione :

$$\delta' = \tau' (\varrho' - \tau' + 1) ,$$

costruibile come segue.

In S_r , un generico sistema lineare di complessi lineari di spazi S_{r-k-1} , avente la dimensione :

$$inom{r+1}{k+1}- au'-1$$
 ,

ne contiene ω' speciali (n. 3) e coi rispettivi S_k -assi appartenenti a $\Theta_{\tau'}^{\omega'}$: questi riempiono un gruppo della $I_{\delta'}^{\omega'}$.

Altrimenti, si considerino, in S_r , τ' complessi lineari di S_k , linearmente indipendenti e non passanti per $\Theta_{\tau'}^{\omega'}$: essi hanno in comune ω' spazi S_k situati in $\Theta_{\tau'}^{\omega'}$ e costituenti un gruppo della $I_{\Sigma'}^{\omega'}$.

Osservazione 1^a. — Quando, in particolare, $\Theta_{\tau'}^{\omega'}$ è la totalità degli S_k di S_r , l'involuzione $I_{\delta'}^{\omega'}$ diviene quella dei gruppi di S_k associati in S_r secondo B. Segre ⁵).

¹⁰) L'irriducibilità di ogni ente algebrico, che si consideri, dovrà in seguito sempre sottintendersi.

Osservazione 2^a . — Se $\tau'=1$, e quindi gli S_k del sistema $\Theta_1^{\omega'}$ sono gli spazi generatori di una varietà $W_{k+1}^{\omega'}$ di dimensione k+1 e di ordine ω' , l'involuzione $I_{\delta}^{\omega'}$, ha la dimensione $\delta'=\varrho'$ e corrisponde in S_r alla serie lineare $g_{\omega'}^{\varrho'}$, delle sezioni iperpiane di $V_1^{\omega'}$, curva immagine di $\Theta_1^{\omega'}$ sulla grassmanniana V_{τ}^{ω} ; onde essa può definirsi su $W_{k+1}^{\omega'}$ come la serie lineare $g_{\omega'}^{\varrho'}$, staccata dai complessi lineari di S_k (entro S_r): cioè descritta dal gruppo degli ω' S_k generatori di $W_{k+1}^{\omega'}$ appartenenti ad un complesso lineare variabile (non passante per $W_{k+1}^{\omega'}$) di spazi S_k .

Osservazione 3^a . — Se un sistema algebrico $\Theta_{\iota''}^{\omega'}$ di spazi S_k , in S_r , ha per immagine sulla grassmanniana V_{τ}^{ω} la completa intersezione della immagine $V_{\tau'}^{\omega'}$, appartenente ad $S_{\varrho'}$, di $\Theta_{\iota'}^{\omega'}$ con uno spazio $S_{\varrho''}$ di $S_{\varrho'}$, (onde $\tau'' - \varrho'' = \tau' - \varrho'$) è ovvio che l'involuzione $I_{\delta''}^{\omega'}$ dei gruppi di ω' S_k associati entro $\Theta_{\iota''}^{\omega'}$ risulta subordinata dall'analoga involuzione $I_{S'}^{\omega'}$ entro $\Theta_{\iota''}^{\omega'}$.

Osservazione 4^a. — Come corollario della Oss. 3^a si ha che l'involuzione $I_{\delta'}^{\omega'}$ entro $\Theta_{\tau'}^{\omega'}$ è subordinata dall'involuzione di B. Segre entro la totalità degli S_k di S_r (Oss. 1^a) quando il sistema $\Theta_{\tau'}^{\omega'}$ (con $\omega' = \omega$) è base per un sistema lineare $\infty^{\tau-\tau'-1}$ di complessi lineari di S_k in S_r .

7. Tenendo presente che lo spazio di appartenenza S_{ϱ} , della varietà $V_{\tau'}^{\omega'}$ (n. 6) ha la dimensione non maggiore di $\tau' + \omega' - 1$, si può asserire che se $\varrho' = \varrho$ è:

$$\varrho \leqslant \tau' + \omega' - 1$$
;

e che quando $\varrho > \tau' + \omega' - 1$ è pure $\varrho' < \varrho$ con:

$$\varrho - \varrho' \geqslant \varrho - \tau' - \omega' + 1$$
.

Quindi:

Se τ' e ω' sono la dimensione e l'indice (n. 6) di un sistema algebrico Θ di spazi S_k , appartenente ad S_r , si verifica che, quando Θ non è contenuto in alcun complesso lineare di S_k si ha:

$$au'+\omega'\geqslantinom{r+1}{k+1}$$
 ;

mentre Θ è necessariamente base per un sistema lineare $\infty^{\sigma-1}$ di complessi lineari di S_k , con :

$$\sigma \geqslant inom{r+1}{k+1} - au' - \omega'$$
 ,

quando:

$$au'+\omega' ;$$

nel qual caso $\tau' + \omega' + 1$ spazi S_k arbitrari di Θ sono sempre associati (di I^a specie almeno: n. 1), ed anzi in posizione di Schläfli (n. 5) se:

$$\tau' + \omega' \leqslant (k+1)(r-k) .$$

In relazione all'argomento di questo n. 7 si veggano più innanzi i §§ 5 e 6.

8. È noto¹¹) che ogni complesso di spazi S_k , entro S_r , di grado n, cioè avente n suoi spazi in un generico fascio di S_k , si rappresenta sulla grassmanniana V_{τ}^{ω} d'indici (r, k) mediante la varietà $V_{\tau-1}^{n\omega}$ completa intersezione di V_{τ}^{ω} con una forma d'ordine n.

Dal teorema del n. 6 si deduce allora l'altro:

In ogni complesso di S_k , entro S_r , di grado n > 1, esistono:

$$\infty^{(\tau-1)} (\varrho-\tau+2)$$

gruppi di $n \omega$ spazi S_k associati di specie (n. 1):

$$n\omega-\varrho+\tau-2$$
.

Ciascuno di tali gruppi è individuato da $\varrho - \tau + 2$ qualunque dei suoi spazi; e per $\varrho - \tau + 2$ generici S_k del complesso ne passa uno solo.

