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Vibrazionl e pression! critiche délie piastre
anulari soggette a pressione radiale *)

Di Giuseppe Grioli, Roma

SOMMARIO
Viene studiato il problema délie vibrazioni trasversah délie piastre anulari

soggette a pressiom radiali sui due bordi e viene stabilita una condizione sufficiente di
esistenza di autovalon reali del parametro da cui dipendono le autofrequenze. Si
collega il problema délie vibrazioni a quello délie pressiom entiche caratterizzando
l'andamento délie curve di autofrequenza.

Vengono fatte osservaziom mtorno al compoitamento dell'energia totale e al
lavoro délia sollecitazione radiale m cornspondenza ai termim quadratici délie
caratteristiche di deformazione.

Introduzione x)

Nello studio délie vibrazioni trasversali di una piastra è consuetudine
considerare vibrazioni sincrone che nel caso délie piastre anulari si espri-
mono nella forma

(*=..., —1, 0, 1, 2,... s= 1, 2,...)

ove wns (q 0 t) rappresenta lo spostamento elastico dei punti del piano
oc délia sezione média riferito ad un sistema di coordinate polari q 0, con
il polo nel centro délia piastra e alla variabile tempo t. Se fns indicano le

autofrequenze délia struttura vibrante, ju e N la densità superficiale e la
rigidità flessionale délia piastra, supposte costanti, la quantità

U7l8 ^JV ~KT J fl8 '

coincide con un autovalore del problema al contorno che traduce analiti-
camente quello délie vibrazioni délia piastra, mentre wMS(£,#;£) è

un'autosoluzione compétente a detto autovalore Se sui bordi esterno ed

interno délia piastra agiscono, nel piano <x ed in direzione radiale, le pres-
sioni uniformi pe, pt rispettivamente, gli autovalori ans risultano funzioni
dei parametri pe, pt.

*) Lavoro eseguito nell'Istituto Nazionale per le Apphcazioni del Calcolo, Roma.
*) Taluni dei nsultati contenuti nel présente lavoro (precisamente quelh di tipo esisten-

ziale) sono alla base di ricerche esposte m alcune altre note che a questa faranno seguito.
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Per lo studio délie oscillazioni délia piastra intorno alla sua posizione
di equilibrio intéressa quindi la ricerca degli autovalori an8 reali e positivi.

La dimostrazione delFesistenza degli autovalori ons si riconnette nel
caso d'incastro su entrambi i bordi délia piastra aile rieerche di Cimino2)
e Giunti3) sulle equazioni differenziali ordinarie di forma autoaggiunta,
rieerche riprese successivamente da Kamke 4) ed estese a tipi più generali
di eondizioni al contorno. Con lo scopo di liberarmi da alcune ipotesi
restrittive contenute nei lavori citati e invece non sempre soddisfatte nei
casi che mi propongo di considerare, farô ricorso alla teoria délie equazioni

integrali5) per stabilire che — tanto per le piastre anulari, corne per
quelle piene — tali autovalori effettivamente esistono e sono tutti reali
almeno quando è soddisfatta una certa condizione che dirô condizioneS.

Taie condizione sufficiente di esistenza e realità, corne mostrerô nel-
l'ultimo paragrafo, è collegata direttamente al teorema di reciprocità in
Meccanica attraverso considerazioni di simmetria délia funzione d'in-
fluenza délia piastra. Precisamente mostrerô corne la condizione S non
rappresenta altro che la traduzione analitica del teorema di reciprocità.
Limitatamente al caso délie piastre anulari mostrerô corne taie condizione
8 sia soddisfatta nei casi che più comunemente si presentano [vincolo di
appoggio rigido, incastro rigido, assenza di vincolo] riservandomi di esa-
minare il caso délie piastre piene in una prossima nota.

Il problema délie vibrazioni délia piastra in presenza di sollecitazione
radiale è collegato a quello délie pressioni critiche. Detto A* un comune
fattore moltiplicativo dei carichi pe, p{, le pressioni critiche corrispondono
agli autovalori Àn8 del parametro

2*
A

N

del problema statico che viene a essere espresso dallo stesso sistema diffe-
renziale che regola le vibrazioni délia piastra quando si ponga a zéro il
parametro a di cui i ans sono autovalori. L'esistenza degli autovalori Xn8

è assicurata nei casi vincolari più comuni [appoggio rigido, incastro rigido]

2) Cimmino: "Autovalori e autosoluzioni nelle equazioni differenziali
lineari autoaggiunte di ordine superiore", Mathematisehe Zeitschrift 32 (1930).

3) Giunti: "Sviluppi in série tipoFourier di un vettore, secondo autovettori
di un certo problema, e applicazione all'integrazione dell'equazione lineare
a derivate parziali del 4° ordine compétente al moto délie sbarre vibranti,
dotate d'inerzia rotatoria", Rendiconti del Circolo Mat. di Palermo LXIII, 1940—41.

4) Kamke: "Ûber die definiten selbstadiungierten Eigenwertaufgaben
bei gewôhnlichen linearen Differentialgleichungen", Mathematisehe Zeitschrift
45, 1939, pag. 759; 46, 1940, pag. 251, pag. 231.

