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Zum Schwarzschen Spiegelungsprinzip

(Die Randwerte von meromorphen Funktionen)

Von C. CARATHEODORY, Miinchen

1. Die Entdeckung der Lebesgueschen Integrationsmethoden war
der AnlaBl, die Theorie der analytischen Funktionen an vielen Stellen in
bemerkenswerter und unerwarteter Weise zu bereichern. Aber es gibt
noch heute, nach fast fiinfzig Jahren, Fragen ganz elementaren Charak-
ters, fiir welche die Lebesgueschen Resultate noch nicht ausgebeutet
worden sind. So kann man das Spiegelungsprinzip von H. A.Schwarz auf
einen Satz zuriickfithren, der von ebensolchem allgemeinem Interesse ist
wie dieses.

Nach dem Resultat von Schwarz ist eine im Kreise | z | <1 analytische
Funktion, die auf einem Bogen 4 B der Kreisperipherie stetig und reell
ist, regulédr in jedem Punkte von 4 B. Obwohl nun der Schwarzsche Be-
weis in seiner urspriinglichen Fassung ohne die Forderung der Stetigkeit
von f(z) auf 4 B nicht denkbar ist, ist es nicht schwer, eine Variante
dieses Beweises zu konstruieren, bei welcher die Stetigkeit itiberhaupt
keine Rolle spielt.

Zu diesem Zweck braucht man nur den Begriff der Randwerte (oder wie
manche Autoren sagen, der Hiufungswerte) einer Funktion systematisch
zu benutzen.

2. Wir gehen von folgender Definition aus:

Definition. Ist f(z) eine beliebige reelle oder komplexe Funktion, die in
einem Gebiete G definiert ist, und bezeichnet man mit { irgendeinen Rand-
punkt von G, so wollen wir sagen, dafl eine Zahl x exn Randwert von f(z) im
Punkte ¢ 1st, wenn es mindestens eine Folge von Punkten z, in G gibt, fir
welche die Gleichungen

limz,= ¢ lim f(z,) = « (2.1)

gleichzeitig bestehen.

Mit Hilfe dieser Definition gilt nun der

Satz 1. Im Inneren des Einheitskreises |z | <1 set die analytische
Funktion f(z) meromorph. Auf einem Bogen A B der Kreisperipherie seien
alle Randwerte von f(z) reell oder co. Dann ist die Funktion f(z) in jedem
Punkte & von A B requlir und reell oder sie besitzt einen Pol wn {.
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Die Funktion
f(z) —1
flz) ¥ i (2-1)

ist in jedem Punkte des Kreises |z | <1 meromorph. In jedem Punkte ¢
von A B sind alle Randwerte von | g (2) | identisch gleich Eins, weil durch
die Abbildung

g(z) =

w—1
w+ ¢

die reelle Achse der w-Ebene in den Kreis | w | = 1 transformiert wird.
Ist dann ¢ ein innerer Punkt des Bogens 4 B, so kann man die natiirliche
Zahl n so grof} wihlen, dafl erstens die eine Seite des Kreisbogenzweiecks
CD, welches die gemeinsamen inneren Punkte der beiden Kreise
1
lz]<l, Jz—{f<_ (2.2)

enthilt, aus einem Teilbogen C' D von A B besteht und dal3 zweitens die

Relation
~%—<|g(z)[<2 (2.3)

iiberall in diesem Kreisbogenzweieck verifiziert ist. Im entgegengesetzten

Fall konnte man jeder natiirlichen Zahl » einen Punkt z, des Einheits-
. 1 . . .

kreises zuordnen, fiir welche |z, — ¢ |<Z ist und eine der Relationen

| 9(z,) | <% oder |g(z,)| = 2 erfiillt ist. Dann miiBte aber |g(z)| ent-
gegen der Voraussetzung einen Randwert im Punkte { haben, der von 1

verschieden ist.
Wir bilden jetzt durch die Funktion

2 = yp(u) (2.4)

das Kreisbogenzweieck C D auf den Kreis | u |<1 ab, so dafl die Seite
CD des Zweiecks dem Halbkreise C,F,D, entspricht, der in der Halb-
ebene R u>0 liegt, und setzen

h(w) = g(p@)) . (2.5)

Nach unserer Konstruktion ist nun 1< |%(u) |<2; irgendein Zweig des
Logarithmus [ A (u) ist somit regulidr in | % | <1 und besitzt dort einen
beschrinkten reellen Teil. Wir fiihren die Bezeichnung ein

Ar,9) = R(Lk(r %)) 0<r<l) . (2.6)
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Ist dann » ein beliebiger Punkt des Kreises |« |<1 und wéhlt man
r>|u| aber <1, so hat man nach der Formel des Poissonschen Integrals

