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Beitrdge zur Theorie der singuldren Integrale
bei Funktionen von mehreren Variablen |

Von RorLr ConzeErLMANN, Basel

§ 1. Einleitung

1. Mit der Frage, eine in einem Intervall J gegebene Funktion f mit
Hilfe eines ,, Kerns“ K in der Gestalt

f@) =1lim [f(&) K(&,x;n) d& (1.1)
n>oc J

darzustellen, befaBit sich die Theorie der singuldren Integrale, die haupt-
sichlich von H. Lebesguel) auf breiter Basis systematisch entwickelt und
auch zu einem gewissen Abschlufl gebracht worden ist. Weitere bedeu-
tende Verallgemeinerungen und Vertiefungen verdankt man I. W.Hob-
son ?) und H.Hahn 3). Letzterer hat insbesondere die Frage der ,,Differen-
zierbarkeit der Grenzrelation (1.1)“ eingehend untersucht, wobeiwir (1.1)
als s-mal differenzierbar bezeichnen wollen, wenn — unter x ein beliebi-
ger Punkt aus dem offenen Intervall J verstanden, in welchem f s-mal
differenzierbar ist — die s + 1 Relationen

df(£)" T 0°K (&, x;n) B
(_dga )§=x—3g}ff(5) 52° d¢ (0=0,1,...,8) (1.2)

gleichzeitig bestehen.

2. Es ist zu erwarten, dafl die entsprechenden Probleme sich auf ana-
loge Weise auch in mehreren Dimensionen behandeln lassen. B. H.Camp *)
hat in groBer Allgemeinheit eine Ubertragung der auf (1.1) beziiglichen
Sdtze in den m-dimensionalen Raum (m>1) durchgefiihrt. Was die
Relationen (1.2) anbetrifft, so werden naturgeméif8 partielle Ableitungen
an die Stelle der gewohnlichen treten miissen. Eine allgemeine Formulie-
rung fir m>1 Dimensionen findet sich meines Wissens nur in einer
Arbeit von Th. Radakovié ®), allerdings unter sehr speziellen Annahmen.

1) H.Lebesgue (I). Die eingeklammerten Zahlen beziehen sich jeweils auf das Literatur-
verzeichnis am Schlufl dieser Arbeit.

%) I.W.Hobson (II), pp. 422—475.

3) H.Hahn (I).

4y B.H.Camp (I).

5) Th. Radacovi¢ (I).
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Insbesondere wird dort von den mit ihren Ableitungen darzustellenden
Funktionen f vorausgesetzt, daf3 sie selbst im ganzen m-dimensionalen
Grundintervall J stetig seien und daf} ihre sémtlichen partiellen Ablei-
tungen bis zur s-ten Ordnung in der Umgebung des fiir die Darstellung
gewidhlten Punktes ebenfalls stetig seien.

3. Unter Beschrinkung auf die ersten partiellen Ableitungen ver-
folgt die vorliegende Arbeit das Ziel, nunmehr fiir moglichst allgemeine
Funktionen f eine Ubertragung von (1.2) in mehrere Dimensionen vor-
zunehmen.

Es mogen im folgenden P, @ Punkte im m-dimensionalen Raum be-
deuten. Benutzen wir dann die Symbolik P(¢,,.. ., &,) um die Charakte-
risierung von P durch die m rechtwinkligen karthesischen Koordinaten
&1y .., &, zum Ausdruck zu bringen, und bezeichnet (J) die Gesamtheit
der inneren Punkte des m-dimensionalen Intervalls J, so konnen wir
unsere Aufgabe etwas priziser folgendermafBen formulieren : Es sind die
Relationen von der Gestalt

(@) =1lim | f(P)K(P,Q;n)dP ‘P=P(§1,...,§m) (1.3)
o Q:Q(xla'-wmm)

3f (P) K (P, Qi) Q< ()
( 0k, ) _flzl-wn fﬂp - ox, y=1,2,.. ,m (1-4)

zu diskutieren, und zwar, indem fiir den Kern K notwendige und hin-
reichende Bedingungen dafiir angegeben werden, daf3 solche Relationen
fiir alle Funktionen einer bestimmten Klasse richtig sind.

4. Von den verschiedenen seit Lebesgue in dieser Theorie iiblicherweise
betrachteten Funktionsklassen habe ich fiir die vorliegende Untersuchung
jene beiden herausgegriffen, welche die interessantesten Resultate erwar-
ten lieflen. Namlich

F,, die Klasse der im Grundintervall (nach Lebesgue) integrierbaren
Funktionen und

F,, die Klasse der im Grundintervall beschrinkten mefBbaren Funk-
tionen.

5. Fir die Giiltigkeit einer oder mehrerer der Relationen (1.4) fiir
eine Funktion f aus der Klasse F', oder F, spielt die Wahl der Differenzier-
barkeitsvoraussetzungen iiber f in ¢ eine entscheidende Rolle.
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Zundchst ist man versucht, etwa die Stetigkeit von f und die bloBe
Existenz der partiellen Ableitungen f g“ (u=1,...,m) in @ vorauszu-

setzen. Eine Funktion mit diesen Eigenschaften, die aullerdem zur
Klasse F', gehort, sei fiir den Augenblick mit f* bezeichnet. Man erkennt
aber sogleich, daf3 es keinen einzigen Kern K geben kann, so dal auch
nur eine der Relationen (1.4) fiir jede Funktion f* bestehen konnte.

Um dies einzusehen, wihlen wir der Einfachheit halber m = 2 Dimen-
sionen und @ =0 als den Nullpunkt des rechtwinkligen &, &,-Systems.
Sodann betrachte man die Funktion f*, die folgendermaflen definiert ist :
Es sei f* = £, auf der &,-Achse und f* = &, auf der &,-Achse, und in
alien iibrigen Punkten der &, £,-Ebene sei f* = 0. f* ist offenbar stetig im
Nullpunkt, und es gilt f*(0)=0 fEl )=1,f: (0)=1. Da aber f* bis
auf eine Nullmenge verschwindet in lrgendemem vorgegebenen Rechteck
J, das den Nullpunkt im Inneren enthalten moge, sind alle in den Rela-
tionen (1.3), (1.4) auftretenden Integrale = 0 und daher auch die Grenz-
werte fiir n—>oco. Also gilt (1.3) aber keine einzige der Relationen (1.4).
Und nach diesem Prinzip 148t sich natiirlich auch im Falle m > 2 und
@ # O eine Funktion f* mit den entsprechenden Eigenschaften konstruie-
ren.

6. Dagegen werden wir zeigen, dafi es, in allen von uns betrachteten
Fillen, z. B. sicher ausreichend ist, fiir f die Existenz eines totalen Diffe-
rentials in ¢) vorauszusetzen.

Man sagt bekanntlich von einer Funktion f(&,,...,§,), sie besitze im
Punkte @Q(x,,...,x,) ein totales Differential, wenn fiir f die Dar-
stellung gilt

FErree s ) = f@rr o 2) + B (€, — ) +0( PQY) , (1.5)
p=1

wo | PQ | hier wie auch spiter die Distanz der Punkte P(¢,,...,§,)und
Q(zy,. .., x,) bedeutet. «, bezeichnet die partielle Ableitung von f nach

£, in Q.

7. Von ganz besonderem Interesse ist nun der Fall, wo eine bestimmte
Variable vor den anderen in dem Sinne ausgezeichnet wird, daf3 wir die
Existenz bloB einer einzigen der m Relationen (1.4) fordern, z. B. jener,
die sich auf y = 1 bezieht.

Es ist klar, daB im letzten Fall fiir f die Annahme eines totalen Differen-
tials, also einer beziiglich allen Variablen symmetrischen Bedingung, nicht
mehr am Platze ist. Es liegt vielmehr im Wesen der Dinge, an Stelle des
totalen Differentials einen geeigneten anderen, einseitigen, also im obigen
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Beispiel die Koordinate &, bevorzugenden Differentiationsbegriff einzu-
fiithren. Einer solchen Forderung entspricht der von Herrn Ostrowsk: ge-
prigte®) und auch in diesem Zusammenhang?) benutzte Begriff der
»gleichméaBigen Differenzierbarkeit nach einer Variablen. Um Mi-
verstdndnissen vorzubeugen, wollen wir im folgenden anstatt ,gleich-
miBige Differenzierbarkeit” lieber die Bezeichnung ,0-Differenzierbar-
keit“ gebrauchen ).

Wir sagen, eine Funktion f(&,,...,¢&,) habe im Punkt Q(z,,...,z,)
eine O-Ableitung nach §,, wenn

f(sla'“’ Em) —'f(xla 52’° ] Em)

&L — x;

AT (1.6)

unter der Voraussetzung
(1—2) >0, [& —2z (=& —2] (w=2,...,m) (1L.7)

gilt. Und indem man &, mit & 5 vertauscht, erhilt man die Definition fiir
die O-Ableitung nach &, .

8. Im Verlauf der Arbeit hatte es sich gezeigt, dafl neben dieser O-Dif-
ferenzierbarkeit ein noch stérker nach der Seite der GleichméBigkeit hin
orientierter Differentiationsbegriff sich einzufiihren lohnt, der von 1. W.
Hobson °) formuliert, jedoch mit keinem Namen bedacht wurde.

Wir wollen sagen, die Funktion f(&,,...,&,) Dbesitze im Punkte
Q(xy,...,x,) eine H-Ableitung nach &,, wenn (1.6) unter der Voraus-
setzung

| PQ|—0 (1.8)

gilt. — Ist f in einem Punkt H-differenzierbar nach &, so ist offenbar f in
diesem Punkt stets auch O-differenzierbar nach &,. —

9. So werden denn im folgenden die Sdtze iiber die Relationen (1.3),
(1.4) verschieden ausfallen, je nachdem die darzustellende Funktion im
,Singuldren Punkt“ ein totales Differential, eine H-Ableitung oder eine
O-Ableitung nach einem £, besitzt.

8) A.Ostrowsk: (II).

7) A.Ostrowsk: (I).

8) Uber die Beziehung zwischen totalem Differential und O-Ableitung orientiert FuB-
note 31.

%) I.W.Hobson (I), p. 419.
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Nach Aufstellung einer geeigneten Definition fiir die GleichmiBigkeit
obiger Differentiationsbegriffe in einer Punktmenge werden die gewon-
nenen Sitze jeweils auch fiir die gleichméBige Konvergenz der Relationen
(1.3), (1.4) in dieser Menge formuliert.

Anwendungen der hier entwickelten Theorie auf die bekanntesten der
bis heute untersuchten Kerne gebe ich im zweiten Teil dieser Beitrige.

Der Einfachheit halber sind im folgenden fiir die Darstellung stets
m = 2 Variable benutzt worden. Jedoch lassen sich unsere Sitze analog
fir beliebig viele Variable formulieren und beweisen.

Es sei noch bemerkt, dafl die herangezogenen Beweismethoden im Be-
reich jener Hilfsmittel liegen, deren sich die tibliche Theorie der singuldren
Integrale zu bedienen pflegt. An einigen Stellen konnten die von H.Hahn
fiir eine Dimension angestellten Uberlegungen direkt auf mehrere Dimen-
sionen iibertragen werden.

