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Beitrâge zur Théorie der singulâren Intégrale
bel Funktionen von mehreren Variablen I

Von Rolf Conzelmann, Basel

§ 1. Einleitung
1. Mit der Frage, eine in einem Intervall J gegebene Funktion / mit

Hilfe eines ,,Kerns" K in der Gestalt

f(x) lim $f(Ç)K(S,x;n)dÇ (1.1)

darzustellen, befafit sich die Théorie der singulâren Intégrale, die haupt-
sàchlich von H.Lebesgue1) auf breiter Basis systematisch entwickelt und
auch zu einem gewissen AbschluB gebracht worden ist. Weitere bedeu-
tende Verallgemeinerungen und Vertiefungen verdankt man I.W.Hob-
son2) und H.Hahn3). Letzterer hat insbesondere die Frage der ,,Differen-
zierbarkeit der Grenzrelation (1.1)" eingehend untersucht, wobeiwir (1.1)
als s-mal differenzierbar bezeichnen wollen, wenn — unter x ein beliebi-

ger Punkt aus dem ofïenen Intervall J verstanden, in welchem / s-mal
differenzierbar ist — die s -f- 1 Relationen

gleichzeitig bestehen.

2. Es ist zu erwarten, daB die entsprechenden Problème sich auf ana-
loge Weise auch in mehreren Dimensionen behandeln lassen. B.H. Camp 4)

hat in groBer Allgemeinheit eine Ûbertragung der auf (1.1) bezûglichen
Sâtze in den m-dimensionalen Raum (m>l) durchgefùhrt. Was die
Relationen (1.2) anbetrifft, so werden naturgemâB partielle Ableitungen
an die Stelle der gewôhnlichen treten mussen. Eine allgemeine Formulie-

rung fur m > 1 Dimensionen findet sich meines Wissens nur in einer
Arbeit von Th.Radakovic5), allerdings unter sehr speziellen Annahmen.

*) H.Lebesgue (I). Die eingeklammerten Zahlen beziehen sich jeweils auf das Literatur-
verzeichnis am Schlufi dieser Arbeit.

2) I.W.Hobson (II), pp. 422—475.
3) H.Hahn (I).
4) B.H.Camp (I).
5) Th.Radacovic (I).
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Insbesondere wird dort von den mit iliren Ableitungen darzustellenden
Funktionen / vorausgesetzt, dafi sie selbst im ganzen m-dimensionalen
Grundintervall J stetig seien und da8 ihre sâmtlichen partiellen
Ableitungen bis zur 5-ten Ordnung in der Umgebung des fur die Darstellung
gewâhlten Punktes ebenfalls stetig seien.

3. Unter Beschrânkung auf die ersten partiellen Ableitungen ver-
folgt die vorliegende Arbeit das Ziel, nunmehr fur môglichst allgemeine
Punktionen / eine Ûbertragung von (1.2) in mehrere Dimensionen vor-
zunehmen.

Es môgen im folgenden P, Q Punkte im m-dimensionalen Raum be-
deuten. Benutzen wir dann die Symbolik P (|1,..., |w) um die Charakte-
risierung von P durch die m rechtwinkligen karthesischen Koordinaten

f |m zum Ausdruck zu bringen, und bezeiehnet J) die Gesamtheit
der inneren Punkte des m-dimensionalen Intervalls J, so kônnen wir
unsere Aufgabe etwas prâziser folgendermaBen formulieren : Es sind die
Relationen von der Gestalt

lim Cf(P)K(P,Q;n)dP
n->oo t/

P=JP(|1,...,|J (1.3)

lim fHP) l*-™^)- dP « < (J) \{l .4)
)P^Q n->oo J 0^M ^=1,2,..., m

zu diskutieren, und zwar, indem fiir den Kern K notwendige und hin-
reiehende Bedingungen dafûr angegeben werden, da8 solehe Relationen
fiir aile Funktionen einer bestimmten Klasse richtig sind.

4. Von den verschiedenen seit Lebesgue in dieser Théorie ûbliclierweise
betrachteten Funktionsklassen habe ich fiir die vorliegende Untersuchung
jene beiden herausgegriffen, welche die interessantesten Resultate erwar-
ten lielîen. Nâmlich

jP1? die Klasse der im Grundintervall (nach Lebesgue) integrierbaren
Funktionen und

F2, die Klasse der im Grundintervall beschrankten meBbaren
Funktionen.

5. Fur die Giiltigkeit einer oder mehrerer der Relationen (1.4) fiir
eine Funktion / aus der Klasse Fx oder F2 spielt die Wahl der Differenzier-
barkeitsvoraussetzungen ûber f in Q eine entscheidende Rolle.
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Zunâchst ist man versucht, etwa die Stetigkeit von / und die bloBe
Existenz der partiellen Ableitungen f[ (ju — 1,..., m) in Q vorauszu-
setzen. Eine Funktion mit diesen Eigenschaften, die auBerdem zur
Klasse F2 gehôrt, sei fur den Augenblick mit /* bezeichnet. Man erkennt
aber sogleich, daB es keinen einzigen Kern K geben kann, so daB auch

nur eine der Relationen (1.4) fur jede Funktion /* bestehen kônnte.
Um dies einzusehen, wâhlen wir der Einfachheit halber m 2 Dimen-

sionen und Q =0 als den Nullpunkt des rechtwinkligen ^fg-Systems.
Sodann betrachte man die Funktion /*, die folgendermaBen definiert ist :

Es sei /* |x auf der |1-Achse und /* f2 auf der f2-Achse, und in
allen ûbrigen Punkten der |x |2-Ebene sei /* 0. /* ist offenbar stetig im
Nullpunkt, und es gilt /* (0) 0, /£' (0) 1, /f/ (0) 1 Da aber /* bis
auf eine Nullmenge verschwindet in irgendeinem vorgegebenen Rechteck
J, das den Nullpunkt im Inneren enthalten môge, sind aile in den
Relationen (1.3), (1.4) auftretenden Intégrale 0 und daher auch die Grenz-
werte fur n->oo. Also gilt (1.3) aber keine einzige der Relationen (1.4).
Und nach diesem Prinzip laBt sich naturlich auch im Fal]e m > 2 und
Q ^ 0 eine Funktion /* mit den entsprechenden Eigenschaften konstruie-
ren.

6. Dagegen werden wir zeigen, daB es, in allen von uns betrachteten
Fâllen, z. B. sicher ausreichend ist, fur / die Existenz eines totalen Différent

ials in Q vorauszusetzen.
Man sagt bekanntlich von einer Funktion / (fx,..., |w), sie besitze im

Punkte Q(xl9..., xm) ein totales Differential, wenn fur / die Dar-
stellung gilt

wo | PQ | hier wie auch spâter die Distanz der Punkte P (f±,..., |m) und
Q(xx,..., xm) bedeutet. oc^ bezeichnet die partielle Ableitung von / nach

^ in Q.

7. Von ganz besonderem Interesse ist nun der Fall, wo eine bestimmte
Variable vor den anderen in dem Sinne ausgezeichnet wird, daB wir die
Existenz bloB einer einzigen der m Relationen (1.4) fordern, z. B. jener,
die sich auf /j, 1 bezieht.

Es ist klar, daB im letzten Fall fur / die Annahme eines totalen Differen-
tials, also einer bezuglich allenVariablen symmetrischen Bedingung, nicht
mehr am Platze ist. Es liegt vielmehr im Wesen der Dinge, an Stelle des

totalen Differentials einen geeigneten anderen, einseitigen, also im obigen
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Beispiel die Koordinate |x bevorzugenden Differentiationsbegriff einzu-
fûhren. Einer solchen Forderung entspricht der von Herrn Ostrowski ge-
prâgte6) und auch in diesem Zusammenhang7) benutzte Begriff der
,,gleichmâBigen Differenzierbarkeit" nach einer Variablen. Um MiB-
verstàndnissen vorzubeugen, wollen wir im folgenden anstatt ,,gleieh-
màBige Differenzierbarkeit" lieber die Bezeichnung ,,0-Differenzierbar-
keit" gebrauchen8).

Wir sagen, eine Funktion / (1^,..., |m) habe im Punkt Q(xx,...,xm)
eine O-Ableitung nach |1? wenn

si — &i

unter der Voraussetzung

(Si - xx) -^0 ||^ - Xfl | ^| St - xx | {fi - 2,..., m) (1.7)

gilt. Und indem man fx mit f^ vertauscht, erhàlt man die Définition fur
die O-Ableitung nach |

8. Im Verlauf der Arbeit hatte es sich gezeigt, daB neben dieser O-Dif-
ferenzierbarkeit ein noch stârker nach der Seite der GleichmâBigkeit hin
orientierter Differentiationsbegriff sich einzufuhren lohnt, der von I.W.
Hobson9) formuliert, jedoch mit keinem Namen bedacht wurde.

Wir wollen sagen, die Funktion /(f1?..., Sm) besitze im Punkte
Q(x1}..., xm) eine Jï-Ableitung nach £l9 wenn (1.6) unter der Voraussetzung

>0 (1.8)

gilt. — Ist / in einem Punkt 17-differenzierbar nach fl3 so ist offenbar / in
diesem Punkt stets auch O-differenzierbar nach ^. —

9. So werden denn im folgenden die Sàtze ûber die Relationen (1.3),
(1.4) verschieden ausfallen, je nachdem die darzustellende Funktion im
,,singulâren Punkt" ein totales Differential, eine i7-Ableitung oder eine

O-Ableitung nach einem ^ besitzt.

6) A.Ostrowski (II).
7) A.Ostrowski (I).
8) tJber die Beziehung zwischen totalem Differential und O-Ableitung orientiert Fuû-

note 31.
9) I.W.Hobson (I), p. 419.
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Nach Aufstellung einer geeigneten Définition fur die GleiehmâBigkeit
obiger Differentiationsbegriffe in einer Punktmenge werden die gewon-
nenen Satze jeweils auch fur die gleichmaBige Konvergenz der Relationen
(1.3), (1.4) in dieser Menge formuliert.

Anwendungen der hier entwickelten Théorie auf die bekanntesten der
bis heute untersuchten Kerne gebe ich im zweiten Teil dieser Beitrâge.

Der Einfachheit halber sind im folgenden fur die Darstellung stets
m 2 Variable benutzt worden. Jedoch lassen sich unsere Sâtze analog
fur beliebig viele Variable formulieren und beweisen.

Es sei noch bemerkt, daB die herangezogenen Beweismethoden im Be-
reich jener Hilfsmittel liegen, deren sich die ubliche Théorie der singularen
Intégrale zu bedienen pflegt. An einigen Stellen konnten die von H.Hahn
fur eine Dimension angestellten Ûberlegungen direkt auf mehrere Dimen-
sionen ubertragen werden

Die im folgenden aufgefuhrten Hauptsatze sind fortlaufend numeriert.
Mit la), Ib) usw bezeiehnen wir der Kurze halber Voraussetzung a) bzw.
b) des Satzes I.