5) M.Picone: "Appunti di Analisi Superiore", Rondinella, Napoli 1940.
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dalle ricerche dei citati Autori6). Anzi in qualche caso, corne ad es. in
quello che sui bordi délia piastra agiscano pressioni uguali di tali
autovalori si trovano tabelle numeriche in vari trattati7). In corrispondenza
ai valori critici délia pressione i periodi di vibrazione diventano infiniti e

si ha instabilité per la configurazione piana di equilibrio délia piastra, in
accordo con il fatto che i corrispondenti valori di A annullano le funzioni
ans(X) che caratterizzano la dipendenza dei ans dal generico A.

Desidero osservare, perô, che sfuggono a tali ricerche tutti quei casi in
cui il parametro A di cui si cercano gli autovalori interviene nelle condi-
zioni al contorno, corne ad es. awiene nel caso che uno o entrambi i bordi
délia piastra siano liberi da vincolo. Nel campo délie equazioni integrali taie
caso viene tradotto da un'equazione intégrale di seconda specie con nucleo

dipendente dal parametro. Insieme ad alcune osservazioni intorno ai
valori critici dei parametro A ed al comportamento dell'energia potenziale
totale, mostrerô che — supposti i carichi pe, pt positivi se trattasi di effettive
pressioni — se essi soddisfano ad una délie due coppie di condizioni

Pe < 0 P* 0 ; (I)
R2 + r2

Pi

Pt*

Pt*

c o

< 0

0 ;

5

se

se

n ^
n

0

0 ;

Pe ^< o r>2 rî rt ^ ~ — -~ / ~ > ,yy.

la configurazione indeformata délia piastra è di equilibrio stabile ed i
an8 (A) risultano tutti positivi. Di notevole interesse è il caso che i carichi

applicati verifichino invece le disuguaglianze.

pe>0 pt 0 ; (III)
oppure 8)

R2 + r2
Pe > 2B2 Px Pt > 0 sew^O,
pe > 0 Pi > 0 se n 0

(IV)

6) Nelle ipotesi (III'), (IV) [più avanti espresse] è facile constatare che gli operatori (18),
(19) intervenienti nella (16) presentano i requisiti richiesti dalle ricerche di Cimmino relative

al caso dell'incastro [eccettuato, perô, il caso n 1] e da quelle di Kamke per l'esi-
stenza di autovalori reali positivi dei parametro X.

7) Cfr. ad es., Timoshenko: "Theory of elastic stability" pag. 370; Nadaj:
"Elastischen Platten" pag. 253.

8) È palese che le ipotesi IV non escludono il caso che i carichi sui due bordi siano

uguali [pe pt] ; ciô è évidente per n ^z£ 0 mentre per n 0 taie circostanza si giusti-
r2 + jR2

fica mediante la semplice osservazione che eertamente è ———-— < 1.
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In tali ipotesi mostrerô che la configurazione piana di equilibrio puô
essere instabile. Con riferimento aile condizioni di vincolo più frequenti
fappoggio rigido, incastro rigido] oppure al caso di assenza di vincolo
dimostrerô la seguente proprietà — propriété A — délie curve a ons(X)
di autofrequenza

Per ciascun n, considerata la successions [che chiamerô successione {a}]

{a} <7wl(A)<<rn2(A)<. '<ons(*)<-'
degli autovalon ans (A), la funzione a ans (A) ha derivata rispetto a X

sempre negativa e si annulla per9) X Xns [pensare anche i Xns non de-
crescenti al crescere di s]. In una rappresentazione cartesiana di assi A, o,
lacurvadi eqiuizione a ons(X) al variaredi Xda —ooa + oo, hadunque
ordinata stmpre decrescente e sta nel semipiano positivo per X<Xns, in
quéllo negativo per X>Xns Cosi degli autovalori del parametro a, corri-
spondenti ad un prefissato X

1° s — 1 e soltanto s — 1 sono negativi, uno nullo e gli altri positivi per
A A-ns >

2° s e soltanto s sono negativi e gli altri tutti positivi per Xn8<X<Ans+1
3° tutti sono positivi per X<Xnl.

In corrispondenza allô spostamento elastico un8(o) cos n &, ove si pen-
sino normalizzate le autosoluzioni un8(Q) si ha in piii :

a) la derivata J18 [a meno del fattore —n se w^O, —2n se n 0]
(LÀ

esprime il lavoro effettuato in corrispondenza ai termini quadratici délie

caratteristiche di deformazione dagli sforzi che si generano nella piastra
quando si pensi alla sollecitazione esterna corrispondente a A* 1 ;

b) Venergia potenziale elastica di deformazione e il lavoro effettuato in cor¬

rispondenza ai termini quadratici délie caratteristiche di deformazione
dalla sollecitazione esterna {pe, pt) non variano al variare di uns (q) nel
sistema délie autosoluzioni competenti alVautovalore ans.

