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Vibrazioni e pressioni critiche delle piastre
anulari soggette a pressione radiale *

Di GiuseppeE Griori, Roma

SOMMARIO

Viene studiato il problema delle vibrazioni trasversali delle piastre anulari sog-
gette a pressioni radiali sui due bordi e viene stabilita una condizione sufficiente di
esistenza di autovalori reali del parametro da cui dipendono le autofrequenze. Si
collega il problema delle vibrazioni a quello delle pressioni critiche caratterizzando
Pandamento delle curve di autofrequenza.

Vengono fatte osservazioni intorno al comportamento dell’energia totale e al
lavoro della sollecitazione radiale in corrispondenza ai termini quadratici delle
caratteristiche di deformazione.

Introduzione )

Nello studio delle vibrazioni trasversali di una piastra & consuetudine
considerare vibrazioni sincrone che nel caso delle piastre anulari si espri-
mono nella forma

Wy s (Q , 0 t) = Uy, (Q) en® Pns (t)

(1)
mw=..., —1,0,1,2,...;8=1,2,...),
ove w,,(0,0;t) rappresenta lo spostamento elastico dei punti del piano
o« della sezione media riferito ad un sistema di coordinate polari g, 0, con
il polo nel centro della piastra e alla variabile tempo ¢. Se f,, indicano le
autofrequenze della struttura vibrante, u e N la densitad superficiale e la
rigidita flessionale della piastra, supposte costanti, la quantita

Opg = 4n? %fﬁs ’

coincide con un autovalore del problema al contorno che traduce analiti-
camente quello delle vibrazioni della piastra, mentre w,,(0,0;¢%) €
un’autosoluzione competente a detto autovalore. Se sui bordi esterno ed
interno della piastra agiscono, nel piano « ed in direzione radiale, le pres-
sioni uniformi p,, p, rispettivamente, gli autovalori ¢, risultano funzioni
dei parametri p,, p;.

*) Lavoro eseguito nell’Istituto Nazionale per le Applicazioni del Calcolo, Roma.
1) Taluni dei risultati contenuti nel presente lavoro (precisamente quelli di tipo esisten-
ziale) sono alla base di ricerche esposte in alcune altre note che a questa faranno seguito.
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Per lo studio delle oscillazioni della piastra intorno alla sua posizione
di equilibrio interessa quindi la ricerca degli autovalori o, reali e positivi.

La dimostrazione dell’esistenza degli autovalori o,, si riconnette nel
caso d’incastro su entrambi i bordi della piastra alle ricerche di Cimino 2)
e Giunti3) sulle equazioni differenziali ordinarie di forma autoaggiunta,
ricerche riprese successivamente da Kamke %) ed estese a tipi pit generali
di condizioni al contorno. Con lo scopo di liberarmi da alcune ipotesi
restrittive contenute nei lavori citati e invece non sempre soddisfatte nei
casi che mi propongo di considerare, faro ricorso alla teoria delle equa-
zioni integrali %) per stabilire che — tanto per le piastre anulari, come per
quelle piene — tali autovalori effettivamente esistono e sono tutti reali
almeno quando é soddisfatta una certa condizione che dir6 condizione S.

Tale condizione sufficiente di esistenza e realitd, come mostrero nel-
I'ultimo paragrafo, & collegata direttamente al teorema di reciprocita in
Meccanica attraverso considerazioni di simmetria della funzione d’in-
fluenza della piastra. Precisamente mostrerd come la condizione S non
rappresenta altro che la traduzione analitica del teorema di reciprocita.
Limitatamente al caso delle piastre anulari mostrero come tale condizione
S sia soddisfatta nei casi che pilt comunemente si presentano [vincolo di
appoggio rigido, incastro rigido, assenza di vincolo] riservandomi di esa-
minare il caso delle piastre piene in una prossima nota.

I1 problema delle vibrazioni della piastra in presenza di sollecitazione
radiale & collegato a quello delle pressioni critiche. Detto A* un comune
fattore moltiplicativo dei carichi p,, p,, le pressioni critiche corrispondono
agli autovalori 1,, del parametro

A

A%

N

del problema statico che viene a essere espresso dallo stesso sistema diffe-
renziale che regola le vibrazioni della piastra quando si ponga a zero il
parametro ¢ di cui i ¢,, sono autovalori. L’esistenza degli autovalori 4,,
é assicurata nei casi vincolari pilt comuni [appoggio rigido, incastro rigido]

2) Cimmino: “Autovalori e autosoluzioni nelle equazioni differenziali
lineari autoaggiunte di ordine superiore’, Mathematische Zeitschrift 32 (1930).

3) Giunti: “Sviluppiin serie tipo Fourier di un vettore, secondo autovettori
di un certo problema, e applicazione all'integrazione dell’equazione lineare
a derivate parziali del 4° ordine competente al moto delle sbarre vibranti,
dotate d’inerziarotatoria’’, Rendiconti del Circolo Mat. di Palermo LXIII, 1940—41.

4) Kamke: “Uber die definiten selbstadiungierten Eigenwertaufgaben
bei gewohnlichen linearen Differentialgleichungen”, Mathematische Zeitschrift
45, 1939, pag. 759; 46, 1940, pag. 251, pag. 231.