I gruppi stessi constano di spazi situati in posizione di *Schläfli* (n. 5) quando: r = 3 e k = 1; r = 4 e k = 1 o k = 2; r = 5 e k = 1 o k = 3. Ne segue ad esempio che:

Nello spazio a quattro dimensioni un complesso di piani, di grado n>1, possiede ∞^{25} gruppi di 5n piani tali che le ∞^1 rette incidenti a 5 piani qualsiansi di ciascun gruppo (e formanti una rigata ellittica del 5^0 ordine) risultano pure incidenti agli altri 5n-5 (E dualmente).

Ed ancora:

In S_5 un complesso di rette, di grado n>1, contiene ∞^{56} gruppi di 14n rette ciascuno, caratterizzati dalla proprietà che i 14 spazi S_3 appoggiantisi ad 8 rette qualunque di ogni gruppo incontrano pure le rimanenti 14n-8 (E dualmente).

¹¹⁾ F. Severi, loc. cit., n. 6.

\S 3. Gruppi di S_k associati aventi un S_k in una data forma fondamentale e gli altri S_k preassegnabili

9. In S_r si consideri il sistema Φ di tutti gli S_k soddisfacenti alla condizione di Schubert (a_0, a_1, \ldots, a_k) , cioè la forma fondamentale $[a_0, a_1, \ldots, a_k]$ costituita dagli spazi S_k di S_r situati in un dato S_{a_k} e aventi in comune: un punto con un dato S_{a_0} , una retta con un dato S_{a_1}, \ldots , un S_{k-1} con un dato $S_{a_{k-1}}$; essendo:

$$0 \leqslant a_0 < a_1 < \cdots < a_k \leqslant r$$
,

e appartenendo sempre lo spazio S_{a_i} ad $S_{a_{i+1}}$.

La dimensione di Φ è :

$$arDelta=a_0+a_1+\cdots+a_k-inom{k+1}{2}\;;$$

mentre il suo *indice* (n. 6), ossia il numero degli S_k di Φ incidenti ciascuno a Δ generici spazi S_{r-k-1} , è ¹²):

$$\Omega = \frac{\Delta!}{a_0! \ a_1! \ldots a_k!} \prod_{i>j} (a_i - a_j) \ .$$

Sulla grassmanniana V_{τ}^{ω} d'indici (r, k) il sistema Φ è rappresentato da una varietà di dimensione Δ e di ordine Ω : infatti è precisamente Ω il numero dei punti comuni a tale varietà e a Δ iperpiani indipendenti, seganti ciascuno V_{τ}^{ω} nella varietà immagine di un complesso lineare speciale di S_k .

10. Dati in S_r , genericamente, ν spazi $S_k^{(i)}$ $(i=1,\,2,\ldots,\nu)$ esistono certo altri S_k completanti ĉiascuno con essi un gruppo di $\nu+1$ spazi associati di prima specie (n. 1), appena sia $\varrho \geqslant \nu > \varrho - \tau$. Infatti i punti P_i immagini in S_ϱ degli $S_k^{(i)}$ giacciono in un $S_{\nu-1}$ che sega allora V_τ^ω in una varietà V_σ^ω se:

$$\nu = \varrho - \tau + \sigma + 1$$

(e $0 \le \sigma < \tau$): ogni punto della quale, diverso da
i P_i , rappresenta un S_k con la proprietà suddetta.

Alla V_{σ}^{ω} corrisponde in S_r un sistema algebrico ∞^{σ} , d'indice ω (n. 6), di spazi S_k , e quindi la varietà di punti $W_{k+\sigma}$ luogo degli S_k di tale sistema : la quale invade l' S_r quando $\sigma \geqslant r-k$.

¹²) H. Schubert, Anzahl-Bestimmung für lineare Räume beliebiger Dimension (Acta mathematica, 8, 1886).

In ogni caso, supposto $\sigma > 0$, sulla $W_{k+\sigma}$ gli eventuali S_k generatori soddisfacenti alla condizione di Schubert (a_0, a_1, \ldots, a_k) riempiono una varietà W' rappresentata in S_ϱ dalla sezione dello spazio $S_{\nu-1}$ con la V_A^{Ω} immagine (n. 9) della forma fondamentale $[a_0, a_1, \ldots, a_k]$; onde, in generale, la W' esiste solo se $\Delta + \nu > \varrho$, ossia $\Delta \geq \tau - \sigma$: e consta allora di un sistema algebrico $\infty^{\Delta - \tau + \sigma}$, d'indice Ω (n. 9), di spazi S_k .

Si può dunque intanto concludere:

Fissati nello spazio S_r ad r dimensioni v generici spazi $S_k^{(i)}$ (i = 1, 2, ..., v) di dimensione k, con

$$\binom{r+1}{k+1} - (k+1)(r-k) < v < \binom{r+1}{k+1}$$
,

fra gli S_k di S_r soddisfacenti alla condizione (a_0, a_1, \ldots, a_k) di Schubert (n. 9), quando sia:

$$\binom{r+1}{k+1} - \nu \leqslant \Delta < (k+1)(r-k)$$
,

ove:

$$\Delta = \sum_{i=0}^k a_i - \binom{k+1}{2} ,$$

ne esistono:

$$\frac{\Delta!}{a_0! \ a_1! \ldots a_k!} \prod_{i>j} (a_i - a_j)$$

incidenti a:

$$\Delta + \nu - {r+1 \choose k+1}$$

generici spazi S_{r-k-1} e formanti ciascuno coi v špazi $S_k^{(i)}$ un gruppo di v+1 S_k associati di I^a specie (n. 1).

11. In S_r si consideri uno spazio subordinato S_r , e in S_r , una stella di centro S_k . L'appartenenza di un S_k di S_r a tale stella si esprime con la condizione di Schubert:

$$(0,1,\ldots,k'-1,k',r'-k+k'+1,r'-k+k'+2,\ldots,r'-1,r');$$

ed applicando allora il teorema del n. 10 si perviene al risultato che segue ¹³):

¹⁸⁾ Ove, per semplicità di enunciato, si è posto r' = k + l e k' = k - h.

Nello spazio S_r ad r dimensioni si prefissino genericamente uno spazio S_{k+1} , un S_{k-h} entro S_{k+1} e r spazi $S_k^{(i)}$ $(i=1,2,\ldots,r)$. Se allora \grave{e} :

$$0 < h \leqslant k < r$$
, $0 < l \leqslant r - k$

e:

$$inom{r+1}{k+1}-hl\leqslant
u ,$$

esistono:

$$\frac{0! \ 1! \ 2! \dots (h-1)! \ (hl)!}{l! \ (l+1)! \dots (l+h-1)!}$$

spazi S_k passanti per l' S_{k-h} , giacenti nell' S_{k+l} , formanti ciascuno un gruppo di v+1 spazi associati di I^a specie (n. 1) con gli $S_k^{(i)}$ e inoltre incidenti a :

$$v+hl-inom{r+1}{k+1}$$

dati spazi S_{r-k-1} generici di S_r , ossia ad altrettanti spazi S_{t-1} generici di S_{k+1} .