2w

i) — lh(O);-lh(O) " 2LJM ﬁ)re ‘"‘+u(w 2.7)

0

Da nun fir 09 < —723 und fiar —3—275 <9 <2 n alle Randwerte von | A(u)|

gleich Eins und folglich lim A(r,9) = 0 ist, hat man, indem man in (2.7)
r=1
die GroBe r gegen Eins konvergieren lifit und die Bezeichnung

A@) = lim A(r, 9)
r=1
einfiihrt,

Aus dieser Darstellung von [h(u) folgt nun unmittelbar, daf3 diese
Funktion auf dem Halbkreis C,Z,D, regular ist ; dasselbe gilt von h (u)
und es muB also auch g(z) auf dem Kreisbogen C' D analytisch sein, ein
Resultat, das auch fiir f(z) gilt. Hiermit ist der angekiindigte Satz be-
wiesen?).

3. Bei der Auswertung des Poissonschen Integrals (2.7) haben wir
die Voraussetzungen des Satzes 1 nicht voll ausgenutzt. Das Schluf}-
resultat (2.8) hidtten wir schon erzielen konnen, wenn nicht sdmtliche
Randwerte von f(z), sondern lediglich diejenigen, die man bei radialer
Anniherung erhilt, reell sind. Diese letztere Voraussetzung reicht aber
nicht mehr aus, um schlieBen zu konnen, dafl f(z) keine singuldren
Stellen auf dem Rande besitzt. Zum Beispiel ist

_(£2)?
o

wesentlich singulédr fiir z = 1, aber die Grenzwerte lim f(re
r=1

¢ ‘9 existie-

1) Man beachte, daB wir bisher von der Lebesgueschen Theorie keinen Gebrauch
gemacht haben, und dafl unsere obigen Schliisse von derselben Art sind, wie diejenigen,
die auch Schwarz zur Hand hatte.
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ren fiir jeden Wert von & und sind reell (und sogar endlich). Wenn man
aber die Moglichkeit des Auftretens von Singularitdten zuldfit, so zeigt
sich, daB3 man schon bei iiberraschend geringen Annahmen iiber das Ver-
halten von f(z) in der Ndhe des Randes eine befriedigende Antwort auf
alle Fragen erhilt, die zu stellen man geneigt sein konnte. Wir wollen mit
folgenden Voraussetzungen arbeiten :

Annahme: Die analytische Funktion f(z) soll meromorph im Inneren des
Kreises |z | <1 sein. Jedem Punkte { eines Kreisbogens A B der Kreis-
peripherie |z | = 1, der nicht auf einer festen Punktmenge e, vom linearen
Mafe Null liegt, soll mindestens erne gegen & konvergierende Folge von Punk-
ten z, des Einheitskreises zugeordnet werden konnen, die zwischen zweti in {
sich begegnenden Sehnen des Einheitskreises liegen, und fiir welche lim f(z,)
existiert und reell oder gleich oo st.

Wie schwach diese Voraussetzungen sind, zeigt schon der Umstand, dai3
die Modulfunktion »(z), die man durch die konforme Abbildung der
oberen w-Halbebene in iiblicher Normierung auf ein in den Kreis | z| =1
eingeschriebenes Moduldreieck erhilt, den obigen Bedingungen gerecht
wird. Denn auf jedem Radius des Kreises |z | <1, der in einem Punkte ¢
endet, konvergiert »(z) gegen 0, 1 oder co, wenn dieser Radius nur endlich
viele Dreiecke der Modulfigur durchsetzt, und auf einem solchen Radius
existieren unendlich viele Punkte, in denen »(z) reell ist, wenn er durch
unendlich viele solche Dreiecke hindurchgeht.

Da nun der Kreis |z | = 1 eine natiirliche Grenze fiir die Funktion
»(z) ist, zeigt dieses Beispiel, dafl sogar alle Punkte des Bogens A B bei
den von uns gemachten Voraussetzungen singulire Punkte von f(z) sein
konnen. Es wird sich aber herausstellen, dafl diese singuliren Punkte von
ganz besonderer Art sind. Das Resultat, das wir erhalten werden, ist ndm-
lich mit dem Satze von Casorati-Weierstraf3 iiber isolierte wesentlich sin-
guldre Stellen aufs duBerste verwandt. Dieser letztere Satz kann folgen-
dermaflen ausgesprochen werden: Ist eine analytische Funktion f(z) in
einem punktierten Kreise 0<| 2z — {, | <p eindeutig und meromorph, so
sind nur zwei verschiedene Moglichkeiten vorhanden. Entweder iiber-
deckt die Menge W aller Randwerte von f(z) im Punkte ¢, die ganze Zahl-
ebene mit Einschlufl des Punktes oo, oder f(z) ist regulér (oder hat einen
Pol) im Punkte {,. Eine Aussage ganz dhnlichen Charakters bildet aber
der Inhalt von