8) M. Picone: “Appunti di Analisi Superiore”, Rondinella, Napoli 1940.
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dalle ricerche dei citati Autori®). Anzi in qualche caso, come ad es. in
quello che sui bordi della piastra agiscano pressioni uguali di tali auto-
valori si trovano tabelle numeriche in vari trattati ?). In corrispondenza
ai valori critici della pressione i periodi di vibrazione diventano infiniti e
si ha instabilitd per la configurazione piana di equilibrio della piastra, in
accordo con il fatto che i corrispondenti valori di 4 annullano le funzioni
0,,(2) che caratterizzano la dipendenza dei o,, dal generico A.
Desidero osservare, pero, che sfuggono a tali ricerche tutti quei casi in
cui il parametro 4 di cui si cercano gli autovalori interviene nelle condi-
zioni al contorno, come ad es. avviene nel caso che uno o entrambi i bordi
della piastra siano liberi da vincolo. Nel campo delle equazioni integrali tale
caso viene tradotto da un’equazione integrale di seconda specie con nucleo
dipendente dal parametro. Insieme ad alcune osservazioni intorno ai va-
lori critici del parametro A ed al comportamento dell’energia potenziale
totale, mostrero che — supposti i carichi p,, p; positivi se trattasi di effettive
pressioni — se essi soddisfano ad una delle due coppie di condizioni

pe<09 pz:O> (I)
R2+r2
L — P, >
pe\ 2R2 pz ’ pz<0 ’ sen;é() ] (II)
p. <0 p; <0, sen =0 ;

la configurazione indeformata della piastra é di equilibrio stabile ed 1
6,,(4) risultano tutti positivi. Di notevole interesse & il caso che i carichi
applicati verifichino invece le disuguaglianze.

pe>0 ) Pz———’o > (III)
oppure 8)
R2+r2
Jo- SIS ) .
PeZ—5ps P> pi>0,  senFE0, Iv)
pe>0: pi>03 sen =20

%) Nelle ipotesi (II1'), (IV’) [pil avanti espresse] & facile constatare che gli operatori (18),
(19) intervenienti nella (16) presentano i requisiti richiesti dalle ricerche di Cimmino rela-
tive al caso dell’incastro [eccettuato, perd, il caso n = 1] e da quelle di Kamke per esi-
stenza di autovalori reali positivi del parametro 4.

7) Cfr. ad es., Timoshenko: <Theory of elastic stability”’ pag. 370; Nadaj:
“Elastischen Platten” pag. 253.

8) & palese che le ipotesi IV non escludono il caso che i carichi sui due bordi siano
uguali [p, = p;]; cio & evidente per n 2 0 mentre per n = 0 tale circostanza si giusti-
r2 -+ R2 <1

fica mediante la semplice osservazione che certamente & 5@
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In tali ipotesi mostrero che la configurazione piana di equilibrio puo
essere instabile. Con riferimento alle condizioni di vincolo piu frequenti
[appoggio rigido, incastro rigido] oppure al caso di assenza di vincolo
dimostrero la seguente proprieta — proprieta A — delle curve o = o,,(4)
di autofrequenza.

Per ciascun n, considerata la successione [che chiamero successione {c}]
{U} Gnl(ﬂ')<Gn2(ﬂ)<"'<o’ns(z’)<"'

degle autovalory o,, (1), la funzione o = o,,(A) ha derivata rispetto a A
sempre negativa e st annulla per®) A = 4,, [pensare anche i 4,, non de-
crescenti al crescere di s]. In una rappresentazione cartesiana div assi A, o,
la curva di equazione ¢ = o,, () alvariaredi A da —oo & + oo, ha dunque
ordinata sempre decrescente e sta mel semipiano positivo per A<<2,,, in
quello negativo per A>A4,,. Cost degli autovalori del parametro o, corri-
spondenti ad un prefissato A :

19 s— 1 e soltanto s — 1 sono negativi, uno nullo e gl altrv positive per
A= dny

20 s e soltanto s sono negative e gle altry tutte positivi per A,,<A<A,o,

3% tutty sono positive per A<<A,,.

In corrispondenza allo spostamento elastico u,,(g) cos n ¢, ove si pen-
sino normalizzate le autosoluzioni u,,(p) siha in pil:
do,,

di

esprime il lavoro effettuato in corrispondenza ai termini quadratict delle
caratteristiche di deformazione dagli sforzi che st generano nella piastra
quando st penst alla sollecitazione esterna corrispondente a A* = 1;

a) la derwata [a meno del fattore —xz se n £ 0, —2x se n = 0]

b) Uenergia potenziale elastica dv deformazione e il lavoro effettuato in cor-
rispondenza ai termini quadratici delle caratteristiche di deformazione
dalla sollecitazione esterna (p,, p,) non variano al variare di w,,(p) nel
sistema delle autosoluzioni competentt all’ autovalore o, ,.

%) Come o stato osservato nei due casi d’incastro e appoggio l’esistenza di infiniti auto-
valori del parametro 1 & assicurata dalle ricerche di Cimmino e Kamke [vedi note 2); 4)].
Pur non entrando in merito alla questione analitica dell’esistenza di tali autovalori [assi-
curata d’altronde dall’intuizione meccanica] nel caso che almeno uno dei due bordi della
piastra sia libero, osservo tuttavia che anche nel caso della non esistenza di autovalori
reali del parametro A tutte le considerazioni svolte in questa nota mantengono pienamente
la loro validita, salvo modifiche formali nei loro enunciati che risultano bene evidenti e sulle
quali non mi soffermo. Aggiungo soltanto che I’assenza di autovalori reali di A porta di con-
seguenza la stabilita della configurazione piana di equilibrio della piastra per qualunque 4
ele 0,;(A) risultano sempre positive, in base alla circostanza che in tal caso V,[v; 4] e
R_[v; A] [vedi (51), (52)] si mantengono sempre positive.
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§ 1° Posizione del problema al contorno.

Denoto con 7, R i raggi interno ed esterno della piastra e pongo

P = — A*Qe ’ (2)
D; = —A*Qz s
r2 R?

Ad=5—750—2 s

TzQi"’" RzQe )
B = R: _ 2 °
_ A
Go=—5 + B,

© *)

Lo stato tensionale piano creato nella piastra dai carichi uniformi p,, p;
viene espresso notoriamente dalle formule 1°)

g,= — A*5, ,
0‘6:_1*69’ (5)
0'99:0,

ove & evidente il significato dei simboli ¢,, 0,5, 04y -

Il lavoro eseguito dalla sollecitazione attiva [¢,, 04; 0,4] in corrispon-
denza ai termini quadratici delle caratteristiche di deformazione valutate
con riferimento alla flessione della piastra definita dallo spostamento
w(o,0;%t) & — tenuto conto di (5)

L(w) = %l*f (%%)2 G, + (‘5%)259

D
Pintegrazione essendo estesa al campo D corrispondente alla sezione
media della piastra.