Casi particolari notevoli del teorema sono:

A) Per uno spazio S_{k-h} generico (1 $\leq h \leq k$) di S_r passano:

$$\frac{0! \ 1! \ 2! \dots (h-1)! \ (hr-hk)!}{(r-k)! \ (r-k+1)! \dots (r-k+h-1)!} \alpha$$

spazi S_k costituenti ciascuno un gruppo di S_k associati di $\mathbf{1}^a$ specie (n. 1) con :

$$\binom{r+1}{k+1}-h(r-k)$$

 $dati S_k generici.$

B) In S_r gli ∞^1 spazi S_k ($k \leq r-2$) passanti per uno spazio S_{k-h} generico ($1 \leq h \leq k$) e formanti ciascuno un gruppo di S_k associati di I^a specie (n. 1) con:

$$\binom{r+1}{k+1}-h(r-k)+1$$

spazi S_k genericamente assegnati, riempiono una varietà (di dimensione k+1 e) di ordine α).

12. Il teorema del n. 10, applicato nell'ipotesi che la condizione di Schubert imposta agli S_k di S_r sia :

$$(l, l+1, l+2, \ldots, l+k)$$
,

conduce al seguente:

In S_r , supposto 0 < l < r - k e:

$$inom{r+1}{k+1}-(k+1)\ l\leqslant v$$

gli S_k appartenenti ad un dato spazio S_{k+l}^* , e formanti ciascuno un gruppo di v+1 spazi associati di I^a specie (n. 1) con v spazi S_k genericamente assegnati fuori di S_{k+l}^* , costituiscono un sistema algebrico di dimensione :

$$v+(k+1) l-inom{r+1}{k+1}$$

e di indice (n. 6):

$$\chi = \frac{1! \ 2! \dots k! (kl+l)!}{l! (l+1)! \dots (l+k)!}.$$

In particolare è χ il numero degli S_k di S_{k+l}^* completanti ciascuno un gruppo di spazi associati di I^a specie (n. 1) con:

$$\binom{r+1}{k+1}-(k+1)\,l$$

dati S_k generici di S_r ; e se $k \leq r-2$ è pure χ l'ordine della varietà (di dimensione k+1) luogo degli ∞^1 S_k di S_{k+1}^* costituenti ciascuno un gruppo di spazi associati di 1^a specie (n. 1) con:

$$\binom{r+1}{k+1}$$
 - $(k+1)$ $l+1$

spazi S_k prefissabili in modo generico (fuori di S_{k+l}^*).

13. La condizione affinchè, in S_r , uno spazio S_k incontri un dato spazio S_m in uno spazio S_{k-1} non dato, si esprime col simbolo di *Schubert*:

$$(m+l-k, m+l-k+1,...,m, r-l+1, r-l+2,...,r).$$

Se allora si applica il teorema generale del n. 10, si trova che:

Posto:

$$\delta = (m + l - k)(k - l + 1) + l(r - k)$$

e

$$W = \delta! \binom{r-m}{l} \binom{r-m+1}{l} \cdots \binom{r-m+k-l}{l} \binom{l!}{l}^{k-l+1},$$

fatte inoltre le ipotesi:

$$0 < l \leq k < l + m < r$$

e

$$\binom{r+1}{k+1} - \delta \leqslant v < \binom{r+1}{k+1}$$
,

nello spazio S_r ad r dimensioni esistono:

$$\frac{0! \ 1! \ 2! \dots (l-1) \ ! \cdot \theta! \ 1! \ 2! \dots (k-l) \ !}{(m+l-k)! \ (m+l-k+1)! \dots m! \ (r-l+1)! \ (r-l+2)! \dots r!} \cdot W$$

spazi S_k incidenti in un S_{k-1} (non dato) ad un dato spazio S_m , appoggiantisi a:

$$v+\delta-\binom{r+1}{k+1}$$

generici spazi S_{r-k-1} , e formanti ciascuno un gruppo di v+1 spazi associati di I^a specie (n. 1) con v spazi S_k genericamente prefissabili.

Come corollari:

a) In S_r gli S_k incidenti (in un punto) ad un dato S_m e formanti ciascuno un gruppo di S_k associati di I^a specie (n. 1) con:

$$\binom{r+1}{k+1} - k(r-k) - m + \varepsilon$$

spazi S_k genericamente prescelti, sono in numero di N se $\varepsilon = 0$, e riempiono una varietà di dimensione k+1 e d'ordine N se $\varepsilon = 1$; ove:

$$N = rac{1 \; ! \; 2 \; ! \; \ldots \; k \; ! \; (m + rk - k^2) \; !}{m \; ! \; (r - k + 1) \; ! \; (r - k + 2) \; ! \; \ldots \; r \; !} igg(r - m \ kigg) \; .$$

 β) In S_r gli S_k incidenti ad un dato S_m in un S_{k-1} (non dato) e formanti ciascuno un gruppo di S_k associati di I^a specie (n. 1) con :

$$egin{pmatrix} r+1 \ k+1 \end{pmatrix} - k (m-k) - r + arepsilon'$$

spazi S_k genericamente prescelti, sono in numero di N' se $\varepsilon' = 0$, e riempiono una varietà di dimensione k+1 e d'ordine N' se $\varepsilon' = 1$; ove:

$$N' = rac{1 \,! \, 2 \,! \, \ldots \, k \,! \, (r + m \, k - k^2) \,!}{r \,! \, (m - k + 1) \,! \, (m - k + 2) \,! \, \ldots \, m \,!} \, {r - m + k - 1 \choose k} \,.$$

Notevole è il caso particolare, del teorema β), in cui $\,m=k\,$: allora si ha semplicemente per N' il valore ${r-1\choose k}$.