Im Interesse einfaeher und kurzer Formulierung der Satze und Beweise
sah ich mich zur Einfuhrung einer Reihe von Bezeichnungen und Be-
griffen gezwungen. Ein Verzeichnis dieser besonderen Termini folgt am
Ende des zweiten Teils.

Die vorliegende Arbeit entstand unter der Anleitung von Herrn Prof.
Dr. A.Ostrowski. Fur die Unterstutzung, die mir dabei von meinem hoch-
verehrten Lehrer zuteil geworden ist, mochte ich hier meinen herzlichsten
Dank aussprechen.

§ 2. Fundamentallemma, Darstellung der Funktion

10. In diesem Paragraphen werden zwei bekannte Sàtze angefuhrt.
Um eine moglichst einfache Formulierung zu gewinnen, wollen wir uns der
folgenden Begriffe und Bezeichnungen bedienen :

Unter einem (zweidimensionalen) Kern soll eine auf einem achsen-

parallelen, abgeschlossenen Grundrechteck R vorgegebene Folge von
Funktionen des Punktes P

<p(P,n) n= 1, 2,...

verstanden werden, wobei cp(P,n) fur jedes n als uber R integrierbar10)
vorausgesetzt ist und bloB bis auf eine Nullmenge 9ln auf R definiert zu

10) Die Worter „integrierbar, integrabel, summierbar" sind im folgenden immer im
Sinne von Lebesgue zu verstehen.
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sein braucht. — Spâter werden wir neben R aueh das Symbol (R) be-
nutzen, worunter die Gesamtïieit aller inneren Punkte des Rechteeks R
verstanden wird. —

Der Kern q> heiBe auf R fast beschrânkt, wenn eine Konstante M
existiert, so da6 bis auf Nullmengen SRW fur aile Punkte P von R

\<p(P,n)\<M (2.1)
fur aile n gilt.

11. Bekanntlich besitzt das unbestimmte Lebesguesche Intégral uber
eine integrierbare Funktion y>(P, n) die Eigenschaft der Totalstetigkeit ;

d. h. : zu jedem fi>0 gibt es ein A(^)>0, so daB fur jede abzahlbare
Menge J sich bis auf die Rander nicht uberdeckender, in R gelegener
achsenparalleler Rechtecke, deren Gesamtinhalt ^ X ist, die Ungleichung
besteht :

f\<p(P,n)\dP<?t (|J|^A) ")
j

LaBt sich die positive GroBe X(fji) so wahlen, daB die letzte Ungleichung
fur aile cp(P ,n) n 1, 2,... gilt, so wollen wir U(q>) J | ç? | dP als
auf R gleichgradig totalstetig bezeichnen.

12. Die Funktionenfolge <p(P, n) n 1, 2,... soll uber R null-
strebig heiBen, wenn fur jedes (echte oder unechte) Teilrechteck R'12)
von R

lim Ç <p {P, n) dP 0 (R' < R)

gilt.
SchlieBlich wollen wir sagen, der Kern q>(P,n) sei in R limitar

orthogonal auf Ft (i=l,2), wenn fur jede Funktion /(P), die auf
dem Grundrechteck R zur Klasse Fx bzw. F2 gehort, die Relation

lim f f{P)<p{P,n) dP=O (2.2)
n->oo ^

besteht. Besitzt <p(P,ri) dièse Eigenschaft in R, so offenbar auch in
jedem Teilrechteck Rr < R

11 Ich sehlieÔe mich hier und îm folgenden an eine Darstellungsweise von Herrn Ost
rowski an, wonach hinter eine Belation in Klammera die (manchmal schon îm Text an-
gefuhrten) Bedmgungen gesetzt werden, unter welchen die betreffende Relation gilt
Ebenso benutzen wir die Ostrowskiache Bezeichnung | J \ fur den Inhalt der mefibaren
Menge J.

12) Wenn ui dieser Arbeit von Reehtecken oder Quadraten die Rede ist, so soll es sich
stets um achsenparallele Rechtecke bzw. Quadrate handeln.
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13. Mit Hilfe der oben eingefuhrten Begriffe kônnen wir nun zwei be-
kannte Sâtze folgendermaBen formulieren :

Satz I (Fundamentallemma). Damit ein auf dem Grundrechteck B
definierter Kern <p(P,n) in B limitar orthogonal auf Ft (i 1, 2) ist, ist
notwendig und hinreichend :

a) <p ist uber B null-strebig13).
b) Fur Fx : <p ist auf B fast beschrankt1*).

Fur Fa * U(<p) ist auf B gleichgradig totalstetig.

B.H. Camp15) beweist dièses Lemma sowie auch den nâchstfolgenden
Satz II fur den m-dimensionalen Raum (ra>l) ganz analog wie Lebesgue
die entsprechenden Satze in einer Dimension.

14. Im folgenden moge unser Kern noch von einem Parameterpunkt Q

abhângig sein : Es sei also &(P,Q;n) n 1,2,..., wenn nicht eine
andere Festsetzung getroffen wird, fur jeden innéren Punkt Q des Grund-
rechtecks B ein Kern im fruher festgelegten Sinn.

Mit Bh(Q) bezeichnen wir von jetzt an ein um den Punkt QalsZentrum
gelegtes, achsenparalleles abgeschlossenes Quadrat von der Seitenlânge h,
das in B enthalten ist. Der zu @(P,Q;n) gehorige gelochte Kern 0
sei dann fur jedes hinreichend kleine h > 0 definiert als

=° P< B*(Q) Q<Qn-h)

Strebt fur jedes hinreichend kleine h > 0 fur einen Punkt Q von (B)
das Intégral

(&(P,Q; n) dP (2.3)
Rh(Q)

mit n-*oo gegen die von h unabhângige Zahl g, so soll 0 ç-strebig
im Punkte Q heiBen.

ia) Wenn nichts weiter bemerkt wird, gelten die Voraussetzungen jeweils fur beide
Funktionsklassen F% (i 1, 2).

14) Da (2.2) eine infinitare Eigenschaft zum Ausdruck brmgt, wurde es im Falle von Ft
genugen, die Ungleichungen (2.1) erst von emem Index n0 an als erfullt vorauszusetzen.
Die Voraussetzung b) fur F1 ist daher so zu verstehen, dafi nach Weglassung endhch vieler
Kerngheder und geeigneter Umnunienerung ein Kern erhalten werden kann, der auf R fast
beschrànkt ist. Und in diesem Sinn ist dièse Voraussetzung auch zu verstehen, wenn wir
uns spater auf sie beziehen.

15) Vgl. B.H.Camp (I), pp. 43—50, 59 und I.W.Hobson (II), pp. 424, 445.
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15. Endlich wollen wir sagen, es geniige 0(P, Q ; n) einer J

chung in Q, wemi zwei positive Konstanten N und h existieren, so
da6 fur aile n *

J \0(P,Q;n)\ dP<N

ist. — Wenn im folgenden eine Diskussion unter der Voraussetzung dieser

Eigenschaft gefûhrt wird, so kommt der Buchstabe N im Laufe der
Diskussion in keiner anderen Bedeutung vor. —

16. Mit Hilfe des Fundamentallemmas beweist Camp unmittelbar
seinen Hauptsatz iiber die Darstellung einer Funktion in einem Stetig-
keitspunkt, den wir jetzt wie folgt formulieren kônnen :

Satz II. Es sei 0(P,Q;n) ein Kern auf dem Grundrechteck R und QO

ein beliebiger aber fester Punkt ans (E).
Damit fur jede Funktion f(P), die auf R der Funktionsklasse Fi (i=l 2)

angehôrt und inQostetig ist, die Relation

f(Q0) lim f f(P) 0(P, Qo ; n) dP (Qo < (R)) (2.4)

gilt, ist notwendig und hinreichend :

a) Filr jedes hinreichend kleine h > 0 ist der gelochte Kern
(p(P, n) 0(P,Qo;n; h) in R limitâr orthogonal auf Ft bzw. F2.

b) 0 genûgt einer N-Ungleichung in Qo.

c) 0 ist eins-strebig in Qo 16).

§ 3. Fundamentallemma und Darstellung der Funktion bei gleichmâBiger
Konvergenz

17. Unter I*, II* wollen wir die folgenden, den Sàtzen I bzw. II ent-
sprechenden, unter Benicksiehtigung der gleichmâfiigen Konvergenz
formulierten Sâtze anfuhren :

Satz I*. Fur jeden Punkt Q einer beliebig vorgegebenen Menge 3DÎ sei der

Kern 0(P,Q; n) als Funktion von P auf dem Grundrechteck R definiert.

16) B.H. Camp legt den Sâtzen I und II einen beliebigen quadrierbaren Bereich zu-
grunde. Wenn hier insbesondere achsenparallele Rechtecke gewâhlt werden, so hângt dies

mit der in § 4 zu treffenden Wahl von sogenannten Verschiebungskernen zusammen. Auch
ist hier ein einziger, statt wie bei Camp ein m-tupel verschiedener, unabhângig voneinander
nach unendlich wachsender Parameter n benutzt worden, da die Campsche Annahme
durch die klassische Abzâhlbarkeitsumordnung auf die Annahme eines einzigen Para-
meters zurûckgefùhrt werden kann.
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Damit 0(P, Q ; n) in R limitâr orthogonal auf F{ {i 1, 2) ist, gleich-
mâflig fur aile Q <( S0Î, is£ notwendig und hinreichend,

a) wmiï b) d<z/? /ftr dew Kern cp(P, n) 0(P,Q\ n) die Vomussetzungen
a) und b) des Fundamentallemmas gleichmaftig fur aile Punkte Q < SDÎ er-
fullt sind.

Beweis. Die Bedingungen sind notwendig. Fur a) ist dies klar, wie
man am Beispiel f(P) 1 erkennt. — Wâre b) nicht erfûllt, so gâbe es

eine Punktfolge Qv < 9JÎ (v 1, 2,... und eine Indizesfolge nv < w

derart, daB fur den Kern &*(P, v) &(P,QV; nv) jene Bedingung b)
von Satz I nicht erfûllt wàre, die sich auf i*\ bzw. i^2 bezieht. Es gâbe nach
Satz I eine Funktion f(P) aus der Klasse Fx bzw. F2, fur welche

lim Çf(P) 0*(P,v) dP

wâre, so daB fur dièse Funktion die Relation

lim Çf(P) 0{P, Q', n) dP 0

nicht gleichmâBig fur aile Q <( SOI gelten kônnte.
Die Bedingungen sind auch hinreichend: Wenn sie nâmlich zutreffen,

so genugt fur jede Folge Qv <( 2R und jede Indizesfolge Ternit \imnv=oo
V->oo

der Kern <5*(P, v) 0(P, Qv; nv) den beziiglich Fx bzw. F2 gemachten
Voraussetzungen des Satzes I. Daher gilt fur jede Funktion f(P) aus Fx
bzw. F2 :

ff(P)0*(P,v)dP->O (v->oo)
R

Dies bedeutet, daB 0 in R limitâr orthogonal auf Fx bzw. F2 ist, gleichmâBig

fur aile Q < S0i.

