
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 19 (1946-1947)

Artikel: Zum Schwarzschen Spiegelungsprinzip.

Autor: Carathéodory, C.

DOI: https://doi.org/10.5169/seals-17347

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-17347
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Zum Schwarzschen Spiegelungsprinzip
(Die Ranciwerte von meromorphen Funktionen)

Von C. Carathéodory, Munchen

1. Die Entdeckung der Lebesgueschen Intégrâtionsmethoden war
der AnlaB, die Théorie der analytischen Funktionen an vielen Stellen in
bemerkenswerter und unerwarteter Weise zu bereichern. Aber es gibt
noch heute, nach fast fûnfzig Jahren, Fragen ganz elementaren Charak-
ters, fur welche die Lebesgueschen Resultate noch nicht ausgebeutet
worden sind. So kann man das Spiegelungsprinzip von H.A.Schwarz auf
einen Satz zuruekfûhren, der von ebensolchem allgemeinem Interesse ist
wie dièses.

Nach dem Résultat von Schwarz ist eine im Kreise | z \ < 1 analytische
Funktion, die auf einem Bogen AB der Kreisperipherie stetig und reell
ist, regulâr in jedem Punkte von AB. Obwohl nun der Schwarzsche Be-
weis in seiner urspriïnglichen Fassung ohne die Forderung der Stetigkeit
von f(z) auf AB nicht denkbar ist, ist es nicht schwer, eine Variante
dièses Beweises zu konstruieren, bei welcher die Stetigkeit ûberhaupt
keine Rolle spielt.

Zu diesem Zweck braucht man nur den Begriff der Randwerte (oder wie
manche Autoren sagen, der Hâufungswerte) einer Funktion systematisch
zu benutzen.

2. Wir gehen von folgender Définition aus :

Définition. Ist f(z) eine beliebige réelle oder komplexe Funktion, die in
einem Gebiete G definiert ist, und bezeichnet man mit £ irgendeinen Rand-
punkt von G, «so wollen wir sagen, dafi eine Zahl oc ein Randwert von f (z) im
Punkte £ ist, wenn es mindestens eine Folge von Punkten zv in G gibt, fur
welche die Gleichungen

limzv=Ç limf(zv) a (2.1)
V=OO V=QO

gleichzeitig bestehen.

Mit Hilfe dieser Définition gilt nun der

Satz 1. Im Inneren des Einheitskreises \ z \ < 1 sei die analytische
Funktion f (z) meromorph. Auf einem Bogen A B der Kreisperipherie seien

aile Randwerte von f (z) reell oder oo. Dann ist die Funktion f(z) in jedem
Punkte f von A B regulâr und reell oder sie besitzt einen Pol in C.
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Die Punktion

ist in jedem Punkte des Kreises | z \ < 1 meromorph. In jedem Punkte £

von A B sind aile Randwerte von | g (z) | identisch gleich Eins, weil durch
die Abbildung

w — i
CD

w + i
die réelle Achse der w-Ebene in den Kreis | w \ 1 transformiert wird.
Ist dann £ ein innerer Punkt des Bogens A B, so kann man die naturliche
Zahl n so groB wâhlen, daB erstens die eine Seite des Kreisbogenzweiecks
CD, welches die gemeinsamen inneren Punkte der beiden Kreise

|z|<l, \z-^\<~ (2.2)
IV

enthàlt, aus einem Teilbogen CD von A B besteht und daB zweitens die
Relation

\ (2.3)

ûberall in diesem Kreisbogenzweieck verifiziert ist. Im entgegengesetzten
Fall kônnte man jeder natûrlichen Zahl n einen Punkt zn des Einheits-

kreises zuordnen, fur welche \zn — f | <— ist und eine der Relationen

| g(zn) | ^| oder | g(zn) \ ^ 2 erfiillt ist. Dann mxiBte aber | g(z) \ ent-
gegen der Voraussetzung einen Randwert im Punkte f haben, der von 1

verschieden ist.
Wir bilden jetzt durch die Funktion

z V(u) (2.4)

das Kxeisbogenzweieck CD auf den Kreis | u \ < 1 ab, so daB die Seite
CD des Zweiecks dem Halbkreise C1E1D1 entspricht, der in der Halb-
ebene 91 u > 0 liegt, und setzen

h(u) g{xp(u)) (2.5)

Nach unserer Konstruktion ist nun J< | h (u) \ < 2 ; irgendein Zweig des

Logarithmus l h (u) ist somit regulâr in | u \ < 1 und besitzt dort einen
beschrankten reellen Teil. Wir fûhren die Bezeichnung ein