Die im folgenden aufgefiihrten Hauptsitze sind fortlaufend numeriert.
Mit Ia), Ib) usw. bezeichnen wir der Kiirze halber Voraussetzung a) bzw.
b) des Satzes 1.

Im Interesse einfacher und kurzer Formulierung der Séitze und Beweise
sah ich mich zur Einfiihrung einer Reihe von Bezeichnungen und Be-
griffen gezwungen. Ein Verzeichnis dieser besonderen Termini folgt am
Ende des zweiten Teils.

Die vorliegende Arbeit entstand unter der Anleitung von Herrn Prof.
Dr. A.Ostrowski. Fiir die Unterstiitzung, die mir dabei von meinem hoch-
verehrten Lehrer zuteil geworden ist, mochte ich hier meinen herzlichsten
Dank aussprechen.

§ 2. Fundamentallemma, Darstellung der Funktion

10. In diesem Paragraphen werden zwei bekannte Sdtze angefiihrt.
Um eine moglichst einfache Formulierung zu gewinnen, wollen wir uns der
folgenden Begriffe und Bezeichnungen bedienen :

Unter einem (zweidimensionalen) Kern soll eine auf einem achsen-
parallelen, abgeschlossenen Grundrechteck R vorgegebene Folge von
Funktionen des Punktes P

p(P,n) n=1, 2,...

verstanden werden, wobei ¢ (P, n) fiir jedes » als iiber R integrierbar10)
vorausgesetzt ist und blof bis auf eine Nullmenge i, auf R definiert zu

10) Die Worter ,,integrierbar, integrabel, summierbar* sind im folgenden immer im
Sinne von Lebesgue zu verstehen.
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sein braucht. — Spéter werden wir neben R auch das Symbol (R) be-
nutzen, worunter die Gesamtheit aller inneren Punkte des Rechtecks R
verstanden wird. —

Der Kern ¢ heile auf R fast beschrdnkt, wenn eine Konstante M
existiert, so da bis auf Nullmengen N, fiir alle Punkte P von R

(P, n) | <M (2.1)
fir alle n gilt.

11. Bekanntlich besitzt das unbestimmte Lebesguesche Integral iiber
eine integrierbare Funktion ¢ (P, n) die Eigenschaft der Totalstetigkeit;
d. h.: zu jedem x>0 gibt es ein A(u)>0, so daB fiir jede abzihlbare
Menge J sich bis auf die Rénder nicht iiberdeckender, in R gelegener
achsenparalleler Rechtecke, deren Gesamtinhalt < 4 ist, die Ungleichung
besteht :

[leP.m)1aP<p  (T|=H) 1),
J

LaBt sich die positive GroBle A(u) so wihlen, daBl die letzte Ungleichung
fiir alle ¢(P,n) n=1,2,... gilt, so wollen wir U(p) = || @ |dP als
auf R gleichgradig totalstetig bezeichnen.

12. Die Funktionenfolge ¢(P,n) n=1,2,... soll iber R null-
strebig heiBlen, wenn fiir jedes (echte oder unechte) Teilrechteck R’ %)
von R

lim [g(P,n)dP=0 (R'<R)
gilt. e
SchlieBlich wollen wir sagen, der Kern ¢(P,n) sei in R limitar
orthogonal auf F; (¢ = 1, 2), wenn fiir jede Funktion f(P), die auf

dem Grundrechteck R zur Klasse ', bzw. F, gehort, die Relation

lim | f(P)g(P,n) dP =0 (2.2)

n->oo 'R

besteht. Besitzt ¢ (P,n) diese Eigenschaft in B, so offenbar auch in
jedem Teilrechteck R’ < R .

11) Ich schliee mich hier und im folgenden an eine Darstellungsweise von Herrn Ost-
rowskt an, wonach hinter eine Relation in Klammern die (manchmal schon im Text an-
gefiilhrten) Bedingungen gesetzt werden, unter welchen die betreffende Relation gilt.
Ebenso benutzen wir die Ostrowskische Bezeichnung |J | fiir den Inhalt der meBbaren
Menge J .

12) Wenn in dieser Arbeit von Rechtecken oder Quadraten die Rede ist, so soll es sich
stets um achsenparallele Rechtecke bzw. Quadrate handeln.
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13. Mit Hilfe der oben eingefiihrten Begriffe kénnen wir nun zwei be-
kannte Sitze folgendermafBen formulieren :

Satz I (Fundamentallemma). Damit ein auf dem Grundrechteck R
definierter Kern @ (P, n) in R limitir orthogonal auf F; (1 = 1, 2) ist, ist
notwendig und hinreichend :

a) @ st itber R null-strebig3).
b) Fiir F,: ¢ ist auf R fast beschrinkt'4).
Far F,: Ulp) 18t auf R gleichgradig totalstetig.

B.H.Camp?'®) beweist dieses Lemma sowie auch den nichstfolgenden
Satz II fiir den m-dimensionalen Raum (m >1) ganz analog wie Lebesgue
die entsprechenden Sitze in einer Dimension.

14. Im folgenden moge unser Kern noch von einem Parameterpunkt ¢
abhingig sein: Es sei also @(P,Q;n) »=1,2,..., wenn nicht eine
andere Festsetzung getroffen wird, fiir jeden inneren Punkt ¢ des Grund-
rechtecks R ein Kern im friiher festgelegten Sinn.

Mit R,(Q) bezeichnen wir von jetzt an ein um den Punkt @ als Zentrum
gelegtes, achsenparalleles abgeschlossenes Quadrat von der Seitenlidnge 4,
das in R enthalten ist. Der zu @(P,Q;n) gehorige gelochte Kern @
sei dann fiir jedes hinreichend kleine >0 definiert als \

P<L R,(@) @< (R)

& Cpemy ) =0
@(P,Q,n,k)P D(P,Q;n) P< R—R,Q) .

Strebt fiir jedes hinreichend kleine k>0 fiir einen Punkt @ von (R)
das Integral
(®(P,Q; n)dP (2.3)
RA@
mit n—oco gegen die von k unabhingige Zahl g, so soll @ p-strebig
im Punkte ¢ heiflen.

13) Wenn nichts weiter bemerkt wird, gelten die Voraussetzungen jeweils fiir beide
Funktionsklassen F; (i =1, 2).

14) Da (2.2) eine infinitére Eigenschaft zum Ausdruck bringt, wiirde es im Falle von F,
geniigen, die Ungleichungen (2.1) erst von einem Index n, an als erfiillt vorauszusetzen.
Die Voraussetzung b) fiir F; ist daher so zu verstehen, daB nach Weglassung endlich vieler
Kernglieder und geeigneter Umnumerierung ein Kern erhalten werden kann, der auf R fast
beschrankt ist. Und in diesem Sinn ist diese Voraussetzung auch zu verstehen, wenn wir
uns spater auf sie beziehen.

15) Vgl. B.H.Camp (1), pp. 43—50, 59 und I.W.Hobson (1), pp. 424, 445.
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15. Endlich wollen wir sagen, es geniige @ (P, @; n) einer N-Unglei-
chung in @, wenn zwei positive Konstanten N und % existieren, so

daB fiir alle n
[1oP,Q;n)| aP<N

Rp(Q)
ist. — Wenn im folgenden eine Diskussion unter der Voraussetzung dieser

Eigenschaft gefiihrt wird, so kommt der Buchstabe N im Laufe der
Diskussion in keiner anderen Bedeutung vor. —

16. Mit Hilfe des Fundamentallemmas beweist Camp unmittelbar
seinen Hauptsatz iiber die Darstellung einer Funktion in einem Stetig-
keitspunkt, den wir jetzt wie folgt formulieren kénnen :

Satz II. Essei @(P,Q;n) en Kern auf dem Grundrechteck R und @,
etn beliebiger aber fester Punkt aus (R).

Damit fir jede Funktion f(P), die auf R der Funktionsklasse F; (i=1, 2)
angehort und 1n Q, stetig ist, die Relation

fQ) =lim [ f(P) B(P,Q;m) dP (@< (B) (2.4)

R

gilt, ist notwendig und hinreichend :

a) Fir ijedes hinreichend Fkletne h > 0 1ist der gelochte Kern
@(P,n)=D(P,Qy;n;h) in R limitir orthogonal auf F, bzw. F,.

b) @ geniigt esner N-Ungleichung in Q.

c) D ist etns-strebig in Q, 1°).

§ 3. Fundamentallemma und Darstellung der Funktion bei gleichmiigiger
Konvergenz
17. Unter I*, IT* wollen wir die folgenden, den Sétzen I bzw. II ent-
sprechenden, unter Beriicksichtigung der gleichméfligen Konvergenz
formulierten Sédtze anfiihren :

Satz I*. Fliir jeden Punkt Q einer beliebig vorgegebenen Menge IN sei der
Kern @ (P,Q;n) als Funktion von P auf dem Grundrechteck R definiert.

16) B.H.Camp legt den Siatzen I und II einen beliebigen quadrierbaren Bereich zu-
grunde. Wenn hier insbesondere achsenparallele Rechtecke gewahlt werden, so hingt dies
mit der in § 4 zu treffenden Wahl von sogenannten Verschiebungskernen zusammen. Auch
ist hier ein einziger, statt wie bei Camp ein m-tupel verschiedener, unabhéngig voneinander
nach unendlich wachsender Parameter n benutzt worden, da die Campsche Annahme
durch die klassische Abzéhlbarkeitsumordnung auf die Annahme eines einzigen Para-
meters zuriickgefithrt werden kann.
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Damit @ (P, @ ;n) in R limitir orthogonal auf F, (i =1, 2) ist, gleich-
mdfig fir alle @ < M, ist notwendig und hinreichend,

a) und b) daf fiir den Kern ¢ (P, n) = ®(P,Q;n) die Voraussetzungen
a) und b) des Fundamentallemmas gleichmifig fir alle Punkte @ < I er-
fullt sind.

Beweis. Die Bedingungen sind notwendig. Fiir a) ist dies klar, wie
man am Beispiel f(P) =1 erkennt. — Wire b) nicht erfiillt, so gibe es
eine Punktfolge @, <M (»=1,2,...) und eine Indizesfolge n, < »
derart, daf} fiir den Kern @*(P,») = &(P,Q,; n,) jene Bedingung b)
von Satz I nicht erfiillt wire, die sich auf F', bzw. F, bezieht. Es gidbe nach
Satz I eine Funktion f(P) aus der Klasse F';, bzw. F,, fiir welche

lim ff(P) @*(P, ) dP 0

V>0

wire, so daf} fiir diese Funktion die Relation

lim ff(P) &(P,Q: n) dP =0

n—>oo

nicht gleichméBig fiir alle @ < M gelten konnte.
Die Bedingungen sind auch hinreichend : Wenn sie nimlich zutreffen,
so geniigt fiir jede Folge @, < MM und jede Indizesfolge », mit lim n,=co

V>0
der Kern @*(P,v) = ®(P,Q,;n,) den beziiglich ¥, bzw. F, gemachten
Voraussetzungen des Satzes I. Daher gilt fiir jede Funktion f(P) aus F,
bzw. F, :

[tP) &*(P,v) iP>0 (v o0) .

Dies bedeutet, daB @ in R limitér orthogonal auf F, bzw. F, ist, gleich-
méfig fir alle @ < M.