Pongo

ededb , (6)

dw

H (w) =f§L(W) — W(w) + %fﬂ(—at—)zededﬂzdt ; (7)
to D

ove t, e ¢, rappresentano gli istanti iniziale e finale del moto e W (w)
Penergia potenziale elastica : essa ha la solita espressione

10) S. Timoshenko : “Théorie de I'élasticité” pag. 59.
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2w
?(ae 30 939) ]59""‘“’

(8)

se con v si denota il coefficiente di Poisson.

E noto il procedimento abituale con cui in base al principio di Hamil-
ton si ricavano le equazioni del moto del sistema : nel caso in esame
esplicitando il secondo membro di (7) in base a (6) (8) e imponendone la
stazionarietd rispetto ad ogni variazione di w nulla negli istanti ¢,, ¢, e
soddisfacente alla eventuale condizione di annullarsi lei sola o lei e la sua
derivata prima rispetto a g, su quello dei due bordi [0 su entrambi] sul
quale le condizioni di vincolo lo richiedono per la stessa w, si ricava
I’equazione differenziale

(5,80 Too0, 13w])  Ow_

con le relative condizioni al contorno che possono porsi nella forma

ll(w):lz(w)zo’ e=Tr ’q

Lyw)=L,w)=0, o¢=R, | (10)

se I,, L;, (+ =1, 2), denotano operatori differenziali lineari omogenei
[includenti al piu le derivate terze] la cui struttura caso per caso resta
definita, su ciascun bordo, dall’assenza di vincolo o dal tipo di vincolo.

Nei casi qui considerati, detto p = @ uno qualunque dei due bordi
o=17, o= R, le (10) si esplicitano in

—-——~—:O, e=a, (11)

per il vincolo d’incastro rigido ;

02w l(aw 1 2w

v=Gp o (s tym) =0 eme. 02

per il vincolo di appoggio rigido ;

1 2w

2w ow
2+(@+?ﬁﬂ=“
2 (12w _w ¢=a, (I13)

in assenza di vincolo.
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§ 2° Trasformazione del problema al eontorno.

Per ottenere del sistema differenziale (9) (10) soluzioni sincrone occorre
cercare di esso soluzioni del tipo U(p,0)p(t) e si constata che si puo
soddisfare alle (9) (10) assumendo per U (p, 6) una soluzione delle equa-
zioni

(g U 5 1[0 1 &@UY}y o

A4 (@,0) + 4 Te g+ 0| 50+ g || —oU =0, (19
l1(U) :lz(U) =V, e =1r , ) (15)
L(U)=Ly(U)=0, o=2R, | ’

e per ¢(t) quelle della
N
7O+ e =0 .

La ricerca delle soluzioni del sistema (14) (15) coincide manifestamente
con quella, per ogni fissato 4, degli autovalori del parametro o per le
equazioni omogenee (14) (15). Per la completa ricerca delle soluzioni
delle (14) (15) porro

Ulg,0) = ¥ u,(o)e™® ,

n=—oo

con

1 .
U, (0) ZﬂfU(Q,O) e~"9 40

e ricerchero le funzioni u,(g) nell’intervallo (r, R). Dalle (14) (15) si
deduce

1 . 1 {T‘ .
— —in@ _ . —ing —
2nfl1(l'])e db 2nJ I,(U)e df =0 ,

- T

l=r,

1 . 1 g :
—ing —_ —iné _— . —_— .
2nfL1(U)et df)__2nfL2(U)e dd=0 .\ I=R

m

Con facili calcoli si constata che le u,(p) devono verificare le equa-
zioni

Tn(un)'{"j'En(un)mo‘Qun:O s (16)
lln(un) = lz'n(un) =0 ’ e=T ! (17)
Lln (un) = L2n(un) =0 2 0= R ,
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ove si & posto

_az d? d (14+2n2 d nt — 4n?
T”“EE“*(Q_@E)_@( 0 EE)+ o’ (18)
— d [- d __60 2
A 7 1o
lon(U,) = f1,(U) &0 df | e=r ,
(s=1, 2),

Lsn(un) - jLs(U) e~ df ’ 0= R .

Vediamo dunque che tutti gli indicati autovalori del parametro ¢
devono ricercarsi proprio tra gli autovalori dello stesso ¢ nelle (16) (17).

La funzione
Ule,0) = u,,(0) e ,

con u,,(p) autosoluzione del sistema (16) (17) competente all’autovalore
o, [contenente eventualmente costanti arbitrarie in numero uguale al
rango di ¢,,], & autosoluzione delle (14) (15) per ¢ = ¢,,, onde si rico-
nosce che tutti e soli gli autovalori di ¢ nelle (14) (15) si hanno per ¢ = o,
(m=...,—1,0,1,2...; s=1, 2,...).

§ 3° Condizione sufficiente di esistenza S.

Distinguo i due casi :
a) 4 non é autovalore del problema (16) (17), per ¢ = 0 ;
b) 4 coincide con un prefissato autovalore 4,, di tale problema.

Caso a)

Detta G, (o, 0’; A) la funzione di Green dell’operatore T, + A E, re-
lativa alle condizioni al contorno espresse da *(17), il sistema (16), (17) si
traduce nella equivalente equazione integrale

R
u,(0) =0 [Q,(0,0" ;s M) u,le)e'de’ , A+#4, , (s=1,2,...); (20)

Caso b) :

La (20) perde significato per il fatto che per A = 1,, @, (o0, 0’; A) pre-
senta una singolaritd. Conviene allora considerare anziche il problema
(16), (17); Yaltro
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Tn(un)+AnsEn(un)+kQun=GQun’ r<Q<R7 (16,)

llfn(un) = l2n(un) =0 ’ o= ,

(17)
Lln(un) = LG(un) =0, g = R,
ove k & una costante soddisfacente unicamente alla condizione che 4,, non
sia autovalore relativo alle equazioni (16’), (17) considerate per ¢ = 0.
Detta G (o, o', k) la funzione di Green dell’operatore I", + A, B, + k,
relativa alle condizioni al contorno (17), il sistema (16’), (17) si traduce
nell’equazione integrale

R
u, (0) = o [Gy(0, 0 ; k) u, (¢") o' do’ . (20")

E evidente allora che gli autovalori o,, (4,,), (r = 1, 2,...), del para-
metro ¢ nel problema (16), (17) sono dati dalla formula

Opr(Ans) = 0, —k , (r=1,2,...), (21)

se con ay,, (r=1, 2,...), si denotano gli autovalori forniti da (20).