X(r,ê) 3i(lh(rei&)) (0<r<l) (2.6)
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Ist dann u ein beliebiger Punkt des Kreises | u \ < 1 und wàhlt man
r > | u | aber < 1, so hat man nach der Formel des Poissonschen Intégrais

(2.7)

Da nun fur 0 <; & < — und fur —— < ê < 2 n aile Randwerte von | h(u) \

gleich Eins und folglich lim A (r, &) — 0 ist, hat man, indem man in (2.7)

die GrôBe r gegen Eins konvergieren lâfit und die Bezeichnung

einfûhrt,
377

"fil^M ^J^*. (2.8)

Aus dieser Darstellung von lh(u) folgt nun unmittelbar, daB dièse

Funktion auf dem Halbkreis C1E1D1 regulâr ist ; dasselbe gilt von h(u)
und es muB also auch g(z) auf dem KreisbogenC-Danalytisch sein, ein
Résultat, das auch fur f(z) gilt. Hiermit ist der angekundigte Satz be-

wiesen1).

3. Bei der Auswertung des Poissonschen Intégrais (2.7) haben wir
die Voraussetzungen des Satzes 1 nicht voll ausgenutzt. Das SchluB-
resultat (2.8) hâtten wir schon erzielen kônnen, wenn nicht sàmtliche
Randwerte von /(z), sondern lediglich diejenigen, die man bei radialer
Anndherung erhàlt, reell sind. Dièse letztere Voraussetzung reicht aber
nicht mehr aus, um schlieBen zu kônnen, daB f(z) keine singulâren
Stellen auf dem Rande besitzt. Zum Beispiel ist

wesentlich singulâr fur z=l, aber die Grenzwerte lim/(re^) existie-

2) Man beachte, daB wir bisher von der Lebesgueschen Théorie keinen Gebrauch
gemacht haben, und dafi unsere obigen Schlusse von derselben Art sind, wie diejenigen,
die auch Schwarz zur Hand hatte.
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ren fur jeden Wert von ê und sind reell (und sogar endlich). Wenn man
aber die Môglichkeit des Auftretens von Singularitâten zulaBt, so zeigt
sich, da8 man schon bei ûberraschend geringen Annahmen liber das Ver-
halten von / (z) in der Nâhe des Randes eine befriedigende Antwort auf
aile Fragen erhàlt, die zu stellen man geneigt sein kônnte. Wir wollen mit
folgenden Voraussetzungen arbeiten :

Annahme: Die analytischeFunktion f(z) soll meromorph im Inneren des

Kreises \ z | < 1 sein. Jedem Punkte £ eines Kreisbogens A B der Kreis-
peripherie \ z | 1, der nicht auf einer festen Punktmenge e0 vom linearen
Mafie Null liegt, soll mindestens eine gegen Ç konvergierende Folge von Punk-
ten zv des Einheitskreises zugeordnet werden kônnen, die zwischen zwei in £

sich begegnenden Sehnen des Einheitskreises liegen, und fur wehhe lim f(zv)
existiert und reell oder gleich oo ist.

Wie schwach dièse Voraussetzungen sind, zeigt schon der Umstand, daB
die Modulfunktion v(z), die man durch die konforme Abbildung der
oberen w-Halbebene in ublicher Normierung auf ein in den Kreis | z \ 1

eingeschriebenes Moduldreieck erhâlt, den obigen Bedingungen gerecht
wird. Denn auf jedem Radius des Kreises | z | < 1, der in einem Punkte f
endet, konvergiert v (z) gegen 0, 1 oder oo, wenn dieser Radius nur endlich
viele Dreiecke der Modulfigur durchsetzt, und auf einem solchen Radius
existieren unendlich viele Punkte, in denen v(z) reell ist, wenn er durch
unendlich viele solche Dreiecke hindurchgeht.

Da nun der Kreis | z \ 1 eine natûrliche Grenze fur die Funktion
v(z) ist, zeigt dièses Beispiel, daB sogar aile Punkte des Bogens AB bei
den von uns gemachten Voraussetzungen singulàre Punkte von f(z) sein
kônnen. Es wird sich aber herausstellen, daB dièse singulàren Punkte von
ganz besonderer Art sind. Das Résultat, das wir erhalten werden, ist nàm-
lich mit dem Satze von Casorati-Weierstrafi uber isolierte wesentlich sin-
gulare Stellen aufs âuBerste verwandt. Dieser letztere Satz kann folgen-
dermaBen ausgesprochen werden: Ist eine analytische Funktion f(z) in
einem punktierten Kreise 0 < | z — £01 <^ eindeutig und meromorph, so
sind nur zwei verschiedene Môglichkeiten vorhanden. Entweder uber-
deckt die Menge W aller Randwerte von / (z) im Punkte £0 die ganze Zahl-
ebene mit EinschluB des Punktes oo, oder / (z) ist regulâr (oder hat einen