18. Satz II*. Essei ®(P,Q; n) ean Kern auf R, (R) der Variabili-
titsbereich von Q und A eine beliebige abgeschlossene in R enthaltene Punkt-
menge, die keinen Randpunkt von R enthdlt.

Damit fir jede auf A stetige Funktion f(P), die auf R zur Klasse F,
(¢ = 1, 2) gehort, die Relation (2.4) gleichmdfig in A gilt, ist hinreichend,
daf3

a), b), ¢) die Voraussetzungen a), b), ¢) von Satz I1 gleichmdfig fiir alle
Q< A erfullt sind.

287



Beweis. Es sei ein beliebiges ¢>0 vorgegeben. Sodann moge jedem
Punkt @ von A eine (offene, kreisformige) Umgebung U(Q) < R zugeordnet
werden, so daf3

HP—i@I<gy - P<U@ (3.1)

gilt. Es moge (@) die zu U(Q) konzentrische Umgebung mit halb so
groBem Radius bezeichnen. Nach dem Borelschen Uberdeckungssatz
existieren endlich viele «(@Q,), die 4 iiberdecken. Ihre (offene) Vereini-
gungsmenge heile U .

Es bedeute jetzt § die Lénge des kleinsten Radius, der bei den «(Q,)
vorkommt und A>0 den Abstand zwischen den Punktmengen 4 und
R — A. SchlieBlich sei » = Min (d, ). Dann kénnen wir behaupten,
daB

HP) —i@1<3% . P<E@ (3-2)

fiir alle Punkte @ von 4 gilt 162).

In der Tat: Die GroBle h ist so klein gewihlt, dal alle Punkte von
R, (@) (@ < A) in A enthalten sind. Ist jetzt P < R,(Q) (@ < 4), so sind
die folgenden beiden Fille moglich : Entweder liegen P und @ in ein und
derselben Umgebung u(Q,); oder es gilt @ < u(@,), P € «(@,). Im
letztern Fall ist sicher P < U(Q,). In beiden Fillen folgt aus (3.1)

1@ — @) I<4x  @<u@)I<T®),
&
HP) —1@)I<4w  P<UQ)

und damit die Richtigkeit der Behauptung (3.2).
19. Fiir diese Wahl von A schreiben wir die Identitit

T (£,Q) = [ f(P) B(P,Q;n) dP V) = }(Q) [®(P,Q;n) dP +
R Rp(Q)

+ [[HP) = f@] @ (P, @;n) &P + [ {(P) B(P, Q;m; h) dP . (3.3)
Rp(Q) R

162) Man beachte, daB es sich hier nicht einfach um den klassischen Satz iiber die
gleichmifige Stetigkeit handelt, da P auch auf gewissen Punkten der Menge R—A variiert.

17) Die Existenz der Integrale von dieser Gestalt folgt aus dem Satz, daB ein Produkt
von zwei in einem beschrinkten mefbaren Bereich gegebenen summierbaren Funktionen
stets summierbar ist, wenn einer der beiden Faktoren bis auf eine Nullmenge in jenem
Bereich absolut gleichmiifig beschrankt ist (vgl. C.Caratheodory (I), p. 438). Im Falle der
Funktionsklasse F, ist diese Voraussetzung bei J,(f,Q) offenbar erfiillt. Handelt es sich
um die Klasse F;, so ist f(P) wegen der Stetigkeit in @ fiir ein hinreichend kleines A >> 0
auf R, (Q) endlich, und auf dem Bereich R — R, (Q) ist nach Voraussetzung a) zufolge
des Satzes I* der andere Faktor, @, bis auf eine Nullmenge absolut beschrinkt.
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Der mittlere Term der rechten Seite ist absolut < % fiir alle n, wie man

aus der N-Ungleichung und der Relation (3.2) sofort erkennt.
Wegen der Eins-Strebigkeit von @ und der gleichméBigen Beschrinkt-
heit von f auf 4, kann ein Index », angegeben werden, so daf3 der erste

Term rechts in (3.3) sich hochstens um -+ ——% von f(Q) unterscheidet fiir

alle @ < A und alle n>n,. Zufolge der limitiren Orthogonalitit von @
auf F, bzw. F, strebt der dritte Term in A gleichméBig nach
€

0 und ist daher von einem n, an absolut < 3

(3.3):
1 .(,Q — @< 5 +5 +5=¢ (n=Max (n,n)))

. Daher ergibt sich aus

fir alle @ < A. Da ¢ beliebig klein angenommen werden kann, ist der
Satz somit bewiesen.

§ 4. Ein Hilfssatz von Camp

20. Wir fiihren in diesem Paragraphen einen Hilfssatz (Satz III) an,
der sich in spiteren Sitzen beim Beweis der Notwendigkeit gewisser
Bedingungen immer wieder als das wichtigste Werkzeug erweisen wird.

Satz III. Ist ¢(P,n) n=1,2,... eine auf einem ebenen (nach
Peano-Jordan) quadrierbaren Bereich B gegebene Folge integrierbarer
Funktionen des Punktes P, und ist die Menge der Zahlen

[lo@m)|ap
B

filr n—>oco micht beschrinkt, so existiert eine auf B stetige Funktion f(P),
welche auf dem Rand von B verschwindet, wobeu

lim ff(P) @(P,n)dP # 0
B

18t. n->o00

Dieser Satz, eine Verallgemeinerung eines entsprechenden eindimen-
sionalen Haar-Lebesgueschen Satzes!®), wurde von Camp'?) aufgestellt
und bewiesen, so dafl wir auf seinen Beweis nicht eingehen wollen.

18) Vgl. z.B. H.Hahn (I), pp. 593—596.
19) B.H.Camp (1), pp. 49—50.
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§ 5. Darstellung der partiellen Ableitung im Falle des totalen Differentials

21. Satz IV. Es set W(P,Q;n) ein Kern auf R und Q.(x,y) ein
beliebiger aber fester Punkt aus (R).

Damit fiir jede Funktion f(P), die auf R zu F; (v = 1, 2) gehort und in
Qo etn totales Differential besitzt, die Relation

of (P)
(”“a‘{‘)P___Qo*im(‘f(P) Y(P,Qy;n)dP (P = P&, 7)) (5.1)

gilt, st notwendig und hinreichend :

a) Fir jedes hinreichend kleine h >0 ist der gelochte Kern ¢ (P, n) =
Y(P,Qy; n; k) in R limitir orthogonal auf F, bzw. F,.

b) Die Funktionenfolge | PQq |-V (P, Qy;n) geniigt einer N-Unglei-
chung in @,.

c) Die Funktionenfolgen (n — y) ¥ (P, Qq; n), P (P, Qy; n) sind null-
strebig in Q.

d) Die Folge (& — x)¥(P,Q,;n) ist eins-strebig in Q,.

22. Beweis. Unter Beriicksichtigung von (1.5) kann fiir alle Punkte
P&, n)<R

H(P) = f(Qo) + (6 — 2)f;(Qo) + (1 — 9)f1,(@o) + o(| PQo]) (5.2)

o(|PQ])
| PQ|

Aus (5.2) folgt nun fiir kleine 4> 0 und alle », wenn wir der Kiirze halber
Y, fir Y(P,Q,; n) schreiben :

gesetzt werden, wobei mit | PQ,|—>0 nach 0 konvergiert.

I (f, Q) -—fﬂP ¥,dP = {f(P) B(P,Qo; n; b) dP + Qo) [ ¥, dP+
Rp(Qo) (5 3)
+ @) [ — )P, dP+1,@Q0) [ (1 — 9) PudP + [0(1PQ,|) ¥, dP *).

Rp(Qo) Rp(Qo) Rp(Qo)

Es streben wegen der Voraussetzung a) der erste Term rechts in (5. 3)
fiir n—>oo nach 0, der zweite und vierte Term wegen der Voraussetzung c)
ebenfalls nach 0, und der dritte wegen Voraussetzung d) nach fg (@o)-

20) Fir die Klarung der Frage nach der Existenz dieser Integrale konsultiere man die
FuBnote 17.
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Um zu beweisen, dafl das letzte Integral rechts in (5.3) nach 0 strebt,
wihlen wir ein beliebiges ¢>0. Dann lifit sich ein A>0 angeben, so
dafl im Quadrat R,(Q,) < R

I
o(|PQl)| ¢
P, ~m > TEMNL B (5.4)

ist. Es gilt daher wegen Voraussetzung b) fiir alle »

[fo(|PQ0|)qfndP|<a, (5.5)

Rp(Qo)

womit die Bedingungen als hinreichend nachgewiesen sind.

23. Die Voraussetzungen sind notwendig: Ware nidmlich a) nicht
erfiillt, so existierte eine der Klasse ¥, bzw. F, angehorende Funktion
g(P) und ein >0, so daf} fiir ein gewisses Teilrechteck B* von R

lim fg(P) T (P,Q,; n; h) dP 0 (5.6)
n—>oo 1% "
wire. — Hieraus folgt, da man ohne Beschrinkung der Allgemeinheit

annehmen kann, es habe R* mit R, (¢,) hochstens Randpunkte gemein-
sam. — Definieren wir dann f(P) durch die Vorschrift

(P)  P<(B¥)

=y
S N P< R — (R* ,

so gehort auch f auf R zur Klasse F'; bzw. F,. f(P) hatim Punkt P = @,
ein totales Differential, und es ist fg (@,) = 0, wihrend andererseits aus
(5.6)

lim J,(f, Qo) # 0

n->»oo

folgt. Dies steht im Widerspruch zu (5.1).

24. Fiir spiter wollen wir aus diesem letzten Beweis noch folgendes in
Erinnerung behalten : Ist Voraussetzung a) nicht erfiillt, so existiert ein
k>0 und eine Funktion f(P), die auf R zu F, bzw. F, gehort und auf
R, (Q,) identisch 0ist (kurz: eine in @, gelochte Funktion), fiir welche
(6.1) nicht gilt.
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25. Wire b) nicht erfiillt, so existierte nach Satz III ein >0 und
eine auf R,(Q,) stetige Funktion w (P, Q,), fir die

lim [ @(P,Q):|PQ| ¥, dP #0 (5.7)
n->» oo

Rp(Qo)
gelten miilte. Da wir den Punkt @, als einen Randpunkt unseres Bereichs
auffassen koénnen, kann man gemidfl Satz III noch verlangen, dafl

w(P,Q, = 0 ist fir P =¢,. Setzen wir

= | PQ, | w(P, Q) P< R, (Qy)

so besitzt f(P) in P = @, offenbar ein totales Differential, und es ist
fg (@o) = 0. Da andererseits wegen (5.7)

n—>» o

gilt, stehen wir wieder im Widerspruch mit (5.1).

Die Bedingungen c¢) und d) erweisen sich als notwendig, wenn man fiir f
insbesondere die Funktionen wihlt, die in R — R, (§,) identisch 0 und
in R,(Q,) gleich  — y, 1 bzw. { — x sind. Damit ist Satz IV bewiesen.