9) Corne e stato osservato nei due casi cTincastro e appoggio l'esistenza di mfiniti
autovalon del parametro A è assicurata dalle ricerche di Cimmino e Kamke [vedi note 2); *)].
Pur non entrando in merito alla questione anahtica dell'esistenza di tali autovalori
[assicurata d'altronde dalFintuizione meccanica] nel caso che almeno uno dei due bordi délia
piastra sia libero, osservo tuttavia che anche nel caso délia non esistenza di autovalori
reah del parametro A tutte le considerazioni svolte m questa nota mantengono pienamente
la loro' vahdità, salvo modifiche formali nei loro enunciati che risultano bene evidenti e sulle
quah non mi soffermo. Aggiungo soltanto che l'assenza di autovalori reah di À porta di con-
seguenza la stabihtà délia configurazione piana di equilibrio délia piastra per qualunque A

e le ons(X) risultano sempre positive, m base alla circostanza che in tal caso Vn[v; A] e

Bn[v; A] [vedi (51), (52)] si mantengono sempre positive.

243



§ 1° Posizione del problema al contorno.

Denoto con r, R i raggi interno ed esterno délia piastra e pongo

P. - **<7e -

Pi — A*?t ;

B i^-

(2)

(3)

-A + B
(4)

Lo stato tensionale piano creato nella piastra dai carichi uniformi pe, pt
viene espresso notoriamente dalle formule10)

aQ= — A* aQ

ae — A* âe

ove è évidente il significato dei simboli aQ, oe, aQe

Il lavoro eseguito dalla sollecitazione attiva [aQ, a0 ; aQ9] in corrispon-
denza ai termini quadratici délie caratteristiche di deformazione valutate
con riferimento alla flessione délia piastra definita dallo spostamento
w (q 6 ; t) è — tenuto conto di (5)

D

Fintegrazione essendo estesa al campo D corrispondente alla sezione
média délia piastra.

Pongo t

H(w) - W(u>) dt (7)

<«

ove t0 e tx rappresentano gli istanti iniziale e finale del moto e W (w)
Fenergia potenziale elastica : essa ha la solita espressione

10) S. Timoshenko: "Théorie de l'élasticité" pag. 59.
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gdgdd

(8)

se con v si dénota il coefficiente di Poisson.
È noto il procedimento abituale con cui in base al principio di Hamil-

ton si ricavano le equazioni del moto del sistema : nel caso in esame

esplicitando il secondo membro di (7) in base a (6) (8) e imponendone la
stazionarietà rispetto ad ogni variazione di w nulla negli istanti t0, tx e

soddisfacente alla eventuale condizione di annullarsi lei sola o lei e la sua
derivata prima rispetto a g, su quello dei due bordi [o su entrambi] sul
quale le condizioni di vincolo lo richiedono per la stessa w, si ricava
Fequazione differenziale

NAAw + X*\ô d*W4- Maw+ * d2w)\ + udiw-0 (9)JSAAw + l (<;e^ + -^— +___jj+/,_r_0 (9)

con le relative condizioni al contorno che possono porsi nella forma

(10)
l±(w) I2{w) 0 q r

L1(w) L2{w) -0 e R

se l{, Li9 (i 1, 2), denotano operatori differenziali lineari omogenei
[includenti al più le derivate terze] la cui struttura caso per caso resta
definita, su ciascun bordo, dalFassenza di vincolo o dal tipo di vincolo.

Nei casi qui considerati, detto g a uno qualunque dei due bordi
g r, g R, le (10) si esplicitano in

« £ 0, e a, (11)

per il vincolo d'incastro rigido ;

^ ^ + ^(^ + ^1 0, e «, (12)
d2w v i dw 1 d2 w
dg2 g

per il vincolo di appoggio rigido ;

d2w v l dw

(13)

v I dw 1

g \ dg g

in assenza di vincolo.
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§ 2° Trasformazione del problema al contorno.

Per ottenere del sistema differenziale (9) (10) soluzioni sincrone occorre
cercare di esso soluzioni del tipo U{Q,d)(p{t) e si constata che si puô
soddisfare aile (9) (10) assumendo per U(q,6) una soluzione délie equa-
zioni

=0 Q r
Lt(U) -= Lt{U) 0 Q R

e per <p (t) quelle délia

La ricerca délie soluzioni del sistema (14) (15) coincide manifestamente
con quella, per ogni fissato A, degli autovalori del parametro a per le

equazioni omogenee (14) (15). Per la compléta ricerca délie soluzioni
délie (14) (15) porrô

con

e ricercherô le funzioni un{g) neU'intervallo (r, R). Dalle (14) (15) si
deduce

J- fh(U) e~ine dd ~ fl2(U)e-ine dO 0
2 7t J 2 n J

— rr —n

^- flr1(l7)e-twôdfl=^- flr2(I7)c-*wedfl 0 R
2jrJ ^TrJ

— 7T — ir

Con facili calcoli si constata che le uu(q) devono verificare le equa
zioni

Tn(un) + A En(un) — a g un 0 (16)

hn(Un) hn(un) 0
(17)
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ove si è posto

' 8)
dQ \rT~

1, 2)

Vediamo dunque che tutti gli indicati autovalori del parametro g
devono ricercarsi proprio tra gli autovalori dello stesso a nelle (16) (17).

La funzione

con un8(o) autosoluzione del sistema (16) (17) compétente all'autovalore
ans [contenente eventualmente costanti arbitrarie in numéro uguale al
rango di ornj, è autosoluzione délie (14) (15) per a ons, onde si rico-
nosce che tutti e soli gli autovalori di a nelle (14) (15) si hanno per a an%

(»=...,—1, 0, 1, 2... ; s= 1, 2,...).