Pol) im Punkte f0. Eine Aussage ganz àhnlichen Charakters bildet aber
der Inhalt von

Satz 2. Unter den angegebenen Voraussetzungen fur f(z) sind in jedem
Punkte f0 des Kreisbogens A B nur folgende drei Môglichkeiten vwhanden :
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a) die Gesamtheit W aller Randwerte von f(z) in f0 ilberdeckt die ganze
Zahlebene mit Einschlufi des Punktes oo. Wir wollen dann sagen, da/i
Co vine wesentlich singulâre Stelle ,,erster Art" ist ;

b) die Punktmenge W Ilberdeckt eine der beiden durch die réelle Achse be-

grenzten Halbebenen mit Einschlufi der reellen Achse und enthâlt keinen
inneren Punkt der anderen Halbebene. Der Punkt ÇQ soll dann eine
wesentlich singulâre Stelle ,,zweiter Art" genannt iverden.

c) Eine der Funktionen f(z) oder -jj~V ^ re9u^r *m Punkte £0 und der

Spiegelungssatz besteht in einer Umgebung von f0.

4. Besteht der vorhergehende Satz, und ist oc eine endliehe Zahl mit
nicht verschwindendem Imaginârteil, die kein Randwert von f(z) im
Punkte Co ist, so mu8 auf der Kreisperipherie | z | 1 eine Umgebung
von Co existieren, in welcher oc nicht als Randwert angenommen werden
kann. Dann gibt es aber in dieser Umgebung, deren Punkte sicher keine
wesentlich singulâre Stellen erster Art sind, keinen einzigen Randwert von
/(z), der in derselben Halbebene wie oc liegt. Hat man umgekehrt die

Richtigkeit dieser letzteren Aussage festgestellt, so folgen daraus aile Be-

hauptungen des Satzes 2. In der Tat ist in diesem Falle der Punkt £> eine
wesentlich singulâre Stelle zweiter Art, auBer wenn eine Zahl fi im Inneren
der Halbebene liegt, die oc nicht enthâlt, so daB j$ ebenso wie oc kein Randwert

von f(z) in £o ist, oder wenn das gleiche von einer reellen Zahl y oder

von der Zahl oo gilt.
Sind aber zwei Zahlen oc und /?, die durch die réelle Achse getrennt

werden, keine Randwerte von / (z) in f0, so mûssen nach unserer Annahme
fur aile Punkte C des Randes in einer gewissen Umgebung von £o aile môg-
lichen Randwerte reell oder gleich oo sein, und nach dem Satze 1 muB
dann f(z) in f0 regulâr sein oder einen Pol besitzen. Ist endlich eine réelle
Zahl y (oder die Zahl oo) kein Randwert von / (z) in £o, so gibt es eine
Umgebung des Punktes y (bzw. von oo), welche aus lauter Punkten besteht,
die ebenfails keine Randwerte von / (z) in £> sind ; unter diesen sind dann
auch zwei Zahlen a und /S vorhanden, die durch die réelle Achse getrennt
werden, so daB der soeben gemachte SchluB wiederum anwendbar ist.

5. Ailes kommt also darauf hinaus, den folgenden Satz zu beweisen :

Satz 3. Ist f(z) eine analytische Funktion, fur welche die Voraussetzun-

gen des § 3 gelten, und ist oc eine Zahl mit nicht verschwindendem Imaginâr-
teil, die kein Randwert von f (z) im Punkte £o des Bogens A B darstellt, so gibt
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es auf der Kreisperipherie \ z \ 1 eine Umgebung von f0, in welcher
sâmtliche Randwerte von /(z), falls sie nicht reell sind, in der durch die réelle
Achse berandeten Halbebene liegen, die oc nicht enthàlt.