26. Besitzt eine Funktion f in allen Punkten einer Menge It ein totales
Differential, und sind ihre partiellen Ableitungen f;, f, daselbst gleich-
maBig beschrinkt, so wollen wir sagen, f besitze gleichm&dB8igin M ein
totales Differential, wenn noch die folgende Bedingung erfiillt ist. Zu
jedem ¢>0 existiert ein >0, so da3 — unter o(] PQ |) das ,Rest-
glied” in (5.2) verstanden — fiir alle | PQ | <¢ die Ungleichung

[0(1PQ]) |
[ PQ|

<e (@M

gleichméBig fiir alle ¢ < M gilt. — Ein dem Satz IV entsprechender, die
gleichméBige Konvergenz beriicksichtigender Satz 148t sich jetzt wie folgt
formulieren.

27. Satz IV*. Es ses P (P,Q;n) ein Kern auf R und M eine be-
liebige aber fest gewdihlte Punktmenge aus irgend einem Rechteck R’ < (R).
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Damit fir jede Funktion, die auf R zu F, (¢ = 1, 2) gehort und gleich-
mdafig in M ein totales Differential besitzt, die Relation (5.1) gleich-
mafig tn M gilt, ist hanreichend, daf

a) — d) die Voraussetzungen a) — d) von Satz IV gleichmdifrg fir alle
Punkte @ < MM erfillt sind.

Der Beweis ergibt sich sofort daraus, dafl jetzt simtliche Grenziiber-
géinge rechts in (5.3) gleichméafBig fiir alle @ < I erfolgen.

§ 6. Charakterisierung der Verschiebungskerne

28. Durch Kombination der Séitze II und IV werden wir in § 10 einen
,,Differentiationssatz* aufstellen konnen, der iiber die , partielle Differen-
zierbarkeit” der Relation (2.4) Aufschluf} erteilt. Um moglichst einfache

Kriterien zu erhalten, wollen wir annehmen, es habe der Kern die Gestalt

D(P.Q;n) =P —x,n—y;n) (P=P(E,n), @=0Q(x,y)), (6.1)

und es sei das Grundrechteck R insbesondere ein Quadrat R, von der
Seitenldnge 1.
Wir setzen im folgenden

u=—x, v=n—Yy. (6.2)

Bezeichnet O den Nullpunkt der wv-Ebene und @(z, y) einen beliebigen
inneren Punkt von R,, so ist der Definitionsbereich des Kerns

Pl —x,n—y;n)=DP(u,v;n)

in der uv-Ebene offenbar das Innere (R,;(0)) des Quadrates R, (0).
Einen solchen Kern & wollen wir einen Verschiebungskern auf
(R5;(0)) nennen, wenn die folgenden Voraussetzungen zutreffen. Dabei
bedeute das Symbol (@, b) hier wie auch spiter das offene Intervall,
dessen Endpunkte a, b (a <b) sind.

29. @D(u,v;n) sei fir alle n und jedes feste v < (—1,1) totalstetig
beziiglich % in jedem abgeschlossenen u-Intervall L’ < (—1,1) und fiir
jedes feste u < (—1,1) in (—1,l) meBbar beziiglich v. Es seien @ (u,v;n)
und @] (u,v;n) integrabel iiber jedes Rechteck R* < (R, (0)) fiir alle
n. SchlieBlich gelte fiir jedes 2’ >0 in jedem abgeschlossenen Teilrechteck
R* von (R, (0))
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lim @ (u,v;n;h') =0  (P(u,) < B* < (Ry(0))) (6.3)

gleichmiBig fiir alle Punkte P(u,v) < R*. Hierbei sei @ = 0 fiir
Pu,v)< R,,(0) und & =@ fir Pu,v)< (By(0)) — R, (0).

Wir wollen in Analogie zur fritheren Definition fiir @(u,v; n; A’) wieder
die Benennung ,,gelochter Kern“ benutzen. — Entsprechend werden wir
sagen, @ (u,v;n) geniige einer N-Ungleichung im Nullpunkt bzw. sei
o-strebig im Nullpunkt, wenn @ (& — x,n — y;n) diese Eigenschaft im
Punkt = y = 0 besitzt. —

30. Aus (6.3) laB3t sich folgende Eigenschaft der Verschiebungskerne

herleiten :
Fiir ein beliebiges positives I’ <l betrachte man das Quadrat R,; (0).
Dann ist wegen (6. 3) fiir jedes feste £ >0, jedes ¢ >0 und alle n>n,(e,h)

| @(w,v;n;h)|<e  (P(w,v) < Ry (0), n>n,) . (6.4)

Bezeichnet jetzt @ (x,y) irgendeinen Punkt im &#-System, so gilt folglich
fiir alle Punkte P (&, n) < Ry, (@)

| D¢ —2,n—yin;h)|[<e (P&, 7)< By (@), n>m)  (6.5)

und zwar gleichmédfBig fiir alle Punkte @. Der Schlull von (6.4) auf
(6.5) beruht offenbar auf der in (6.1) zum Ausdruck kommenden Eigen-
schaft des Kerns, die wir im folgenden Verschiebungseigenschaft
nennen wollen.

§ 7. Totalstetigze Verschiebungskerne

31. Bevor wir uns mit weiteren Eigenschaften der Verschiebungskerne
befassen, wollen wir die oben gegebene Charakterisierung dieser Kerne
noch etwas genauer analysieren. Es ist unbefriedigend, daf} die Existenz
der Integrale

f@(u, v;n) du dv , fdi,: (w,v;n) du dv (R* < (R2,(0))) (7.1)
R* R*

sich nicht auf einfache Weise aus den iibrigen, den Verschiebungskern
definierenden Eigenschaften gewinnen lifit und daher vorausgesetzt

294



wurde. In einem besonderen Satz wird daher jetzt fiir den Fall von m=2
Variablen dem Kern @ eine etwas schirfere Bedingung auferlegt, aus
welcher die Existenz dieser Integrale ohne Schwierigkeit geschlossen
werden kann.

32. Satz. Sind die Qlieder @ (u,v;n) n=1,2,... einer auf (R, (0))
definierten Funktionenfolge als Funktionen der beiden Variablen w, v total-
stetig auf jedem Rechteck R* < (Ry,(0)), so ist diese Folge unter der Vor-
aussetzung, daf (6.3) gilt, ein Verschiebungskern auf (R,;(0)).

Dabei sagen wir, eine Funktion g¢(u,v) sei auf R* totalstetig, wenn g
fiir festes % in v und fiir festes v in u totalstetig ist, und wenn die zu-
gehorige Intervallfunktion

V(1) = g(ug,vy) — g(uy,v5) — g(Us,v5) + g(uy,vq)

wo ¢ ein in R* enthaltenes Rechteck mit den Eckpunkten P (u,,v,)
(v, % = 1, 2) bedeutet, selbst totalstetig auf R* ist 2!).

Beim Beweis werden wir uns der folgenden bekannten Tatsache aus der
Theorie der reellen Funktionen bedienen, wobei mit dem auch spiter be-
nutzten Symbol {x, 8> das abgeschlossene Intervall bezeichnet wird,
dessen Endpunkte «, f (x<f) sind :

Ist f(x) eine tm Intervall {«,p> integrable Funktion und F(x) emn
unbestimmtes Integral

F)=|f(2) dz (==o=p) .
so gilt far die Totalvariation T (x, B) von F(x) i {x,f):
B
T, 8) = | | f(2)] da ) . (7.2)

33. Beweis. Da jede totalstetige Funktion von zwei Variablen stetig
ist im gewohnlichen Sinne 23), existiert das erste Integral (7.1).

21) Diese Definition der Totalstetigkeit ist équivalent mit der in C.Caratheodory (I),
p. 653, gegebenen, wie man mit Hilfe des dort auf p. 654 formulierten Satzes 3 sofort er-
kennt.

22) Vgl. I.W.Hobson (1), p. 605.
) Vgl. C.Caratheodory (I), p. 654.
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&, ist eine meBbare Funktion 2¢). Um die Integrierbarkeit von @, zu
beweisen, geniigt es, nachzuweisen, dal das iterierte Integral

fdvf]@,:(u,v;nﬂdu , (7.3)

erstreckt iiber R*, existiert 2%). Seien etwa A, B (A < B) die u- und C, D
(C < D) die v-Koordinaten der Eckpunkte von R*. Dann ist nach (7.2)

B

(10w, vin) | du =1T,() ,

4
wo T ,(v) die Totalvariation der Funktion @ im Intervall (4, B) fiir
festes v bezeichnet. (7.3) existiert sicher, wenn 7', (v) in (C, D> eine
stetige Funktion ist. Dal} dies tatsdchlich der Fall ist, besagt der folgende
Hilfssatz, mit dessen Beweis dann auch der obige Satz bewiesen sein
wird.

34. Hilfssatz 1. Ist g(u,v) tolalstetig auf dem Rechteck R*, dessen
Ecken A, B als u- und C, D als v-Koordinaten haben mogen, und bezeichnet
T (v) dve Totalvariation von g fiir ein festes v < {C, D) auf dem u-Inter-
vall (4, B), so ist T (v) im Intervall (C, D) stetig.

Beweis. Es sei ein beliebiges ¢ >0 vorgegeben. Wenn jetzt ¥ (7) die
der Funktion g zugeordnete Intervallfunktion bedeutet, kann man ein
d(¢) >0 angeben, so daB} stets

SIP6I<y  (Slil<oe) (7.9

gilt, wenn i, (» = 1, 2,...) eine beliebige Menge von abzihlbar vielen,
punktfremden, in B* enthaltenen Rechtecken ist, wobei die Summe ihrer
Flidcheninhalte |:,| kleiner als d(e) ist.

Sei jetzt v ein beliebiger aber fester Wert aus <C', D) und & eine be-
liebige GroBe mit 5(e)

lhl<p—7 -

Wir setzen v’ = v + h, sofern v’ < (C, D) gilt. Dann ist das MaB des
Rechtecks ¢* mit den Eckpunkten (4, v), (B, v), (B,?'), (4, ') kleiner
als 6.

24) Vgl. C.Caratheodory (I), p. 642.
%) Vgl. C.Caratheodory (I), p. 637.
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Nach unseren Voraussetzungen kann man eine Zahlenfolge %, finden,
fir die
A4 =u<u,<---<u, =B,

"] =

&

T(v) — &

<X 1w, 0) = gl ,0) [< T() (7.5)

ist. Analog existiert eine Folge ., fiir die

A=ug<u;<...<uy = B,
p’

L <N g, v)—g,_,,v)| <T@ (7.6)

T@) — 5
v=1

ist. Die Ungleichungen (7.5) bleiben bekanntlich bestehen, wenn man
noch weitere Teilpunkte, z. B. alle u, # u, einfiihrt. Analog gelten die
Ungleichungen (7.6) immer noch, wenn man noch die Teilpunkte u, # u,
einfiihrt. Wir kénnen daher annehmen, es sei u, = u;, v=1,..., p;

p=1p"
Bezeichnen jetzt C', C’ die mittleren Terme der Ungleichungen (7.5)
bzw. (7.6), so folgt

4
4 = l C — C, ’ = E ! g(uv’v) - g(uv——19v) —_ g(uv’v,) + g(uv-lsv,) I .
v=1
Da die Inhaltssumme der p Rechtecke mit den Eckpunkten

(uv’v)’ (’va__l,?}), (uv,v,)! (uv—l’v,)

gleich |¢*| ist, folgt wegen (7.4) sofort: 4 < %- . Aus den Ungleichungen
(7.5), (7.6) ergibt sich daher

|ﬂm~Twn<A+2§<e.