Enuncrato della condizione S.

Per equazioni integrali del tipo (20), (20’) esiste tutta una teorial!)
che assicura l'esistenza di autovalori reali ogni qualvolta il nucleo reale
é simmetrico o almeno simmetrizzabile. Nei casi che qui considerero deter-
minero addirittura la condizione di simmetria rispetto alle variabili g, o’
delle funzioni G, (g,0";4), 2 # 4,,; G (0,0"; k).

Tale condizione di simmetria porta a stabilire una stessa equazione che
vincola i dati al contorno espressi da (17) e che fornisce proprio la men-
zionata condizione sufficiente di esistenza S.

Negli sviluppi seguenti mi riferiro alla funzione @, (g, 0'; 1), 4 # 4,,,
risultando evidente che identiche considerazioni possono ripetersi per
G: (0;0": k).

Detti & e n>¢& due valori di g’ interni all’intervallo r <R, chiamo
per semplicita ¢, (0), v, (o) le funzioni

P, (0) =G, (0,&;4) ,

(22)
vale) =G, (e,n;4) .

11) Vedi nota 5).
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Pongo

(o) = 0 [Put¥s — vutn + Oovn —@nwl] +

1+ 2n?

+ @t — Y Pn + (@0 — Va®n) » (23)

7,(0) = 00, (Pn¥n — Pu¥y) >

ove per semplicitad di scrittura ho indicato con I’apice la derivazione ri-
spetto a p.

Condizione mnecessaria e sufficiente per la simmetria della funzione
G, (0,0 ; ) é— come dimostrerd — che sia soddisfatta Iequazione?)

I, (R)—1TI,(r) + A{z,(R) —7,(r)} =0 . (24)

La condizione § si pud dunque enunciare :

Condizione sufficiente per Uesistenza di autovalori reali del parametro o del
problema (16), (17) é che sia soddisfatta la (24) per ogni coppia di funzions
. (0), v, (o) verificanti le condiziont al contorno (17).

Giustificazione della (24).

Le funzioni ¢,(9), v.(e), in quanto espresse da (22), soddisfano al
sistema (16), (17), posto ivi ¢ = 0, e sono continue con tutte le derivate
nell’intervallo r << p <X R ad eccezione del punto ¢ = & la ¢, (0), del
punto ¢ =7 la v, (0), ove le derivate terze presentano le discontinuita
espresse da13)

12) Per operatori del quarto ordine del tipo

d? a2 |

dg? 7 (e) 92‘4—17(9) ,
risultato analogo & gia ottenuto: M. Picone, ‘“Sui valorieccezionali diun parametro
da cui dipende un’equazione differenziale lineare ordinaria del secondo

ordine,, , Annali della Scuola Normale Superiore di Pisa; vol. XI; pag. 132.

13) Che la discontinuita della derivata terza rispetto a g della funzione ¢, (g, &) sia
quella espressa da (25) si constata immediatamente osservando che la funzione

R
uy, (@) = [ @, (@, 8) 7 (§) dE

soddisfa all’equazione
T, (u,) + AE, (u,) = f ()

e alle condizioni al conterno (17), qualunque sia f (¢). Analogamente dicasi per la y,, (¢,£).
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3

[ wlll . [1/),” —
’7 -

[¢//I] [(pll/] - — _]E_-_ ,
J (25)
n

Pongo
R

R
= [[@Tu(vs) — v T@)]de + A [ [9, B, (v.) — v B (9.)]de . (26)

r

Tenendo conto delle (25) con facili calcoli si ricava come espressione
did,

An = Fn(é_) —Fn(5+) + Fn(n_) _Fn(77+) + Fn(R) "—I‘n(r) -+~
+ }'{Tn (E-) — Ty (£+) + 1:'n("’]—) — Ty (77+) + Tn(R) — Ty (7‘)} . (27)

Data la continuitd delle funzioni ¢, (¢), v, (¢) e delle loro derivate
prime e seconde, nel calcolo dei termini in &—, &+, #—, 5t contenuti in
(27), solo i termini contenenti le derivate terze danno un effettivo contri-
buto. Tenendo presenti le (23) e mettendo in evidenza le variabili da cui g,
e p, dipendono si ottiene cosi da (27):

= Epu(&,9) [[yw (@] _ —[wnlem] .l —
— &y (&) [ (e, 5)]9= —[oh (. &)] 1+
+aea(n,€) [vn @] —[¥ilen] _ .1 —

—nva.n) {[en e, 0] _ - —[oi(e.0],_ .1+
+ T (R) — I, (r) + A7, (B) — =, (1] . (28)

Osservando che le discontinuita che le derivate terze di ¢, , v, presen-
tano sono esclusivamente quelle espresse dalle (25), da (28) si ricava in
definitiva

A, = 9, (&,1) —@a(0,§) + Tp(B) — I'y(r) + A7, (B) — 7, (1] . (29)

In base alla definizione (26) di 4, e al fatto che ¢, e v, soddisfano al
sistema (16), (17) posto ivi ¢ = 0, il primo membro di (29) & certamente
nullo.

Di conseguenza, tenendo presenti le definizioni (22) di ¢,, vy, si ha
—Ga(§,m;2) + Gu(n, &5 8) = Ty (B) — Iy (r) + A[7a(R) — 7.(1)] ,
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da cui segue evidentemente che la cercata condizione necessaria e suffi-
ciente per la simmetria della funzione @, (o, 0’; A) & proprio espressa
dalla (24).

