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Théoreme de I'hyperespace
analogue au théoréme de Pascal

Par Lovuls KoLLros, Zurich

Soit £, un espace linéaire de dimension »; (n + 1) droites de K, sont
associées si tout espace linéaire K, , qui en rencontre » coupe aussi la
derniere.

De méme, (n 4 1) espaces K, , sont associés si toute droite qui
coupe n des K, , est aussi incidente au dernier.

Pour n = 2, trois points sont associés s’ils sont alignés ; trois droites
sont associées si elles sont concourantes.

Pour » = 3, quatre droites sont associées si elles sont des génératrices
du méme systéme d’une quadrique réglée.

Le théoréeme de Pascal peut s’énoncer ainsi:

Une conique coupe les trois cotés d'un triangle 4 BC en six points:
A, et Bysurle coté AB, B, et C,sur BC, C,et A,sur C4; les trois
points d’intersection des paires de droites 4,4, et BC, B, B, et CA4,
C,C, et A B sont alignés.

Dans l'espace E, le théoréme analogue est le suivant :

Théoréme I. Une hyperquadrique rencontre les arétes d’un simplexe de E ,
en n(n -+ 1) points; ils sont n a n sur (n -+ 1) espaces lindaires H,_,
dont chacun contient n points situés sur les n arétes issues d’un méme som-
met. Ces (n -+ 1) espaces E,_, coupent respectivement les faces opposées
du ssmplexe sutvant (n + 1) espaces K, , associés.

Pour le démontrer, prenons le simplexe donné comme systéme de
référence des coordonnées projectives; ses faces ont alors les équations
;= 0 ol ¢ prend successivement les valeurs 1, 2, 3,..., (n 4 1).

On peut choisir le point unité du systéme de coordonnées projectives de
telle sorte que la quadrique donnée ait 1’équation :

Z o+ B = (@ + ay) 22,
1
ou le second membre est la somme de 1"_("’;' )

variant de 1 & (» + 1), mais ¢ # k et a,;, = a,,.

termes en x,x,, t et k
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Si 4,,4,,...,4,,, sontles sommets du simplexe, I’aréte 4,4, coupe
la quadrique aux deux points correspondant aux racines de 1’équation

2 i 2 X
oy — (@ + ay) 2,2 + 23 = 0 ;

: x x
nous associerons 'une ~% = a,, au sommet A, et 'autre =% =a,, au
Ty Ty
sommet A,.
L’hyperplan £, _, contenant les n points situés respectivement sur les
n arétes issues du sommet 4, aura ’équation :

Xy = G139 Xy + Q13 &3+ + Oy g Tpyq

que nous écrivons en abrégé :
Ty = Qg Xy

la somme devant étre faite sur 'indice k 41 variant de 2 & n + 1.
On aura des équations analogues pour les hyperplans correspondant
aux sommets A,,..., 4,,,; on peut réunir les équations de ces (n + 1)
espaces K, , dans la formule :
Xy == fiy, By ohn k#1i;
¢ prend toutes les valeurs de 1 & n + 1 (sauf k).

En coupant chacun de ces espaces E,_, par la face z; = 0 opposée au
sommet 4, on aurales (n + 1) espaces K, , qui, selon notre théoréme I,
doivent &tre associés.

En effet, une droite de E, est déterminée par (n — 1) équations
linéaires que nous écrivons en abrégé :

by 2, = 0 oil by, # b,, ;

rvariede 14 (n — 1) et svariede 14 (n + 1); la somme est faite sur s.

Cette droite coupe le premier espace K, , sile déterminant

a12 alla..-....... al’ﬂ+1
byg byg.oo....... b

-l)1 — 12 13 1, n4l = 0.
b,n__l’2 b,n,__l’a LI AR bn_l, 7l+1
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Si nous désignons par B, = B,; le déterminant que I’on obtient en
supprimant les deux colonnes d’indices ¢ et k dans le tableau de (n — 1)
ligneset (n» 4 1) colonnes des coefficients b,,, I’équation précédente peut
s’écrire :

D, =a,3 B —ays By +-- -+ (— 1)® A1, n41 Bl,n+1 =0

ou, en notation abrégée :
D1=((1/1kB1k)=O, Oh k;‘—-l,

la parenthése désignant une somme dont les termes sont alternativement
positifs et négatifs.