18. Satz II*. i?s sei 0(P,Q; n) ein Kern auf R, (R) der Variabili-
tâtsbereich von Q und A eine beliebige abgeschlossene in R enthaltene Punkt-
menge, die keinen Randpunkt von R enthâlt.

Damit fur jede auf A stetige Funktion f{P), die auf R zur Klasse Ft
(i 1,2) gehôrt, die Relation (2.4) gleichmâ/Hg in A gilt, ist hinreichend,
daji

a), b), c) die Voraussetzungen a), b), c) von Satz II gleichmâfiig fur aile
Q <^A erfûllt sind.
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Beweis. Es sei ein beliebiges e>0 vorgegeben. Sodann moge jedem
Punkt Q von A eine (offene, kreisfôrmige)Umgebung U(Q) <( R zugeordnet
werden, so da8

^ P<U(Q) (3.1)

gilt. Es moge u(Q) die zu U(Q) konzentrische Umgebung mit halb so

groBem Radius bezeichnen. Nach dem Borelschen Ûberdeckungssatz
existieren endlich viele u(Qv), die A uberdecken. Ihre (offene) Vereini-

gungsmenge heiBe 91.

Es bedeute jetzt ô die Lange des kleinsten Radius, der bei den u(Qv)
vorkommt und X > 0 den Abstand zwischen den Punktmengen A und
B — SI. SchlieBlich sei h Min (ô, X). Dann konnen wir behaupten,
daB

|/(P)-/(<2)|<~ > P<Kh(Q) (3.2)

fur aile Punkte Q von A gilt 16a).
In der Tat : Die GroBe h ist so klein gewahlt, daB aile Punkte von

Rh(Q) (Q < A)in $ enthalten sind. Ist jetzt P <; Bh(Q) (Q < A), so sind
die folgenden beiden Falle moglich : Entweder liegen P und Q in ein und
derselben Umgebung u{Qv) ; oder es gilt Q < u(Qv), P <K u(Qv). Im
letztern Fall ist sicher P < U(QV). In beiden Fallen folgt aus (3.1)

i f(Q) ~ f(Qv) I < -^ Q< u(Q9) < U(QV)

\<-^ P<U(QV)

und damit die Richtigkeit der Behauptung (3.2).

19. Fur dièse Wahl von h schreiben wir die Identitat

Jn(f,Q) ff(P) &(P,Q;n) dP 17) f(Q) (0(P,Q,n) dP +
'R Rh(Q)

+ J [f(P) - HQ)] ®{P, Q\ n) dP +jf(P) $(P, Q ; n; h) dP (3.3)
Rh(Q) R

16 a) Man beachte, daB es sich hier nicht emfaeh um den klassischen Satz uber die
gleichmaBige Stetigkeit handelt, da P auch auf gewissen Punkten der Menge R—A vamert

17) Die Existenz der Intégrale von dieser Gestalt folgt aus dem Satz, daB em Produkt
von zwei in emem beschrankten meBbaren Bereich gegebenen summierbaren Funktionen
stets summierbar ist, wenn einer der beiden Faktoren bis auf eme Nullmenge in jenem
Bereich absolut gleichmaBig beschrânkt ist (vgl. C.Caratheodory (I), p. 438). Im Falle der
Funktionsklasse F2 ist dièse Voraussetzung bei Jn(f,Q) offenbar erfullt. Handelt es sich
um die Klasse Fl9 so ist /(P) wegen der Stetigkeit m Q fur em hmreichend kleines h^> 0

auf Rh(Q) endlich, und auf dem Bereich R — ÏÏ^iQ) ist nach Voraussetzung a) zufolge
des Satzesl* der andere Faktor, <P, bis auf eme Nullmenge absolut beschrânkt.
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Der mittlere Term der rechten Seite ist absolut < — fur aile n, wie man
o

aus der iV-Ungleichung und der Relation (3.2) sofort erkennt.
Wegen der Eins-Strebigkeit von 0 und der gleichmâBigen Beschrânkt-

heit von / auf A, kann ein Index n0 angegeben werden, so daB der erste

Term redits in (3.3) sich hôchstens um ± —von f(Q) unterscheidet fiir
o

aile Q <( A und aile n > n0. Zufolge der limitaren Orthogonalitat von 0
auf Fx bzw. F2 strebt der dritte Term in A gleichmaBig nach

0 und ist daher von einem n'o an absolut < —. Daher ergibt sich aus

(3.3):
I «/»(/, Q) ~ HQ) < y + y + y s (n ^ Max (n0, n'o))

fiir aile Q <( A. Da e beliebig klein angenommen werden kann, ist der
Satz somit bewiesen.

§ 4. Ein Hilfssatz von Camp

20. Wir fûhren in diesem Paragraphen einen Hilfssatz (Satz III) an,
der sich in spàteren Sâtzen beim Beweis der Notwendigkeit gewisser
Bedingungen immer wieder als das wichtigste Werkzeug erweisen wird.

Satz III. Ist <p(P,n) n 1,2,... eine auf einem ebenen (nach
Peano-Jordan) quadrierbaren Bereich B gegebene Folge integrierbarer
Funktionen des Punktes P, und ist die Menge der Zahlen

f\<p(P,n)\dP
B

fur n-^oo nicht beschrânkt, so existiert eine auf B stetige Funktion f(P),
welche auf dem Rand von B verschwindet, wobei

ist.
lim Çf(P) <p(P,n)dP ^ 0

Dieser Satz, eine Verallgemeinerung eines entsprechenden eindimen-
sionalen Haar-Lebesgueschen Satzes18), wurde von Camp19) aufgestellt
und bewiesen, so daB wir auf seinen Beweis nicht eingehen wollen.

**) Vgl. z.B. H.Hahn (I), pp. 593—596.

19) B.H.Camp (I), pp. 49—50.

19 Commentarii Mathematici Helvetici



§ 5. Darstellung (1er partiellen Âbleitung im Falle des totalen Diîferentials

21. Satz IV. Es sei W(P,Q;n) ein Kern auf R und Q0(x, y) ein
beliebiger aber fester Punkt ans (R).

Damit fur jede Funktion f(P), die auf R zu Ft (i 1, 2) gehôrt und in
Qo ein totales Differential besitzt, die Relation

(5.1)
\ /Qo R

gilt, ist notwendig und hinreichend :

a) Fur jedes hinreichend kleine h>0 ist der gelochte Kern cp(P, n)
W(P,Q0;n;h) in R limitâr orthogonal auf Fx bzw. F2.

b) Die Funktionenfolge | PQ0 \ • W(P, Qo; n) geniigt einer N-Unglei-
chung in Qo.

c) Die Funktionenfolgen (r) — y)W(P, Qo; n), W(P, Qo; n) sind null-
strebig in Qo.

d) Die Folge (| — x)W(P, Qo; n) ist eins-strebig in Qo.

22. Beweis. Unter Berucksichtigung von (1.5) kann fiir aile Punkte

HP) HQ,) + (f - *)/fWo) + (v- y)f'n(Qo) + o(\PQ0\) (5.2)

gesetzt werden, wobei —, PJ^° mit | PQ0 |->O nach 0 konvergiert.
\PQo

Aus (5.2) folgt nun fur kleine h > 0 und aile n, wenn wir der Kûrze halber
Wn fur W(P,Q0;n) schreiben :

;Q0;n;h) dP + f(Q0) f YndP+

(5.3)

-x)Wn dP+ f'JQ0) f(rj - y) WndP + fo(\PQ0 \)WndP *>).

WQo)

Es streben wegen der Voraussetzung a) der erste Term rechts in (5.3)
fiir n-^oo nach 0, der zweite und vierte Term wegen der Voraussetzung c)
ebenfalls nach 0, und der dritte wegen Voraussetzung d) nach fç(Q0).

20 Fur die Klârung der Frage nach der Exktenz dieser Intégrale konsultiere man die
Fufinote 17.
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Um zu beweisen, daB das letzte Intégral rechts in (5.3) nach 0 strebt,
wâhlen wir ein beliebiges e>0. Dann lâBt sich ein h>0 angeben, so

daB im Quadrat Rh(Q0) < R

ist. Es gilt daher wegen Voraussetzung b) fur aile n

J o(\PQ0\) WndP\<e (5.5)
Rh(Qo)

womit die Bedingungen als hinreichend nachgewiesen sind.

23. Die Voraussetzungen sind notwendig : Wâre nâmlich a) nicht
erfullt, so existierte eine der Klasse Fx bzw. F2 angehôrende Funktion
g (P) und ein h > 0, so daB fur ein gewisses Teilrechteck iï* von R

lim fg(P)W(P,Qo;n;h)dP^O (5.6)

wâre. — Hieraus folgt, daB man ohne Beschrânkung der AUgemeinheit
annehmen kann, es habe R* mit Rh(Q0) hôchstens Randpunkte gemein-
sam. — Definieren wir dann f(P) durch die Vorschrift

UP, =9(P) P<(R*)l^* =0 P<R-(R*)
so gehôrt auch / auf R zur Klasse Fx bzw. F2. / (P) hat im Punkt P Qo

ein totales Differential, und es ist /^ (Qo) 0, wâhrend andererseits aus

(5.6)

folgt. Dies steht im Widerspruch zu (5.1).

24. Fur spâter wollen wir aus diesem letzten Beweis noch folgendes in
Erinnerung behalten : Ist Voraussetzung a) nicht erfullt, so existiert ein
h>0 und eine Funktion f(P), die auf R zuFx bzw. F2 gehôrt und auf
Rh(Q0) identisch 0 ist (kurz : eine inQ0gelochte Funktion), fur welehe

(5.1) nicht gilt.