Satz 2. Unter den angegebenen Voraussetzungen fiir f(z) sind in jedem
Punkte £, des Kreisbogens A B nur folgende drei Moglichkeiten vorhanden :
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a) die Gesamtheit W aller Randwerte von f(2) in {, dberdeckt die ganze
Zahlebene mit Einschluf3 des Punktes oco. Wir wollen dann sagen, daf
Lo etne wesentlich singuldre Stelle ,,erster Art: ist ;

b) die Punktmenge W iiberdeckt eine der beiden durch die reelle Achse be-
grenzten Halbebenen mit Einschluf der reellen Achse und enthilt keinen
inneren Punkt der anderen Halbebene. Der Punkt C, soll dann eine
wesentlich singuldre Stelle ,,zwez'ter Artc genannt werden.

c) Hine der Funktionen f(z) oder i ( 2 18t reguldr im Punkte {, und der

Spregelungssatz besteht in einer Umgebung von (.

4. Besteht der vorhergehende Satz, und ist « eine endliche Zahl mit
nicht verschwindendem Imaginirteil, die kein Randwert von f(z) im
Punkte ¢, ist, so mu} auf der Kreisperipherie |z| = 1 eine Umgebung
von (, existieren, in welcher x nicht als Randwert angenommen werden
kann. Dann gibt es aber in dieser Umgebung, deren Punkte sicher keine
wesentlich singuldre Stellen erster Art sind, keinen einzigen Randwert von
f(z), der in derselben Halbebene wie « liegt. Hat man umgekehrt die
Richtigkeit dieser letzteren Aussage festgestellt, so folgen daraus alle Be-
hauptungen des Satzes 2. In der Tat ist in diesem Falle der Punkt {, eine
wesentlich singuldre Stelle zweiter Art, auller wenn eine Zahl f im Inneren
der Halbebene liegt, die « nicht enthélt, so dal § ebenso wie « kein Rand-
wert von f(z) in {, ist, oder wenn das gleiche von einer reellen Zahl y oder
von der Zahl oo gilt.

Sind aber zwei Zahlen « und B, die durch die reelle Achse getrennt
werden, keine Randwerte von f(z) in {,, so miissen nach unserer Annahme
fiir alle Punkte ¢ des Randes in einer gewissen Umgebung von [, alle mog-
lichen Randwerte reell oder gleich co sein, und nach dem Satze 1 muf
dann f(2) in {, regulir sein oder einen Pol besitzen. Ist endlich eine reelle
Zahl y (oder die Zahl co) kein Randwert von f(z) in &,, so gibt es eine Um-
gebung des Punktes y (bzw. von oo), welche aus lauter Punkten besteht,
die ebenfalls keine Randwerte von f(z) in {, sind ; unter diesen sind dann
auch zwei Zahlen x und g vorhanden, die durch die reelle Achse getrennt
werden, so dall der soeben gemachte Schluf wiederum anwendbar ist.

b. Alles kommt also darauf hinaus, den folgenden Satz zu beweisen:

Satz 3. Ist f(z) eime analytische Funktion, fiir welche die Voraussetzun-
gen des § 3 gelten, und ist « eine Zahl mit nicht verschwindendem I'magindr-
teil, die kein Randwert von f(z) im Punkte {,des Bogens A B darstellt, so gibt
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es auf der Kreisperipherie |z| =1 eine Umgebung von ,, itn welcher
samtliche Randwerte von f(z), falls sie nicht reell sind, in der durch die reelle
Achse berandeten Halbebene liegen, die x nicht enthidlt.

Erstens bemerken wir, daf3 die Funktion

1
() — «

(5.1)

im Punkte ¢, den Randwert oo nicht besitzt. Dann beweist man, ebenso
wie in § 2, daB ein Kreisbogenzweieck CD existieren mul}, in dessen
Innerem die Funktion (5.1) beschriankt ist. Wir bilden dieses Kreisbogen-
zweieck durch die Funktion (2.4) auf den Kreis |« |<1 ab, so daB CD
in C, E, D, iibergeht. Ferner betrachten wir die Abbildung

& — & w — &
o= e Tl T
durch welche die reelle Achse der w-Ebene in den Kreis | w | = 1 iiber-
gefithrt wird und setzen
z) — &
9(2)=§((‘z;—_j; ’ h(u) =g(yp(u)) - (5-2)