§ 3° Condizione suffieiente di esistenza 8.

Distinguo i due casi :

a) X non è autovalore del problema (16) (17), per a 0 ;

b) X coincide con un prefissato autovalore Xn8 di taie problema.

Caso a)
Detta On(Q, qr ; X) la funzione di Green dell'operatore Tn + X En re-

lativa aile condizioni al contorno espresse da *(17), il sistema (16), (17) si
traduce nella équivalente equazione intégrale

un(Q) oJGn(Q,Q';i)Un(Q')e'<k', *-^Ks> («=1,2,...); (20)
r

Caso b)
La (20) perde significato per il fatto che per X Xn8 Gn(ç>, qr ; X)

présenta una singolarità. Conviene allora considerare anzichè il problema
(16), (17); Taltro

247



Tn(nn) + Xn8En(un) + k g un a g un r^g^B, (16')

(17)
hn(U>n) hn(Un) 0 Q

Lln(un) L2n(un) 0 e

ove fc è una costante soddisfacente unicamente alla condizione che Aws non
sia autovalore relativo aile equazioni (167), (17) considerate per a 0.

Detta G* (g, q1', &) la funzione di Green dell'operatore Fn + Xn8En-\-hQ
relativa aile condizioni al contorno (17), il sistema (167), (17) si traduce
nell'equazione intégrale

UniQ) o)QÏ{Q,Qr \*c)un{Qf)Qf dQ' (20')
—r

È évidente allora che gli autovalori anr (Ans), (r — 1,2,...)» del para-
metro a nel problema (16), (17) sono dati dalla formula

*»r(O ==<& — * fr=l, 2,...) (21)

se con o*r, (r 1, 2,...), si denotano gli autovalori forniti da (20').

Enunciato délia condizione 8.
Per equazioni integrali del tipo (20), (20') esiste tutta una teoria11)

che assicura l'esistenza di autovalori reali ogni qualvolta il nucleo reale
è simmetrico o almeno simmetrizzabile. Nei casi che qui considererô deter-
minerô addirittura la condizione di simmetria rispetto aile variabili q, q'
délie funzioni Gn (g, g' ; A), A ^ Àn8 ; G*(g, e' ; k).

Taie condizione di simmetria porta a stabilire una stessa equazione che
vincola i dati al contorno espressi da (17) e che fomisce proprio la men-
zionata condizione sufficiente di esistenza S.

Negli sviluppi seguenti mi riferirô alla funzione Gn (g, gr ; A), A ^ AW8,

risultando évidente che identiche considerazioni possono ripetersi per

Detti | e tj>^ due valori di çr interni aU'intervallo r+->R, chiamo

per semplicità <pn (g), \pn (g) le funzioni

<pn(g) =Gn(g,Ç; A)
(22)

u) Vedi nota 6).
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Pongo

rn(Q) Q [<PnVn ~~ Vn<Pn

<PnVn — VnVL H ~~ (<PnV>n — V>n<Pn) > (23)

ove per semplicità di scrittura ho indicato con l'apice la derivazione ri-
spetto a g.

Condizione necessaria e suffidente per la simmetria délia funzione
@n(Q> Qf > %) e — corne dimostrerô — che sia soddisfatta Vequazione12)

rn (B) - rn (r) + X {rn (R) - rn (r)} 0 (24)

La condizione S si puô dunque enunciare :

Condizione suffidente per Vesistenza di autovalori reali del parametro a del
problema (16), (17) c che sia soddisfatta la (24) per ogni coppia di funzioni
<Pn (q)> Wniç) verificanti le condizioni al contorno (17).

Giustificazione délia (24).

Le funzioni <pn(g), fn(Q), in quanto espresse da (22), soddisfano al
sistema (16), (17), posto ivi a 0, e sono continue con tutte le derivate
neirintervallo r < q < R ad eccezione del punto q f la <pn (q) del
punto q rj la \pn (q) ove le derivate terze presentano le discontinuità
espresse da13)

12 Per operatori del quarto ordine del tipo

I()5
risultato analogo è già ottenuto: M. Picone, "Sui valori eccezionali di un parametro
da cui dipende un'equazione differenziale lineare ordinaria del secondo
ordine,, Annali délia Scuola Normale Superiore di Pisa; vol. XI; pag. 132.

18) Che la discontinuità délia derivata terza rispetto a q délia funzione <pn(ç>, I) sia
quella espressa da (25) si constata immediatamente osservando che la funzione

r
soddisfa all'equazione

e aile condizioni al contorno (17), qualunque sia / (q). Analogamente dicasi per la \pn
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(25)

• (26)

Tenendo conto délie (25) con facili calcoli si ricava corne espressione

Pongo

An - rn(r)

(27)

Data la continuità délie funzioni <pn (q) xpn (q) e délie loro derivate
prime e seconde, nel calcolo dei termini in |~, |+, r\~, /y+ contenuti in
(27), solo i termini contenenti le derivate terze danno un efifettivo contri-
buto. Tenendo presenti le (23) e mettendo in evidenza le variabili da cui cpn

e tpn dipendono si ottiene cosi da (27) :

Q=>{

+rn (R) - rn (r) + X [rn (R) - rn (r) ] (28)

Osservando che le discontinuité che le derivate terze di (pn, tpn presen-
tano sono esclusivamente quelle espresse dalle (25), da (28) si ricava in
definitiva

An y«(f ,1?) —<pn(r],Ç) + rn(R) — jTtt(r) + X [rn(B) — rn(r)] (29)

In base alla definizione (26) di An e al fatto che cpn e ipn soddisfano al
sistema (16), (17) posto ivi a 0, il primo membro di (29) è certamente
nullo.