291



25. Wâre b) nicht erfiillt, so existierte nach Satz III ein h>0 und
eine auf Bh(Q0) stetige Funktion co(P, Qo), fiir die

lim f co(P, Qo) -\PQ0\¥ndP^0 (5.7)

gelten mtiBte. Da wir den Punkt Qo als einen Randpunkt unseres Bereichs
auffassen kônnen, kann man gemâB Satz III noch verlangen, daB

co(P, Qo) 0 ist fur P Q0. Setzen wir

\PQ0\co(P, Qo) P<Bh(Q0)
=0 P<B-Rh(Q0),

so besitzt f(P) in P Qo ofïenbar ein totales Difïerential, und es ist
fê(Q0) 0. Da andererseits wegen (5.7)

gilt, stehen wir wieder im Widerspruch mit (5.1).
Die Bedingungen e) und d) erweisen sich als notwendig, wenn man fur /

insbesondere die Funktionen wâhlt, die in R — Bh(Q0) identiseh 0 und
in Bh(Q0) gleich rj — y, 1 bzw. Ç — x sind. Damit ist Satz IV bewiesen.

26. Besitzt eine Funktion / in allen Punkten einer Menge 93Î ein totales
Differential, und sind ihre partiellen Ableitungen /^, fft] daselbst gleich-
maBig beschrànkt, so wollen wir sagen, / besitze gleichmàBiginïftein
totales Differential, wenn noch die folgende Bedingung erfûllt ist. Zu
jedem e>0 existiert ein ô>0, so daB — unter o(\ PQ |) das ,,Rest-
glied" in (5.2) verstanden — fiir aile | PQ \ < ô die Ungleichung

o(\PQ\)
PQ <e

gleichmâBig fur aile Q <^3R gilt. — Ein dem Satz IV entsprechender, die

gleiehmàBige Konvergenz berucksichtigender Satz làBt sich jetzt wie folgt
formulieren.

27. Satz IV*. Es sei W(P,Q; n) ein Kern auf B und 2R eine be-

liebige aber fest gewâhlte Punktmenge aus irgend einem Bechteck Bf <( (B).
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Damit fur jede Funktion, die auf R zu F{ (i 1,2) gehôrt und gleich-
mà/iig in 9Jt ein totales Differential besitzt, die Relation (5.1) gleich-
mâflig in SDÎ gilt, ist hinreichend, dafi

a) — d) die Voraussetzungen a) — d) von Satz IV gleichmajiig fur aile
Punkte Q < 2R erfullt sind.

Der Beweis ergibt sich sofort daraus, dafi jetzt sâmtliche Grenzuber-

gànge rechts in (5.3) gleichmâBig fur aile Q ^ 2R erfolgen.

§ 6. Charakterisierung der Verschiebungskerne

28. Durch Kombination der Sàtze II und IV werden wir in § 10 einen
,,Differentiationssatz" aufstellen kônnen, der iiber die ,,partielle Differen-
zierbarkeit" der Relation (2.4) AufschluB erteilt. Um môglichst einfache
Kriterien zu erhalten, wollen wir annehmen, es habe der Kern die Gestalt

0(P,Q;n) &(Ç~xir}-y;n) (P= P(| ,v), Q =Q{x, y)), (6.1)

und es sei das Grandrechteck R insbesondere ein Quadrat Rt von der
Seitenlânge l.

Wir setzen im folgenden

u £ — x v rj — y (6.2)

Bezeiehnet 0 den Nullpunkt der wv-Ebene und Q(x, y) einen beliebigen
inneren Punkt von Rlf so ist der Definitionsbereich des Kerns

&(Ç — x,rj — y;n) 0(u, v; n)

in der u?;-Ebene offenbar das Innere (Rn(O)) des Quadrates R2l(O).
Einen solchen Kern 0 wollen wir einen Verschiebungskern auf
(R2l(O)) nennen, wenn die folgenden Voraussetzungen zutreffen. Dabei
bedeute das Symbol (a, b) hier wie auch spàter das offene Intervall,
dessen Endpunkte a, b (a<b) sind.

29. 0(u,v; n) sei fur aile n und jedes feste v ^ — 1,1) totalstetig
bezûglich u in jedem abgeschlossenen te-Intervall V <( (— l, l) und fur
jedes feste u<^(—1,1) in — l, l) meBbar bezûglich v. ~Esseien0(u,v;n)
und 0^(u,v;n) integrabel tiber jedes Rechteck R* <( (R2l(O)) fur aile

n. SehlieBlich gelte ftir jedes hf > 0 in jedem abgeschlossenen Teilrechteck
R* von (R2l(O))
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lim0(u,v;n;h') O (P(m,w)< R* < (B2l(0))) (6.3)

gleichmâBig fur aile Punkte P(u,v) ^ J?*. Hierbei sei 0 0 fur
P(u,v)<Rh,(O) und 0 0 fur P («,*)< (Rn(O)) - Rh,(0).

Wir wollen in Analogie zur fruheren Définition fur @(u, v; n;kf) wieder
die Benennung ,,gelochter Kern" benutzen. — Entsprechend werden wir
sagen, &(u,v;n) genuge einer iV-Ungleichung im Nullpunkt bzw. sei

^-strebig im Nullpunkt, wenn &(£ — x, r] — y; n) dièse Eigenschaft im
Punkt x y 0 besitzt. —

30. Aus (6.3) lâBt sich folgende Eigenschaft der Verschiebungskerne
herleiten :

Fur ein beliebiges positives V<.l betrachte man das Quadrat R2l,(O).
Dann ist wegen (6.3) fur jedes feste h > 0, jedes e > 0 und aile n > n0 (s, h)

\0(u,v;n;h)\<s {P(u,v) < R2l,(O), n>no) (6.4)

Bezeichnet jetzt Q(x,y) irgendeinen Punkt im f ^-System, so gilt folglich
fur aile Punkte P(£, ??)< R2l, (Q)

\0(ç-x,rj- y; n; h) \ <e (P(f, rj) < Rn, (Q), n>no) (6.5)

und zwar gleiehmaBig fxir aile Punkte Q. Der SchluB von (6.4) auf
(6.5) beruht ofîenbar auf der in (6.1) zum Ausdruck kommenden Eigenschaft

des Kerns, die wir im folgenden Verschiebungseigenschaft
nennen wollen.

§ 7. Totalstetige Verschiebungskerne

31. Bevor wir uns mit weiteren Eigenschaften der Verschiebungskerne
befassen, wollen wir die oben gegebene Charakterisierung dieser Kerne
noch etwas genauer analysieren. Es ist unbefriedigend, daB die Existenz
der Intégrale

J0(u, v;n) du dv Ç&'U (u,v;n) du dv (J?*< (R2l(O))) (7.1)

sich nicht auf einfache Weise aus den ubrigen, den Verschiebungskern
definierenden Eigenschaften gewinnen làBt und daher vorausgesetzt
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wurde. In einem besonderen Satz wirddaher jetzt fur denFall von m=2
Variablen dem Kern 0 eine etwas schârfere Bedingung auferlegt, aus
welcher die Existenz dieser Intégrale ohne Schwierigkeit geschlossen
werden kann.

32. Satz. SinddieGlieder 0(u,v;n) n 1,2,... einerauf (R2l(O))
definierten Funktionenfolge als Funktionen der beiden Variablen u, v total-
stetig auf jedem Rechteck R* <( (RU(O)) so ist dièse Folge unter der Vor-

aussetzung, dafi (6.3) gilt, ein Verschiebungskern auf (R2l(O)).

Dabei sagen wir, eine Funktion g(u,v) sei auf R* totalstetig, wenn g

fur festes u in v und fur testes v in u totalstetig ist, und wenn die zu-
gehôrige Intervallfunktion

W(i) g(u2,v2) — g(ux,v2) — g{u2,vx) + g{ul9vj)

wo i ein in i2* enthaltenes Rechteck mit den Eckpunkten P(uv,vx)
(v, x 1,2) bedeutet, selbst totalstetig auf i2* ist21).

Beim Beweis werden wir uns der folgenden bekannten Tatsache aus der
Théorie der reellen Funktionen bedienen, wobei mit dem auch spater be-

nutzten Symbol (oc, /?> das abgeschlossene Intervall bezeichnet wird,
dessen Endpunkte oc, fi (<*</?) sind :

Ist f(x) eine im Intervall (oc, fi} integrable Funktion und F(x) ein
unbestimmtes Intégral

F(x)=jf{x)dx

so gilt filr die Totalvariation T{x, /S) von F(x) in <(<%, j8) :

Î'(«;J8) j\f(x)\dx«) (7.2)
OC

33. Beweis. Da jede totalstetige Funktion von zwei Variablen stetig
ist im gewôhnlichen Sinne23), existiert das erste Intégral (7.1).

21 Dièse Définition der Totalstetigkeit ist équivalent mit der in C.Caratheodory (I),
p. 653, gegebenen, wie man mit Hilfe des dort auf p. 654 formulierten Satzes 3 sofort er-
kennt.

22) Vgl. I.W.Hobson (I), p. 605.

n) Vgl. C.Caratheodory (I), p. 654.
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0ru ist eine meBbare Funktion24). Um die Integrierbarkeit von &fu zu
beweisen, genugt es, naehzuweisen, daB das iterierte Intégral

fdvf\<P^(u,v;n)\du (7.3)

erstreckt uber 1?*, existiert25). Seien etwa A, B {A < B) die u- und C, D
(C<D) die v-Koordinaten der Eckpunkte von i£*. Dann ist nach (7.2)

wo Tn (v) die Totalvariation der Funktion 0 im Intervall (A, By fur
festes v bezeichnet. (7.3) existiert sicher, wenn Tn(v) in <(7,Z)> eine
stetige Funktion ist. DaB dies tatsâchlich der Fall ist, besagt der folgende
Hilfssatz, mit dessen Beweis dann auch der obige Satz bewiesen sein
wird.

34. Hilfssatz 1. Ist g{u,v) totalstetig auf dem Rechtech i?*, dessen

Ecken A, B als u- und C, D dis v-Koordinaten haben môgen, und bezeichnet

T(v) die Totalvariation von g fiir ein festes v < <O, Z>> auf dem u-Inter-
vall (A, jB>, so ist T(v) im Intervall <C, Z>> stetig.

Beweis. Es sei ein beliebiges e>0 vorgegeben. Wenn jetzt W(i) die
der Funktion g zugeordnete Intervallfunktion bedeutet, kann man ein
6 (e) > 0 angeben, so daB stets

gilt, wenn iv (v 1,2,...) eine beliebige Menge von abzâhlbar vielen,
punktfremden, in 12* enthaltenen Rechtecken ist, wobei die Summe ihrer
Flâcheninhalte \iv\ kleiner als à (s) ist.

Sei jetzt v ein beliebiger aber fester Wert aus (C, D) und h eine
beliebige GrôBe mit

Wir setzen vf v + A, sofern vr «( (C, D) gilt. Dann ist das MaB des

Rechtecks i* mit den Eckpunkten (A, v), (B, v), (B, vr), (A, v') kleiner
als ô.

24) Vgl. C.Caratheodory (I), p. 642.