§ 4. Varietà algebriche costituite da S_k a $\nu+1$ a $\nu+1$ associati

14. Riprendendo in considerazione la varietà $W_{k+\sigma}$ di cui al n. 10, si supponga $0 < \sigma < r - k$. L'ordine di essa è allora il numero dei suoi S_k incidenti ad un $S_{r-k-\sigma}$, cioè appartenenti alla forma fondamentale :

$$[r-k-\sigma, r-k+1, r-k+2,..., r-1,r]$$
,

e quindi si calcola col teorema del n. 10. Inoltre v+1 generici S_k di $W_{k+\sigma}$ risultano (n. 2) associati di 1ª specie, giacchè i loro punti immagini sulla grassmanniana V_i^{ω} giacciono nell' S_{v-1} congiungente i punti P_i rappresentativi dei v spazi $S_k^{(i)}$ che individuano (n. 10) la varietà stessa. Questa, come sistema algebrico ∞^{σ} d'indice ω (n. 10) dei propri S_k generatori, contiene poi un'involuzione razionale di gruppi di S_k associati in base al teorema del n. 6.

Osservando infine (cfr. n. 3) che lo spazio $S_{\nu-1}$ è l'immagine in S_{ϱ} di un sistema lineare $\infty^{\nu-1}$ di complessi lineari di spazi S_{r-k-1} entro S_r , mentre la sua sezione con V_{τ}^{ω} rappresenta la varietà base di un sistema lineare $\infty^{\varrho-\nu}$ di complessi lineari di S_k , si perviene al teorema seguente :

Nello spazio S_r ad r dimensioni, se:

$$v = {r+1 \choose k+1} - (k+1)(r-k) + \sigma$$

con $0 < \sigma < r - k$, esistono:

varietà $W_{k+\sigma}$ (di dimensione $k+\sigma < r$) costituite ciascuna da ∞^{σ} spazi S_k e caratterizzate dalla proprietà di avere gli S_k generatori formanti a $\nu+1$ a $\nu+1$ gruppi di spazi associati : generalmente di I^a specie (n. 1).

Per ν spazi $S_k^{(i)}$ $(i=1,2,\ldots,\nu)$ generici¹⁴) di S_r passa una ed una sola di tali varietà $W_{k+\sigma}$, la quale :

1) Ha l'ordine eguale a :

$$-\frac{1 ! 2 ! \ldots k ! (kr-k^2) !}{(r-k+1) ! (r-k+2) ! \ldots r !} {(k+1) (r-k) - \sigma \choose k r - k^2} {k + \sigma \choose k}.$$

- 2) È il luogo degli S_k -assi di tutti i complessi lineari speciali di spazi S_{r-k-1} , entro S_r , contenuti in un sistema algebrico $\infty^{\nu-1}$ di complessi lineari di S_{r-k-1} : quello individuato dai ν complessi lineari speciali di S_{r-k-1} aventi per assi gli spazi $S_k^{(i)}$.
- 3) \vec{E} il luogo degli S_k comuni a tutti i complessi lineari di spazi S_k , entro S_r , passanti per i v spazi $S_k^{(i)}$.

Ognuna delle suddette varietà $W_{k+\sigma}$ contiene un'involuzione razionale di gruppi di S_k avente la dimensione σ ($v-\sigma$) e l'ordine ω (n. 1): subordinatavi dalla involuzione dei gruppi di S_k associati in S_r secondo B. Segre (n. 6, Oss. 1ª e 4ª); onde $v-\sigma$ spazi generatori, sopra ciascuna varietà $W_{k+\sigma}$, genericamente assegnati, ne individuano altri $\omega-v+\sigma$ costituenti coi primi un gruppo di ω S_k associati (n. 1) di specie $\omega-v+\sigma$; il quale coincide col gruppo determinato in S_r da quegli stessi $v-\sigma$ spazi entro l'involuzione di B. Segre 15) fra gli S_k di S_r .

Osservazione 1^a. — Avuto riguardo alla nota 1⁴) si vede che fra le $W_{k+\sigma}$, di cui al teorema precedente, può annoverarsi la varietà luogo degli ∞^{σ} spazi S_k di S_r incidenti a :

$$(k+1)(r-k)-\sigma$$

spazi S_{r-k-1} genericamente dati, quando $0 < \sigma < r - k$.

Per $k = \sigma = 1$ si ha in particolare una superficie d'ordine :

$$\frac{2}{r} \binom{2r-3}{r-2}$$

¹⁴⁾ Qui e in seguito si dice che λ spazi S_k sono generici in S_r nel senso che i rispettivi λ punti immagini sulla grassmanniana V_{τ}^{ω} d'indici (r,k) sono indipendenti, e il loro spazio congiungente $S_{\lambda-1}$ non incontra altrove la V_{τ}^{ω} se $\lambda \leq \varrho - \tau$, nè la taglia in varietà di dimensione superiore a $\lambda + \tau - \varrho - 1$ se $\lambda > \varrho - \tau$.

¹⁵) Si noti che $v-\sigma=\varrho-\tau+1$, e che ogni gruppo di S_k associati in S_r secondo B.Segre (n. 6, Oss. 1a) è precisamente individuato da $\varrho-\tau+1$ qualunque dei suoi ω spazi.

costituita dalle rette di S_r appoggiantisi a 2r-3 generici spazi S_{r-2} ; la quale si riduce in S_5 ad una notevole rigata V_2^{14} considerata da B. Segre 7).

Osservazione 2^a . — Nell'ipotesi k = 1 il teorema concerne alcune varietà rigate, di S_r , aventi la dimensione $\sigma + 1 < r$, l'ordine:

$$rac{\sigma+1}{r}inom{2r-\sigma-2}{r-1}$$
 ,

e individuate ciascuna da:

$$\binom{r-1}{2} + \sigma + 1$$

rette generatrici prefissabili in modo generico 14).

Se r=4 e $\sigma=1$ si tratta della rigata ellittica normale V_2^5 di S_4 .

Se r=5 e $\sigma=1$ si ritrova la V_2^{14} di S_5 studiata da B.Segre 7).

Osservazione 3^a. — Nell'ipotesi $\sigma=r-k-1$ il teorema caratterizza una estesa classe di ipersuperficie, dello spazio S_r , costituite da ∞^{r-k-1} S_k , tutte di ordine :

$$\frac{1! \ 2! \dots k! (kr-k^2+1)!}{(r-k+1)! \ (r-k+2)! \dots r!} {r-1 \choose k} ,$$

e tali che per:

$$\binom{r+1}{k+1} - k(r-k) - 1$$

 S_k generici 14) di S_r ne passa una ed una sola.