Di conseguenza, tenendo presenti le definizioni (22) di ç?n, rpn si ha

— Gn(S, r, ; A) + On(V, | ; A) rn(R) - rn(r) + A [rn(R) - rn(r)]
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da cui segue evidentemente che la cercata condizione necessaria e suffi-
ciente per la simmetria délia funzione Gn (g, gf ; A) è proprio espressa
dalla (24).

Condizioni di vincolo particolari.
Mostrerô subito che ogni qualvolta sul bordo g a valgono condi-

zioni di incastro rigido, di appoggio rigido o di assenza di vincolo, risulta

rn (a) + Un(a) 0 (30)

comunque si scelgano le funzioni yn (g), tpn (g) purchè verificanti le con-
dizioni al contorno.

Con ciô la (24) viene ad essere soddisfatta. Distinguerô a tal fine i tre
casi :

Caso a) : Incastro rigido.
Le condizioni al contorno a cui soddisfa lo spostamento elastico un (g)

sul bordo g a sono quelle che si deducono da (11), tenendo présente la
forma (1) di w (g, 6 ; t).

Poichè <pn (g) e \pn (g), devono verificare le medesime condizioni, esse
soddisferanno aile equazioni :

Basta allora osservare la forma délie (23) per constatare che la (30) è

soddisfatta iasieme a

rn (a) tn (a) 0 (32)

Caso b) : Appoggio rigido.

Vn (q) e Wn (q) verificano insieme a un (q) le equazioni :

9n («) Wn (a) 0 (33)

(34)

Moltiplicando la (34.1) per iprn e sottraendo da essa la (34.2) moltipli-
cata per y'n si ottiene [tenendo présente le (33)] :

<Pn Wn — Vn Vn ° » Q a • (35)
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In base aile (33), (35), le (23) danno ancora le (30) e la (24) risulta
anche ora verificata

Caso c) : Assenza di vincolo.

Le condizioni al contorno a cui soddisfano insieme con la un (q) le fun-
zioni <pn(Q), ipn(g) sono

(36)

W"n i + n*(2-v) ,.3- (37)

Moltiplicando la (36.1) per yfn, la (36.2) per \pn e sottraendo da esse le

corrispondenti (37) dopo averle moltiplicate rispettivamente per (p'n e <pn,

si ricava :

// / // /VV VV Qz

//
n~<Pn

Q

+

YnYn)

n i i w2(2 — i

Q2

-Vntà

Q a

0 Q a

(38)

Tenendo presenti le (23), la (38.2), moltiplicata per a, si scrive

e in base a (38.1) dà

rn (a) + irn(a) 0
ehe è proprio la (30).

§ 4° Pressioni critiche.

La ricerca délie pressioni critiche si riduce in realtà a quella degli auto-
valori del parametro X nel problema al contorno cui danno luogo le (16),
(17) per a 0.
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Siano Anr, Xns due autovalori distinti del parametro A e unr(q),
ûn8(o) le corrispondenti autofunzioni. Tenuto présente che per ora si sup-
pone cr O, da (16), (17) si rieava facilmente

J [ûnrTn(ÛJ - ûn,Tn(ûnr)] Qde=~kJûnrEn(û
r r

+ Xnr]ûnaEn(ûnr) QdQ (39)
r

e da questa, tenendo conto di (23.1) e dell'espressione (19) di En, si
ottiene

rn (R) - rn (r) (*„. - knr) J j âe %'„ u'm +
r

— \ qgq(Xn8unru'n8 — Xnru'nTuJ | (40)

ove rn(g) si pensi costituita mediante le funzioni ûnr(q), ûns(q) an-
zichè (pn(o) e ipn (q) corne nella (23.1).

In modo del tutto analogo a quello che si fece per dimostrare la (30) si
constata che — tenuto présente che unr(g) e uns(Q) verificano le condi-
zioni al contorno espresse o da (31), o da (33), (34), o da (36) — si ha

rn(a) + aôe(a) [Xn.ûftr(a)û'fU(a) — KrKr(a) «,.(o)] 0 (41)

Da (40), (41) si osserva che due qualunque autosoluzioni unr(g),
ûns{o) corrispondenti ad autovalori distinti verificano la relazione di
ortogonalità

r _ _ _ _w2__J {VqKtKs Jrëe-jûnrûns}QdQ 0
r Q

Pongo
R

-v)

(42)

(43)

Vn[v,X\ Wt{v)-XL*n\v,X\ (44)

A meno del fattore nN se n ^ 0, 2nN se ^ 0, W*(v) rappre-
senta manifestamente Tenergia potenziale elastica diflessionee AL*(^?) il
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lavoro effettuato dalla sollecitazione attiva [aQ, a0, aQ6 0] in corri-
spondenza ai termini quadratici délie caratteristiche di deformazione,
quando si identifichi lo spostamento elastico con \v(q) (etne + e~tn0). Di
conseguenza Vn[v, A] dénota (sempre a meno del fattore nN o 2nN)
l'energia potenziale totale.