25) Vgl. C.Caratheodory (I), p. 637.
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Nach unseren Voraussetzungen kann man eine Zahlenfolge uv finden,
fur die

A uo<u1<- ¦ • <u B

s p
T(v) - -ô- < 2 I g(uvi v) - g{uv_x ,v)\< T(v) (7.5)

*¦* V — l

ist. Analog existiert eine Folge urv, fur die

A ur0<u[<... <u'pf J5

(7.6)

ist. Die Ungleichungen (7.5) bleiben bekanntlich bestehen, wenn man
noch weitere Teilpunkte, z. B. aile u'v ^ uv einfuhrt. Analog gelten die

Ungleichungen (7.6) immer noch, wenn man noch die Teilpunkte uv ^ u'v

einfuhrt. Wir kônnen daher annehmen, es sei uv ufv, v 1,..., p;

Bezeichnen jetzt C, C' die mittleren Terme der Ungleichungen (7.5)
bzw. (7.6), sofolgt

p
A | C — G11 ^ 2 | g(uv9v) ~ 0K,_l5v) — 9(uv>v') + 9(uv-i>v') I •

Da die Inhaltssumme der p Rechtecke mit den Eckpunkten

(uv,v), (uv_x,v), (uv,v% (uv^lyvr)

gleich | i* I ist, folgt wegen (7.4) sofort : A < —- Aus den Ungleichungen
3

(7.5), (7.6) ergibt sich daher

| T(v)-T(v')\<A + 2--<e
o

Dies gilt fur jedes hinreichend kleine | v — vf \ \h\ und bedeutet
daher die Stetigkeit von T (v) im Punkte v

§ 8. Eîn Satz ûber VerscMebungskerne

35. Der nâchste Satz (Satz V) bildet die Grundlage fur eine Vereini-

gung der Sâtze II und IV zu einem Differentiationssatz fur VerscMebungskerne.

Wir stellen den folgenden Hilfssatz voran :
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Hilfssatz 2. Es sei 0(u,v;n) ein Verschiebungskern auf (R2l(0)).
Damit 0^(u,v;n;h) fiir jedes hinreichend hleine h>0 in jedem Recht-
eck R* <( (R2l(0)) auf F{ (i 1,2) limitàr orthogonal ist, ist notwendig
und hinreichend, dafi die auf Fx bzw. F2 beziigliche Bedingung b) von Satz I
filr ç? 0^(u,v;n;h) und R R* erfûllt ist.

Aus den Eigenschaften des Verschiebungskerns lâBt sich nâmlich fur
Wu die Null-Strebigkeit ûber i?* folgern, so daB sich zusammen mit Vor-
aussetzung Ib) fur 0ru nach dem Fundamentallemma die limitâre Ortho-
gonalitàt auf Fx bzw. F2 ergibt.

In der Tat : Es seien mit a, b {a<b) die u- und mit c, d (c<d) die
v-Koordinaten der Eckpunkte eines beliebigen Rechteeks R' <( jR* be-

zeiehnet, das den Nullpunkt nicht enthâlt. Wegen der Lochung des Kerns
ist die Beschrânkung auf solehe Rechtecke R' erlaubt. Durch Intégration
nach u erhâlt man wegen der Totalstetigkeit von 0 in u :

d

\0fu(u,v\n)dudv Ç{0(b,v; n) — 0(a,v; n))dv 26)

R' c

Das letzte Intégral strebt mit w->oo nach 0, was sich aus (6.3) ergibt,
wenn man beachtet, daB die Punkte (6, v), (a,v) v «( <c, iï) fur
hinreichend kleine hf>0 nicht in Rh>{0) liegen. Dies bedeutet die Null-
Strebigkeit von 0ru ûber 12*.

36. Satz V. Es sei 0(u,v;n) einVerschiebungskernauf (R2l(O)),Rl
ein béliebiges in einer irj-Ebene vorgegebenes Quadrat und Q0(x,y) < (RJ
ein beliebiger aber fester Punkt.

Damit auf Rt fur 0(£ — x, rj — y\n) die Voraussetzungen von Satz II
und fur — 0lu (| — x, rj— y; n) jene von Satz IV erfûllt sind, ist
hinreichend :

a) In jedem Teilrechteck J?* von (R2l(O)) und fur jedes hinreichend
kleine h>0 ist 0ru(u,v\n\h) limitàr orthogonal auf F1 bzw. F2.

\>x)undb2) DieFunktionenfolgen u0fu (u,v; n), v0'u (u,v; n) geniigenje
einer N-Ungleichung im Ursprung.

c) 0 (u, v ; n) ist eins-strebig im Ursprung.

Insbesondere sind c) bezûglich Satz II und a), bj), b2) bezûglich Satz IV
notwendige Bedingungen.

28 Zufolge der Integrabilitât von 0U tiber JR' kann das Intégral linker Hand durch
iterierte Intégration berechnet werden (vgl. I.W.Hobson (I), p. 630). Feraer ist die An-
wendung des Fundamentalsatzes der Infinitesimalrechnung wegen der Totalstetigkeit von
0 in u erlaubt (vgl. I. W.Hobson (I), pp. 592, 593).
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37. Unter Beachtung des Hilfssatzes 2 erhâlt man offenbar sofort den
folgenden

Zusatz zu Satz V. Die Voraussetzung a) in Satz V kann ersetzt werden
durch die weniger umfassende :

V. a°) Fur jedes hinreichend Heine h>0 und jedes Rechteck

R*<(R2l(O)) gilt

fur Fx: 0^(u,v;n;h) ist auf i?* fast beschrânkt.

fur F2: | | 0!u(u, v; n; h) \ dudv ist auf jB* gleichgradig totalstetig.

38. Beweis von Satz V. Wir zeigen zuerst, da6 die Voraussetzungen
hinreichend sind. Zu diesem Zweck bestimmen wir eine positive GrôBe

v V<1, sodaB
(8.1)

-RJQJ

gilt (vgl. Figur).
Wir verifizieren jetzt fur 0 die Eigen-

schaften lia), b), e) :

Unter Beachtung von (8.1) folgt
aus (6.5), daB 0 auf Rt die

Voraussetzungen des Fundamentallemmas fiir Fx bzw. F2 erfiillt. 0 ist also in Rt
limitâr orthogonal auf Fx bzw. F2. Dies wird gerade in lia) gefordert.

IIb) verlangt, daB 0 in Qo einer JV-Ungleichung genùgt, was man durch
partielle Intégration nach £ nachweist27). Fur jedes hinreichend kleine
h > 0 ist wegen der Integrierbarkeit von 0 und der Totalstetigkeit von 0
in u:

x) -C ri II
/ J \ i I J 3f

2/-A x-h RzhiQo)

hj\\0(h,r]-y;n)\ + l0(-h,r]-y;n)\\drI- {S'2)

V-h

| — x) 0'u (S — x, ri — y; n) sgn 0 de du]

2?) Vgl. z. B. C.Caratheodory (I), p. 549, fur die Bedingungen, unter denen die Formel
der partiellen Intégration gilt.
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Dabei kann man etwa sgn 0=1 fur 0^0 und sgn 0=^—1 fur
0<O setzen28). Da die Punkte (h,rj — y), (—h, rj — y) (rj < {y—h,
y + hy) fur ein hr < 2h nicht in Rh, (0) liegen, folgt aus der MeBbarkeit
von 0 und aus (6.3), daB in (8.2) das erste Intégral rechts mit n ->oo
nach 0 strebt. Das zweite ist wegen Voraussetzung h±) absolut gleieh-
mâBig beschrânkt. Also trifft Ilb) zu. — Voraussetzung c) ist àquivalent
mit Ile).

Wir weisen jetzt IVa), b), c), d) flir — 0fu nach.
Setzt man in Voraussetzung a) insbesondere j?* R2l, (0) (0 < V < l),

so ergibt sich, da auch — 0fu die Verschiebungseigenschaft besitzt, unter
Beachtung von (8.1) sofort, daB — 0'u in Et limitâr orthogonal auf Fx
bzw. F2 ist. Dies besagt, daB IVa) zutrifft.

39. IVb) ist offenbar àquivalent mit den beiden Voraussetzungen b^
und b2). — Fur spâter wollen wir uns noch merken, daB im Beweis von
Satz V Voraussetzung b2) hier ein einziges Mal, und zwar zum Nachweis

von IVb) benôtigt wird
40. Wir haben jetzt IVc), d h. die Null-Strebigkeit der Funktionen

— 0fu, — (ri — y) 0fu in QQ nachzuweisen. Es soll unter g(rj — y) nach
Belieben eine der Funktionen — 1, —(rj — y) verstanden werden. So-

dann bemerken wir, daB man fur kleine h > 0 durch Intégration nach £

unter Beachtung der Totalstetigkeit von 0 in u

g(rj — y) 0U (£ — x, rj — y; n) d£ drj

V+h

v-h

erhâlt, was wegen (6.3) mit n ->oo nach 0 konvergiert. Damit ist IVc)
verifiziert

IVd), d. h. die Eigenschaft der Eins-Strebigkeit von — (f — x) 0ru in
Qo weisen wir durch partielle Intégration nach :

/(! — x) 0ru(| — x,rj — y;n)d£ drj

V+h
h I \0(h, rj — y;n) + 0( — h, rj — y;n)\drj — \ 0 d£dr)

V-h^ i*2ft(Qo)

28) Fur 0 ^ 0 ist dièse Festsetzung klar. Fur aile inneren Punkte der Menge $R(0 0)

ist | 0 \u as 0, so dafi man dort z. B. sgn<|> 1 setzen kann, da der Integrand ohnehin
verschwindet. Wegen der Integrierbarkeit von 0 ist die Menge $R(0 0) und deren
Band 91 mefibar, und 91 hat das MaÛ 0. Die Festsetzung sgn<Z> 1 fur die Nullmenge 91

ist fur den Wert des letzten Intégrais ohne Einflufi.

300



Das erste Intégral rechts strebt wegen (6.3) mit n->oo nach 0 und das
zweite wegen Voraussetzung c) nach 1. Daher ist IVd) erfiillt. — Somit
sind die Voraussetzungen alshinreiehend erkannt.

41. Voraussetzung c) ist offenbar fur die Giiltigkeit von Ile) not-
wendig; ebenso Voraussetzungen bx) und b2) fur die Giiltigkeit von IVb).
Was schlieBlich Voraussetzung a) anbetrifït, so ist ihre Notwendigkeit fur
die Eigenschaft IVa) folgendermaBen einzusehen.