Erstens bemerken wir, daB die Funktion

1

/(*)-* (5.1)

im Punkte f0 den Randwert oo nicht besitzt. Dann beweist man, ebenso
wie in § 2, daB ein Kreisbogenzweieck CD existieren muB, in dessen

Innerem die Funktion (5.1) beschrânkt ist. Wir bilden dièses Kreisbogenzweieck

durch die Funktion (2.4) auf den Kreis | u | < l ab, so daB CD
in C1E1D1 ubergeht. Ferner betrachten wir die Abbildung

oc — ôc w — ~ôc

CD \- 1
w — oc w — oc

durch welche die réelle Achse der w-Ebene in den Kreis | œ \ 1 ûber-
geftihrt wird und setzen

\{ I l • (5.2)

Durch die Abbildung z — tp(u) wird der in CD liegende Teil der Null-
menge e0, die in den Annahmen ûber f(z) eine Rolle spielt, in eine Null-
menge ef des Bogens C1E1D1 transformiert. In allen ûbrigen Punkten
dièses Bogens existiert nach Voraussetzung eine Folge von Punkten uv,
die in einem Winkel liegen und fur welche limh(uv) existiert und den
absoluten Betrag Eins hat. v=0°

Nun ist aber h (u) nach unserer Konstruktion eine im Kreise | u | < 1

beschrànkte Funktion, und es existiert eine Zahl M, fur welche

|*(tO|<Jf (\u\<l) (5.3)

ist. Fur die Funktion h(u) gilt also der Fatousche Satz : In allen Punkten r\

des Kreisbogens C1E1D1, die nicht auf einer Nullmenge e'r liegen, kon-
vergieren mit lim uv rj die Zahlenfolgen h(uv) gegen einen und den-

selben Wert, falls nur die uv in einem Winkel mit der Spitze in rj liegen.
Setzt man also

e== ef + e" (5.4)
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so ist auf jedem Radius, dessen Endpunkt auf C1E1D1, aber nicht auf e

liegt,
lim| h(u) | 1 (5.5)

|w|-^l

Es sei jetzt e eine beliebige positive Zahl. Ferner sei A eine Menge von
abzàhlbar vielen Teilbôgen von C1E1D1, deren Gesamtlânge die Zahl e

nicht iiberschreitet, und die ûberdies einerseits die Punktmenge (5.4)
ûberdecken, andererseits aber so gewâhlt sind, daB die durch die Relation
(5.5) ausgedruckte Konvergenz in den nicht auf A liegenden Punkten von
G1E1D1 gleichmâGig stattfindet. Das letztere ist wegen des bekannten
Satzes von Egoroff immer môglich.

Wir betrachten auf jedem Kreis \u\ r (0<r< 1) die Punktmenge
A r, die durch die Radien des Kreises | u | < 1, deren Endpunkte in A

liegen, ausgeschnitten wird, und bezeichnen mit Fr die iibrigen Punkte
desselben Kreises. Hierauf bestimmen wir auf dem Kreise | u | < r zwei

regulare analytische Funktionen kr(u) und xr(u), die keine Nullstellen
haben sollen und durch folgende Vorschriften eindeutig bestimmt sind : In
jedem Punkte von Ar soll

\xr(u)\=M (5.6)

sein ; und in jedem Punkte von Fr soll (von einer Nullmenge abgesehen)

| kr(u) | max (1, | h(u) |) | xr(u) \ 1 (5.7)

sein. Nach dem Prinzip des Maximums ist dann fur | u | <r < 1

\h(u)\£\kr(u)\.\xr(u)\ (5.8)

Nun existieren die beiden Grenzfunktionen

h (u) lim 1cr (u) x(u) lim xr(u) ; (5.9)

von diesen ist k (u) nicht nur unabhangig von der Wahl von A, sondern
auch regulàr auf dem rechten Halbkreis und es ist dort | k(u) \ 1,
wâhrend fur x(u) die aus einer Abschatzung des Poissonschen Intégrais,
das fur l h (u) gebildet wird, zu entnehmende Relation

,ijf j

| x{u) \<e 1-'M|

besteht. Aus den letzten Beziehungen erhâlt man zunâchst
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und wenn man hierin e gegen Null konvergieren lâBt,

\h(u)\^\k(u) (5.10)

Die Randwerte von | k{u) | auf dem Kreisbogen C1ElD1 sind aile
gleich Eins. Also sind die Randwerte von h(u) in keinem Punkte dièses

Kreisbogens ihrem absoluten Betrage nach grôBer als Eins und dasselbe

gilt von den Randwerten von g(z) auf dem Teilbogen CD von A B. Auf
demselben Bogen CD liegen dann die Randwerte von f(z) auf der ab-

geschlossenen Halbebene, die den Punkt oc nicht enthâlt.
Hiermit ist das angekûndigte Résultat bewiesen.

6, Die Modulfunktion v(z) liefert ein einfaches Beispiel, fur welches
sàmtliche Punkte des Kreises | z \ 1 wesentlich singulâre Stellen erster
Art sind.

Ein Beispiel, bei welchem die Voraussetzungen des § 3 bestehen, und
sàmtliche Punkte von | z | 1 wesentlich singulâre Stellen zweiter Art
sind, erhâlt man auf folgende Weise : in der oberen Halbebene der w-Ebene
betrachten wir ein Kreisbogendreieck, dessen Seiten Orthogonalkreise der

reellen Achse sind und dessenWinkel z.B. dieWerte-^r- ,-r,-^- betragen.