Dies gilt fiir jedes hinreichend kleine |v — v'| = |k| und bedeutet
daher die Stetigkeit von 7'(v) im Punkte v.

§ 8. Ein Satz iiber Verschiebungskerne

35. Der nichste Satz (Satz V) bildet die Grundlage fiir eine Vereini-
gung der Sitze IT und IV zu einem Differentiationssatz fiir Verschiebungs-
kerne. Wir stellen den folgenden Hilfssatz voran :
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Hilfssatz 2. Es sei @D(u,v;n) ein Verschiebungskern auf (R, (0)).
Damat 5,: (w,v; m; h) fir jedes hinreichend kleine h >0 in jedem Rechi-
eck R* < (Ry,(0)) auf F; (i = 1, 2) limitir orthogonal ist, ist notwendig
und hinreichend, daf die auf F', bzw. F, beziigliche Bedingung b) von Satz 1
fiir ¢ =@, (u,v;n;h) und R = R* erfullt ist.

Aus den Eigenschaften des Verschiebungskerns 148t sich ndmlich fiir
@, die Null-Strebigkeit tiber R* folgern, so daB sich zusammen mit Vor-
aussetzung Ib) fiir &, nach dem Fundamentallemma die limitére Ortho-
gonalitdt auf F, bzw. F, ergibt.

In der Tat: Es seien mit a, & (a <b) die - und mit ¢, d (c<d) die
v-Koordinaten der Eckpunkte eines beliebigen Rechtecks R’ < R* be-
zeichnet, das den Nullpunkt nicht enthélt. Wegen der Lochung des Kerns
ist die Beschrankung auf solche Rechtecke R’ erlaubt. Durch Integration
nach » erhdlt man wegen der Totalstetigkeit von @ in u :

d
fQ); (w,v;n)du dv = f{Q(b,v; n) — D(a,v;n)} dv 26) .

1;’ c
Das letzte Integral strebt mit »—oco nach 0, was sich aus (6.3) ergibt,
wenn man beachtet, daB3 die Punkte (b, v), (a,v) v < {c,d) fir hin-
reichend kleine A’>0 nicht in R,,(O) liegen. Dies bedeutet die Null-
Strebigkeit von @, iiber R*.

36. Satz V. Essei ®(u,v;n) ein Verschiebungskernauf (R,,(0)), R,
ein beliebiges in einer &n-Ebene vorgegebenes Quadrat und Qq(x,y) < (R))
ein beliebiger aber fester Punkt.

Damit auf R, fir @ (& — x,n — y; n) die Voraussetzungen von Satz 11
und fir — @, (& — x,n— y;n) jene von Satz IV erfallt sind, ist hin-
reichend :

a) In jedem Teilrechteck R* von (Ry;(0)) und fir jedes hinreichend
kleine h>0 ist @, (w,v;n;h) lmitir orthogonal auf F, bzw. F,.

b,) und b,) Die Funktionenfolgen u®, (w,v;n), v®, (u,v;n) genigen je
etner N-Ungleichung ym Ursprung.

c) @(u,v;n) ist eins-strebig im Ursprung.

Insbesondere sind c) beziiglich Satz I und a), b,), b,) beziiglich Satz IV
notwendige Bedingungen.

%) Zufolge der Integrabilitst von @, iiber R’ kann das Integral linker Hand durch
iterierte Integration berechnet werden (vgl. I. W.Hobson (I), p. 630). Ferner ist die An-
wendung des Fundamentalsatzes der Infinitesimalrechnung wegen der Totalstetigkeit von
@ in u erlaubt (vgl. I. W.Hobson (1), pp. 592, 593).
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37. Unter Beachtung des Hilfssatzes 2 erhiilt man offenbar sofort den
folgenden

Zusatz zu Satz V. Die Voraussetzung a) in Satz V kann ersetzt werden
durch die weniger umfassende :

V. a®°) Fir jedes hinreichend kleine h>0 wund jedes Rechleck
R* < (R,,(0)) gilt

fiir Fi: @) (w,v;n;h) ist auf R* fast beschrankt.
fir F,: f | B, (w,v;n; k)| dudv ist auf R* gleichgradig totalstetig.
38. Beweisvon Satz V. Wirzeigen zuerst, dal die Voraussetzungen

hinreichend sind. Zu diesem Zweck bestimmen wir eine positive Grol3e
/<1, sodaB

f B < Ruw(@)  (8.1)
L R,
0,09 gilt (vgl. Figur).
<% L Ryy(Q.) Wir verifizieren jetzt fiir @ die Eigen-
schaften I1a), b), ¢):

ot Unter Beachtung von (8.1) folgt
aus (6.5), daB @ auf R, die Voraus-
setzungen des Fundamentallemmas fiir ¥, bzw. F, erfiillt. @ ist also in R,
limitér orthogonal auf ¥, bzw. F,. Dies wird gerade in ITa) gefordert.
IIb) verlangt, dal @ in §), einer N-Ungleichung geniigt, was man durch
partielle Integration nach & nachweist 2?). Fiir jedes hinreichend kleine
h>0 ist wegen der Integrierbarkeit von @ und der Totalstetigkeit von @

nwu:
y+h z+h
e o|D
frolagan=[{¢—10E—en—ysnl | |dn— [0’ deay =
R3yp(Qy) y—h z—h R2p(Qo)
y+h (8 2)
= b [{|®G, 1 —y;n)| + B(—h,n—y;n) ||y — '
y—h

— f(f-‘ z) D, (E — x,n — y;n)sgn ®dédy .
Ran(Qo)

27) Vgl. z. B. C.Caratheodory (1), p. 549, fiir die Bedingungen, unter denen die Formel
der partiellen Integration gilt.
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Dabei kann man etwa sgn® =1 fir ® =0 und sgn® = —1 fir
@& <0 setzen?8). Da die Punkte (h,7 — y), (—h,n —y) (n<{y—*r,
y + h)) firein k' <2h nicht in R,, (0) liegen, folgt aus der MeBbarkeit
von @ und aus (6.3), daBl in (8.2) das erste Integral rechts mit n —oo
nach O strebt. Das zweite ist wegen Voraussetzung b,) absolut gleich-
miBig beschrankt. Also trifft ITb) zu. — Voraussetzung c) ist dquivalent
mit Ilc).

Wir weisen jetzt IVa), b), ¢), d) fiir — @, nach.

Setzt man in Voraussetzung a) insbesondere R* = R,,;,(0) (0<l'<l),
so ergibt sich, da auch — @, die Verschiebungseigenschaft besitzt, unter
Beachtung von (8.1) sofort, daB — @, in R, limitdr orthogonal auf F,
bzw. F, ist. Dies besagt, dafl IV a) zutrifit.

39. IVb) ist offenbar dquivalent mit den beiden Voraussetzungen b,)
und b,). — Fiir spiater wollen wir uns noch merken, dal im Beweis von
Satz V Voraussetzung b,) hier ein einziges Mal, und zwar zum Nachweis
von IVb) benotigt wird

40. Wir haben jetzt IVc), d. h. die Null-Strebigkeit der Funktionen
— @, —(n — y) D, in Q, nachzuweisen. Es soll unter g(y — y) nach
Belieben eine der Funktionen —1, — (5 — y) verstanden werden. So-
dann bemerken wir, dafl man fiir kleine >0 durch Integration nach &
unter Beachtung der Totalstetigkeit von @ in

fg(n—y)CDé(E—x,n—y;n)dEdn:

i Rz (Qo)
:f{g(n-——y) [di(h,n—y;n)——@(—k,n—y;n)]}dn
y—*h

erhilt, was wegen (6.3) mit n —oco nach 0 konvergiert. Damit ist IV ¢)
verifiziert.

IVd), d. h. die Eigenschaft der Eins-Strebigkeit von — (£ — z) @) in
@, weisen wir durch partielle Integration nach :

f(é-—x)@.i(f—x,n-—y;n)dé‘dn=
Ra1(Q0) (8.3)

= hyf{@(h,n —y;n)+ D(—h,n— y;n)}dn — f‘bdfdn -
ot R31(Qo)

28) Fiir @ = 0 ist diese Festsetzung klar. Fiir alle inneren Punkte der Menge I (P = 0)

ist |P |y =0, so daB man dort z. B. sgn® =1 setzen kann, da der Integrand ohnehin
verschwindet. Wegen der Integrierbarkeit von @ ist die Menge (P = 0) und deren
Rand R meBbar, und R hat das MaB 0. Die Festsetzung sgn® = 1 fiir die Nullmenge R
ist fiur den Wert des letzten Integrals ohne EinfluB3.

300



Das erste Integral rechts strebt wegen (6.3) mit n —oco nach 0 und das
zweite wegen Voraussetzung c) nach 1. Daher ist IVd) erfiillt. — Somit
sind die Voraussetzungen als hinreichend erkannt.

41. Voraussetzung c) ist offenbar fiir die Giiltigkeit von IIc) not-
wendig; ebenso Voraussetzungen b,) und b,) fiir die Giiltigkeit von IVb).
Was schlieBlich Voraussetzung a) anbetrifft, so ist ihre Notwendigkeit fiir
die Eigenschaft IV a) folgendermaflen einzusehen.

Zunichst wissen wir, dafl eine Funktionenfolge in jedem Teilrechteck
eines Rechtecks R* auf I'; bzw. F, limitdr orthogonal ist, wenn sie diese
Eigenschaft in R* besitzt. Bezeichnet daher R* < (R,;(0)) ein Rechteck,
in welchem @, (u, v; n; k) fiir ein gewisses A>0 auf F, bzw. F, nicht
limitédr orthogonal ist, so darf man ohne Beschrinkung der Allgemeinheit
annehmen, die Seiten von R* seien <I. Ferner kann man wegen der
Lochung des Kerns annehmen, RB* habe mit R,(O) hochstens Rand-
punkte gemeinsam. Dann existiert ein Punkt @,(z, y) < (R;) mit der
Eigenschaft, daB die Transformation (6.2) das Rechteck R* der wwv-
Ebene in ein Rechteck R der £7-Ebene iiberfiihrt, fiir welches

R<R,, QoL R

gilt. Fiir diesen Punkt Q, kann daher —®, (¢ —x,7—y; n;k) in R, auf
F, bzw. F, nicht limitdr orthogonal sein und also Voraussetzung IVa)
nicht erfiillen. Damit ist der Satz bewiesen.

§ 9. Verallgemeinerung auf gleichmiiBige Konvergenz

42. Satz V*. Es sei @(u,v;n) ein Verschiebungskern auf (R, (0))
und A eine beliebige tn etnem vorgegebenen Quadrat R, der &n-Ebene ge-
legene abgeschlossene Punktmenge, die keine Randpunkte von R, enthdlt.

Dann sind die Voraussetzungen von Satz V hinreichend dafir, daf fir
D (& —x,n—y;n) die Voraussetzungen von Satz IT* und fir — &, (§ — x,
n — y;n) jene von Satz IV* mit M=A und R= R, erfullt sind.