Durch die Abbildung z = y(u) wird der in C D liegende Teil der Null-
menge e,, die in den Annahmen iiber f(z) eine Rolle spielt, in eine Null-
menge ¢’ des Bogens C,E,D, transformiert. In allen iibrigen Punkten
dieses Bogens existiert nach Voraussetzung eine Folge von Punkten u,,
die in einem Winkel liegen und fiir welche lim A(u,) existiert und den
absoluten Betrag Eins hat. v=ee

Nun ist aber 2 (u) nach unserer Konstruktion eine im Kreise | u | <1
beschrinkte Funktion, und es existiert eine Zahl M, fiir welche

| h(u) | <M (lu]<1) (5.3)

ist. Fiir die Funktion A (u) gilt also der Fatousche Satz : In allen Punkten #
des Kreisbogens C,E,D,, die nicht auf einer Nullmenge e¢’’ liegen, kon-
vergieren mit lim u, = » die Zahlenfolgen A(u,) gegen einen und den-

y =00
selben Wert, falls nur die %, in einem Winkel mit der Spitze in # liegen.
Setzt man also

e=¢e +e' (5.4)
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so ist auf jedem Radius, dessen Endpunkt aut C,E,D,, aber nicht auf e
liegt,
lim | A(w)|=1. (5.5)
lu|->1

Es sei jetzt ¢ eine beliebige positive Zahl. Ferner sei 4 eine Menge von
abzéhlbar vielen Teilbogen von C,E,D,, deren Gesamtlinge die Zahl ¢
nicht {iberschreitet, und die iiberdies einerseits die Punktmenge (5.4)
iiberdecken, andererseits aber so gewéhlt sind, daf} die durch die Relation
(5.5) ausgedriickte Konvergenz in den nicht auf 4 liegenden Punkten von
C,E.D, gleichmiflig stattfindet. Das letztere ist wegen des bekannten
Satzes von Egoroff immer moglich.

Wir betrachten auf jedem Kreis |« | = r (0<r<1) die Punktmenge
A,, die durch die Radien des Kreises |« | <1, deren Endpunkte in 4
liegen, ausgeschnitten wird, und bezeichnen mit I', die librigen Punkte
desselben Kreises. Hierauf bestimmen wir auf dem Kreise |u |<r zwei
regulidre analytische Funktionen k,(u) und x,(u), die keine Nullstellen
haben sollen und durch folgende Vorschriften eindeutig bestimmt sind : In
jedem Punkte von A4, soll

ko) =1 und |x()| =M (5.6)
sein ; und in jedem Punkte von I, soll (von einer Nullmenge abgesehen)
| kr(w) | = max (1, | h(u)]) , | % (u) | =1 (5.7)
sein. Nach dem Prinzip des Maximums ist dann fiir |u | <r<1
| h(u) [=| k. (u) || 2 () | (5.8)
Nun existieren die beiden Grenzfunktionen .

k(u) =lim k, (u) , % (u) = lim », (u) ; (5.9)
r=1 r=1
von diesen ist k() nicht nur unabhéingig von der Wahl von 4, sondern
auch regulidr auf dem rechten Halbkreis und es ist dort |k(u)| =1,
wihrend fiir »(«) die aus einer Abschitzung des Poissonschen Integrals,
das fiir 7 x(u) gebildet wird, zu entnehmende Relation

€ Ell+lul
|(u) | <e  171¥l

besteht. Aus den letzten Beziehungen erhdlt man zunéchst
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9} gnstid

| h@) | < |k)]e 1-1%,

und wenn man hierin ¢ gegen Null konvergieren 1i3t,
| h(u) |<| k) . (5.10)

Die Randwerte von | k(u)| auf dem Kreisbogen C,F,D, sind alle
gleich Eins. Also sind die Randwerte von k(u) in keinem Punkte dieses
Kreisbogens ihrem absoluten Betrage nach gréfer als Eins und dasselbe
gilt von den Randwerten von g (z) auf dem Teilbogen C D von 4 B. Auf
demselben Bogen C'D liegen dann die Randwerte von f(z) auf der ab-
geschlossenen Halbebene, die den Punkt « nicht enthilt.

Hiermit ist das angekiindigte Resultat bewiesen.

6. Die Modulfunktion »(2) liefert ein einfaches Beispiel, fiir welches

simtliche Punkte des Kreises | z| = 1 wesentlich singulire Stellen erster
Art sind.