Dièses Dreieck bilden wir konform auf ein Kreisbogendreieck der z-Ebene

ab, das drei Spitzen besitzt, die auf dem Kreise | z \ 1 liegen und
dessen Seiten diesen letzten Kreis senkrecht schneiden. Die analytische
Fortsetzung p (z) der Abbildungsfunktion stellt die konforme Abbildung
einer Riemannschen Flâche der w-Ebene dar, die einfach zusammen-
hângend und regulâr verzweigt ist und in den Ecken des ursprûnglichen
Dreiecks, sowie auch in den Ecken aller weiteren Dreiecke, die man durch
fortgesetzte Spiegelungen an den Seiten erhalten kann, logarithmische
Verzweigungsstellen besitzt.

Der Kreis | z \ 1 bildet eine natûrliche Grenze der Funktion /u (z) ;

aile Werte von jli(z) haben einen positiven Imaginârteil. Jeder Punkt des

Einheitskreises ist, wie man leicht auch direkt beweisen kann, eine
wesentlich singulâre Stelle zweiter Art.

Um nun zu zeigen, da8 die Voraussetzungen des § 3 hier erfiillt sind,
benutzen wir folgende SchluBweise : Fast aile Radien des Kreises | z \ < 1

werden durch die Funktion w \i (z) auf Kurven der w-Ebene abge-
bildet, die gegen einen wohlbestimmten Endpunkt konvergieren. Dieser

Endpunkt kann nur mit dem Punkt w co, mit einem Punkt der reellen
Achse oder mit einer Ecke der Triangulation zusammenfallen. Letzteres
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ist aber nur dann môglich, wenn der zugehôrige Radius des Kreises
| z | < 1 nur endlich viele Dreiecke der Modulfigur, die bei der obigen
Konstruktion benutzt worden ist, durchsetzt; da es aber nur abzâhlbar
viele Radien gibt, die dièse Eigenschaft haben, sind die Voraussetzungen
des § 3 aile erfullt.

Die von uns betrachteten Funktionen kônnen auch isolierte wesentlich
singulàre Stellen aufweisen. So hat z. B die Funktion

w e x~z

im Punkte z 1 eine wesentlich singulàre Stelle erster Art und die
Funktion

w %

l+z

im selben Punkte eine wesentlich singulàre Stelle zweiter Art. In den

ûbrigen Punkten des Kreises | z | 1 ist die erste dieser Funktionen
durchwegs regulâr, wâhrend die zweite Pôle besitzt, die sich im Punkte
z 1 hàufen.

Auch kônnen sàmtliche Punkte des Kreises, bis auf einen isolierten
wesentlich singulâren Punkt erster Art, wesentlich singulàre Stellen
zweiter Art sein. Um dièses zu erreichen, normieren wir die Funktion
fi(z), die wir soeben betrachtet haben, so da6 bei Winkelannaherung an
den Punkt z 1 dièse Funktion gegen einen endlichen reellen Wert kon-
vergiert. Dann besitzt die Funktion

l+z
%

im Punkte z 1 sowohl Randwerte mit positivem, als auch solche mit
negativem Imaginârteil. Der Punkt z 1 ist also eine wesentlich singulàre

Stelle erster Art. In den iibrigen Punkten des Einheitskreises gibt es
Randwerte mit positivem, aber keine mit negativem Imaginârteil ; sie

sind also wesentlich singulàre Stellen zweiter Art.
Durch dièse Beispiele, die man leicht vermehren kann, sieht man, daB

die Verteilung der singulâren Stellen des Randes an keine Bedingungen
gebunden zu sein scheint, auBer denjenigen, die aus dem Wortlaut des
Satzes 2 flieBen.

7. Der Satz 2 des § 3 kann als Sonderfall eines ganz allgemeinen Théo-
rems angesehen werden, durch welches die Randwerte einer beliebigen im
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Kreise | z \ < 1 meromorphen Funktion / (z) in Beziehung zu den spe-
ziellen Grenzwerten dieser Funktion, die man bei radialer Annàherung er-
hàlt, gebracht werden kônnen.

Um dièses Theorem zu beweisen, leiten wir zunàchst einige Hilfssâtze
ab.