Beweis. Wir greifen auf den Beweis des Satzes V zuriick. Das Quadrat
R, (@) werde nunmehr so grol gewéhlt, daB (8.1) fiir alle Punkte @ < 4
gilt.

Zuniichst weisen wir IT* a) fiir @ und IV* a) fiir — @, in dieser Reihen-
folge nach.

DaB @ in R, limitdr orthogonal auf F, bzw. F, ist, und zwar gleich-
miBig fiir alle Q < 4, folgt aus Satz I*, dessen Voraussetzungen wegen
(6.5) und (8.1) firp=®, R=R, und M=4 erfiillt sind. Also
trifft I1*a) zu.
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Um die entsprechende Eigenschaft fir — @, also IV* a) nachzu-
weisen, zeigen wir, daB fir — @, auf R, die Voraussetzungen a) und b)
von Satz I* zutreffen, wobei wieder IR mit 4 zu identifizieren ist.

Die Richtigkeit der auf I* b) beziiglichen Behauptung ergibt sich
sofort etwa unter Benutzung von V a°) aus der Verschiebungseigenschaft
von @,. Wir haben also noch I* a), d.h. fir — &/ (£—z, n —y; n;h) die
Eigenschaft der gleichmiBigen Null-Strebigkeit iiber R, nachzuweisen.

Es bedeute Q(x, y) einen beliebigen Punkt aus 4 und R ein beliebiges
fiir ein festes #>0 in R, — (R, (@)) gelegenes Rechteck, dessen Ecken
@, b als &- und ¢, d als #-Koordinaten haben mogen. Dann ist

d
Joie—wm—yimdsin = ({00 — 2, n—y;n) — Bla—z,q—y;m}ydy .
R

: 9.1)

Fiir die im Integranden rechts auftretenden Argumente gilt wegen (6.3) :
| b —x,n—y;n)|<e, |[Pla—2z,7—y;n)|<e (n>n)

und zwar gleichméBig fiir alle Rechtecke R und alle Punkte @ < 4. Ist
jetzt R’ ein beliebiges Teilrechteck von R;, so 148t es sich stets aus hoch-
stens 8 Rechtecken vom Typus R und eventuell R,(¢) zusammensetzen.
Daher folgt aus (9.1), daBl das Integral

(@i —z,n—ysn;h)dedn
RI

mit n —oco gleichmiBig nach 0 strebt fiir alle @ < A4 . Dies bedeutet,
daB IV* a) erfiillt ist.

43. Was schliellich die iibrigen Voraussetzungen, also II*b),
II* ¢), IV*Db), IV*¢c), IV*d) anbetrifft, so ist wieder wegen der Ver-
schiebungseigenschaft der betreffenden Kerne sofort klar, daB sie erfiillt
sind. Wir zeigen dies ausfiihrlicher etwa am Beispiel von IV* b). Fiir einen
beliebigen Punkt @,(z, y) < (R,) ist wegen der Giiltigkeit des Satzes V
die Eigenschaft IVb) erfiillt, d. h. es ist

[ VE—ar+m—y?| 0/¢—a,n—y;n)|dedy<N .

Rp(Qo)

Da der Integrand aber eine reine ,,Verschiebungsfunktion® ist, hingt
offenbar N nicht von @, ab. Damit ist der Satz bewiesen.
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44. Fir spdter wollen wir noch folgendes anmerken: Alle Voraus-
setzungen von Satz II* und — bis auf IV* b) — alle Voraussetzungen von
Satz IV* lassen sich fiir @ bzw. —®, aus den Voraussetzungen von
Satz V nachweisen, aber ohne Benutzung von Vb,). Dies ergibt sich so-
fort unter Beachtung der Bemerkung, die in Nummer 39 beziiglich Vb,)
gemacht wurde.

§ 10. Differentiationssatz im Falle des totalen Differentials

45. Unmittelbare Folgerungen aus den Sédtzen V, V* und dem Zusatz
sind jetzt die folgenden Differentiationssétze : '

Satz VI. Es sei ®(u,v;n) ein Verschiehungskern auf (R,;(0)) und
Qo(x, y) ein beliebiger aber fester Punkt aus dem Inneren eines vorgegebenen
Quadrates R, der &n-Ebene.

Damit fiur jede Funktion f(&,n), die auf R, zu F, (1 = 1, 2) gehort und
in @, ein totales Differential?®) hat, die Relationen

fl,y) = lim | f(&,n) PE — 2, n—y;n)dédy ,  (10.1)

d 1 0P T ey —Y;
fe(x,y) = lim | f(&, n) € xaxn y;m) dédn  (10.2)
R

gelten, ist notwendig und hinreichend, daf die Voraussetzungen Va) (oder
a®)) by), by), ¢) erfallt sind.

Salz VI*. Es sei @ (u,v;n) ein Verschiebungskern auf (R, (0)) und A
etne beliebige in eimem vorgegebenen Quadrat R, der En-Ebene gelegene ab-
geschlossene Punktmenge, die keine Randpunkte von R, enthdlt.

Dann sind die Voraussetzungen von Satz V hinreichend dafiir, daff die
Relationen (10.1), (10.2) gleichmifig in A gelten fir alle Funktionen, die
auf R,2u F; (i = 1, 2) gehoren und gleichmdfiigin A ein totales Dif-
ferential haben.

§ 11. Differentiationssatz im Falle der H -Ableitung

46. Der nichste Satz illustriert die in der Einleitung gemachte Be-
merkung, dafl bei Differentiationssitzen mit Auszeichnung einer
Variablen die Annahme eines totalen Differentials fiir f(P) dem Wesen
dieser Unsymmetrie nicht geniigend Rechnung trigt. Der folgende Diffe-

29) Die Stetigkeit von f in @, braucht nicht vorausgesetzt zu werden, da sie aus der Eigen-
schaft des totalen Differentials folgt.
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rentiationssatz im Falle einer H-Ableitung gilt nimlich unter geringeren
Annahmen iiber den Kern als im Satz VI, obwohl die Existenz einer
H-Ableitung in einem Stetigkeitspunkt fiir die betreffende Funktion
keineswegs die Existenz eines totalen Differentials nach sich zieht, was
beispielsweise die Funktion f(&,%) =|#| zeigt, welche im Nullpunkt
eine H-Ableitung nach &, nicht aber ein totales Differential besitzt.

DaBl umgekehrt die Existenz eines totalen Differentials im allgemeinen
auch nicht die H-Differenzierbarkeit zur Folge hat, ergibt sich daraus,
dafl wir im zweiten Teil dieser Beitrige einen Kern angeben werden,
welcher die Voraussetzungen von Satz VII, nicht aber jene von Satz VI
erfiillt.

47. Satz VII. Es sei @(u,v;n) ein Verschiebungskern auf (R, (0))
und Qy(xz, y) ein beliebiger aber fester Punkt aus dem Inneren eines vor-
gegebenen Quadrats R, der &£r-Ebene.

Damit fir jede Funktion f(&,n), dieauf R, zu F, (¢ = 1, 2) gehdrt und
mn @, stetig®®) und H-differenzierbar nach & ist, die Relationen (10.1),
(10.2) gelten, ist notwendig und hinreichend, daf Va) (oder a®)), b,), c) er-
fallt sind.

Beweis. DaB (10.1) zutrifft ist klar, da die Voraussetzungen 1I a), b), ¢),
wie sich aus der Bemerkung in Nummer 39 ergibt, sich aus Va), b,), ¢)
folgern lassen. — Wir zeigen jetzt, dafl diese Bedingungen fiir das
Erfiilltsein von (10.2) hinreichen.

Aus (1.6) und (1.8), den Relationen zur Definition der H-Ableitung
nach der ersten Variablen, erhilt man fir f in R, die Darstellung

HEn=Ffa,n)+E—) fy(x, 9+ (E—2)eE,n;2,y) (PEn) <R,
(11.1)

wo &(&,m; %, y) = 0 (P(&, 1) > Qox, y)) gilt. Schreiben wir der Kiirze
halber @, anstatt @, (£ —z,n — y;n), so gilt identisch fiir jedes hin-
reichend kleine A>0

— I (f, Qo) Eff(f,n) @, d& dny =ff(5,?7) D (E—x,n—y;n;2h)dEdn+
P B (11.2)

+ [ H@,m @l dedn + fi(, y) [ (¢ — @) Bdedn + [ (¢ — o) Bl edEdy.
Ry (Qo) Ryh(Qo) Ran(Qo)

80) Es wiirde geniigen, an Stelle der Stetigkeit von f in @, bloB die gleichmiBige Be-
schranktheit von f in R;/(Q,) fiir ein beliebiges k' > 0 vorauszusetzen, sofern die Aus-
sage des Satzes nur auf die eine Relation (10.2) beschriankt wird. Dies wird sich im Beweis
bei der Diskussion von (11.3) ergeben.
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In Nummer 39 wurde bereits darauf hingewiesen, daBl fiir den Kern
Y= —& (& —x,7— y;n) die Eigenschaften IVa) und d) beweisbar
sind aus Va), b,), ¢). Aus IVa) folgt jetzt, daB das erste Integral rechts
in (11.2) nach 0 und aus IVd), daB das dritte nach — 1 strebt.

Wegen Voraussetzung Vb,) kann das vierte Integral mit 4 absolut be-
liebig klein gemacht werden. Beim zweiten Integral fiihren wir die Inte-
gration nach & aus und erhalten, da f(z,#) von & unabhéngig ist:

y+h

f/(x, 1) P, dé dy =.[ f@, ) {PHh,n—y;n) —P(—h,n—y;n)}dn.

Ren(Qo) v—h (11.3)

Zufolge (6.3) und der gleichméBigen Beschrénktheit von f in Ry, (Q,)
strebt der letzte Integrand mit wachsendem # fiir alle in Frage kommen-
den Argumente gleichméfBig nach 0. Daher strebt auch das Integral nach
0. Die Voraussetzungen sind also hinreichend.

48. Die Voraussetzungen Va), b,), ¢) sind notwendig: Wére Va)
nicht erfiillt, so kénnte IVa) nach Satz V nicht zutreffen. Zufolge der in
Nummer 24 beziiglich IVa) gemachten Bemerkung gibe es dann eine in
@, gelochte Funktion aus F; bzw. F,, fir welche (10.2) nicht gelten
konnte. Diese Funktion wire offenbar in @, stetig und H-differenzierbar
nach &, was zu einem Widerspruch fiihrt.

Wire Vb,) nicht erfiillt, so existierte nach Satz III eine auf R, (O)
stetige Funktion g(u,v), die im Nullpunkt verschwinde und fir die

lim f g(u,v)ud,(u,v;n)dudv %0 (11.4)

n >

Rp(0)

wiire. Wihlt man jetzt insbesondere eine Funktion f(u,v) von der
Gestalt
=ug(u,v) Pu,v) < R,(0)

fe, o) P(u, ) & B,(0) ,
so besitzt diese Funktion im Nullpunkt eine H-Ableitung nach », und
es ist fw, v)
u,
("" ou )’:,:% - (-2

Aus (11.4) folgt fiir die Funktion F(&,9) =f(§ —x,n — y):

lim — [ F(&,n) @, — 2,0 — y;n)dédn #0,
R

n->o0
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und wegen (11.5) kann die Relation (10.2) fiir F (&, ) nicht gelten, wo-
mit wir einen Widerspruch erhalten.