A questa classe di ipersuperficie appartiene in particolare (cfr. Oss. 1^a) l'ipersuperficie luogo degli S_k di S_r incidenti a k (r-k) + 1 spazi S_{r-k-1} generici.

Osservazione 4^a. – Se k=1 e $\sigma=r-2$ il teorema diviene:

Nello spazio S_r , ad r dimensioni, $\binom{r}{2}$ rette generiche 14) appartengono sempre ad una ipersuperficie rigata V_{r-1}^{r-1} d'ordine r-1, sulla quale $\binom{r}{2}+1$ generatrici qualunque formano un gruppo di rette associate di I^a specie almeno (n. 1); mentre $\binom{r-1}{2}+1$ generatrici generiche ne determinano altre :

$$\frac{2}{r}\binom{2r-3}{r-2}-\binom{r-1}{2}-1$$

completanti con le prime un gruppo di rette associate in S_r (r>3) secondo B.Segre (n. 6, Oss. 1^a).

In particolare (cfr. Oss. 3°) la V_{r-1}^{r-1} può essere l'ipersuperficie luogo delle rette di S_r incidenti ad r generici spazi S_{r-2} : la quale si riduce in S_4 alla V_3 con 10 punti doppi di C. Segre 6).

15. Il teorema del n. 14 offre senz'altro la completa risoluzione del problema seguente:

Determinare in S_r le varietà, irriducibili e non invadenti l' S_r , costituite da spazi subordinati di dimensione non inferiore a 1 nè superiore a r-2, e caratterizzate dalla proprietà che per ciascuna, W, di esse esista un intero v tale che v spazi generici di W siano pure generici in S_r^{14}), mentre v+1 spazi generici di W siano associati di I^a specie (n. 1).

Se k è la dimensione degli spazi generatori di W, e $k + \sigma$ quella di W, deve essere (cfr. n. 14):

$$v = \rho - \tau + \sigma + 1$$
, $0 < \sigma < r - k$, $0 < k < r - 1$;

quindi al variare di k si ottengono per σ (e per ν) in tutto :

$$\sum_{k=1}^{r-2} (r-k-1) = \frac{1}{2}(r-1) (r-2)$$

valori. Pertanto:

Il problema suddetto ammette $\binom{r-1}{2}$ soluzioni omograficamente distinte, date dalle varietà $W_{k+\sigma}$ del teorema del n. 14 : fra di esse le varietà di dimensione h (con $h=2,3,\ldots,r-1$) sono in numero di h-1.

La sola (a meno di trasformazioni omografiche) superficie rigata soluzione del problema ha per immagine sulla grassmanniana delle rette di S_r una generica sezione curvilinea di questa (cfr. n. 14): onde il suo genere si desume da un teorema del *Severi* ¹⁶).

Si trova così, ad esempio, che:

In S_3 il problema ha per unica soluzione un regolo V_2^2 (v=3).

¹⁶⁾ F. Severi, loc. cit., n. 17.

In S_4 si hanno come soluzioni: la rigata ellittica normale V_2^5 ($\nu = 5$); l'ipersuperficie cubica rigata V_3^3 ($\nu = 6$), con 10 punti doppi, di C. Segre 6); e la V_3^5 ($\nu = 5$), luogo di piani, duale della V_2^5 .

In S_5 le sei soluzioni sono : tre varietà rigate, cioè la V_2^{14} (v=8), avente il genere 8, di B. Segre 7), una V_3^9 (v=9) ed una V_4^4 (v=10); due varietà, una V_3^{42} (v=12) e una V_4^{21} (v=13), di piani ; e la V_4^{14} (v=8), luogo di spazi S_3 , duale della V_2^{14} .

In S_6 le dieci soluzioni sono : quattro varietà rigate, ossia una V_2^{42} ($\nu=12$) di genere 43, una V_3^{28} ($\nu=13$), una V_4^{14} ($\nu=14$) ed una V_5^{5} ($\nu=15$); tre varietà, una V_3^{462} ($\nu=24$), una V_4^{252} ($\nu=25$) e una V_5^{84} ($\nu=26$), di piani ; due varietà, la V_4^{462} ($\nu=24$) duale della V_3^{462} e una V_5^{210} ($\nu=25$), di spazi S_3 ; ed infine la V_5^{42} ($\nu=12$), luogo di spazi S_4 , duale della V_2^{42} .

§ 5. Genere sezionale di un sistema algebrico di spazi S_k

16. Sia $\Theta_{\tau'}^{\omega'}$ un sistema algebrico $\infty^{\tau'}$ di spazi S_k , appartenente ad S_r e d'indice ω' (n. 6): cosicchè esistano ω' suoi S_k generatori incidenti a τ' generici spazi S_{r-k-1} .

Se $\tau' = 1$ (e k < r - 1) si tratta di una varietà d'ordine ω' , luogo di ∞^1 spazi S_k .

Se $\tau' \geqslant 2$, un generico sistema lineare $\infty^{\varrho - \tau' + 1}$ di complessi lineari di S_{r-k-1} , entro S_r , ne contiene ∞^1 speciali coi rispettivi assi S_k appartenenti al sistema $\Theta_{\iota'}^{\omega'}$ e ivi formanti una varietà $W_{k+1}^{\omega'}$ di ordine ω' : abbia essa, quale serie semplicemente infinita di S_k , il genere π .

La $W_{k+1}^{\omega'}$ si può anche definire come il luogo degli ∞^1 S_k comuni al sistema $\Theta_{i'}^{\omega'}$ e a $\tau'-1$ complessi lineari di S_k genericamente assegnati in S_r .

Sulla grassmanniana V_{i}^{ω} d'indici (r, k) il sistema $\Theta_{i'}^{\omega'}$ è rappresentato da una varietà $V_{i'}^{\omega'}$ di ordine ω' e la $W_{k+1}^{\omega'}$ da una generica sezione curvilinea $V_{1}^{\omega'}$ di $V_{i'}^{\omega'}$: avente lo stesso genere π che in S_{r} ha la $W_{k+1}^{\omega'}$.

Estendendo una denominazione di $C.Segre e G.Fano^{17}$) si dirà che π è il genere sezionale sia del sistema algebrico $\Theta_{\tau'}^{\omega'}$ di spazi S_k che della sua varietà immagine $V_{\tau'}^{\omega'}$ sulla grassmanniana V_{τ}^{ω} .