Ist erstens / (z) im abgeschlossenen Kreis | z | ^ 1 regulâr, so gilt be-
kanntlich die Gleichung

/(O) JL

Die rechte Seite dieser Gleichung stellt den Schwerpunkt einer gewissen
Verteilung von positiven Massen dar, die sich auf der Kurve f(eiS>) befin-
den. Daraus folgt, daB der Punkt / (0) nicht auBerhalb der konvexen Hillle
dieser Kurve liegen kann.

Zweitens sei / (z) regulâr und beschrânkt im Kreise | z \ < 1, so daB

man hat

\f(z)\<M (7.1)

Wir geben uns auf dem Rande | z | 1 des Einheitskreises eine offene
Punktmenge A, die aus hôchstens abzâhlbar vielen Teilbôgen besteht,
deren Lângen die Summe s besitzen, und nehmen an, daB fur jeden
Punkt eid> der Peripherie, der nicht auf A liegt, der Grenzwert

lim/(re^) (0<r<l) (7.2)

existiert, und daB die Konvergenz von (7.2) fur aile dièse Punkte eine
gleichmâBige ist. Ferner bezeichnen wir mit W die Menge aller Grenz-
werte (7.2) und mit W* die konvexe Huile dieser Punktmenge.

Ist dann r eine beliebige positive Zahl < 1, so betrachte man auf dem
Kreise | z | r die offene Punktmenge Ar, die wir schon im § 5 benutzt
haben, und neben der analytischen Funktion f(re1^) eine stetige Funktion

<pr(&), die in jedem Teilintervall von Ar linear in # ist und in allen
ûbrigen Punkten des Kreises mit f(re%d>) zusammenfâllt.

Aus den Relationen

27T 27T 21T

o o o (7#2)

folgt dann mit den Bezeichnungen
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2" 27T

w, lim -L (V(#) «W w2 lim -L f(/(re**) - ?>r

0 ° (7.2)

die Gleichung
+ w2 (7.3)

Nun ist wx ein Punkt der konvexen Huile W* und

I w2 |^2 e if (7.4)

da | f(re**) —<pr{#) \<2M ist.

8. Dièse Abschâtzung benutzen wir, um folgenden Satz zu beweisen:

Satz 4. Im Kreise | z | < 1 sei rfie analytische Funhtion f (z) regulàr
und beschrànkt. In jedem nicht auf einer Nullmenge ez liegenden Punkt e^
eines Bogevs A B des Kreisrandes soll der Grenzwert

lim f(re{»)

existieren und in einer Punktmenge W der w-Ebene enthalten sein. Dann ist
jeder Randwert von f(z), der in einem beliebigen inneren Punkte f0 des

Bogens A B angenommen wird, ein Punkt des Inneren oder des Randes der
konvexen Huile W* von W.

Es sei z0 irgendein Punkt des Kreises | z \ < 1. Durch die Môbiussche
Transformation

z0 — u
z

znu

werden die beiden abgeschlossenen Kreise | z | <£ 1 und | u \ ^ 1 einein-

deutig aufeinander abgebildet, wobei der Bogen A B in einen Bogen A1B1
iibergefûhrt wird, dessen Lange wir mit

---r
bezeichnen. Gleichzeitig wird die Nullmenge ez, die auf A B liegt, in eine

Nullmenge eu des Bogens AXBX verwandelt. Nun betrachten wir die
Punktion
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Wir kônnen die Punktmenge eu und das Komplement des Bogens A1B1
mit einer Folge A von Intervallen uberdecken, deren Gesamtlânge e ist,
und fur welehe die Annahmen gelten, die wir im § 7 gemacht habea. Ge-
mâB (7.3) konnen wir also schreiben

wobei wt ein Punkt von W* ist und auBerdem die Ungleichheit

| w21 ^ 2 s M
gilt.

Um dann die Behauptung des Satzes 4 zu verifizieren, braucht man nur
noeh zu beachten, daB e gleichzeitig mit \ Ço — zo\ gegen Null konver-
giert. Die Annahme, daB f(z) im ganzen Kreise | z \ < 1 beschrânkt sein
soll, kann man ubrigens mit Hilfe der Méthode des § 2 dureh die schwa-
chere Annahme ersetzen, daB / (z) in einer Umgebung von £o beschrânkt
ist.

9, Das allgemeine Résultat, das wir im Auge haben, flieBt leicht aus
dem Satz 4. Wir betrachten auf der Riemannschen Zahlkugel eine
,,normale Ûberdeekungsfolge"

Kl9K2,K3, (9.1)

von ofïenen Punktmengen, z.B. von Kreisen, d. h. eine abzahlbare Menge
von Kreisen von der Eigenschaft, daB man jedem beliebigen noch so

kleinen Kreise x der Kugel, der den Mittelpunkt P besitzt, mindestens
einen Kreis Kv der Folge (9.1) zuordnen kann, der im Innern von x liegt
und den Punkt P in seinem Inneren enthâltx).