Zunâchst wissen wir, da8 eine Funktionenfolge in jedem Teilrechteck
eines Rechteeks i2* auf Fx bzw. F2 limitâr orthogonal ist, wenn sie dièse

Eigenschaft in i2* besitzt. Bezeichnet daher R* «( (R2l(O)) einRechteck,
in welchem 0^(u, v; n; h) fur ein gewisses h>Q auf F1 bzw. F2 nicht
limitàr orthogonal ist, so darf man ohne Beschrânkung der Allgemeinheit
annehmen, die Seiten von R* seien <l. Ferner kann man wegen der

Lochung des Kerns annehmen, R* habe mit Rh(0) hôchstens Rand-
punkte gemeinsam. Dann existiert ein Punkt Q0{x, y) <( (Rt) mit der
Eigenschaft, da8 die Transformation (6.2) das Rechteck R* der uv-
Ebene in ein Rechteck 9î der f ??-Ebene uberfiihrt, fur welches

gilt. Ftir diesen Punkt Qo kann daher — 0!u (f — x,rj — y;n;h) in Rt auf
F1hzw.F2 nicht limitâr orthogonal sein und also Voraussetzung IVa)
nicht erfûllen. Damit ist der Satz bewiesen.

§ 9. Yerallgemeinerung auf gleichmâBige Konvergenz

42. Satz V*. Es sei &(u,v;n) ein Verschiebungskern auf (R2l(O))
und A eine beliebige in einem vorgegebenen Quadrat Rt der Çrj-Ebene ge-

legene abgeschlossene Punktmenge, die keine Randpunkte von Rt enthâlt.

Dann sind die Voraussetzungen von Satz V hinreichend dafûr, da/S fier
0 (f — x, rj — y ; n) die Voraussetzungen von Satz 77* und fur — &'u (£ — x,
rj — y\n) jene von Satz IV* mit 2R A und R Rt erfiïllt sind.

Beweis. Wir greifen auf den Beweis des Satzes V zurûck. Das Quadrat
-R21' (Q) werde nunmehr so groB gewâhlt, daB (8.1) fur aile Punkte Q «< A
gilt.

Zunâchst weisen wir II* a) fiir 0 und IV* a) fur — 0fu in dieser Reihen-
folge nach.

DaB 0 in Rt limitâr orthogonal auf Fx bzw. F2 ist, und zwar gleich-
mâBig fiir aile Q «( A, folgt aus Satz I*, dessen Voraussetzungen wegen
(6.5) und (8.1) furç> 0, R Rt und m A erfûllt sind. Also
trifft II* a) zu.
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Um die entsprechende Eigenschaft fur — 0!u also IV* a) nachzu-
weisen, zeigen wir, daB fur — Wu auf Bt die Voraussetzungen a) und b)
von Satz I* zutreffen, wobei wieder 9ft mit A zu identifizieren ist.

Die Richtigkeit der auf I* b) beziiglichen Behauptung ergibt sich
sofort etwa unter Benutzung von V a°) aus der Verschiebungseigenschaft
von <P'U. Wirhaben also noch I* a), d.h. fur — Wu (f ~ x, rj — y; n;h) die
Eigenschaft der gleichmâBigen Null-Strebigkeit uber Rt nachzuweisen.

Es bedeute Q(x, y) einen beliebigen Punkt aus A und 5R ein beliebiges
fur einfestes h>0 in Rt — (Rh(Q)) gelegenes Rechteek, dessen Ecken
a, b als £- und c, d als ^-Koordinaten haben môgen. Dann ist

> — x, rj — y ; n) — &{a — x, rj — y; n)} drj

(9.1)

Fur die im Integranden rechts auftretenden Argumente gilt wegen (6.3):

| 0(b — x,rj — y;n)\<e \ 0(a — x, r\ — y; n) \ <e (n>n0)

und zwar gleichmàBig fur aile Rechtecke 91 und aile Punkte Q < A Ist
jetzt R' ein beliebiges Teilrechteck von Rz, so lâBt es sich stets aus hôch-
stens 8 Rechtecken vom Typus 91 und eventuell Rh(Q) zusammensetzen.
Daher folgt aus (9.1), daB das Intégral

x,rj — y;n;h)dÇdr]

mit n ->oo gleichmàBig nach 0 strebt fur aile Q <( A Dies bedeutet,
daB IV* a) erfûllt ist.

43. Was schlieBlich die ubrigen Voraussetzungen, also II* b),
II* c), IV* b), IV* c), IV* d) anbetrifft, so ist wieder wegen der Ver-
schiebungseigenschaft der betreffenden Kerne sofort klar, daB sie erfûllt
sind. Wir zeigen dies ausfûhrlicher etwa am Beispiel von IV* b). Fur einen
beliebigen Punkt Q0(x, y) <( (Rt) ist wegen der Gûltigkeit des Satzes V
die Eigenschaft IVb) erfûllt, d. h. es ist

J
RhiQo)

Da der Integrand aber eine reine ,,Verschiebungsfunktion" ist, hangt
ofifenbar N nicht von Qo ab. Damit ist der Satz bewiesen.
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44. Fur spater wollen wir noch folgendes anmerken : Aile Voraus-
setzungen von Satz II* und — bis auf IV* b) — aile Voraussetzungen von
Satz IV* lassen sich fur 0 bzw. — &ru aus den Voraussetzungen von
Satz V nachweisen, aber ohne Benutzung von Vb2). Dies ergibt sich so-
fort unter Beachtung der Bemerkung, die in Nummer 39 bezuglich Vb2)
gemacht wurde.

§ 10. Differentiationssatz im Falle des totalen Diîferentials

45. Unmittelbare Folgerungen aus den Satzen V, V* und dem Zusatz
sind jetzt die folgenden Differentiationssatze *

Satz VI. Es sei &(u,v,n) ein Verschiebungskern auf (RU(O)) und
Q0(x, y) ein beliebiger aber fester Punkt aus dem Inneren eines vorgegebenen

Quadrates Rt der £r)-Ebene
Damit fur jede Funktion f (|, rj), die auf Rt zu Ft (i — 1, 2) gehôrt und

m Qq ein totales Differential29) hat, die Relationen

/(a>,y)=lim f/(f, r,) *(£ - x, t] -y;n) dÇ dr, (10.1)
J

^-^dSén (10.2)

n->-oo
Ri

Ri

gelten, ist notwendig und hinreichend, dafi die Voraussetzungen Va) (oder

a°)) &i)> t>2), c) erfullt sind.

Satz VI*. Es sei 0(u,v;n) ein Verschiebungskern auf (R2l(O)) und A
eine beliebige in einem vorgegebenen Quadrat Rt der irj-Ebene gelegene ab-

geschlossene Punktmenge, die keine Randpunkte von Rt enthalt.
Dann sind die Voraussetzungen von Satz V hinreichend dafUr, dafi die

Relationen (10.1), (10.2) gleichma/Hg in A gelten fur aile Funktionen, die

auf Rt zu Ft (i 1, 2) gehdren und gleichma/îig in A ein totales
Differential haben.

§ 11. Differentiationssatz im Falle der H-Ableitung
46. Der nachste Satz illustriert die in der Einleitung gemachte

Bemerkung, da6 bei Differentiationssatzen mit Auszeichnung einer
Variablen die Annahme eines totalen Differentials fur f(P) dem Wesen
dieser Unsymmetrie nicht genugend Rechnung trâgt. Der folgende Diffe-

29 Die Stetigkeit von / m QQ braucht nicht vorausgesetzt zu werden, da sie aus der Eigen-
schaft des totalen Differentials folgt
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rentiationssatz im Falle einer jff-Ableitung gilt nâmlich unter geriiigeren
Annahmen ûber den Kern als im Satz VI, obwohl die Existenz einer
.ff-Ableitung in einem Stetigkeitspunkt flir die betreffende Funktion
keineswegs die Existenz eines totalen Differentials nach sich zieht, was
beispielsweise die Funktion /(£, 7]) \ r\ \ zeigt, welche im Nullpunkt
eine lï-Ableitung nach |, nicht aber ein totales Difïerential besitzt.

DaB umgekehrt die Existenz eines totalen Differentials im allgemeinen
auch nicht die Jï-Differenzierbarkeit zur Folge hat, ergibt sich daraus,
da8 wir im zweiten Teil dieser Beitrâge einen Kern angeben werden,
welcher die Voraussetzungen von Satz VII, nicht aber jene von Satz VI
erfûllt.

47. Satz VII. Es sei @(u, v; n) ein VerschiebungsJcem auf (i2
und Q0(x, y) ein beliebiger aber fester Punht aus dent Inneren eines vor-
gegebenen Quadrats Bl der Çrj-Ebene.

Damit fur jede Funktion /(f, 77), die auf Rt zu J^ (i 1, 2) gehôrt und
in Qo stetigzo) und H-differenzierbar nach f ist, die Relationen (10.1),
(10.2) gelten, ist notwendig und hinreichend, daji Va) (oder a°)), 6a), c)

erfûllt sind.

Beweis. Da6 (10.1) zutrifft ist klar, da die Voraussetzungen II a), b), c),
wie sich aus der Bemerkung in Nummer 39 ergibt, sich aus Va), bj), c)

folgern lassen. — Wir zeigen jetzt, daB dièse Bedingungen fur das

Erfûlltsein von (10.2) hinreichen.
Aus (1.6) und (1.8), den Relationen zur Définition der i/-Ableitung

nach der ersten Variablen, erhâlt man fur / in Rt die Darstellung

(11.1)

wo e(è, rj; x, y) -> 0 (P(£, tj) -+Q0(x, y)) gilt. Schreiben wir der Kurze
halber &fu anstatt &fu (| — x9 rj — y; n), so gilt identisch fiir jedes
hinreichend kleine h>0

* * (11.2)

+ ff(x,ri) 0'u dÇdrj + fi(x, y) J (f - x) 0^dÇdrj + J" (f - x)®!ued!;dr].

80) Es wûrde genûgen, an Stelle der Stetigkeit von / in Qo blofi die gleichmàfiige Be-
schrànktheit von / in Bhf(Q0) fur ein beliebiges hr > 0 vorauszusetzen, sofern die Aus-

sage des Satzes nur auf die eine Relation (10.2) beschrânkt wird. Dies wird sich im Beweis
bei der Diskussion von (11.3) ergeben.
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In Nummer 39 wurde bereits darauf hingewiesen, dafi fur den Kern
W — 0fu (£ — x, r] — y; n) die Eigenschaften IVa) und d) beweisbar
sind aus Va), bj), c). Aus IVa) folgt jetzt, da8 das erste Intégral rechts
in (11.2) nach 0 und aus IVd), daB das dritte nach — 1 strebt.

Wegen Voraussetzung Vbx) kann das vierte Intégral mit h absolut be-

liebig klein gemacht werden. Beim zweiten Intégral fûhren wir die
Intégration nach | aus und erhalten, da f(x, rj) von f unabhângig ist :

r
J f(x,r)){&(h,r)-y;n)-0(-h,ri-y;n)}dr}.