Ein Beispiel, bei welchem die Voraussetzungen des § 3 bestehen, und
simtliche Punkte von |z | =1 wesentlich singulidre Stellen zweiter Art

sind, erhélt man auf folgende Weise: in der oberen Halbebene der w-Ebene
betrachten wir ein Kreisbogendreieck, dessen Seiten Orthogonalkreise der

reellen Achse sind und dessen Winkel z. B. die Werte%— : »f—:— , %— betragen.
Dieses Dreieck bilden wir konform auf ein Kreisbogendreieck der z-Ebene
ab, das drei Spitzen besitzt, die auf dem Kreise |z| = 1 liegen und

dessen Seiten diesen letzten Kreis senkrecht schneiden. Die analytische
Fortsetzung u(z) der Abbildungsfunktion stellt die konforme Abbildung
einer Riemannschen Fliche der w-Ebene dar, die einfach zusammen-
héngend und regulidr verzweigt ist und in den Ecken des urspriinglichen
Dreiecks, sowie auch in den Ecken aller weiteren Dreiecke, die man durch
fortgesetzte Spiegelungen an den Seiten erhalten kann, logarithmische
Verzweigungsstellen besitzt.

Der Kreis | z| = 1 bildet eine natiirliche Grenze der Funktion u(z);
alle Werte von u(2) haben einen positiven Imaginérteil. Jeder Punkt des
Einheitskreises ist, wie man leicht auch direkt beweisen kann, eine
wesentlich singulidre Stelle zweiter Art.

Um nun zu zeigen, dafl die Voraussetzungen des § 3 hier erfiillt sind,
benutzen wir folgende SchluBweise: Fast alle Radien des Kreises |z | <1
werden durch die Funktion w = u(z) auf Kurven der w-Ebene abge-
bildet, die gegen einen wohlbestimmten Endpunkt konvergieren. Dieser
Endpunkt kann nur mit dem Punkt w =oco, mit einem Punkt der reellen
Achse oder mit einer Ecke der Triangulation zusammenfallen. Letzteres
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ist aber nur dann moglich, wenn der zugehorige Radius des Kreises
| z| <1 nur endlich viele Dreiecke der Modulfigur, die bei der obigen
Konstruktion benutzt worden ist, durchsetzt; da es aber nur abzdhlbar
viele Radien gibt, die diese Eigenschaft haben, sind die Voraussetzungen
des § 3 alle erfiillt.

Die von uns betrachteten Funktionen kénnen auch isolierte wesentlich
singuldre Stellen aufweisen. So hat z. B die Funktion

L4z

T
,w=el——z

im Punkte z =1 eine wesentlich singulére Stelle erster Art und die
Funktion

142
A |
W == G e
1+z
el7?—1

im selben Punkte eine wesentlich singulire Stelle zweiter Art. In den
iibrigen Punkten des Kreises |z | = 1 ist die erste dieser Funktionen
durchwegs regulidr, withrend die zweite Pole besitzt, die sich im Punkte
z = 1 héufen.

Auch konnen simtliche Punkte des Kreises, bis auf einen isolierten
wesentlich singuliren Punkt erster Art, wesentlich singuldre Stellen
zweiter Art sein. Um dieses zu erreichen, normieren wir die Funktion
u(z), die wir soeben betrachtet haben, so daBl bei Winkelannidherung an
den Punkt z = 1 diese Funktion gegen einen endlichen reellen Wert kon-
vergiert. Dann besitzt die Funktion

142

f@) =e T 4 u()

im Punkte z = 1 sowohl Randwerte mit positivem, als auch solche mit
negativem Imaginérteil. Der Punkt z = 1 ist also eine wesentlich singu-
lire Stelle erster Art. In den iibrigen Punkten des Einheitskreises gibt es
Randwerte mit positivem, aber keine mit negativem Imaginirteil ; sie
sind also wesentlich singuldre Stellen zweiter Art.

Durch diese Beispiele, die man leicht vermehren kann, sieht man, dagl
die Verteilung der singulidren Stellen des Randes an keine Bedingungen
gebunden zu sein scheint, auler denjenigen, die aus dem Wortlaut des
Satzes 2 flieBen.

7. Der Satz 2 des § 3 kann als Sonderfall eines ganz allgemeinen Theo-
rems angesehen werden, durch welches die Randwerte einer beliebigen im

271



Kreise |z|<1 meromorphen Funktion f(z) in Beziehung zu den spe-
ziellen Grenzwerten dieser Funktion, die man bei radialer Anndiherung er-
halt, gebracht werden kénnen.

Um dieses Theorem zu beweisen, leiten wir zunéchst einige Hilfssitze
ab.

Ist erstens f(z) im abgeschlossenen Kreis |z | <1 regulir, so gilt be-
kanntlich die Gleichung

10) = 5 [ 19 a0 .