Es sei nun / (z) eine beliebige analyti&che Funktion, die im Innern von
| z | < 1 meromorph ist. Jedem Kreise Kv der Folge (9.1) ordnen wir auf
der Kreisperipherie | z \ =¦ 1 eine Punktmenge Av zu, die aus allen
Punkten f dieser Linie besteht, fur welche der Grenzwert

lim/(rf) (0<r<l) (9.2)

entweder nicht existiert, oder, falls er vorhanden ist, mit einem Punkte
des Inneren von K v zusammenfallt.

x) Bezeichnet man mit rt > r2 >> r3 >> • • • die gegen Null konvergierenden Radien
einer Folge von konzentrischen Kreisen der Kugel und mit PlfP2y abzahlbarviele
uberall dicht hegende Punkte der Kugel, so bilden die Kreise / (Pv, rj mit den
Mittelpunkten Pv und den Radien r? eine derartige normale Ûberdeckungsfolge.
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Ferner sei auf | z | 1 eine Folge

ai ><52 >à3 >••• (9.3)

von ineinandergeschachtelten Kreisbôgen definiert, die einen gemein-
samen inneren Punkt £o besitzen und deren Lângen gegen Null konver-
gieren.

Wir betrachten fiir jeden Wert von v die Folge der Durchschnitte

Avàl9Avài,...9Avà99... (v= 1,2,...) (9.4)

und bezeichnen mit
n, (j=l,2,...) (9.5)

diejenigen ganzen Zahlen (falls es solche gibt), fiir welche unter den
Punktmengen Anj ôP (p 1, 2,...) mindestens eine das lineare MaB
Null besitzt.

10. Nachdem wir auf dièse Weise die n} bestimmt haben, betrachten
wir die offene Punktmenge

U Kni + Kni + Kn3+... (10.1)

und ihre abgeschlossene Komplementàrmenge H.
Unter Umstânden kann U die leere Menge sein und H mit der Gesamt-

kugel zusammenfallen. Zum Beispiel existiert fur die Modulfunktion v (z),
die wir im § 3 betrachtet haben, der Grenzwert

lim v(rÇ)
r l

nur dann, wenn dieser Grenzwert mit einer der drei Zahlen 0, 1, oo zu-
sammenfâllt. Und eine einfache Betrachtung zeigt, daB dies dann und nur
dann der Fall sein kann, wenn £ mit einer der abzâhlbar vielen Spitzen
der Dreiecke der Modulfigur koinzidiert. In diesem Falle ist also fur
jedes v und jedes p das lineare MaB von Avôp positiv und die Punktmenge

U existiert tiberhaupt nicht.
Die Punktmenge H dagegen muB stets Punkte enthalten. Denn sonst

wurden endlich viele Knj existieren, deren Vereinigung die ganze Zahl-
kugel uberdeckt, und es mûBte einen Bogen ôP geben, innerhalb dessen

diejenigen Punkte £ fur welche der Grenzwert (9.2) entweder nicht
existiert oder gleich einer beliebigen Zahl ist, eine Nullmenge bilden, was un-
môglich ist.
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Jeder Punkt œ von H ist notwendig ein Randwert von f(z) im Punkte
Co- Um dies zu zeigen, betrachten wir einen Kreis Kv unserer tîber-
deckungsfolge (9.1), der a> in seinem Inneren enthâlt und selbst in einer
vorgesehriebenen Umgebung von co enthalten ist. Nehmen wir nun an, œ

wâre nicht ein Randwert von f(z) im Punkte Co • Dann gibt es eine
Umgebung von C0, innerhalb welcher

1

f(z)~co

beschrânkt ist, und mindestens einen Bogen ôPo, auf welchem der
Fatousche Satz gilt. Andererseits ist die Zahl v nach Voraussetzung
keine Zahl aus der Folge (9.5). Fur p~^: p0 mu8 also auf jedem Bogen ôp
mindestens ein Punkt Çv liegen, fur welchen

lim/(rCv)
r=l

existiert und in Kv enthalten ist. Folglich gibt es auch Randwerte von
f(z) in fOî deren Abstand von oj beliebig klein ist. Und da die Menge der
Randwerte von / (z) in Co notwendig abgeschlossen ist, muB, entgegen der
obigen Annahme, der Punkt œ doch unter diesen Randwerten vorkommen.
Hiermit ist unsere Behauptung bewiesen.