Die Notwendigkeit von V ¢) fiir die Giiltigkeit von (10.1), ist auf Grund
des Satzes V klar. Damit ist der Satz bewiesen. —

49. Gilt fir f(£, %) in jedem Punkt @(x, y) einer Menge It die Dar-
stellung von der Gestalt (11.1), wobei e(&,7; x, y) in IM gleichmiBig
nach 0 strebt fir P(¢,7n) >@Q(x,y), und ist f;(Q) gleichmiBig be-
schrinkt auf I, so sagen wir, f besitze gleichmdBigin I eine H-Ab-
leitung nach &.

50. Ein VII entsprechender Satz unter Beriicksichtigung der gleich-
méfigen Konvergenz lautet sodann :

Satz VII*. Es sei ®(u,v;n) ein Verschiebungskern auf (R, (0)), R,
ewn vorgegebenes Quadrat der &n-Ebene und A < (R) eine beliebige abge-
schlossene Punktmenge.

Dann sind die Voraussetzungen von Satz VII hinreichend dafiir, daf3 die
Relationen (10.1), (10.2) gleichmdpig in A gelten fir jede Funktion f(&,n),
dieauf RyjzuF'; (v = 1, 2) gehort, auf A stetig ist und gleichmdifigin A
eime H-Ableitung nach & besitzt.

Beweis. Auf Grund der am Ende des Beweises zu Satz V* in Num-
mer 44 gemachten Bemerkung ist zunédchst klar, daf3 die beziiglich (10.1)
aufgestellte Behauptung wahr ist; ferner, dafl die Voraussetzungen IV*a)
und d) fir ¥ = — @, (6 — z,n — y;n) zutreffen und daB daher rechts
in (11.2) der erste Term fiir » oo nach 0 und der dritte nach — fg (x,y)
strebt, beides gleichméBig fiir alle @ < 4.

DaBl der vierte Term rechts in (11.2) absolut beliebig klein gemacht
werden kann, gleichmiBig fir alle @ < A, folgt wegen der Verschie-
bungseigenschaft aus Vb,), und dasselbe folgern wir fiir das zweite Inte-
gral aus der Betrachtung von (11.3). Somit ergibt sich die Behauptung
aus (11.2).

§ 12. Ditferentiationssatz im Falle der O-Ableitung

51. Bei der Formulierung des ,
nichsten Satzes werden wir es mit 1
,doppeldreieckigen“ Bereichen zu
tun haben, die wir zur Veranschau-
lichung in zwei Figuren schraffiert
wiedergeben wollen :

2h

pU——— VR

ﬁug”. ““u.-

2b 2 al’ v

,nUIH Tﬁ“ln.
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Es sei ndmlich fiir einen festen Punkt @ (x, y) der £7-Ebene und ein be-
liebiges A>0 mit U,(¢) jener Bereich bezeichnet, fiir dessen Punkte
|E— 2|, |9 —y|Zh; |n—y|=|&— x| ist. V,(Q) bezeichne den
Bereich R,,(Q) — U,(Q), also hier im Falle von zwei Variablen den Be-
reich, fiir dessen Punkte & — x|, |n —y | Zh; |n —y|>| & — x| ist.
Sodann wollen wir sagen, die Funktionenfolge @ (u,v;n) geniige im
Nullpunkt O einer U-Ungleichung oder einer V-Ungleichung, wenn
eine Konstante U bzw. V und ein h >0 existiert, so daB fiir alle »

f|(15(u,v;n)|dudv<U bzw. f|¢(u,v;n)|dudv<V
Up(0) Va(0)
gilt.

52. Satz VIII. Es sei @ (u,v;n) ein Verschiebungskern auf (Ry(0))
und Q,(x, y) ein beliebiger aber fester Punkt aus dem Imneren eines vor-
gegebenen Quadrats R, der &n-Hbene.

Damit fir jede Funktion f(&,n), dieauf RyjzuF; (i = 1, 2) gehort und
n Q, stetig und O-differenzierbar nach & 3)ist, die Relationen (10.1),
(10.2) gelten, ist notwendig und hinreichend :

a) Voraussetzung Va) (oder a®)) ist erfallt.

b) Die Folge u®,(w,v;n) geniigt im Ursprung einer U-Ungleichung.
c) D(u,v;n) ist eins-strebig im Ursprung.

d) @, (u,v;n) genigt im Ursprung einer V-Ungleichung.

53. Beweis. Die Voraussetzungen sind hinreichend : Fiir die Giiltig-
keit von (10.1) folgt dies analog wie in Satz VII, da mit obigen Voraus-
setzungen fiir den Kern auch jene von Satz VII erfiillt sind.

Um (10.2) nachzuweisen, setzen wir fir f in R;, gemdf} den Relationen
(1.6), (1.7) fiir die Definition der O-Differenzierbarkeit nach der ersten
Variablen :

FE ) =@ m + ¢ — 2 fi@y) + E— o) e ey, (12.1)
wobei & >0 (P(E,n) >Q(z,9), |n—y|S|E—zx|) gilt.

Es ist, wenn wiederum @, anstatt ®@,(§ — =, — y;n) geschrieben
wird, fiir jedes hinreichend kleine »>0 identisch

31) Es hatte wenig Sinn, f in @, nach beiden Variablen O-differenzierbar vorauszusetzen.
Die letztere Annahme ist namlich notwendig und hinreichend dafiir, da8 f in Q, ein totales
Differential besitzt (vgl. A.Ostrowsks (IT1), p. 223), und mit diesem Fall haben wir uns be-
reits in Satz VI befaft.
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— J.(f,Q0) Eff(é,n) @, dtdy =ff(§,n) D, (E—x,n—y;n;2h) dEdny +
Ry R

+ [ 1@, m) @l dedn + fi(@.y) [E—2)B,dEdn + [(E—2) Blededy .
R3p(Qo) Rep(Qo) R31(Qo) (12 . 2)

Das letzte Integral auf der rechten Seite zerlegen wir, indem wir den

Integrationsbereich R,,(Q,) in die beiden Stiicke U, (Q,), V,(@,) auf-
spalten. Gleichzeitig legen wir die Grofle h folgendermafBen fest : Fiir ein

beliebiges 6 >0 bestimmen wir A'>0, so daBl

ez, y)|<d (P&, 1) < U (@) (12.3)

ist. — Da (& — z)&¢ nach der Definitionsformel (12.1) im Punkt P = @,
stetig ist und verschwindet, kann zu jedem hinreichend kleinen é* >0
eine Grofle A* >0 angegeben werden, so dafl

[ (€ —2) el ns 2, y) | <o*  (PE,n) < V(@) (12.4)

ist. Jetzt setzen wir A< Min(h', h*). Fiir solche h gilt

[E—a)@iedidn|<s [ |¢— )0 dedn+ o+ [ |@[|dsdn .
Rep(Qo) Un(Qo) Vi(Qo) (12.5)

Zufolge der Voraussetzungen b) und d) kann die rechte und also auch die
linke Seite dieser Ungleichung fiir geeignete 4,d8* absolut beliebig klein
gemacht werden.

Wie bereits bemerkt wurde, sind mit den Voraussetzungen von
Satz VIII auch Va),b,), ¢) erfiillt. Daher ergibt sich, analog wie bei
(11,2), daB mit n—>oo das erste Integral rechts in (12 .2) nach 0 und
das dritte nach — 1 strebt. Dall das zweite Integral mit n —oco nach 0
strebt, wurde bereits in Satz VII im Anschlufl an (11.3) bewiesen, da
hierzu von f blol die gleichméfige Beschrénktheit in R,.(Q,) fiir ein
hinreichend kleines A’ >0 benétigt wurde. — Es unterscheidet sich also
JI(f,Q,) von fg(x, y) um beliebig wenig; die Bedingungen sind daher
hinreichend.

54, Die Voraussetzungen sind notwendig: Da jede H-Ableitung
auch eine O-Ableitung ist, ergibt sich die Notwendigkeit der Voraus-
setzungen a) und c) aus der Notwendigkeit dieser Voraussetzungen fiir

Satz VII.
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Wire b) nicht erfiillt, so existierte nach Satz III eine Funktion g (u, v),
die auf U, (0) stetig wire, auf dem Rand von U,(0) verschwinde und
tiir die sich

lim J gu,v) u D, (u,v;n)dudv £ 0 (12.6)
SRR /()

ergdbe. Dann definiere man eine Funktion f(u,v) von der Gestalt

=ug(u,v) P U,WO)

ACTLN I P L U,L0) .

f(u, v) ist im Nullpunkt stetig, besitzt dort eine O-Ableitung nach », weil

hm f(u’v) - f(O,’U) — hm ug(ua ’U) —0 sz )
lul=lv|, u>0 u lu| =0, u>0 u
existiert, und es ist daher
of (u,v
(—f(au )),,=3 =0. (12.7)

Aus (12.6) foigt aber

lim --ff(é“ —z,n—y) Py —x,m—y;n) dédn #£0

n-»>
) P

was wegen (12.7) einen Widerspruch zu (10.2) bedeutet. Also ist b) not-
wendig.

Um schlieBlich die Notwendigkeit von d) einzusehen, nehmen wir an,
d) sei nicht erfiillt. Wieder nach Satz III existiert dann eine auf V,(0)
und dem Rand R von V,(0) stetige, auf R und auf der »-Achse ver-
schwindende Funktion ¢(u,v), fiir die

lim ’1g(u,v) &/ (u,v;n)dudv %0 (12.8)

>
" ® R0

ist. Wir definieren eine Funktion f zu

=g(u,v)  P(u,v) < V,0)

f(u,v) —0 P(u,v) L V,(0) .

f ist im Nullpunkt stetig und hat dort eine O-Ableitung nach %, weil
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hm S =100 g

luw|=|o], u>0 U

gilt. Aus (12.8) folgt

lim ~ff(é—x,n—y)¢é(£—x,n—~y;n)dédn#0,

n->» oo

und dies widerspricht der Relation (10.2). — Damit ist der Satz be-
wiesen. —

55. Es sei noch besonders hervorgehoben, dal3 die soeben unter der
Voraussetzung des Nichterfiilltseins von VIIId) konstruierte Funktion
f(¢ — z,n — y), fiir welche (10.2) nicht gilt, auf dem ganzen Quadrat R,
stetig ist. —

56. Besitzt die Funktion f(&, %) in allen Punkten einer Menge It eine
O-Ableitung nach &, wobei in der Darstellung (12.1) die Funktion
e(&,n;z,y) gleichmiBig fir alle Q(z,y)< M mit P¢,7n) —>@Q,
P < U,(Q) nach 0 strebt, und ist f;(x,y) auf I gleichmiBig be-
schrinkt, so sagen wir, f habe gleichmé&Big in I eine O-Ableitung
nach £&. '

57. Ist jetzt f(&,7) stetig und in diesem Sinne gleichmiBig O-diffe-
renzierbar nach & in einer abgeschlossenen Punktmenge 4 < (R,;), so
erkennen wir, daf} die Limites der vier Integrale rechter Hand in (12.2)
gleichmiBig fiir alle @ < A existieren. Fiir die ersten drei Integrale er-
gibt sich dies ndmlich analog wie bei den entsprechenden Integralen im
Beweis zu Satz VII*. Wegen der gleichméBigen O-Differenzierbarkeit von
fin 4 kann (12.3), und wegen der gleichméfigen Stetigkeit von f und der
gleichméBigen Beschriinktkeit von f; kann (12.4) gleichméfBig fiir alle
Q@ < 4 erfiillt werden, so dafl auch das vierte Integral rechts in (12.2)
absolut beliebig klein ausfillt, gleichméBig fiir alle ¢ < 4. Wir erhalten
algo den Satz :

Satz VIII*. Es sei @(u,v;n) ein Verschiebungskern auf (Ry(0)), R,
etn vorgegebenes Quadrat der En-Ebene und A < (R,) eine beliebige abge-
schlossene Punktmenge.