17. Fra l'indice ω' e il genere sezionale π (n. 16) del sistema algebrico $\Theta_{\tau'}^{\omega'}$ (con $\tau' > 1$) di spazi S_k si supponga intercedere la relazione $\omega' > 2\pi - 2$. Se allora è un $S_{\varrho'}$, lo spazio di appartenenza della varietà $V_{\tau'}^{\omega'}$ immagine di

¹⁷) G. Fano, Nuove ricerche sulle congruenze di rette del 3º ordine prive di linea singolare [Memorie dell'Accademia delle Scienze di Torino, 51 (2), 1902], n. 2. Cfr. pure: A. Longhi, Sulla intersezione di due o più varietà algebriche (Commentarii math. Helvetici, 18, 1945—46).

 $\Theta^{\omega'}_{\iota'}$ sulla grassmanniana V^{ω}_{ι} , la generica sezione curvilinea $V^{\omega'}_{1}$, di ordine ω' e genere π , della $V^{\omega'}_{\iota'}$ appartiene ad un $S_{\varrho'-\iota'+1}$; e siccome per l'ipotesi $\omega' > 2\pi - 2$ la serie lineare $g^{\varrho'_{\iota'}-\iota'+1}_{\omega'}$ segata su $V^{\omega'}_{1}$ dagli iperpiani è certo non speciale, dev'essere :

$$\varrho' - \tau' + 1 \le \omega' - \pi$$

ossia:

$$\varrho' = \tau' + \omega' - \pi - \mu$$

con $\mu \ge 1$; e se $\nu = \tau' + \omega' - \pi + 1$, risulta:

$$\varrho' = \nu - \mu - 1 \; ;$$

onde si conclude (n. 2) che ν spazi S_k generici di $\Theta_{\tau'}^{\omega'}$ sono associati di specie μ (n. 1) appena sia $\varrho' < \varrho$.

Se invece si suppone $\varrho' - \tau' + 1 > \omega' - \pi$ (e $\omega' \leq 2\pi - 2$), la serie $g_{\omega'}^{\varrho', -\tau' + 1}$ delle sezioni iperpiane di $V_1^{\omega'}$ è speciale, e si ha quindi :

$$\varrho'-\tau'+1\leq \pi-1.$$

D'altra parte, se $\theta_{i'}^{\omega'}$ non è contenuto in alcun complesso lineare di S_k (ossia la varietà $V_{i'}^{\omega'}$ non giace in nessun iperpiano di S_{ϱ}) è $\varrho' = \varrho$; mentre per $\theta_{i'}^{\omega'}$ passano $\sigma = \varrho - \varrho'$, e non più, complessi lineari di S_k linearmente indipendenti, allorchè $\varrho' < \varrho$.

Dopo ciò, da quanto precede si traggono subito i risultati seguenti:

Sia $\Theta_{i'}^{\omega'}$ un sistema algebrico $\infty^{i'}$ di spazi S_k , appartenente ad S_r , con la dimensione $\tau' > 1$, di indice ω' (n. 6) e di genere sezionale π (n. 16): cosicchè, se k < r - 1, sono pure ω' e π l'ordine e il genere della varietà luogo degli ∞^1 spazi S_k di $\Theta_{i'}^{\omega'}$ incidenti a $\tau' - 1$ generici spazi S_{r-k-1} .

Indichi poi σ il massimo numero, positivo o nullo, di complessi lineari di S_k , entro S_r , linearmente indipendenti e contenenti ciascuno tutti gli S_k del sistema $\Theta_{\tau'}^{\omega'}$.

Si ha allora che:

A) Se $\omega' > 2\pi - 2$ vale la limitazione :

$$\sigma + au' + \omega' - \pi \geqslant inom{r+1}{k+1}$$
 .

B) Quando $\sigma > 0$ e $\omega' > 2\pi - 2$ il sistema $\Theta_{\tau'}^{\omega'}$ ha la proprietà che :

$$\tau'+\omega'-\pi+1$$

suoi spazi S_k generici sono sempre associati di specie (n. 1):

$$\sigma+ au'+\omega'-\pi+1-inom{r+1}{k+1}$$
 ,

ed anzi in posizione di Schläfli (n. 5) se:

$$\sigma \geqslant {r+1 \choose k+1} - (k+1) (r-k)$$
.

C) Verificandosi la relazione:

$$2\pi - 2 < \omega' < {r+1 \choose k+1} - au' + \pi$$
 ,

il sistema $\mathcal{O}_{i}^{\omega'}$ risulta necessariamente contenuto in complessi lineari di spazi S_k , formanti un sistema lineare di dimensione non inferiore a:

$${r+1\choose k+1}- au'-\omega'+\pi-1$$
 ;

inoltre $\tau' + \omega' - \pi + 1$ spazi generatori S_k arbitrari di $\Theta_{\iota'}^{\omega'}$ sono sempre fra loro associati di I^a specie almeno (n. 1), ed anzi in posizione di Schläfli (n. 5) se:

$$\tau' + \omega' - \pi \leq (k+1)(r-k) .$$

D) Supposta soddisfatta la diseguaglianza:

$$\sigma+ au'+\omega'-\pi\!<\!inom{r+1}{k+1}$$
 ,

deve pure esserlo l'altra :

$$\sigma+ au'+\pi>inom{r+1}{k+1}$$
 .

§ 6. Sulle varietà algebriche luoghi di ∞^1 spazi S_k

18. Una varietà W_{k+1}^n , di dimensione k+1, di ordine n e appartenente ad S_r , sia costituita da un sistema ∞^1 di spazi S_k (0 < k < r-1): ed abbia, come luogo di S_k , il genere p.

Sulla grassmanniana V_{τ}^{ω} d'indici (r, k) la W_{k+1}^{n} si rappresenta con una curva C_{n}^{p} di ordine n e genere p.

Gli iperpiani dello spazio ambiente S_{ϱ} della V_{τ}^{ω} segano sopra C_{n}^{p} una certa serie lineare g_{n}^{λ} , di dimensione λ e di ordine n, di gruppi di punti ; alla quale corrisponde su W_{k+1}^{n} la serie lineare g_{n}^{λ} di gruppi di S_{k} staccata dai complessi lineari di S_{k} entro S_{r} (n. 6, Oss. 2^a).