Se yn è la classe délie funzioni v (g) per le quali risultano calcolabili le

espressioni a secondo membro di (42), (43), chiamo ynl quella délie
funzioni di yn che sui bordi délia piastra seguono le stesse circostanze di an-
nullamento imposte allô spostamento elastico e alla sua derivata prima
rispetto14) a q. Per r 2, 3, ecc. chiamo poi classe yn% quella costituita
dalle funzioni v(q) di ynl verificanti le relazioni di ortogonalità15)

/ (s 1, 2,..., r- 1) (45)

rispetto a tutte le autofunzioni unl, un2,..., unr_x.
Notoriamente16) Pautovalore Xnr è definito dalla relazione

lnr min. l (46)

al variare di v(q) nella classe17) ynr
Mi pongo nell'ipotesi che qe, qt verifichino una délie coppie di disugua-

glianze

oppure

se n^Q

qt<0 se n 0

14) Se ad es la piastra è mcastrata sul bordo mterno, appoggiata sulFaltro, ynl è la classe
délie funzioni di yn nulle su entrambi î bordi e con derivata prima nulla sul bordo interno.

16) Taie proprietà di ortogonalità délie autosoluzioni del sistema (16), (17) — posto îvi
a 0 — risulta dal citato lavoro di Giunti [loco cit. nota 3 )] nel caso che le condizioni si
specifichino m quelle d'incastro e m générale — se il parametro non mterviene nelle condizioni

al contorno — da quella di Kamke [loc. cit. nota *)]
16) G. Krall "Meccaniea tecnica délie vibrazioni,, parte II, pag. 30.

17) Taie propriété di rninimo [e cosi pure quella espressa da (51)] per il caso delPmeastro
è mdicata nelle ricerche di Cimmino e più in générale, ma hmitatamente al caso che A non
mtervenga nelle condizioni al contorno, in quelle di Kamke al variare di v (q) nella classe

[più ristretta di ynr] délie funzioni che oltre alla relazione di ortogonalità (45) [o alla (50)
se ci si nferisce alla (51)] verificano le condizioni al contorno. La possibilité che si ha qui di
considerare le classi più vaste di funzioni ynr[o y'nr\ permette di dimostrare la proposizionel^,

più avanti espressa, nel caso che su almeno uno dei due bordi valgano condizioni di libertà.
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e osservo innanzitutto che in base aile disuguaglianze (III7), (IV) risul-
tano sicuramente verificate [vedi (3), (4)] le relazioni

9
al variare di q tra r e R.

Di conseguenza è pure [vedi (43)]

(47)

L*(v)>0 (48)

e poichè W* (v) è per sua natura definita positiva gli autovalori Xnr

espressi da (46) non possono che risultare positivi.
Ne segue che ogni qualvolta A è negativo e si è quindi [in base a (2),

(IIF), (IV7)] nel caso délie ipotesi (I), (II), la configurazione piana di
equilibrio délia piastra è stabile.

In effetti, in base a (5), (47) si verifica la circostanza che gli sforzi ap,
ae hanno carattere di trazione con tendenza ad opporsi ad ogni pertur-
bazione dell'equilibrio piano [eccettuato, se mai, il caso (IV7, 2) o, se si
vuole (II, 2) in cui se la trazione interna p{ è sufficientemente elevata di
fronte a quella esterna, i ae hanno carattere di pressione].

Da (44), (46) risulta immediatamente

hr] > 0
(49)

al variare di v (q) ^ unr (q) nella classe ynr, (r 1, 2,...).
Metterô in evidenza il seguente comportamento dell'energia potenziale

totale Vn [v ; A] :

1° — al variare di v (q) nella classe yns, (s 1, 2,..., r), Vn [v, A]

pwô assumere valori negativi per A > knr ;

II0— al variare di v (g) nella classe ynr, Vn[v,X] risulta sempre positiva

per X<Xnr.

La proposizione IA è immediata : essa risulta verificata non appena si

prenda18) v(Q) ùns(Q).

18) È évidente che se la proprietà di minimo espressa da (46) valesse soltanto nella classe
délie funzioni verificanti le condizioni al contorno [oltre quella di ortogonalità espressa da
(45)], corne quella messa in luce nei citati lavori di Kamke, la dimostrazione data délia
proposizione I s cadrebbe in difetto nel caso che alnieno uno dei due bordi délia piastra fosse
esente da vincolo (e in génère tutte le volte che il parametro A interviene nei dati al
contorno). Infatti in tal caso la classe délie funzioni in cui vale la proprietà di minimo (46)
dipenderebbe da A in quanto da taie parametro dipenderebbero gli operatori che esprimono
le condizioni al contorno e conseguentemente non si potrebbe assumere per la dimostrazione
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Infatti in tal caso per A>Anr da (46) risulta ovviamente

e dall'essere Xnr ^ Xna, {s — 1, 2,..., r) segue

Vn[ûns,k]<0, («=1, 2,...,r) (A>Amr)

La proposizione 11^ si puô dimostrare considerando la differenza

Vn[v, K\ —VH[V, Kr] "(A- knr) L*(V)

da cui si ottiene :

Vn[v, A] Vn[v, knr] -~{X-Xnr)LÎ{v)

Tenendo conto di (48), délia (49.2) e délia disuguaglianza

A — Anr<0

segue immediatamente la proposizione 11^.