Dann sind die Voraussetzungen von Satz VIII hinreichend dafiir, daf die
Relationen (10.1), (10.2) gleichmdfig in A gelten fir jede Funktion f(&, n),
die auf R, zu F; (1 = 1, 2) gehort, auf A stetig ist und glezchmaﬁzg in A
etne O-Ableitung nach & besitzt.

810



§ 13. Vertauschbarkeitskriterien

58. Zum Abschlufl unserer allgemeinen Theorie wollen wir noch eine
Frage erortern, die im Hinblick auf Anwendungen fiir alle hier auf-
gestellten Differentiationssitze von Bedeutung sein kann. Wann sind in
Relation (10.2) Integration und Differentiation vertauschbar? Hinrei-
chende Bedingungen dafiir geben die beiden folgenden Kriterien:

Kriterium I. Ist ®(u,v;n) emn Verschiebungskern auf einem Qua-
drat (R,,(0)) und f(£,n) eine beliebige Funktion, die auf einem Quadrat R,
zu F, gehort, so gilt fiir jeden Punkt Q,(x, y) < (R,;):

. 0
,{ﬂé‘;fﬂf”?)@(f—%n—y;n)d&dnz 13.1)
R
znl_i)m f(&5m) ‘a?*@—:t*gézz — ¥ dé dn

Ry

wenn die Integrale linker Hand fiir alle Punkte Q) aus evner Umgebung von @,
existieren und wenn zu jedem Rechteck R’ < (Ry;(0)) und zu jedem Index
n eine Konstante C, existiert, so dap fast iberall auf R’

| D) (w,v;n)|<C, (v=1,2,...;Pu,v)< R) (13.2)

gilt. — Die Richtigkeit dieser Behauptung ergibt sich offenbar aus dem
folgenden Hilfssatz :

59. Hilfssatz 3. [(&,n) sei eine beliebige iiber R, integrable Funktion
und @ (u, v) eine mefbare Funktion, die fir jedes feste v totalstetig ist in u
auf jedem Rechteck R’ < (R,;(0)) der uv-Ebene.

Existiert dann zu jedem R’ eine Konstante O/, so daf fast iiberall auf R’

| o (w, v) | <C’ (13.3)
gilt, dann ist fir jeden beliebigen aber festen Punkt Q.(x, y) < (R,)

2 [1E Mo~z -y dsan= [1E n)pi~ 21—y dsdn ,
Ry Ry (134—)

sofern das Integral linker Hand etwa fiir alle Punkte @ aus einer Umgebung
von Q, existiert.
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60. Beweis. Fiir eine beliebige Zahlenfolge z, -z (v —oc0) be-
trachten wir die von einem », an sicher existierende Folge der Integrale

A,= [1EnBEdedn 2, (13.5)
wobei "
ﬂu(f,ﬂ)—_* 9’(5—%,77“?;):2(5-—%,77-?/) (13.6)

gesetzt ist. Wegen der Totalstetigkeit von ¢ in % erhidlt man fiir alle
Punkte P(&,7) < R;:

S—zp

pE—a,n—y)—eE —z,n—y) =g, w,n—ydu. (13.7)
f—=z

Aus (13.3) folgt, daB fiir alle & und fast alle , welche als Argumente
von ¢, (£ — z,n — y) in Betracht kommen:

§—z, E—z,
[ leie =y ldu|<| [ Cdu| =0z, — 2]
ez -2

ist. Daher ergibt sich aus (13.7) fiir fast alle Punkte P(&, n) < R,

1B, (&)< C" (vzw) ,

und folglich existiert eine iiber R’ integrable Funktion (£, %), so dal
fiir die integrablen Funktionen f-8, fast iiberall auf R,

[ F(E,n) B, (&, n)|<x(&,n)  (v=w,) (13.8)

gilt. Unter Beachtung dieser Ungleichungen erhdlt man zufolge des
klassischen Lebesgueschen Konvergenzsatzes 33)

limd4, = [ ) lim &, n) dédr
Ry

V>0 | e =]

32) Dabei wird von der folgenden, auf dem Satze von Fubini beruhenden Tatsache Ge-
brauch gemacht: Ist R’ ein achsenparalleles Rechteck beziiglich eines wv-Koordinaten-
systems und M eine in R’ enthaltene (zweidimensionale) Nullmenge, dann existiert eine
(lineare) Nullmenge N von v-Werten, so daB jede R’ schneidende Gerade v = const.,
v 4( N die Menge M hichstens in einer (linearen) Nullmenge trifft. (Vgl. C. Caratheodory
(I), p. 627, Satz 2.)

88) Vgl. C.Caratheodory (1), p. 444.
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§—z,

ijalwé(“’"'“'y)ldu!-<‘.firi%£3—du* o
t-2

und da dies fiir jede Folge =z, — = gilt, ergibt sich hieraus unsere Be-
hauptung.

61. Kriterium II. Ist @ (u,v;n) ein Verschiebungskern auf einem
Quadrat (R, (0)) und f(&,n) eine beliebige Funktion, die auf einem
Quadrat R, zu F, gehort, so qult fiir jeden Punkt Q,(x, y) < (R,;) die Rela-
tion (13.1), wenn zu jedem Rechteck R’ < (R, (0)) und zu jedem Index n
zwet Konstanten p,< (0,1) und C, existieren, so dap fast iberall auf R’

I(ﬁ,:(u,v;n)[<|—%—5 (n=1,2,...; Pu,v)<R'; p,<(0,1))
(13.9)

gult. — Der Beweis dafiir ergibt sich offenbar sofort auf Grund des folgen-
den Hilfssatzes :

62. Hilfssatz 4. f(&,n) ser exne beliebige Funktion, die auf R, mefbar
1st und fir welche fast iherall

| f&. n) <M  (P(,n) < R,, M = Const.) (13.10)

gelt, und @(u,v) eine mefbare Funktion, welche fir jedes feste v totalstetig
ist in w auf jedem Rechteck R’ < (R,,(0)) der wv-Ebene.

Existiert dann zu jedem R’ eine Konstante C”, so dap fast @berall auf R’
fir exn beliebiges p < (0, 1)

I¢£(u,v)l<-|~—?;|—i:;,— (13.11)

gult, dann ist (13.4) fiir jeden beliebigen aber festen Punkt Qq(x, y) < (R,)
erfallt, sofern das Integral links in (13.4) fir alle Punkte Q aus einer Um-
gebung von Q, existiert.

63. Beweis. Wiederum betrachten wir fiir eine beliebige Zahlenfolge
x, - x (v ->o0) die von einem v, an existierende Folge der Integrale
(13.5).

Wegen Voraussetzung (13.11) ist fiir alle £ und fast alle , welche als
Argumente von ¢, (£ — z,n — y) in Betracht kommen:

t-z,
|§—x,|"+e|é—2|”

E—z
313
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wobei B 1 fir &< (z,2,)
6_2——1 fir &4 (w,z,)

ist. Zufolge (13.7) gilt daher fiir fast alle Punkte P(&, 1) < R,

N 14
=% 4 (13.12)

p

|[§—=2[? te|lé—z|”

T, —x

C
| B,(¢:m) | < »

Zur Abschitzung des letzten Ausdrucks fithren wir in 4 die Variablen
§—z,=u, £ —x=v ein und beweisen sodann die Ungleichung

A=‘ Iul”vtzlvl’” Ivlz“” (w % ) , (13.13)
wobei
1 fir wv=0
n:;——l fir uv>0
ist.
Zum Beweis setzen wir |« | = U, | v| =V . Dann kénnen wir die be-

hauptete Ungleichung in der Gestalt schreiben

Ur 4 qVr 2

oder, wenn mit V'~? multipliziert und % =z gesetzt wird,

uuuuuuuu - <2 (220, 2#1 fir n=—1, 0<p<l). (13.14)

Unter Benutzung der Relationen 1=2r=2 (0<2<1) und 222
(2 = 1) zeigt man jetzt sofort, daBl (13.14) in jedem der Fille y =1,
n = — 1 richtig ist, womit (13.13) bewiesen ist.

Mit Hilfe von (13.13) gewinnt man jetzt aus (13.12) die fiir fast alle
Punkte P (&, 7)< R, giiltige Ungleichung

20" 1
| B, (&, m) | < P 'IE__xll—-p

Hieraus ergibt sich im Verein mit (13.10) wiederum die Existenz einer
integrablen Majoranten x(&,#) fiir die Funktionen f-8,, so daB (13.8)
gilt. Das Ende des Beweises kann jetzt analog gefiihrt werden wie im
Falle des Kriteriums I.

314



LITERATURVERZEICHNIS

B.H.Camp (I). Singular Multiple Integrals with Applications to Series, Trans-
actions of the American Math. Society, Vol. 14 Nr. 1 (1913), pp. 42—64.

C.Caratheodory (I). Vorlesungen iiber reelle Funktionen, (1918).

H.Hahn (I). Uber die Darstellung gegebener Funktionen durch singulére In-
tegrale, Denkschr. der Kaiserl. Akad. d. Wissensch. in Wien, Bd. 93 (1917), pp. 685
bis 692.

O.Haupt und G. Aumann (I). Differential- und Integralrechnung, Bd. IIT (1938),
pp. 164—169.

I.W.Hobson (I) und (II). The Theory of Functions of a Real Variable and the
Theory of Fourier’s Series:
(I) Vol.I, 3rd ed. (1927),
(IT) Vol.II, 2nd ed. (1926).

H. Lebesgue (I). Sur les Intégrales Singulidres, Annales de la Faculté des Sciences de
I"Université de Toulouse, (3), t.I (1909), pp. 26—117.

A.Ostrowsk: (I). Sur les conditions de validité d'une classe de relations entre
les expressions différentielles linéaires, Comm. Math. Helv. Vol. 15 (1942/43),
Fasc. III, pp. 269—286.

A.Ostrowsk: (II). Note sur l'interversion des dérivations et les differentielles
totales, Comm. Math. Helv. Vol. 15 (1942/43), Fasc. III, p. 222—223.

Th. Radacovic (I). Uber die Interpolation von Funktionen mehrerer Verander-
licher, Sitzungsber. d. Akad. d. Wissensch. in Wien, Math. Nat. Klasse, Abt. 2a,
Bd. 136 (1927), Fasc. 1—10, pp. 87—113.

(Eingegangen den 15.Juli 1946.)

315



	Beiträge zur Theorie der singulären Integrale bei Funktionen von mehreren Variablen. I.