Die rechte Seite dieser Gleichung stellt den Schwerpunkt einer gewissen
Verteilung von positiven Massen dar, die sich auf der Kurve f(e‘*) befin-
den. Daraus folgt, dafl der Punkt f(0) nicht auBerhalb der konvexen Hiille
dieser Kurve liegen kann.

Zweitens sei f(z) reguldr und beschrinkt im Kreise |z |<1, so daB

man hat
@) | <M . (7.1)

Wir geben uns auf dem Rande |z | = 1 des Einheitskreises eine offene
Punktmenge A, die aus hochstens abzidhlbar vielen Teilbogen besteht,
deren Lingen die Summe ¢ besitzen, und nehmen an, daBl fir jeden
Punkt e** der Peripherie, der nicht auf A liegt, der Grenzwert

9

lim f(re (0<r<l) (7.2)

r=1
existiert, und dafl die Konvergenz von (7.2) fiir alle diese Punkte eine
gleichméBige ist. Ferner bezeichnen wir mit W die Menge aller Grenz-
werte (7.2) und mit W* die konvexe Hiille dieser Punktmenge.

Ist dann r eine beliebige positive Zahl <1, so betrachte man auf dem
Kreise |z | = r die offene Punktmenge 4,, die wir schon im § 5 benutzt
haben, und neben der analytischen Funktion f(re'®) eine stetige Funk-
tion ¢,(#), die in jedem Teilintervall von A4, linear in # ist und in allen
iibrigen Punkten des Kreises mit f(re‘*) zusammenfillt.

Aus den Relationen

1O = 5 [Hredd =5 [0,0) 88 + 5 [(fre®) — g.(8)) d
0 0 0 (7.2)

folgt dann mit den Bezeichnungen
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2
) 1
=l g | e @, = limy <f<fe” )=o) 40
0 (7.2)

die Gleichung
f(0) = w, 4+ w, . (7.3)

Nun ist w, ein Punkt der konvexen Hiille W* und
lwy[<2e M, (7.4)
da | f(ret?) —o, @) | <2M ist.

8. Diese Abschitzung benutzen wir, um folgenden Satz zu beweisen:

Satz 4. Im Kreise |z | <1 sei die analytische Funktion f(z) regulir
und beschrinkt. In jedem nicht auf einer Nullmenge e, liegenden Punkt e**
eines Bogens A B des Kreisrandes soll der Grenzwert

lim f (re'?®)

r=1
existieren und in einer Punktmenge W der w-Ebene enthalten sein. Dann st
jeder Randwert von f(z), der in einem beliebigen inneren Punkte £, des

Bogens A B angenommen wird, ein Punkt des Inneren oder des Randes der
konvexen Hulle W* von W .

Es sei z, irgendein Punkt des Kreises |z |<1. Durch die Mobiussche
Transformation
s Fo— %
1 —2zyu
werden die beiden abgeschlossenen Kreise |2 |<1 und [« |<1 einein-
deutig aufeinander abgebildet, wobei der Bogen A B in einen Bogen 4, B,
iibergefiihrt wird, dessen Linge wir mit

E
9w —
T

bezeichnen. Gleichzeitig wird die Nullmenge e,, die auf 4 B liegt, in eine
Nullmenge e, des Bogens A, B, verwandelt. Nun betrachten wir die

Funktion
U
hiu) = f (——————-——zu) -
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Wir konnen die Punktmenge e, und das Komplement des Bogens A, B,
mit einer Folge A von Intervallen iiberdecken, deren Gesamtlinge ¢ ist,
und fiir welche die Annahmen gelten, die wir im § 7 gemacht haben. Ge-
miB (7.3) konnen wir also schreiben

f(20) = R(0) = w, + w, ,
wobei w, ein Punkt von W#* ist und auBlerdem die Ungleichheit

|w, | <2e M
gilt.

Um dann die Behauptung des Satzes 4 zu verifizieren, braucht man nur
noch zu beachten, daf & gleichzeitig mit |, — z,| gegen Null konver-
giert. Die Annahme, da} f(z) im ganzen Kreise |z |<1 beschrinkt sein
soll, kann man iibrigens mit Hilfe der Methode des § 2 durch die schwé-
chere Annahme ersetzen, dafl f(z) in einer Umgebung von ¢, beschriankt
ist.

9. Das allgemeine Resultat, das wir im Auge haben, flieit leicht aus
dem Satz 4. Wir betrachten auf der Riemannschen Zahlkugel eine
,,normale Uberdeckungsfolge*

K, K, K,, ... (9.1)

von offenen Punktmengen, z.B. von Kreisen, d. h. eine abzidhlbare Menge
von Kreisen von der Eigenschaft, dal man jedem beliebigen noch so
kleinen Kreise » der Kugel, der den Mittelpunkt P besitzt, mindestens
einen Kreis K, der Folge (9.1) zuordnen kann, der im Innern von x liegt
und den Punkt P in seinem Inneren enthilt ?).