§5° Propriété A.
Stabilita la condizione (24) sufficiente per Fesistenza di autovalori reali

del paramétra a contenuto nelle (16), (17) in corrispondenza ad ogni va-
lore dei parametri A, qi9 qe [o, se si vuole, di piy pe], e ad ogni n, occorre
esaminare il segno di tali autovalori.

Considero la successione di elementi non decrescenti

degli autovalori del parametro a e quella délie corrispondenti autofun-
zioni

Chiamo classe y'nr, (r 2, 3,...), quella délie funzioni di ynl verifi-
canti le relazioni di ortogonalità

hn9{Q)v{Q)QdQ O («=1, 2,...r —1) (r>l) (50)
r ^__

délia proposizione IA v (q) ûns (q) per il fatto che quest'ultima funzione verificando le
condizioni al contorno soltanto per A Ans, non apparterrebbe alla stessa classe a cui
appartiene v (q) se A ^ Ans.
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Riportando un risultato valido in générale in teoria di elasticità19) e

conformemente alla moderna teoria délie equazioni integrali, si ha

onr min.Bn[v,X] (r 1, 2,...) (51)
con

BnlVn,H Q^ (52)

al variare di v(q) nella classe ynr, (r 1, 2,...
Il segno di anr dipende cosi da quello di Vn[v, A] al variare di v (q)

Analiticamente il problema di rendere minimo Rn[v, A] porta, corne
è ben noto, ad un determinato problema al contorno e nel caso in esame —
tenuto conto délia forma dei secondi membri di (42) ; (43), (44) — pro-
prio al sistema (16), (17) con le specificate condizioni (31) o (33), (34) ;

oppure (36). La configurazione piana délia piastra è di equilibrio instabile
ogni qualvolta A [per gli assegnati valori di n,qiy qe rende nulla o negativa
Vn [v, A] in corrispondenza a qualche v (q) délia classe ynr, (r 1,2,...).
Lo studio del segno degli autovalori anr risulta cosl direttamente collegato
a quello délie pressioni critiche.

L'andamento délie curve di autofrequenza è pienamente illustrato dalla

conoscenza délia derivata "
(La

Derivata —j£-
(LÀ

Per valutarla, penso fissati due valori A e X -\- e del paramètre A.

Siano 20) an8 (A), e an8 (A + e) gli autovalori corrispondenti con riferi-
mento ad una medesima prefissata ma arbitraria classe yn8 di funzioni e

uns (Q 'y %) f uns (Q *> ^ + 6) Ie relative autofunzioni [segnando in tal modo
le autofunzioni intendo mettere in evidenza il valore di A da cui esse di-
pendono]. Tali funzioni soddisfano aile equazioni

Tn[uns(Q ; A)] + XEn[un8(Q ; A)] q ans(X) uns(Q ; A)

Tn K* (Q ; A + s) ] + (A + e) En [uns (q ; A + e)]

Q an* (*> + e) uns (q ; A + e)

(16")

s (A + e) uns (q;X + s)

e aile relative condizioni al contorno.

19) Vedi ad es., Krall loco cit. nota 16) vol. II, pag. 56.
20) Non è escluso che % coincida con Pautovalore Xn8 e ans (A) sia nullo.
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Moltiplicando la prima délie (16") per un8(g ; A + e), sottraendovi la
seconda moltiplicata per un8{g; A) e integrando tre r e R si ottiene
subito

| {un.(Q î A + 6) Tn[^s (e ; A)] — uns (g ; A) Tn[uns (g ; A + e)]} dg +
r

j
ns (q l ^) uns (q 9 ^ H~ c) g dg

Con Pidentico procedimento seguito per passare dalla (39) alla (40) si
ricava

R

n2 _— aeuns(g; A) t*n,(e; A +
Q

f (53)
r

La (53) tenuto conto délie condizioni al contorno a eui soddisfano
ns(Q ; *) > Uns(Q> * + e) dà facîlmente

an8\A)—an8\A~Te) r

R ^25' } gdg

Al tendere a zéro di e, un8(g ; A +«) tende a t*nste î ^) ed ©siste il
limite del secondo membro di (54). In base a (43) si puô quindi scrivere
senz'altro

r

La (55) in base alla (48) dà corne conseguenza

do.

dX

qualunque sia A
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Dirnostrazione délia propriété A.
Per A Àns il sistema (16), (17) ammette la soluzione rappresentata

dalla coppia
u>is(Q> Kb) v>ns(g)

a 0

Di conseguenza, temito conto di (56), le curve ans ffn,(A), (#

1, 2,,..), attraversa no una sola volta Fasse délie A e ciô nel punto
X AW5, (* 1, 2,...) dove esse passano dal semipiano positivo a
quello négative

Risultano allora immédiate le constatazioni fatte nell'enunciato délia
proprietà A intorno alla distribuzione degli autovalori ans, (s 1, 2,...
su ogni retta A cost. Il significato di ** è évidente in base a (55).