RthiQo) v-h (11.3)

Zufolge (6.3) und der gleichmâBigen Beschrànktheit von / in R^(Qq)
strebt der letzte Integrand mit wachsendem n fur aile in Frage kommen-
den Argumente gleichmàôig nach 0. Daher strebt auch das Intégral nach
0. Die Voraussetzungen sind also hinreichend.

48. Die Voraussetzungen Va), bx), c) sind notwendig : Wâre Va)
nicht erfûllt, so kônnte IVa) nach Satz V nicht zutreffen. Zufolge der in
Nummer 24 beziiglich IV a) gemachten Bemerkung gâbe es dann eine in
Qo gelochte Funktion aus Fx bzw. F2, fur welche (10.2) nicht gelten
kônnte. Dièse Funktion wâre offenbar in Qo stetig und Jï-differenzierbar
nach |, was zu einem Widerspruch fiihrt.

Wâre Vbx) nicht erfûllt, so existierte nach Satz III eine auf Rh(O)

stetige Funktion g(u,v), die im Nullpunkt verschwânde und fur die

lim g(u, v) u&'u{u,v\n) dudv ^ 0 (11.4)

wâre. Wâhlt man jetzt insbesondere eine Funktion f{utv) von der
Gestalt

/ (u v\n ' ' =0 P(u,v)^Rh(O)

so besitzt dièse Funktion im Nullpunkt eine //-Ableitung nach u, und
es ist

(11.5)

Aus (11.4) folgt fiir die Funktion F(£, rj) /(| — x,y\ — y) :

lim - f F(i, v) Ktt - *. V ~ V\ ») # drj # 0
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und wegen (11.5) kann die Relation (10.2) fur F(Ç,rj) nicht gelten, wo-
mit wir einen Widerspruch erhalten.

Die Notwendigkeit von Vc) fur die Giiltigkeit von (10.1), ist auf Grund
des Satzes V klar. Damit ist der Satz bewiesen. —

49. Giltfûr f(£,rj) in jedem Punkt Q(x,y) einer Menge 9JI die Dar-
stellung von der Gestalt (11.1), wobei e(^rj; x, y) in 501 gleichmâBig
nach 0 strebt fur P(£, tj) -*Q{x, y), und ist fê(Q) gleichmâBig be-
schrânkt auf 501, so sagen wir, / besitze gleichmâBig in 50Î eine H-Ab-
leitung nach f.

50. Ein VII entsprechender Satz unter Berùcksichtigung der gleich-
mâBigen Konvergenz lautet sodann :

Satz VII*. Es sei @(u,v;n) ein Verschiebungskern auf (R2l(O)), Rt
ein vorgegebenes Quadrat der Çrj-Ebene und A <( (R) eine beliebige abge-
schlossene Punktmenge.

Dann sind die Voraussetzungen von Satz VII hinreichend dafûr, daji die
Relationen (10.1), (10.2) gleichma/Sig in A gelten fur jedeFunktion f($,rj),
die auf Rl zuFx (i 1, 2) gehôrt, auf A stetig ist und gleichmâfiig in A
eine H-Ableitung nach £ besitzt.

Beweis. Auf Grund der am Ende des Beweises zu Satz V* in Num-
mer 44 gemachten Bemerkung ist zunâchst klar, daB die bezûglich (10.1)
aufgestellte Behauptung wahr ist ; ferner, daB die Voraussetzungen IV* a)
und d) fur W — 0^(ê — x, tj — y ; n) zutreffen und daB daher rechts
in (11.2) der erste Term fur n ->oo nach 0 und der dritte nach —fi(x, y)
strebt, beides gleichmâBig fur aile Q <( A.

DaB der vierte Term rechts in (11.2) absolut beliebig klein gemacht
werden kann, gleichmâBig fur aile Q <( A, folgt wegen der Verschie-
bungseigenschaft aus Vb^, und dasselbe folgern wir fur das zweite Intégral

aus der Betrachtung von (11.3). Somit ergibt sich die Behauptung
aus (11.2).

§ 12. Differentiationssatz im Falle der O-Ableitung
51. Bei der Pormulierung des

nâchsten Satzes werden wir es mit
,,doppeldreieckigen" Bereichen zu
tun haben, die wir zur Veranschau-

lichung in zwei Piguren schraffiert
wiedergeben wollen :

•

» \

..illIlllIHlHllli
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Es sei nâmlich fur einen festen Punkt Q(x, y) der f rç-Ebene und ein be-

liebiges A>0 mit Uh(Q) jener Bereich bezeichnet, fur dessen Punkte
| £ — x\, \ rj — y \^h; \ rj — y\^\ S — x\ ist. Vh(Q) bezeichne den
Bereich R2h(Q) — Uh(Q), also hier im Falle von zwei Variablen den
Bereich, fur dessen Punkte | f — x\, \rj — y \ <*h; \ rj — y \>\ g — x\ ist.

Sodann wollen wir sagen, die Funktionenfolge 0(u, v; n) geniige im
Nullpunkt 0 einer C7-Ungleichung oder einer F-Ungleichung, wenn
eine Konstante U bzw. V und ein h>0 existiert, so daB fur aile n

f | 0(u, v; n) | dudv<U bzw. j | 0(u, v; n) \ dudv<V
Uh(O) Vh(O)

gilt.

52. Satz VIII. Es sei 0(u,v;n) ein Verschiebungskern auf (Rn(O))
und Q0(x, y) ein beliebiger aber fester Punkt aus dem Inneren eines vor-
gegebenen Quadrats Rt der irj-Ebene.

Damit fur jedeFunktion f(i,rj), die auf Rl zuF{ (i 1,2) gehôrt und
in Qo stetig und O-differenzierbar nach £ 31) ist, die Relationen (10.1),
(10.2) gelten, ist notwendig und hinreichend:

a) Voraussetzung Va) (oder a°)) ist erfullt.
b) Die Folge u0ru{u,v\n) genugt im Ursprung einer U-Ungleichung.

g) 0(u, v\ n) ist eins-strebig im Ursprung.

d) 0ru{u, v; n) genûgt im Ursprung einer V-Ungleichung.

53. Beweis. Die Voraussetzungen sind hinreichend : Fur die Giiltig-
keit von (10.1) folgt dies analog wie in Satz VII, da mit obigen
Voraussetzungen fur den Kern auch jene von Satz VII erfullt sind.

Um (10.2) nachzuweisen, setzenwir fur / in Ru gemâB den Relationen
(1.6), (1.7) fiir die Définition der O-Difïerenzierbarkeit nach der ersten
Variablen :

/(f, n) /(*> *?) + (£- s) /§(*> y) + (^ - *) £(f > n\ x>v) » (12-l)

wobei e->0 {P(Ç, rj) -+Q0(x, y) \ r\ — y \ g| f — x |) gilt.

Es ist, wenn wiederum 0'u anstatt 0ru{£ — x, r\ — y\ n) geschrieben
wird, fur jedes hinreichend kleine h > 0 identisch

31) Es hâtte wenig Sinn, / in Qo nach beiden Variablen O-differenzierbar vorauszusetzen.
Die letztere Annahme ist nâmlich notwendig und hinreichend dafûr, dafî / in Qo ein totales
Differential besitzt (vgl. A.Ostrowski (II), p. 223), und mit diesem Fall haben wir uns be-

reits in Satz VI befafit.
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Ri Ri

Çf(xyf])0lididrJ + f/î(x,y) Ç(Ç-x)$

(12.2)

Das letzte Intégral auf der rechten Seite zerlegen wir, indem wir den
Integrationsbereich B2h(Q0) in die beiden Stucke Uh(Q0), Vh(QQ) auf-
spalten. Gleichzeitig legen wir die GrôBe h folgendermaBen fest : Fur ein
beliebiges ô > 0 bestimmen wir hf > 0, so daB

I c(f, rj; x,y)\<ô (P(f, rç) < Uh.{Q0)) (12.3)

ist. — Da (| — #)e nach der Definitionsformel (12.1) im Punkt P Qo

stetig ist und verschwindet, kann zu jedem hinreichend kleinen <5* > 0

eine GrôBe A* > 0 angegeben werden, so daB

I (S - x) c(f, 77; a?, 2/) | <<5* (P(|, /?) < F^(60)) (12.4)

ist. Jetzt setzen wir h,^Min(h\h*). Fur solche A gilt// Ci(£ — ic) (P df dtj -f- 3* I (P d£ dn

^(Qo) VhiQo) (12.5)

Zufolge der Voraussetzungen b) und d) kann die rechte und also auch die
linke Seite dieser Ungleichung fur geeignete ô, ô* absolut beliebig klein
gemacht werden.

Wie bereits bemerkt wurde, sind mit den Voraussetzungen von
Satz VIII auch Va) ,bx), c) erfûllt. Daher ergibt sich, analog wie bei

(11,2), daB mit n->oo das erste Intégral rechts in (12 .2) nach 0 und
das dritte nach — 1 strebt. DaB das zweite Intégral mit n ->oo nach 0

strebt, wurde bereits in Satz VII im AnschluB an (11.3) bewiesen, da
hierzu von / bloB die gleichmàBige Beschrânktheit in Rh,(Q0) fur ein
hinreichend kleines A'>0 benôtigt wurde. — Es unterscheidet sich also

Jn{f,Qo) von fç(xfy) um beliebig wenig; die Bedingungen sind daher
hinreichend.

54. Die Voraussetzungen sind notwendig: Da jede iî-Ableitung
auch eine O-Ableitung ist, ergibt sich die Notwendigkeit der
Voraussetzungen a) und c) aus der Notwendigkeit dieser Voraussetzungen fur
Satz VII.
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Wâre b) nicht erfiillt, so existierte nach Satz III eine Funktion g (u, v),
die auf Uh (O) stetig wâre, auf dem Rand von Uh (0) verschwânde und
fur die sich

lim j g(u,v)u&{l(u,v;n)dudv^O (12.6)
n-*°° Uh(O)

ergâbe. Dann definiere man eine Funktion f(u,v) von der Gestalt

f(u, v)

f(u,v) ist im Nullpunkt stetig, besitzt dort eine O-Ableitung nach u, weil

ug(u,v) P<Uh(O)
0 P<Uh(O).

U

existiert, und es ist daher

Aus (12.6)folgt aber

lim — j /(f — x, rj — y) &'u (| — x, rj — y ; ri) d% drj ^ 0

Ri

was wegen (12.7) einen Widerspruch zu (10.2) bedeutet. Also ist b) not-
wendig.