Condizioni di vincolo particolars.

Mostrerd subito che ogni qualvolta sul bordo ¢ = @ wvalgono condi-
zioni di incastro rigido, di appoggio rigido o di assenza di vincolo, risulta

Ir,(a)+47,(a)=0 (30)

comungque si scelgano le funzioni ¢, (¢), v, (¢), purche verificanti le con-
dizioni al contorno.

Con cio la (24) viene ad essere soddisfatta. Distinguerd a tal fine i tre
casi:

Caso a): Imcastro rigido.

Le condizioni al contorno a cui soddisfa lo spostamento elastico «, (o)
sul bordo ¢ = a sono quelle che si deducono da (11), tenendo presente la
forma (1) di w(p,0;t).

Poiche ¢, (0) e v, (¢), devono verificare le medesime condizioni, esse
soddisferanno alle equazioni :

9. (@) = ¢, (a) = p,(a) = ¥, (a) . (31)

Basta allora osservare la forma delle (23) per constatare che la (30) &
soddisfatta insieme a
T, (@) =1,(@=0. (32)

Caso b) : Appoggio rigido.
@, (0) e p, (o) verificano insieme a u, (o) le equazioni :

P. (@) =y, (@) =0, (33)
2
¢Z+%(¢;~p{2):0, e=a ,
: e ~ (34)
/ n
¢g+?(¢n____é~)=o, e=a . ‘

Moltiplicando la (34.1) per v, e sottraendo da essa la (34.2) moltipli-
cata per @, si ottiene [tenendo presente le (33)]:

P Yo — P Y =0, e=a . (35)
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In base alle (33), (35), le (23) danno ancora le (30) e la (24) risulta
anche ora verificata.

Caso c): Assenza di vincolo.
Le condizioni al contorno a cui soddisfano insieme con la %, (o) le fun-
zioni ¢, (g), ¥, (e) sono

2
¢Z+—g~(¢2——n %)==0

h = 36
m <PZ 1+n2(2—”) / 3—w 2 - = ( )
Pn +?_— 02 Pn + 93 n e, + Zagq)n =0 ’
2
wiﬁ+%(w2—£€:”—")=0,
w | ¥n 1+02(2—) 3—v , - =y @D
Yn +?_ 0? Y T 08 nty, + AG,y,=0.

Moltiplicando la (36.1) per y,, la (36.2) per v, e sottraendo da esse le
corrispondenti (37) dopo averle moltiplicate rispettivamente per ¢, e ¢,,,
si ricava :

nor "I n®y / ’ _
(pnwn_"/Jn(pn—"”EE'((pn“/’n”_(ann)”‘O ’ o=a,
" "
Pn Vn — Pn P 14+n2(2 —v) b (38
P Pn— VYo Put — ; . — 2 @va—pep)+ (OO
+359(¢;'Pn—%¢;)=0’ g=a.
Tenendo presenti le (23), la (38.2), moltiplicata per a, si scrive
nor ron n2y ’ ’
- rn(g) + 9(%%"%%) - T (‘Pn%—*%%) _}‘Tn(g) =0 »y 0=a,

e in base a (38.1) da
T,(@) + A, (@) =0
che é proprio la (30).

§ 4° Pressioni eritiche.

La ricerca delle pressioni critiche si riduce in realta a quella degli auto-
valori del parametro 2 nel problema al contorno cui danno luogo le (16),
(17) per ¢ = 0.
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Siano 4,,, 4,, due autovalori distinti del parametro 4 e u,, (o),
%,,(0) le corrispondenti autofunzioni. Tenuto presente che per ora si sup-
pone ¢ = 0, da (16), (17) si ricava facilmente

R R
j. [ﬂm' Tn (ans) - ’unsTn (Q_l‘n'r)] 0 dQ = Z’nsj.am'En (i—l’ns) ng +

R
+ Ay f Uy B, (%) 0o (39)
r
e da questa, tenendo conto di (23.1) e dell’espressione (19) di E,, si
ottiene
R
Fn (R) - Fn(r) = (Ans_‘"lnr) j. { Egz_l’:ar:"—i:zs +
r
- nE_ _ — N = ¥
—l_ Oy Q—gum Uy } ng _“ ’ QGQ(}“munwuns _* Anrunr uns) ‘ ’ (40)

ove I',(o) si pensi costituita mediante le funzioni u,,(0), %,,(0) an-
ziche ¢, (o) e v, (¢) come nella (23.1).

In modo del tutto analogo a quello che si fece per dimostrare la (30) si
constata che — tenuto presente che u,, (¢) € u,,(¢) verificano le condi-
zioni al contorno espresse o da (31), o da (33), (34), o da (36) — si ha

I, (@) + a5y (a) [An, Upr (@) Upy (&) — Ay Unyy (@) By (@)] = 0 . (41)

Da (40), (41) si osserva che due qualunque autosoluzioni w,,(p),
%,,(0) corrispondenti ad autovalori distinti verificano la relazione di
ortogonalita

R n2
." {Eeﬁ;rﬁ:w + Ee?ﬁnrans}gdg =0 ’ (r;és) .
Pongo
< / 2 2(1—») 2 2
Wy =f (v” vyv_r 0)2”_ ks [v”(v’_ﬂ)_.&(v’_g)z] do ,
2 . T T e e 0 o] 1127¢
(42)
R
* ’ /9 = n? - 1
LW = [ 025, + 25025, {ede (43)
Vn[v’;"] = W:(’U) - }'L: [’U,A] . (44)

A meno del fattore 7N se n %0, 2aN se n =0, W¥w) rappre-
senta manifestamente ’energia potenziale elastica di flessione e AL*(v) il
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lavoro effettuato dalla sollecitazione attiva [o,, 64, 0,9 = 0] in corri-
spondenza ai termini quadratici delle caratteristiche di deformazione,
quando si identifichi lo spostamento elastico con v(p) (¢*® + e~**¢). Di
conseguenza V,[v, A] denota (sempre a meno del fattore N o 2z N)
I’energia potenziale totale.

