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Eine Erweiterung
eines Theorems von Steinhaus-Rademacher

Von H. HApwWIiGER, Bern

Ist A eine lineare Menge von positivem Mafl m (4) >0, so gibt es nach
H.Steinhaus!) ein 4> 0, so daB A fiir jedes A’, A’ < A, ein Punktepaar
der Distanz A’ enthilt.

Nach einer sich auf den n-dimensionalen euklidischen Raum R, be-
ziehenden Verallgemeinerung von H. Rademacher?) gibt es zu einer Menge
A € R, von positivem Mafl m (4)>0 ein 4>0, so daB A fiir jedes 4/,
A’< A, und jede Raumrichtung ein Punktepaar der Distanz A’ enthilt,
wobei die Verbindungsgerade der beiden Punkte die vorgeschriebene
Raumrichtung reprisentiert.

Die Formulierung unserer Erweiterung vorbereitend, vermerken wir
folgendes : Zwei kongruente Mengen heiflen translationsgleich, wenn
diese durch eine Translation miteinander zur Deckung gebracht werden
kénnen. Um die Lage einer aus der Menge S durch Translation hervor-
gehenden Menge S’ zu fixieren, geben wir die Lage des einem fest ge-
wihlten Merkpunkte P von 8 entsprechenden Punktes P’ an. Als MaQ
einer Menge von translationsgleichen Mengen 8’ dient das Ma der Menge
der Punkte P’.

Es gilt nun der folgende

Satz: Es ser A € R, eine Menge von positivem Mafz m(4)>0; zu einer
ganzen Zahl k>1 und einem beliebig kleinen ¢>0 gibt esein A4>0, so
daf A zu jeder aus k Punkten bestehenden Menge S € R, vom Durchmesser
D (8)< A wunendlich viele mit S translationsgleiche Mengen S’ als Teil-
mengen enthilt, und zwar so, daf fiir das May m (M) der Menge M der
translationsgleichen S’ noch m (M)>(1 — &)m (A) gilt.

Die Erweiterung gegeniiber dem oben zitierten Theorem von Steinhaus
und Rademacher besteht also einerseits darin, dafl ein Punktepaar ersetzt
wird durch eine beliebige endliche Menge, und dafl andererseits unendlich
viele derartige endliche Mengen als Teilmengen sichergestellt werden.

1) H.Steinhaus, Sur les distances des points desensembles de mesure positive.
Fund. Math. 1, 1920, 93—104.

2) H.Rademacher, Uber eine Eigenschaft von meBbaren Mengen positiven
MaBes. Jahresbericht der D.M.V. 80, 1921, 130—132.
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Aus dem Satz ergibt sich noch als

Korollar: Es set 4 € R, eine Menge von positivem Mafp m(4) >0;
dann enthilt A zu jeder endlichen Menge S eine dhnliche Menge S’ als
Teilmenge ; genauer : A enthilt jede zu S dhnliche Menge S8’ als Teilmenge,
deren Durchmesser kleiner als eine von S abhdingige Schranke A>0 1ist.

Es kann hier darauf hingewiesen werden, daf3 diese Feststellung fiir
lineare Mengen von S. Ruztewicz®) gemacht wurde.

Im nachfolgenden Beweis haben die Zeichen 4, m(4), k, ¢, 4, M, 8
und D (8) die ihnen nach dem Wortlaut des zu beweisenden Satzes zu-
kommende Bedeutung.

Bekanntlich gibt es eine beschrinkte abgeschlossene Teilmenge 4% 4,
so daf3

m (4% > (1 — —;) m (4) (1)

ist. Es bezeichne nun A°[p] die Cantor- Minkowskische Hiille von A° vom
Radius ¢>0, d. h. die Vereinigungsmenge aller abgeschlossenen Kugeln
vom Radius ¢, deren Mittelpunkte in A° liegen. Da A° abgeschlossen ist,
gilt in bekannter Weise

lim m (4°[o]) = m (49) . (2)

>0

Es gibt somit ein 4>0 so, daB
0 € 0
m (A [A])<(1+2k )m(A) (3)

gilt. Es bezeichne jetzt S eine aus k Punkten P, (=1, 2,. . .k) bestehende
endliche Menge vom Durchmesser D(S)<A4. Diese Menge S werde nun
relativ zur raumfesten Menge A allen Translationen unterworfen. Die
Lage der bewegten Menge 8’ fixieren wir durch Angabe der n cartesischen
Koordinaten x; des Merkpunktes P, =(x,,..., z,). Ferner fithren wir
noch die folgenden Hilfsfunktionen ein :

Fiir eine endliche Menge H bezeichne p(H) die Punktanzahl von H ;
weiter sei ¢(H) = 1 oder 0, je nachdem H wenigstens einen Punkt ent-
hélt oder leer ist. Nun bilden wir die beiden L-Integrale

3) S.Ruziewicz,Contribution &4 'étude des ensembles de distances de points.
Fund. Math. 7, 1925, 141—143.
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D)= [p(A°8)dz,...dz, (4)
und T
v (S) =_j' :f q(A°S"dx,. . .dx, . (5)

Im Hinblick auf die Beschrianktheit der beteiligten Mengen erstrecken
sich die beiden Integrationen effektiv nur iiber einen beschrinkten
Raumteil, da auBlerhalb eines solchen beide Integranden verschwinden. —
Nun gilt offensichtlich ‘

k
p(4°8') = X p(4°Py) (6)
1
und da natiirlich
§ [ pA°P)dx,..., dz, =m(A° (7
gilt, wird jetzt also
G (S) = km (A49) (8)

sein. — Bedenken wir ferner, dafl der Integrand in (5) dann und nur dann
den Wert 1, sonst 0, aufweist, wenn S’ mit 4° wenigstens einen Punkt
gemeinsam hat, was wieder nur dann eintreten kann, wenn der Merk-
punkt P, in der Hiille A4°[4] liegt, so schlieBen wir auf

p(8)=m(4°[4]) . (9)

Es bezeichne nun M, (v =1, 2,... k) die Menge der Punkte P, , fiir
die p(A4°8’) = v ist. Offenbar hat man

D) = S om(M,) — km(A0) (10)
und '
k

p(S) = 3 m(M,) < m(40[4]) . a1

Aus (10) und (11) folgt mit nachfolgender Verwendung von (3)

k—

ky(S) — @(8) = X (k—v) m(M,) <

ek

ke 0 2
—27:—‘-2—‘7"/(44 ) . (lui
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Nun ist

k—1 k—1 k&‘ =
S om(M) S (k—1) X (k—0)m(M,) < m(49)
1 1

und wegen (10) ist
] k-1

m (M) =m(4%) — o X vm(M,)

und es folgt mit Beriicksichtigung von (13)

m (M) > (1 — —;“) m (A°)
und im Hinblick auf (1) jetzt

m(M,)>(1—e)ym(4) .

(13)

(14)

(15)

(16)

Da nun aber M, offenbar mit der im Satz genannten Menge M identisch

ist, schlieBt (16) den Beweis des Satzes ab.

(Eingegangen den 13. August 1946.)
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