In generale la dimensione λ della g_n^{λ} è uguale a ϱ (n. 1); ma può essere $\lambda < \varrho$: il che si verifica quando per la C_n^p passano $\varrho - \lambda = \sigma$ iperpiani $S_{\varrho-1}$ indipendenti, ossia quando la C_n^p appartiene ad un S_{λ} subordinato di S_{ϱ} . Allora la W_{k+1}^n è contenuta in complessi lineari di S_k , costituenti in S_r un sistema lineare $\infty^{\sigma-1}$.

Sulla C_n^p , e quindi anche sulla W_{k+1}^n , si può considerare la serie canonica g_{2p-2}^{p-1} (effettiva solo se p>1): cioè l'unica serie lineare avente la dimensione p-1 e l'ordine 2p-2.

Se per un gruppo generico G_n della serie g_n^{λ} passano $j(\geqslant 0)$ gruppi canonici indipendenti, ma non j+1, per il teorema di Riemann-Roch è n-p+j la dimensione della serie completa $|G_n|$; e quindi si può scrivere:

$$\lambda \leq n-p+j$$
,

ossia:

$$\lambda = n - p + j - \mu + 1$$

con $\mu \geqslant 1$. Posto allora:

$$v = n - p + j + 2 ,$$

risulta:

$$\lambda = \nu - \mu - 1 ,$$

e ne deriva (n. 2) che ν spazi S_k generici di W_{k+1}^n sono associati di specie μ (n. 1) quando $\lambda < \varrho$: ciò che anzi si verifica per ν S_k generatori arbitrari di W_{k+1}^n se j+2>p (altrimenti esisterebbero iperpiani di S_λ incontranti C_n^p in più di n punti).

Si può aggiungere che nell'ipotesi $\lambda = n - p + j$ la curva C_n^p riesce normale, essendo completa la serie delle sue sezioni iperpiane.

Notando poi che è sicuramente j=0 se n>2p-2 oppure $\lambda>p-1$, mentre è j>0 (e quindi $\lambda\leq p-1$) se $\lambda>n-p$, si perviene alle conclusioni seguenti:

Sia W_{k+1}^n una varietà di dimensione k+1 e d'ordine n, appartenente ad S_r , luogo di ∞^1 spazi S_k (con 0 < k < r-1) e, come tale, di genere p.

Si chiami σ il massimo numero, positivo o nullo, di complessi lineari di S_k , entro S_r , linearmente indipendenti e passanti ciascuno per la W_{k+1}^n .

Sull'ente (∞^1 e di genere p) costituito dagli S_k generatori di W_{k+1}^n si consideri la serie canonica g_{2p-2}^{p-1} , e si supponga che per gli n spazi S_k di W_{k+1}^n giacenti in un generico complesso lineare di S_k entro S_r passino $j \ (\geqslant 0)$ gruppi indipendenti della g_{2p-2}^{p-1} : ma non j+1.

Allora:

a) Vale la limitazione:

$$n-p+j+\sigma+1\geqslant {r+1\choose k+1}$$
,

ove l'eguaglianza caratterizza il caso in cui la serie lineare (d'ordine n) di gruppi di S_k generatori staccata (n. 6, Oss. 2^a) sulla varietà W_{k+1}^n dai complessi lineari di S_k entro S_r , è completa con l'indice di specialità j¹⁸).

 β) Quando $\sigma > 0$ si ha che:

$$n-p+j+2$$

spazi S_k generici della varietà W_{k+1}^n , o addirittura arbitrari se p < j+2 (in particolare se la W_{k+1}^n è razionale o ellittica), sono sempre associati di specie (n. 1):

$$n-p+j+\sigma+2-{r+1\choose k+1}$$
 ,

ed anzi in posizione di Schläfli (n. 5) se :

$$\sigma \geqslant {r+1 \choose k+1} - (k+1) (r-k)$$
.

y) Verificandosi la diseguaglianza:

$$n-p+j+1,$$

la varietà W_{k+1}^n risulta necessariamente contenuta in complessi lineari di spazi S_k , tormanti un sistema lineare di dimensione non inferiore a :

$$\binom{r+1}{k+1} - n + p - j - 2$$
;

inoltre n-p+j+2 spazi generatori S_k arbitrari di W_{k+1}^n sono sempre fra loro associati di 1ª specie almeno (n. 1), ed anzi in posizione di Schläfli (n. 5) se:

$$n-p+j+1 \le (k+1)(r-k)$$
.

¹⁸⁾ Tale circostanza equivale all'altra che l'immagine di W_{k+1}^n sulla grassmanniana d'indici (r, k) è una curva normale C_n^p di uno spazio ad n - p + j dimensioni.

δ) Supposta soddisfatta la relazione:

$$n-p+\sigma+1 ,$$

deve pure esserlo l'altra:

$$p+\sigma\geqslant {r+1\choose k+1}$$
.

 ε) Se n > 2p-2 oppure:

$$p+\sigma,$$

nelle proposizioni α), β), γ) è da porre j=0.

19. Se n>2p-2, la sezione della varietà W_{k+1}^n (n. 18) con un generico spazio S_{r-k} è una curva, d'ordine n e di genere p, avente per spazio normale un S_{n-p} . Pertanto è $r-k \leq n-p$; ossia lo spazio più elevato a cui può appartenere la W_{k+1}^n , nell'ipotesi n>2p-2, ha la dimensione n-p+k.

Si supponga appunto r = n - p + k, oltre che n > 2p - 2.

Il carattere j (n. 18) della varietà W_{k+1}^n è allora nullo (n. 18, ε); e inoltre la curva C_n^p immagine della W_{k+1}^n sulla grassmanniana V_{ε}^{ω} è normale, ossia appartiene ad un S_{n-p} . Infatti se C_n^p esistesse in un S_{n-p-1}^* , cioè in un S_{r-k-1}^* , ogni iperpiano di S_{ϱ} per r-k punti generici di C_n^p conterrebbe la C_n^p stessa; e quindi ogni complesso lineare di S_k , entro S_r , passante per r-k generici spazi generatori di W_{k+1}^n dovrebbe passare per tutti: donde seguirebbe in particolare (supponendo speciale un tale complesso) che lo spazio S_{r-k-1} congiungente r-k punti generici della varietà W_{k+1}^n la incontrerebbe in infiniti altri: mentre non può incontrarla che in p ulteriori punti.