Um schlieBlich die Notwendigkeit von d) einzusehen, nehmen wir an,
d) sei nicht erfullt. Wieder nach Satz III existiert dann eine auf Vh(O)
und dem Rand 9î von Vh(O) stetige, auf 5R und auf der v-Achse ver-
schwindende Funktion g(u,v), fur die

lim ig(u,v)0lt(uiv;n)dudv^:O (12.8)

ist. Wir definieren eine Funktion / zu

g{u,v) P(u,v)<Vh(0)
0 P(u, v) ^ Vh(O)

f ist im Nullpunkt stetig und hat dort eine O-Ableitung nach u, weil
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gilt. Aus (12.8)folgt

lim — » /(f — x, rj — y) <&fu(f — x, rj — y; n) dÇ dr\ ¦=£ 0

und dies widerspricht der Relation (10.2). — Damit ist der Satz be-
wiesen. —

55. Es sei noch besonders hervorgehoben, daB die soeben unter der
Voraussetzung des Nichterfulltseins von VIIId) konstruierte Funktion
/(f — x,rj — y), fur welche (10.2) nicht gilt, auf demganzen Quadrat Rt
stetig ist. —

56. Besitzt die Funktion / (|, rj) in allen Punkten einer Menge 501 eine

O-Ableitung nach £, wobei in der Darstellung (12.1) die Funktion
e(Ç, rj; x, y) gleichmàBig fur aile Q(x,y)^yR mit P(|,?y)->Q,
P^Uh(Q) nach 0 strebt, und ist fç(x,y) auf 501 gleichmàBig be-

schrânkt, so sagen wir, / habe gleichmàBig in 501 eine O-Ableitung
nach |.

57. Ist jetzt /(£,??) stetig und in diesem Sinne gleichmàBig O-diffe-
renzierbar nach f in einer abgeschlossenen Punktmenge A <; (Rt), so

erkennen wir, daB die Limites der vier Intégrale rechter Hand in (12.2)
gleichmàBig fur aile Q <( A existieren. Fur die ersten drei Intégrale er-
gibt sich dies nâmlich analog wie bei den entsprechenden Integralen im
Beweis zu Satz VII*. Wegen der gleichmâBigen O-Differenzierbarkeit von
f in A kann (12.3), und wegen der gleichmâBigen Stetigkeit von / und der
gleichmâBigen Beschrànktkeit von /^ kann (12.4) gleichmàBig fur aile
Q <( A erfullt werden, so daB auch das vierte Intégral rechts in (12.2)
absolut beliebig klein ausfàllt, gleichmàBig fur aile Q <( A Wir erhalten
also den Satz :

Satz VIII*. Es sei 0(u,v; n) ein Verschiebungskern auf (R2i{0)), JRt

ein vorgegebenes Quadrat der irj-Ebene und A <^ (i?z) eine beliebige abge-
schlossene Punktmenge.

Dann sind die Voraussetzungen von Satz VIII hinreichend dafûr, dafi die
Relationen (10.1), (10.2) gleichmàfiig in A gelten fur jedeFunktion f (Ç, rj),
die auf Rz zuFj (i ~ 1, 2) gehort, auf A stetig ist und gleichmâfiig in A
eine O-Ableitung nach £ besitzt.
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§ 13. Vertauschbarkeitskriterien

58. Zum AbschluB unserer allgemeinen Théorie wollen wir noch eine

Frage erôrtern, die im Hinblick auf Anwendungen fur aile hier auf-
gestellten Differentiationssâtze von Bedeutung sein kann. Wann sind in
Relation (10.2) Intégration und Differentiation vertauschbar Hinrei-
chende Bedingungen dafur geben die beiden folgenden Kriterien:

Kriterium I. Ist &(u,v; n) ein Verschiebungskern auf einem Qua-
drat (R2l(O)) und f($,rj) eine beliebigeFunktion, die auf einemQuadrat Rx

zu F} gehôrt, so gilt fur jeden Punkt Q0(x, y) <( (Rt) :

d rlim ^- I f{^rj)0(^ — x, rj — y;n)d£dr]= H3 1)
n+ooOX J V • /

Ri

n->oo
Rl

wenn die Intégrale linker Hand fur aile Punkte Q aus einer Umgebung von Qo

existieren und wenn zu jedem Rechteck Rf <( (R2l(O)) und zu jedem Index
n eine Konstante Cn existiert, so daji fast ûberall auf R1

\<P^(u,v;n)\<Cn (»=l,2,...;Pfa,t;)< R') (13.2)

gilt. — Die Richtigkeit dieser Behauptung ergibt sich offenbar aus dem

folgenden Hilfssatz :

59. Hilfssatz 3. /(£, yj) sei eine beliebige ïïber Rt integrable Funktion
und (p(u, v) eine mejibare Funktion, die fur jedes feste v totalstetig ist in u
auf jedem Rechteck Rf <( (R2l(O)) der uv-Ebene.

Existiert dann zu jedem R! eine Konstante Cf,so daji fast Uberall auf Rf

(13.3)

gilt, dann ist fur jeden beliebigen aber festen Punkt Q0(x, y) < (Rt)

¦fa jf(£>ri)<P(ë — x,r] — y)dÇdr) J/(|, r)) <p'm{è — x, rj — y) dÇ drj

Rl Ri (13.4)

sofern das Intégral linker Hand etwa fur aile Punkte Q aus einer Umgebung
von Qo existiert.
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60. Beweis. Fur eine beliebige Zahlenfolge xv -> x (v ->oo) be-
trachten wir die von einem v0 an sicher existierende Folge der Intégrale

'i y) Pv(£9 y) d£ drj (v ^ v0) (13.5)
ni

wobei

Xv — X

gesetzt ist. Wegen der Totalstetigkeit von q> in u erhâlt man fur aile
Punkte

— xv,r) — y) —(p(S — x,rj — y) \y! (u,rj — y) du (13.7)

Aus (13.3) folgt, daB fur aile | und fast aile rj, welche als Argumente
von (Pu(S ~ x, rj — y) in Betracht kommen:

J | <pru(u, rj - y) | du [ < | J Cdu | C \ xv - x | 32)

ist. Daher ergibt sich aus (13.7) fur fast aile Punkte P(Ç,rj) «( Rt

und folglich existiert eine ûber Rf integrable Funktion x(£>y)> so

fur die integrablen Funktionen /•/?„ fast ûberall auf Bt

Q) (13.8)

gilt. Unter Beachtung dieser Ungleichungen erhâlt man zufolge des

klassisehen Lebesgueschen Konvergenzsatzes33)

UmAv=
Ri

82) Dabei wird von der folgenden, auf dem Satze von Fubini beruhenden Tatsache Ge-
brauch gemacht: Ist R' ein achsenparalleles Kechteck bezûglich eines wv-Koordinaten-
systems und M eine in R' enthaltene (zweidimensionale) Nullmenge, dann existiert eine
(lineare) Nullmenge 31 von v-Werten, so daB jede R' schneidende Gerade v const.,
v ^( 31 die Menge M hôchstens in einer (linearen) Nullmenge trifft. (Vgl. G. Caratheodory
(I), p. 627, Satz 2.)

») Vgl. C.Caratkeodory (I), p. 444.
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und da dies fur jede Folge xv -> x gilt, ergibt sich hieraus unsere Be-

hauptung.

61. Kriterium IL Ist 0(u,v;n) ein Verschiebungskern auf einem

Quadrat (R2l(O)) und f(S,rj) eine beliebige Funktion, die auf einem

Quadrat Rt zu F2 gehôrt, so gilt fur jeden Punkt Q0(x, y) < (JB,) die Relation

(13.1), wenn zu jedem RechtecJc Rr <( (R2i(O)) und zu jedem Index n
zwei Konstanten pn<^ (0,1) und Cn existieren, so daji fast ûberall auf Rr

\0fu{uiv]n)\<-j^n (71=1,2,...; P(u, «)< R' ; pn < (0, 1)

(13.9)

gili. — Der Beweis dafûr ergibt sich oflfenbar sofort auf Grund des folgen-
den Hilfssatzes :

62. Hilîssatz 4. /(l,^) sei eine beliebigeFunktion, die auf Rlme/ibar
ist und fur ivelche fast Uberall

|/(f,rç)|<Jf (P^^X^, M Const.) (13.10)

gilt, und <p(u,v) eine mejibare Funktion, welche fur jedes feste v totalstetig
ist in u auf jedem Rechteck Rr «( (R2l(O)) der uv-Ebene.

Existiert dann zu jedem R! eine Konstante G", so dafi fast ûberall auf Rf
fur ein beliebiges p <( (0, 1)

gilt, dann ist (13.4) fur jeden beliebigen aber festen Punkt Q0(x, y) <( (Rt)
erfûllt, sofern das Intégral links in (13.4) fur aile Punkte Q aus einer Um-
gebung von Qo existiert.

63. Beweis. Wiederum betrachten wir fur eine beliebige Zahlenfolge
xv -> x (v ->oo) die von einem v0 an existierende Folge der Intégrale
(13.5).

Wegen Voraussetzung (13.11) ist fur aile | und fast aile rj, welche als

Argumente von ç/(| — x,rj — y) in Betracht kommen:

du —
V
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wobei
1 fur {< (x,xvy

-1 fur f« <*,*„>

ist. Zufolge (13.7) gilt daher fur fast aile Punkte P(f, rj) < Rt

A (13.12)~ xv — x V

Zur Abschâtzung des letzten Ausdrucks fuhren wir in A die Variablen
-— xv — u, £ — x v ein und beweisen sodann die Ungleichung

A

wobei

v — u

rj

(13.13)

1 fur
— 1 fur uv>0

ist.
Zum Beweis setzen wir \u\ U, \ v\ =V. Dann kônnen wir die be-

hauptete Ungleichung in der Gestalt schreiben

u* + y vp
U + rjV V>0; fur q=

oder, wenn mit V1 p multipliziert und — z gesetzt wird,

^~±^ <2 (^0, 2^1 fur rj= -1, 0<p<\) (13.14)
z -f- tj

Unter Benutzung der Relationen l^zp^z (O^zigl) und zP^z
(z ^ 1) zeigt man jetzt sofort, daB (13.14) in jedem der Falle r\ 1,

rj =~ l richtig ist, womit (13.13) bewiesen ist.
Mit Hilfe von (13.13) gewinnt man jetzt aus (13.12) die fur fast aile

Punkte P(£,rj) < Rt gûltige Ungleichung

n) I <
2C"

P

1

S-x I1-»

Hieraus ergibt sich im Verein mit (13.10) wiederum die Existenz einer
integrablen Majoranten %(î,rj) fûr die Funktionen f-Pv, so daB (13.8)
gilt. Das Ende des Beweises kann jetzt analog gefûhrt werden wie im
Falle des Kriteriums I.
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