Es sei nun f(z) eine beliebige analytische Funktion, die im Innern von
| 2| <1 meromorph ist. Jedem Kreise K, der Folge (9.1) ordnen wir auf
der Kreisperipherie |z| =1 eine Punktmenge A4, zu, die aus allen
Punkten ¢ dieser Linie besteht, fiir welche der Grenzwert

lim f(r{) (0<r<l) (9.2)
r=1

entweder nicht existiert, oder, falls er vorhanden ist, mit einem Punkte
des Inneren von K, zusammenfillt.

1) Bezeichnet man mit 7, >7,>>7;> --+ die gegen Null konvergierenden Radien
einer Folge von konzentrischen Kreisen der Kugel und mit P,, P,, ... abzahlbarviele
tiberall dicht liegende Punkte der Kugel, so bilden die Kreise % (Py;rj) mit den
Mittelpunkten P, und den Radien r; eine derartige normale Uberdeckungsfolge.
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Ferner sei auf |z| = 1 eine Folge
61 >62 >63 > (9'3)

von ineinandergeschachtelten Kreisbogen definiert, die einen gemein-
samen inneren Punkt {, besitzen und deren Lingen gegen Null konver-
gieren.

Wir betrachten fiir jeden Wert von » die Folge der Durchschnitte

A, 0,,A4,6,,...,A4,6,,... w=1,2,..) (9.4)

und bezeichnen mit

n; G=1,2,...) (9.5)
diejenigen ganzen Zahlen (falls es solche gibt), fiir welche unter den
Punktmengen An; dp (p =1, 2,...) mindestens eine das lineare Mal
Null besitzt.

10. Nachdem wir auf diese Weise die n; bestimmt haben, betrachten
wir die offene Punktmenge

U=K, +K, + K, +-- (10.1)

und ihre abgeschlossene Komplementirmenge H.

Unter Umsténden kann U die leere Menge sein und H mit der Gesamt-
kugel zusammenfallen. Zum Beispiel existiert fiir die Modulfunktion »(2),
die wir im § 3 betrachtet haben, der Grenzwert

lim v (r{)

r=1
nur dann, wenn dieser Grenzwert mit einer der drei Zahlen 0, 1, co zu-
sammenfillt. Und eine einfache Betrachtung zeigt, dafl dies dann und nur
dann der Fall sein kann, wenn { mit einer der abzéhlbar vielen Spitzen
der Dreiecke der Modulfigur koinzidiert. In diesem Falle ist also fiir
jedes » und jedes p das lineare Mall von A,d, positiv und die Punkt-
menge U existiert iiberhaupt nicht.

Die Punktmenge H dagegen muf} stets Punkte enthalten. Denn sonst
wiirden endlich viele K»; existieren, deren Vereinigung die ganze Zahl-
kugel iiberdeckt, und es miifite einen Bogen J, geben, innerhalb dessen
diejenigen Punkte ¢ , fiir welche der Grenzwert (9.2) entweder nicht exi-
stiert oder gleich einer beliebigen Zahl ist, eine Nullmenge bilden, was un-
moglich ist.

275



Jeder Punkt w von H ist notwendig ein Randwert von f(z) im Punkte
{o. Um dies zu zeigen, betrachten wir einen Kreis K, unserer Uber-
deckungsfolge (9.1), der w in seinem Inneren enthilt und selbst in einer
vorgeschriebenen Umgebung von o enthalten ist. Nehmen wir nun an, o
wire nicht ein Randwert von f(z) im Punkte {,. Dann gibt es eine
Umgebung von £,, inuerhalb welcher

-
f(@) —w

beschréinkt ist, und mindestens einen Bogen 4, , auf welchem der
Fatousche Satz gilt. Andererseits ist die Zahl » nach Voraussetzung
keine Zahl aus der Folge (9.5). Fiir p = p, muB} also auf jedem Bogen ¢,
mindestens ein Punkt {, liegen, fiir welchen

lim f(rC,)

r=1

existiert und in K, enthalten ist. Folglich gibt es auch Randwerte von
f(z) in ,, deren Abstand von  beliebig klein ist. Und da die Menge der
Randwerte von f(z) in {, notwendig abgeschlossen ist, muf}, entgegen der
obigen Annahme, der Punkt w doch unter diesen Randwerten vorkommen.
Hiermit ist unsere Behauptung bewiesen.