Se y, e la classe delle funzioni v (p) per le quali risultano calcolabili le
espressioni a secondo membro di (42), (43), chiamo y,, quella delle fun-
zioni di y, che sui bordi della piastra seguono le stesse circostanze di an-
nullamento imposte allo spostamento elastico e alla sua derivata prima
rispetto!) a 9. Per r = 2, 3, ecc. chiamo poi classe y,, quella costituita
dalle funzioni v (g¢) di y,, verificanti le relazioni di ortogonalita %)

R

v 2
J :EQ’Tt;sv'-}—ae—ZEﬁmvggdg —0, (s=1,2,....r—1),  (47)
rispetto a tutte le autofunzioni u,,, %,.,..., Up,—;-

Notoriamente 1¢) ’autovalore 1,, & definito dalla relazione

r

W)

g L¥(0)

= min. (46)

al variare di v (p) nella classe?) y,, .
Mi pongo nell’ipotesi che g¢,, ¢, verifichino una delle coppie di disugua-
glianze

2 <0 , q:; =0, (111%)
oppure
2 2
Qeg%%{t“Qi’ Qi<0 ’ s€ n;ﬁO,
(IV')
qe<0> ql<0 , se n=0,

14) Se ad es. la piastra & incastrata sul bordo interno, g,ppoggiata, sull’altro, y,, © la classe
delle funzioni di y, nulle su entrambi i bordi e con derivata prima nulla sul bordo interno.

15) Tale proprieta di ortogonalita delle autosoluzioni del sistema (16), (17) — posto ivi
o = 0 — risulta dal citato lavoro di Giunt: [loco cit. nota 2)] nel caso che le condizioni si
specifichino in quelle d’incastro e in generale — se il parametro non interviene nelle condi-
zioni al contorno — da quella di Kamke [loc. cit. nota %)].

18) G. Krall : “Meccanica tecnica delle vibrazioni,, parte II, pag. 30.

17) Tale proprieta di minimo [e cosi pure quella espressa da (51)] per il caso dell’incastro
é indicata nelle ricerche di Cimmino e pil in generale, ma limitatamente al caso che A non
intervenga nelle condizioni al contorno, in quelle di Kamke al variare di v (¢) nella classe
[piu ristretta di vy, ,] delle funzioni che oltre alla relazione di ortogonalita (45) [o alla (50)
se ci si riferisce alla (51)] verificano le condizioni al contorno. La possibilita che si ha qui di

considerare le classi piti vaste di funzionisy,,[oy, ] permette di dimostrare la proposizioneI”,
pit avanti espressa, nel caso che su almeno uno dei due bordi valgano condizioni di liberta.
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e osservo innanzitutto che in base alle disuguaglianze (II1), (IV’) risul-
tano sicuramente verificate [vedi (3), (4)] le relazioni

Go>0, | (1)
Gy >0 ,
al variare dip trare R.
Di conseguenza é pure [vedi (43)]
L¥wv)>0 (48)

e poiché W} (v) & per sua natura definita positiva gli autovalori 1,,
espressi da (46) non possono che risultare positivi.

Ne segue che ogni qualvolta A & negativo e si & quindi [in base a (2),
(II1"), (IV’)] nel caso delle ipotesi (I), (II), la configurazione piana di
equilibrio della piastra ¢ stabile.

In effetti, in base a (5), (47) si verifica la circostanza che gli sforzi o,
0, hanno carattere di trazione con tendenza ad opporsi ad ogni pertur-
bazione dell’equilibrio piano [eccettuato, se mai, il caso (IV’, 2) o, se si
vuole (II, 2) in cui se la trazione interna p, & sufficientemente elevata di
fronte a quella esterna, i o, hanno carattere di pressione].

Da (44), (46) risulta immediatamente

Vn [anr, an] =0,

(49)
V.[v, A,] >0,

al variare di v (¢) # u,, (o) nella classe y,,, (r=1, 2,...).

Mettero in evidenza il seguente comportamento dell’energia potenziale
totale V, [v; 1]:

I° — al variare di v (g) nella classe y,,, (s=1,2,...,7), V, [v, 4]
puo assumere valori negativi per A> 4, ;

II° — al variare di v (o) nella classe y,,, V,[v, A] risulta sempre posi-
tiva per A<A,,.

La proposizione I” & immediata : essa risulta verificata non appena si
prendas) v (o) = T, (o).

18) 12 evidente che se la proprieta di minimo espressa da (46) valesse soltanto nella classe
delle funzioni verificanti le condizioni al contorno [oltre quella di ortogonalita espressa da
(45)], come quella messa in luce nei citati lavori di Kamke, la dimostrazione data della
proposizione I * cadrebbe in difetto nel caso che almeno uno dei due bordi della piastra fosse
esente da vincolo (e in genere tutte le volte che il parametro A interviene nei dati al con-
torno). Infatti in tal caso la classe delle funzioni in cui vale la proprieta di minimo (46)
dipenderebbe da A in quanto da tale parametro dipenderebbero gli operatori che esprimono
le condizioni al contorno e conseguentemente non si potrebbe assumere per la dimostrazione
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Infatti in tal caso per A>4,, da (46) risulta ovviamente

W, (@,,)
2> n ns
Ly (4,,)
e dall’essere 4,, > 1,,, (s=1, 2,...,7) segue
V, [, 4<0, (s=1,2,...,7), (A>1,,) .