Da (44), (51), (52), (55) risulta immediatamente

e poichè le curve a ffns(A) non si attraversano, si conclude che ogni
qualvolta un autovalore anr è multiplo di ordine v per A A e le auto-
funzioni unr(g) sono normalizzate, si ha

w: («

La proprietà A rimane cosi completamente dimostrata.

§ 6° Gondizione suffieiente S e teorema di recipracità in Meccanica.

La condizione (24) suffieiente per l'esistenza di autovalori reali del
parametro a contenuto nelle (16), (17) è direttamente collegata al
teorema di réciprocité in Meccanica. Precisamente dimostrerô corne taie
teorema richieda necessariamente il verificarsi délia condizione (24) che,
anzi, risulta suffieiente per la validità del teorema stesso.

Il problema dell'equilibrio délia piastra anulare soggetta oltre che aile
sollecitazioni pe, pz, al carico ortogonale al suo piano medio di entità
F(g, 6) per unità di superficie, si traduce nel sistema
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AAw + X - d2w

lt(w) I2(w) 0

Lx{w) L2(w)= 0 B,

(57)

corne si deduce imponendo la stazionarietà all'espressione dell'energia
totale.

Osservo intanto che se X è autovalore del problema omogeneo associâto
al sistema (57), [F(q, 6) 0] la configurazione piana di equilibrio délia
piastra è instabile e un carico ortogonale gênera tino spostamento infinito
nei punti délia piastra21). Ha quindi interesse solo il caso che A non sia
autovalore nel problema accennato e in taie ipotesi mi pongo :

Lo spostamento w (q,0) e la sollecitazione F (q,6) possono esprimersi
mediante gli sviluppi in série di Fourier

+ 00

+ 00

(58)

(59)

con u* (q), fn(o) espressa da

(60)

Moltiplicando le (57) per e~in0 âB e integrando tra —n e + n si ri-
cava, tenendo presenti le (60), il sistema che détermina u* (q)

0 r<
(« 0,1,2,...), (61)

21 Beninteso, nel senso che se X tende ad un autovalore del sistema omogeneo associato
a (57), la funzione w (q, 6; A) tende ad infinito.
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Tenuto présente che si suppone À diverso da ogni autovalore del pro-
blema omogeneo associato a (57) e quindi da ogni autovalore del sistema

omogeneo associato a (61), le soluzioni del problema (61) possono porsi
nella forma

<(Q)=5Qn(Q,Q')fn(Q')de' (n 0,l,...) (62)
r

Tenendo présente le (60.2), da (58), (62) si ricava facilmente

R 7T

r — tc

e da questa, posto

K(e,6;6',e') ~ 2°. On(Q,e')e^e-^' (63)

segue :

w(e,0) f j K(Q,d;Q',6')F(Qr,d')Q'de'dd' (64)

DalFespressione (64) dello spostamento elastico si deduce immediata-
mente che la funzione K (g, 6 ; g', df) esprime lo spostamento che la
forza unitaria concentrata nel punto (g7, 0') gênera nel punto (q,0).

In base al teorema di reciprocità in Meccanica dovrà risultare

cioè la funzione K (q, 0 ; gf, dr) dovrà essere simmetrica rispetto aile cop-
pie di variabili (q d), (g;, 0r). Lo sviluppo (63) indica che taie proprietà di
simmetria délia K (q,6 ; q',0') viene goduta quando e solo quando risul-
tino simmetriche rispetto aile variabili q, q', le funzioni Gu(q, q').

Si conclude quindi che la condizione 8 sufficiente per Fesistenza di
autovalori reali del problema (16), (17) ed espressa da (24) è necessaria
e sufficiente per la validità del teorema di reciprocità in Meccanica.

§ 7° Piastra piena.

Per un taie sistema materiale sollecitato dal carico uniforme p6 p*
agente in direzione radiale sul bordo si ha lo stato tensionale costante

aQ ae — p*, oq0 0, espresso dalle medesime (3), (4), (5) quando
in esse si ponga r A 0 e si faccia coincidere A* con — 1 e q6 con -\-p*.
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Di conseguenza eom'è noto le equazioni (9), (10) vanno pensate e scritte
nella forma

NA 0

lim

p

lim I2(w) 0

La(w) 0

(9')

(10')

pe ad esse, posto ^=- p, corrisponde per ogni n, il sistema

Tn{un) + pE* («J - Qoun 0 (0 < q < R)

lim lln{un) lim I2n(un) 0
e->-0 q-**o

0 E

con

dQ

Le considerazioni svolte per ricavare la condizione sufficiente di esi-

stenza S, (24), si possono ripetere integralmente solo che al simbolo /(r)
si sostituisca lim / (g) e si valutino gli integrali che intervengono tra 0

Si ottiene corne condizione S la seguente :

rn (R) — lim rn(q) + p[rn(R) — lim rn(q)] 0

analoga alla (24).
Anche la validità délia proprietà A si conserva inalterata, ma di taie

verifica mi occuperô brevemente in una prossima nota.

(Reçu le 14 août 1946.)
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