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Eine Erweiterung
eines Theorems von Steinhaus-Rademacher

Von H. Hadwiger, Bern

Ist A eine lineare Menge vonpositivem Ma8 m(A)>0, so gibt es nach
H.Steinhaus*) ein A> 0, so daB A fur jedes Ar, A'<A, einPunktepaar
der Distanz A! enthàlt.

Nach einer sich auf den w-dimensionalen euklidischen Raum Rn be-
ziehenden Verallgemeinerung von H. Rademacher2) gibt es zu einer Menge
A € Rn von positivem MaB m (A) > 0 ein A > 0, so daB A fur jedes A',
A!<A, und jede Raumrichtung ein Punktepaar der Distanz A' enthâlt,
wobei die Verbindungsgerade der beiden Punkte die vorgeschriebene
Raumriehtung repràsentiert.

Die Pormulierung unserer Erweiterung vorbereitend, vermerken wir
folgendes : Zwei kongruente Mengen heiBen translationsgleich, wenn
dièse durch eine Translation miteinander zur Deckung gebracht werden
kônnen. Um die Lage einer aus der Menge 8 durch Translation hervor-
gehenden Menge 8' zu fixieren, geben wir die Lage des einem fest ge-
wâhlten Merkpunkte P von 8 entsprechenden Punktes P' an. Als MaB
einer Menge von translationsgleichen Mengen 8r dient das MaB der Menge
der Punkte P!.

Es gilt nun der folgende

Satz : Es sei Ae Rn eine Menge von positivem Map m {A) > 0 ; zu einer

ganzen Zahl k > 1 und einem beliebig kleinen e > 0 gibt es ein A > 0, so

da/3 A zu jeder aus k Punkten bestehenden Menge 8 e Rn vom Durchmesser

D(S)<A unendlich viele mit S translationsgleiche Mengen Sr als Teil-
mengen enthatt, und zwar so, dafi f&r das Map m (M) der Menge M der

translationsgleichen 8' noch m (M) > (1 — s)m (A) gilt.

Die Erweiterung gegenûber dem oben zitierten Theorem von Steinhaus
und Rademacher besteht also einerseits darin, daB ein Punktepaar ersetzt
wird durch eine beliebige endliche Menge, und daB andererseits unendlich
viele derartige endliche Mengen als Teilmengen sichergestellt werden.

1) H.Steinhaus, Sur les distances des points des ensembles de mesure positive.
Fund. Math. 1, 1920, 93—104.

2) H.Rademacher, t)ber eine Eigensehaft von mefibaren Mengen positiven
Mafies. Jahresbericht derD.M.V. 30, 1921, 130—132.

236



Aus dem Satz ergibt sich noch als

Korollar: Es sei A e Rn eine Menge von positivent Mafi m (A) >0;
dann enthâlt A zu jeder endlichen Menge S eine âhnliche Menge Sf als
Teilmenge ; genauer : A enthâlt jede zu S âhnliche Menge S' als Teilmenge,
deren Durchmesser kleiner als eine von S abhàngige Schranke A>0 ist.

Es kann hier darauf hingewiesen werden, daB dièse Feststellung fur
lineare Mengen von S. Euziewiczz) gemacht wurde.

Im nachfolgenden Beweis haben die Zeichen A, m (A), k, e, A, M, 8
und D (S) die ihnen nach dem Wortlaut des zu beweisenden Satzes zu-
kommende Bedeutung.

Bekanntlich gibt es eine besehrànkte abgeschlossene Teilmenge A°eA,
so daB

()(A) (1)

ist. Es bezeichne nun ^4°[^] die Cantor-Minkowskische Huile von A0 vom
Radius q>0, d. h. die Vereinigungsmenge aller abgeschlossenen Kugeln
vom Radius g, deren Mittelpunkte in A0 liegen. Da A0 abgeschlossen ist,
gilt in bekannter Weise

limm(A°[Q]) rn{A°) (2)

Es gibt somit ein A > 0 so, daB

/ \
n(A°) (3)

gilt. Es bezeichne jetzt 8 eine aus k Punkten P{ (i= 1, 2,... k) bestehende
endliche Menge vom Durehmesser D(S) < A Dièse Menge S werde nun
relativ zur raumfesten Menge A allen Translationen unterworfen. Die
Lage der bewegten Menge 8' fixieren wir durch Angabe der n cartesischen
Koordinaten x{ des Merkpunktes Pl=(xl9.. xn). Ferner fuhren wir
noch die folgenden Hilfsfunktionen ein :

Fur eine endliche Menge H bezeichne p(H) die Punktanzahl von H ;

weiter sei q(H) 1 oder 0, je nachdem H wenigstens einen Punkt
enthâlt oder leer ist. Nun bilden wir die beiden L-Intégrale

3) S.Ruziewicz,Contribution à l'étude des ensembles de distances de points.
Fund. Math. 7, 1925, 141—143.
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0(8)= S SP(A«8')dz1...dzn (4)
— 00 — 00

und

=f lq(A°8')dz1...dxn (5)

Im Hinblick auf die Beschrânktheit der beteiligten Mengen erstrecken
sich die beiden Integrationen effektiv mir liber einen beschrânkten
Raumteil, da auBerhalb eines solchen beide Integranden verschwinden. —
Nun gilt offensichtlich

(6)
i

und da natûrlich

— 00 — 00

gilt, wird jetzt also

0(S) km(A°) (8)

sein. — Bedenken wir ferner, daB der Integrand in (5) dann und nur dann
den Wert 1, sonst 0, aufweist, wenn Sf mit A0 wenigstens einen Punkt
gemeinsam hat, was wieder nur dann eintreten kann, wenn der Merk-
punkt P[ in der Huile ^4°[zl] liegt, so schlieBen wir auf

f (S) ^ m (A0[A]) (9)

Es bezeichne nun Mv (v 1, 2,... k) die Menge der Punkte P'x, fur
die p(A°Sf) v ist. Offenbar hat man

* (8) S v m (Mv) km (A0) (10)
i

und

v(8) Sm(Mv) ^m(A°[A]) (11)

Aus (10) und (11) folgt mit nachfolgender Verwendung von (3)

ky>(S)-<l>(S)=ltZ(k-v)m(Mv)<-^z~m(AO) (12,
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Nun ist

i
vm(Mv) ^ (k - 1) V (& - t;) m(Mv)<~~m(A») (13)

und wegen (10) ist
*

m (Jf») m (^o) - -i 2 ?;m (Jf,) (14)

und es folgt mit Beriicksichtigung von (13)

und im Hinblick auf (1) jetzt

m(Mk)>(l—e)m(A) (16)

Da nun aber Mk offenbar mit der im Satz genannten Menge M identisch
ist, schlieBt (16) den Beweis des Satzes ab.

(Eingegangen den 13. August 1946.)
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