La proposizione IT” si pud dimostrare considerando la differenza

Vv, Al —V,[v,4,,] =—(4—24,,) L¥®)
da cui si ottiene :
Valv, ] = V,lv, 4] —(A— 4,0) Ly (v) .
Tenendo conto di (48), della (49.2) e della disuguaglianza
A—21,.,<0
segue immediatamente la proposizione 11" .
§ 5° Proprieta A.
Stabilita la condizione (24) sufficiente per 1’esistenza di autovalori reali
del parametro o contenuto nelle (16), (17) in corrispondenza ad ogni va-
lore dei parametri 1, ¢,, g, [0, se si vuole, di p,, p,], e ad ogni », occorre

esaminare il segno di tali autovalori.
Considero la successione di elementi non decrescenti

() <o) < <oy, (A) <0 -

degli autovalori del parametro ¢ e quella delle corrispondenti autofun-
zioni
Unr (Q)s Un2 (0),- - - Ups(@)s-- - -

Chiamo classe y.,, (r =2, 3,...), quella delle funzioni di y,, verifi-
canti le relazioni di ortogonalitd

R
Juns@vi@ede =0, (s=1,2,...r—1), (r>1). (50)

della proposizione I™ v (9) = %,; (9) per il fatto che quest’ultima funzione verificando le
condizioni al contorno soltanto per 4 = 4,;, non apparterrebbe alla stessa classe & cui
appartiene v (9) se 4:£ 4,;.
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Riportando un risultato valido in generale in teoria di elasticita®) e
conformemente alla moderna teoria delle equazioni integrali, si ha

6, = min. R [v, 1] , (r=1, 2,...) (51)
con
Bolv,, 4] = 2l 52)
[v*ede
r
al variare di v(g) nella classe y.,, (r=1, 2,...).

11 segno di o,, dipende cosi da quello di V,[v, 4] al variare di v (p)
in y,, .

Analiticamente il problema di rendere minimo R,[v, A] porta, come
¢ ben noto, ad un determinato problema al contorno e nel caso in esame —
tenuto conto della forma dei secondi membri di (42); (43), (44) — pro-
prio al sistema (16), (17) con le specificate condizioni (31) o (33), (34);
oppure (36). La configurazione piana della piastra & di equilibrio instabile
ogni qualvolta A [per gli assegnati valoridin, ¢,, ¢, rende nulla o negativa
V,.[v, A]in corrispondenza a qualche v (o) della classe y., (r = 1,2,...).
Lo studio del segno degli autovalori ¢, risulta cosi direttamente collegato
a quello delle pressioni critiche.

L’andamento delle curve di autofrequenza & pienamente illustrato dalla

On

ai -’

conoscenza della derivata

. do,
Derwata 7R

Per valutarla, penso fissati due valori 4 e 1 4 ¢ del parametro A.

Siano 2°) ¢,,(4), e o,,(4 + ¢) gli autovalori corrispondenti con riferi-
mento ad una medesima prefissata ma arbitraria classe y,, di funzioni e
U,s (05 4), %,,(0; A+ &) le relative autofunzioni [segnando in tal modo
le autofunzioni intendo mettere in evidenza il valore di 4 da cui esse di-
pendono]. Tali funzioni soddisfano alle equazioni

To[tnslo; )] + AE, [tns(0; 2)] = 0 0,5(A) w0 4)

T [tns (0 2+ 6)] + (A + ) B, [, (05 4 + 6)] = (16”)
= Qans(}' +8)uns(9;}“+8) s

e alle relative condizioni al contorno.

19) Vedi ad es., Krall loco cit. nota ') vol. II, pag. 56.
20) Non & escluso che A coincida con I'autovalore 4,; e ¢, (%) sia nullo.
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Moltiplicando la prima delle (16”) per u,,(o; 2 + &), sottraendovi la
seconda moltiplicata per u,,{o; 4) e integrando tre r e R si ottiene
subito

R
Jltnglo; A+ &) Tolua(os A] — ns (05 4) T [, (05 4 + €)]} do +
R R
+ 2 fune(0; A+ ) B, [u,s(0;1)] do—(A+¢) fu, (05 4) B, [,,(0; 2+ ¢)] do =

R
= {04s(A) — 0,5(A +8)} funs(0;4) %ny (05 A +2)odp .

Con I'identico procedimento seguito per passare dalla (39) alla (40) si
ricava

R
To(R)—T,(r)+ A 00, [Auy, (05 A+€) up, (03 2)— (A4 &) uns(0; A, (054 +6)]] +
R 2
& [ {00 tns (05 A) Uy, (0 /1+8)+—7—;——50um(9;1)um(e;l+e)}d9=
R
={0,4(4) — 0e(A+€)} [ ups(0;2) Upe(0; 2+ €) odo . (53)

La (53) tenuto conto delle condizioni al contorno a cui soddisfano
U, (03 4), u,,(0; 4+ ¢) da facilmente

R _ nZ _
J{00,up,(0;4) upy(0; A+ ) + T Ung (032) tns (05 A+¢)} odo

Ous(A) — 0,5 (A+e)
— R
e fortonmwitae o

Al tendere a zero di ¢, u,,(0;4 +¢) tende a wu, . (0; 1) ed esiste il
limite del secondo membro di (54). In base a (43) si puo quindi scrivere

senz’altro
d L* A
_gfi = — _RM . (55)
J s (3) edo
La (55) in base alla (48) d& come conseguenza
do
" 0 (56)

di

qualunque sia 4 .
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Dimostrazione della proprieta A .

Per 1 = 1,, il sistema (16), (17) ammette la soluzione rappresentata,
dalla coppia
uns(g ; A’ns) “:“ aﬂS(Q) >
=0 .

Di conseguenza, tenuto conto di (56), le curve o,, = 0,,(4), (8=
1, 2,...), attraversano una sola volta l’asse delle 1 e ci0 nel punto
A=24,,, (=1, 2,...) dove esse passano dal semipiano positivo a
quello negativo.

Risultano allora immediate le constatazioni fatte nell’enunciato della
proprieta 4 intorno alla distribuzione degli autovalori o,,, (s = 1,2,...)
d;;i é evidente in base a (55).
Da (44), (51), (52), (53) risulta immediatamente

su ogni retta A = cost. 1l significato di

% do,,
Gm()’) - Wn (uns) + Z- '"‘d’z

e poicheé le curve o = ¢,,(1) non si attraversano, si conclude che ogni

qualvolta un autovalore ¢,, & multiplo di ordine » per A = 71 e le auto-
funzioni w,,(p) sono normalizzate, si ha

W: (um') = T,V: (unr-i—l) === W: (unr«w—l)

L: (um‘) = L: (un'H—l) == L: (un r+v—1) .