11. Unter der Voraussetzung, daB die Punktmenge H nicht die ganze
Zahlkugel ausfullt, kann man ihre Komplementarmenge U als Summe

von hôchstens abzàhlbar vielen paarweise punktfremden Gebieten Ot dar-
stellen. Ist dann die Zahl oc kein Randwert von / (z) im Punkte Co, so muB
der Punkt, der dieser Zahl entspricht, in einem dieser Gebiete, z. B. inO1,
liegen.

Mit k0 bezeichnen wir eine in Gx liegende abgeschlossene Kreisscheibe,
deren Rand den Punkt oc enthalt. Man kann dann den Satz 4 des § 8 auf
die Funktion

anwenden, indem man fur den Bogen AB ein geeignetes Intervall ôp

wâhlt, und daraus schlieBen, daB die ganze Kreisscheibe x0 aus lauter
Punkten besteht, die keine Randwerte von / (z) im Punkte Co darstellen.
Dazu muB man bedenken, daB g (z) in einer Umgebung von Co beschrânkt
ist und daB die abgeschlossene Punktmenge x0 durch endlich viéle Kreise
Kn. iiberdeckt werden kann. Die radialen Grenzwerte von f(z), lângs
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Radien genommen, die in Punkten von ôp munden und die nicht auf einer
gewissen Nullmenge liegen, sind also in einer Punktmenge enthalten, der
kein Punkt von x0 angehôrt. Dièse letztere Punktmenge wird nun durch
die Abbildung

v - (10.2)

in eine andere verwandelt, die mit ihrer konvexen Huile keinen Punkt der
Halbebene enthàlt, in welche der Kreis x0 durch (10.2) transformiert
wird. Also kann, wie bewiesen werden sollte, auch kein Punkt von x0
Randwert von / (z) im Punkte £0 sein. Dièses Résultat wird noch folgen-
dermaBen vervollstândigt.

Ist ein beliebiger Punkt /? des Gebietes Gx gegeben, so kann man immer
eine Kette von abgeschlossenen Kreisscheiben

finden, die aile in Gx liegen und von denen sich zwei aufeinanderfolgende
teilweise uberdecken, so daB der letzte Kreis xm den Punkt (5 enthàlt und
kq den Punkt oc auf seinem Rande besitzt. Durch dièse Konstruktion wird
gezeigt, daB kein Punkt des Gebietes Gx Randwert von / (z) im Punkte So

sein kann.

So gelangen wir zum folgenden

Satz 5. Es sei eine analytische Funktion f(z) meromorph im Kreise
| z | < 1 und £0 sei ein beliebiger Punkt des Randes \ z \ 1. Dann kann
man nach den Vorschriften der letzten Paragraphen die Punkte der Rie-
mannschen Zahlkugel als Summe

von paarweise punktfremden Mengen darstellen, wobei H abgeschlossen und
nicht leer ist und die Gu die u. U. auch fehlen kônnen, Gebiete bedeuten, die
mit Hilfe der radialenGrenzwerte lim f(reiê) der betrachteten Funktion f(z)
berechnet werden. r==1

Dann ist fur jedes beliebige der Gebiete Gt entweder jeder ihrer Punkte
Randwert von f (z) in £o, oder aber kein einziger Punkt von G{ hat dièse

Eigenschaft. Die Menge der Randwerte von f(z) in £0 besteht also jedenfalls
aus der abgeschlossenen Menge H, der noch gewisse unter den Gebieten Gt
hinzuzufûgen sind.
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12. Aus dem Beweis des vorigen Satzes kann man gewisse Schlûsse
ûber die Verteilung der radialen Grenzwerte lim/(re*^) ziehen, die in

r=l
mancher Hinsicht wertvoll sind. Zum Beispiel bilden fur die Funktion
fi(z), die in § 6 betrachtet wurde, diejenigen Punkte f e**5 fur welche

existiert und in einem noch so kleinen vorgeschriebenen Intervall der
reellen Achse enthalten ist, eine Punktmenge, die auf jedem Bogen des

Einheitskreises ein von Null verschiedenes lineares MaB besitzt.
Auch kann man Beispiele von meromorphen Funktionen f(z) finden,

die in jedem von z 1 verschiedenen Punkte des Kreises | z \ 1

regulâr, und die so besehaffen sind, daB fur £0 1 die Punktmenge H
mit einem vorgeschriebenen Kontinuum zusammenfâllt.

Die Bildung solcher Beispiele und aueh anderer, bei welchen H kein
Kontinuum ist, also z. B. aus endlich vielen irgendwie gelegenen Kreisen
besteht, ist unerlâBlich, um die Tragweite des Satzes 5 richtig zu ver-
stehen.

(Eingegangen den 2O.August 1946.)
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