Ne risulta (n. 18, α) che W_{k+1}^n appartiene alla base di un sistema lineare $\infty^{\sigma-1}$ di complessi lineari di S_k , con σ definito dall'eguaglianza:

$$n-p+\sigma+1=inom{n-p+k+1}{k+1}$$
 ;

e deducendosi:

$$\sigma=inom{r+1}{k+1}-r+k-1>inom{r+1}{k+1}-(k+1)(r-k)$$
 ,

si può concludere (n. 18, β , ε):

Ogni varietà irriducibile luogo di ∞^1 spazi S_k , di genere p, di ordine n>2 p-2 e appartenente ad uno spazio S_{n-p+k} , ha la proprietà che n-p+2 suoi S_k generatori arbitrari sono sempre in posizione di Schläfli (n.5).

Se p>0 vale anzi per la varietà W_{k+1}^n in discorso una proprietà ancora più particolare : già nota nel caso k=1. Infatti, un teorema di C.Segre assicura che la rigata, di cui trattasi quando k=1, è un cono ¹⁹). Segando allora la W_{k+1}^n con un generico $S_{n-p+1}^{(1)}$ si ottiene una rigata di genere p>0 e appartenente ad uno spazio di dimensione n-p+1, cioè, in base al teorema suddetto, una superficie conica : per il vertice $S_0^{(1)}$ della quale passano quindi tutti gli S_k generatori di W_{k+1}^n .

Tagliando ora la W_{k+1}^n con un $S_{n-p+1}^{(2)}$ non contenente il punto $S_0^{(1)}$ si ha un secondo cono, di vertice $S_0^{(2)}$: e tutti gli S_k di W_{k+1}^n passano per la retta $S_0^{(1)} S_0^{(2)}$.

Si intersechi di nuovo la W_{k+1}^n con un $S_{n-p+1}^{(3)}$ sghembo rispetto a tale retta: il vertice $S_0^{(3)}$ del cono così risultante, e perciò anche il piano che le congiunge con $S_0^{(1)}$ e $S_0^{(2)}$, giace in tutti gli S_k di W_{k+1}^n . Così proseguendo si perviene alla conclusione che gli S_k generatori di W_{k+1}^n passano tutti per un medesimo S_{k-1} . Dunque:

Una varietà irriducibile luogo di ∞^1 spazi S_k , di genere p>0 e di ordine n>2 p — 2, la quale appartenga ad uno spazio S_{n-p+k} , è sempre un S_{k-1} -cono.

Se invece p=0, il teorema prima dimostrato si riferisce alle varietà razionali normali S_k - V_{k+1}^{r-k} luoghi di ∞^1 S_k dello spazio S_r ; e può anche enunciarsi:

Sopra una varietà razionale normale dello spazio S_r , costituita da ∞^1 spazi S_k (e quindi di ordine r-k), r-k+2 spazi generatori arbitrari sono sempre in posizione di Schläfli: così che ogni S_{r-k-1} incidente ad r-k+1 qualunque di essi incontra pure il rimanente.

20. Vale la pena, terminando, di applicare esplicitamente le proposizioni generali che precedono al caso particolare (k = 1) delle superficie rigate algebriche ²⁰). Si ottengono così, fra altri, i seguenti risultati.

¹⁹⁾ C. Segre, Recherches générales sur les courbes et les surfaces reglées algébriques (Math. Annalen, 34, 1889), n. 14.

²⁰) In una nota al n. 3 del lavoro dianzi citato, C.Segre avverte che la considerazione delle rigate di S_d come curve dello spazio di dimensione $\frac{1}{2}d(d+1)-1$ può dare dei risultati utili e interessanti, già per d=3.

Se una rigata di genere p e ordine n>2p-2, appartenente allo spazio S_{τ} , non è contenuta in alcun complesso lineare di rette, si ha necessariamente :

$$n-p \geqslant \frac{1}{2}(r-1)(r+2)$$
.

 Π

Quando per una rigata di genere p e ordine n>2p-2, appartenente ad S_r , passano $\varepsilon+1$ (con $\varepsilon\geqslant 0$) complessi lineari di rette linearmente indipendenti, deve essere :

$$n-p > \frac{1}{2}(r-2)(r+3) - \varepsilon$$
;

 $e \ n-p+2$ rette generiche della rigata sono sempre associate di specie (n,1):

$$n-p+\varepsilon-\frac{1}{2}(r-2)(r+3),$$

anzi in posizione di Schläfli (n. 5) se $\varepsilon \geqslant {r-1 \choose 2}$.

III

Se per una rigata di ordine n e genere p, appartenente ad S_r , si verifica che:

$$p-1 \le n-p < \frac{1}{2}(r-1)(r+2)$$
,

essa risulta contenuta in almeno:

$$\frac{1}{2}(r-1)(r+2)-n+p$$

complessi lineari di rette linearmente indipendenti; e n-p+2 sue generatrici arbitrarie sono sempre fra loro associate (di 1ª specie almeno: n. 1), anzi in posizione di Schläfli (n. 5) quando n-p<2r-2.

IV

Se una rigata di ordine n e genere p, appartenente ad S_r , non sta in nessun complesso lineare di rette, ed è

$$n-p<\frac{1}{2}(r-1)(r+2)$$
,

deve pure essere:

$$p \geqslant {r+1 \choose 2}$$
 .

Se una rigata di ordine n e genere p, appartenente ad S_r , sta in $\varepsilon + 1$ (con $\varepsilon \geqslant 0$) complessi lineari di rette linearmente indipendenti, ed è:

$$n-p\leq \frac{1}{2}(r-2)(r+3)-\varepsilon ,$$

deve pure essere:

$$p \geqslant \frac{1}{2}(r-1)(r+2) - \varepsilon .$$

VI

Nello spazio S_r ad r dimensioni ogni rigata razionale normale (ossia di ordine r-1) è base di un sistema lineare $\infty^{\binom{r}{2}-1}$ di complessi lineari di rette.

VII

Ogni rigata razionale normale di S_r ha le sue generatrici ad r+1 ad r+1 associate secondo Schläfli: così che gli S_{r-2} incontranti r qualunque fra r+1 generatrici arbitrarie della rigata debbono ciascuno incontrare anche la rimanente.

(Reçu le premier septembre 1946.)