La proprieta A rimane cosi completamente dimostrata.

§ 6° Condizione sufficiente S e teorema di reciproeitd in Meccanica.

La condizione (24) sufficiente per l’esistenza di autovalori reali del
parametro ¢ contenuto nelle (16), (17) e direttamente collegata al teo-
rema di reciprocitd in Meccanica. Precisamente dimostrerd come tale
teorema richieda necessariamente il verificarsi della condizione (24) che,
anzi, risulta sufficiente per la validitd del teorema stesso.

I1 problema dell’equilibrio della piastra anulare soggetta oltre che alle
sollecitazioni p,, p,, al carico ortogonale al suo piano medio di entita
F(g, 0) per unita di superficie, si traduce nel sistema
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- 0w O, [ow 1 2w 1
adw+ e e+ 5 + | - wFen =0
57
L(w) = lLw) —0, o=r, (57)
Li(w) = Ly(w) = 0 , o=R,

come si deduce imponendo la stazionarietd all’espressione dell’energia
totale.

Osservo intanto che se 4 & autovalore del problema omogeneo associato
al sistema (57), [F(¢,0) = 0], la configurazione piana di equilibrio della
piastra € instabile e un carico ortogonale genera uno spostamento infinito
nei punti della piastra 2!). Ha quindi interesse solo il caso che A non sia
autovalore nel problema accennato e in tale ipotesi mi pongo :

Lo spostamento w (g, 6) e la sollecitazione F (g, 6) possono esprimersi
mediante gli sviluppi in serie di Fourier

+ o
w(e,0) = X, u,(o) e, (58)

- o0

+ o
F(Qae) = X fn(g) e, (59)

con uy(e), fa(e) espressa da
ur (o) = if‘w(g 6) e~i"% df
" 27 ’ ’

Fal@0 = 5 [Fle0) im0 .

Moltiplicando le (57) per e-*? df e integrando tra —=x e -+ & siri-
cava, tenendo presenti le (60), il sistema che determina u) (o)

T, () + 4B, u}) — 3 efal) = 0, r<e<R,
lln(u:):l2'n(u:) :O ’ (n=0,1,2,...), 9:7', (61)
Lln(u:)=L2n(u:):O s Q-———'R "

21) Beninteso, nel senso che se 1 tende ad un autovalore del sistema omogeneo associato
a (57), la funzione w (g, 6; 4) tende ad infinito.
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Tenuto presente che si suppone A diverso da ogni autovalore del pro-
blema omogeneo associato a (57) e quindi da ogni autovalore del sistema
omogeneo associato a (61), le soluzioni del problema (61) possono porsi
nella forma

R
uy (0) = [ Gule,0") fule)do’  (n=0,1,...) . (62)

Tenendo presente le (60.2), da (58), (62) si ricava facilmente

w(o, 0) = ] fG (0,0) €70 9" (o', ) o' dg' dO/

e da questa, posto

| : o
K(e,03¢,0) =5 X, Gule,0) e e (63)

segue :

w(g, 0) :f jK(g,o;g’,e’)F(g’,o’) o' do’ db’ . (64)

Dall’espressione (64) dello spostamento elastico si deduce immediata-
mente che la funzione K (p,0;0’,0’) esprime lo spostamento che la
forza unitaria concentrata nel punto (¢’,6’) genera nel punto (g, 6).

In base al teorema di reciprocitd in Meccanica dovra risultare

K(Q’ 6; Q,’BI) = K(Q,’Gl; o, 0) 5

cioé la funzione K (p,0;p’,0’) dovra essere simmetrica rispetto alle cop-
pie di variabili (g, 0), (¢’, 6’). Lo sviluppo (63) indica che tale proprieta di
simmetria della K (g, 6; o’,0’) viene goduta quando e solo quando risul-
tino simmetriche rispetto alle variabili g, ¢’, le funzioni @, (o, ¢).

Si conclude quindi che la condizione S sufficiente per l'esistenza di
autovalori reali del problema (16), (17) ed espressa da (24) & necessaria
e sufficiente per la validitd del teorema di reciprocitd in Meccanica.

§ 7° Piastra piena.

Per un tale sistema materiale sollecitato dal carico uniforme p, = p*
agente in direzione radiale sul bordo si ha lo stato tensionale costante
0, =0y = — P*, 0,9 = 0, espresso dalle medesime (3), (4), (5) quando
in esse si ponga r = 4 = 0 e sifaccia coincidere 1* con —1 e g, con 4 p*.
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Di conseguenza com’é noto le equazioni (9), (10) vanno pensate e scritte
nella forma

02w
NAAdw + p*Aw + u 3 =0, (9')
lim [, (w) = lim l,(w) = 0 ,
0->0 >0 (101)
Ll(w) = LZ ('I,U) =0, (Q = R) ’

*®
e ad esse, posto %— = p, corrisponde per ogni 7, il sistema

T, (u,) + pEy (u,) —oou, =0, (0<o<R),

lim ,,(»,) = lim I, (u,) =0,
e->0 e~>0

Lln(un) = LG(un) =0, e = R ’

d d n2
E* — ( )_
do \° do 0

con

Le considerazioni svolte per ricavare la condizione sufficiente di esi-
stenza S, (24), si possono ripetere integralmente solo che al simbolo f(r)

si sostituisca lim f (o) e si valutino gli integrali che intervengono tra 0
e R. >4

Si ottiene come condizione S la seguente :

I'y(R) —lim I', () + p[7.(R) —lim 7,(0)] =0 ,

>0 e->0

analoga alla (24).
Anche la validita della proprietd A si conserva inalterata, ma di tale
verifica mi occupero brevemente in una prossima nota.

(Regu le 14 aolit 1946.)
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