Les conditions nécessaires et suffisantes pour que la droite considérée
coupe les (n + 1) espaces K, , sont comprises dans la formule: D, =
(@;x Bix) =0 ou k#1 et s variede 1 & (n + 1).

On vérifie alors immédiatement que la somme alternée :

D,—Dy+Dy—- -+ (—1)"D,,, =0

est identiquement nulle ; chacun des termes a,; B,, y figure une fois
positivement et une fois négativement.

Donc toute droite qui coupe » des (n + 1) espaces E,_, est aussi in-
cidente au dernier.

Pour n = 2, c’est le théoreme de Pascal relatif aux coniques.

Pour n = 3, c’est le théoréeme que Chasles a énoncé sans démonstra-
tion (Apercgu historique sur I'origine et le développement des Méthodes en
Géométrie, p. 400) :

,Une quadrique rencontre les 6 arétes d’un tétraédre en 12 points ; ils
sont 3 & 3 sur 4 plans dont chacun contient 3 points situés sur les arétes
d’un méme sommet. Ces 4 plans coupent respectivement les faces oppo-
sées suivant 4 droites qui sont les génératrices du méme systéme d’une
quadrique réglée.*

La démonstration géométrique de ce théoréme est simple :

Soit 4 BC D le tétraédre ; ses arétes coupent la quadrique aux 12 points
A,A,Ay, B,B,B,, C,C,Cs, D;D,D;. Dans le plan 4 BC, les trois
points (4,4, — BC), (B,B; — CA), (C;Cs — A B) sont sur la droite
de Pascal d’ de la conique commune & la quadrique donnée et au plan
A BC; ils sont aussi respectivement sur les droites:

a = (AlAzAa““ BC.D), b - (BlBng‘—' C.DA), C = (010203—DA B) .
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Comme d’' et d = (D,D,D; — A BC) sont dans le méme plan 4 BC,on
voit que d’ coupe les quatre droites a, b, ¢, d; il en est méme des trois
droites de Pascal a’, b/, ¢’ situées respectivement dans les trois autres

faces BCD, CDA, DA B du tétraédre.

Done (a, b,c,d) et (a’, b, ¢/, d’) sont deux groupes de droites asso-
ciées.

Théoréme 11 (dual de I). S¢l'on méne par les espaces frontiéres K,_, d’un
simplexe de B, les m(n + 1) hyperplans E,_, tangents & une hyperqua-
drique, ils se coupent n a n en (n + 1) points dont chacun est U'intersection
de n hyperplans tangents menés par les E,_, frontiéres d’une méme face du
simplexe. Les (n + 1) droites joignant ces (n + 1) points respectivement
aur sommels opposes a ces faces sont associées.

Pour n = 2, c’est le théoréme de Brianchon.

Pour n =3, c’est le théoréme énoncé par Chasles (loc. cit.) et dé-
montré par Weddle (Demonstration of Brianchon’s Theorem, and of an
analogous property in space, Camb. Dubl. Journ., t. 7, p. 10—13):

,»S1 'on méne par les arétes d’un tétraedre 12 plans tangents & une
quadrique, ils se coupent 3 & 3 en 4 points dont chacun est I'intersection
de 3 plans menés par les arétes d’une méme face ; les 4 droites joignant
ces 4 points respectivement aux sommets opposés & ces faces sont 4 géné-
ratrices du méme systéme d’une quadrique réglée.*

Si, pour n quelconque, ’hyperquadrique est ¢nscrite au simplexe, les
(n + 1) droites joignant chaque sommet au point de contact de la face
opposée sont associées.

Si elle est circonscrite au simplexe, ses hyperplans tangents aux som-
mets du simplexe coupent les faces opposées suivant (n 4 1) espaces
linéaires de dimension (n — 2) qui sont associés.

(Regu le 26 aofit 1946.)
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