11. Unter der Voraussetzung, dafl die Punktmenge H nicht die ganze
Zahlkugel ausfiillt, kann man ihre Komplementirmenge U als Summe
von hochstens abzihlbar vielen paarweise punktfremden Gebieten G, dar-
stellen. Ist dann die Zahl x kein Randwert von f(z) im Punkte {,, so mufl
der Punkt, der dieser Zahl entspricht, in einem dieser Gebiete, z. B. in G,,
liegen.

Mit », bezeichnen wir eine in ¢, liegende abgeschlossene Kreisscheibe,
deren Rand den Punkt « enthilt. Man kann dann den Satz 4 des § 8 auf

die Funktion ]

g(z):ﬂz)_;

(10.1)

anwenden, indem man fiir den Bogen 4 B ein geeignetes Intervall 4,
wiahlt, und daraus schliefen, dafl die ganze Kreisscheibe x, aus lauter
Punkten besteht, die keine Randwerte von f(z) im Punkte {, darstellen.
Dazu mufl man bedenken, daBl g(z) in einer Umgebung von £, beschrankt
ist und daf die abgeschlossene Punktmenge x, durch endlich viele Kreise
Kn’. iiberdeckt werden kann. Die radialen Grenzwerte von f(z), lings
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Radien genommen, die in Punkten von ¢, miinden und die nicht auf einer
gewissen Nullmenge liegen, sind also in einer Punktmenge enthalten, der
kein Punkt von %, angehort. Diese letztere Punktmenge wird nun durch
die Abbildung

(10.2)

in eine andere verwandelt, die mit ihrer konvexen Hiille keinen Punkt der
Halbebene enthélt, in welche der Kreis %, durch (10.2) transformiert
wird. Also kann, wie bewiesen werden sollte, auch kein Punkt von z,
Randwert von f(z) im Punkte {, sein. Dieses Resultat wird noch folgen-
dermaflen vervollstindigt.

Ist ein beliebiger Punkt g des Gebietes G, gegeben, so kann man immer
eine Kette von abgeschlossenen Kreisscheiben

Hos 15 Hoyse ooy Ao

finden, die alle in G, liegen und von denen sich zwei aufeinanderfolgende
teilweise iiberdecken, so daBl der letzte Kreis x,, den Punkt f enthilt und
xo den Punkt x auf seinem Rande besitzt. Durch diese Konstruktion wird
gezeigt, daB kein Punkt des Gebietes G, Randwert von f(z) im Punkte 3,
sein kann.

So gelangen wir zum folgenden

Satz b. Es ser eine analytische Funktion f(z) meromorph im Kreise
| 2| <1 und {, sei ein beliebiger Punkt des Randes |z | = 1. Dann kann
man nach den Vorschriften der letzten Paragraphen die Punkte der Rie-
mannschen Zahlkugel als Summe

H+G1+G2+

von paarweise punktfremden Mengen darstellen, wober H abgeschlossen und
nicht leer st und die G,, die w. U. auch fehlen konnen, Gebiete bedeuten, die
mit Hilfe der radialen Grenzwerte lim f(re*?) der betrachteten Funktion f(z)
berechnet werden. r=1

Dann st fir jedes beliebige der Gebiete G, entweder jeder threr Punkte
Randwert von f(z) wn {,, oder aber kein einziger Punkt von G, hat diese
Ergenschaft. Die Menge der Randwerte von f(z) in &, besteht also jedenfalls
aus der abgeschlossenen Menge H , der noch gewisse unter den Gebieten G,
hinzuzufiigen sind.
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12. Aus dem Beweis des vorigen Satzes kann man gewisse Schliisse

iiber die Verteilung der radialen Grenzwerte lim f(re'®) ziehen, die in
r=1

mancher Hinsicht wertvoll sind. Zum Beispiel bilden fiir die Funktion
u(z), die in § 6 betrachtet wurde, diejenigen Punkte ¢ = ¢'?, fiir welche
lim g (ret?)

r=1

existiert und in einem noch so kleinen vorgeschriebenen Intervall der
reellen Achse enthalten ist, eine Punktmenge, die auf jedem Bogen des
Einheitskreises ein von Null verschiedenes lineares Maf besitzt.

Auch kann man Beispiele von meromorphen Funktionen f(z) finden,
die in jedem von z =1 verschiedenen Punkte des Kreises |z| =1
reguldr, und die so beschaffen sind, dal fiir {,=1 die Punktmenge H
mit einem vorgeschriebenen Kontinuum zusammenfallt.

Die Bildung solcher Beispiele und auch anderer, bei welchen H kein
Kontinuum ist, also z. B. aus endlich vielen irgendwie gelegenen Kreisen
besteht, ist unerldfllich, um die Tragweite des Satzes 5 richtig zu ver-
stehen.

(Eingegangen den 20. August 1946.)
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