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Sur la congruence
des ensembles de points et ses généralisations *)

Par Waclaw Sierpikski, Varsovie

Une notion bien connue de la géométrie élémentaire est celle de

congruence des figures géométriques. Deux figures géométriques ou bien deux
ensembles de points situés sur une droite, ou dans un plan, ou dans
l'espace à 3 dimensions sont dits congruents ou superposables, s'ils peuvent
être obtenus l'un de l'autre par une translation ou par une rotation. On
écrit alors A ~ B.

On démontre que, pour que deux ensembles de points, A et B soient
congruents, il faut et il suffit qu'il existe entre les points de A et ceux de
B une correspondance biunivoque conservant les distances, c.-à-d. telle
que ax et a2 étant deux points quelconques de l'ensemble A et bx et 6

2

les points de l'ensemble B qui leur correspondent, la distance entre at
et a2 est égale à celle entre b1 et 62. Une transformation des ensembles
conservant les distances est appellée isométrique. Au lieu de dire
ensembles congruents on dit donc aussi ensembles isométriques.

Il existe des ensembles de points, même linéaires, superposables avec
une de leurs parties aliquotes, p. e. une demi-droite. En 1914 S. Mazur-
kiewicz (décédé en 1945) et moi, nous avons construit un ensemble plan
(non borné) qui se décompose en deux ensembles sans points communs
dont chacun est avec lui congruent1).

D'après A. Lindenbaum il n'existe aucun ensemble plan borné ou
linéaire qui jouisse de cette propriété2); or, il existe de tels ensembles
bornés dans l'espace à 3 dimensions.

Voici la construction que nous avons donnée avec 8. Mazurkiewicz :
Soit <p la translation du plan de longueur 1 le long de l'axe d'abscisses et
soit %p la rotation du plan autour du point 0 de l'angle égal à 1 [c.-à-d.
(180/7r)°[. Soit E l'ensemble formé du point 0 et de tout point qu'on
obtient du point 0 en appliquant un nombre fini de fois les transformations

(p et xp dans un ordre quelconque. Soit A (p(E), B — ip{E). On a
évidemment A E, B~E et E=A~\-B, et il reste à démontrer que
AB 0 (c.-à-d. que les ensembles A et B sont sans point commun). A

*) Conférence tenue à l'Université de Zurich le 22 Mai 1946.

*) G. E. Paris, 158, p. 618 (séance du 2 mars 1914).
2) Fundamenta Mathematicae 8 (1926), p. 218, renvoi 1).
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ce but il est à remarquer que dans le plan de nombres complexes les
transformations <p et tp s'expriment par les formules

cp(z) z + 1 et xp(z) e%z

et il en résulte sans peine que tout point p de E est un polynôme en e%

aux coefficients entiers. De plus, son terme constant est positif si p appartient

à A et nul si p appartient à B. S'il y avait donc un point commun
aux ensembles A et B, nous aurions une équation algébrique en e% aux
coefficients entiers, non identique, ce qui est impossible, e* étant, comme
on sait, un nombre transcendant.

Pendant les dernières années j'ai trouvé une généralisation de cette
construction. J'ai construit notamment une famille de puissance du
continu d'ensembles plans sans points communs deux à deux, dont l'en-
semble-somme est superposable avec chacun d'eux.

Il est à remarquer que en 1926 A. Lindenbaum a annoncé qu'il sait
démontrer à l'aide de l'axiome du choix qu'il existe pour tout nombre
cardinal m < 2No un ensemble plan qui se décompose en m parties
disjointes superposables avec lui3).

La démonstration de A. Lindenbaum n'a pas été publiée et elle m'est
inconnue et A. Lindenbaum, chargé de cours à l'Université de Varsovie
fut tué par la Gestapo en 1941. Or, je sais démontrer la proposition de
A. Lindenbaum sans faire appel à l'axiome du choix et d'une façon
effective4). Il en résulte en particulier qu'on sait nommer un ensemble plan
indénombrable qui est somme de deux ensembles disjoints superposables
avec lui. Cela résout définitivement un problème posé par M. H. Stein-
haus en 1921 (Fund. Math. 2, p. 4) qui a été regardé comme difficile et
pendant 25 années attendait sa solution. Mon élève, Stanislas Buzieivicz,
avant la guerre Recteur de l'Académie de Commerce à Lwôw, fusillée

par la Gestapo à Lwôw en été de 1941 a donné en 1921 une solution
partielle et non effective de ce problème en démontrant à l'aide de l'axiome

du choix qu'il existe un ensemble plan indénombrable superposable
avec deux de ses sousensembles disjoints5).

On démontre sans peine à l'aide de l'axiome du choix que la
circonférence est une somme d'une suite infinie d'ensembles deux à deux
superposables (par rotation) et sans points commun6). Il est beaucoup

3) A. Lindenbaum et A. Tarski, Communication sur les recherches de la théorie
des ensembles, C. R. Soc. Se. et L. de Varsovie 19 (1926), p. 327, th. 3*.

*) Voir Fund. Math. 34.

5) Fund. Math. 2, p. 4—7.
•) Cf. F. Haitsdorff, Grundzuge der Mengenlehre, Leipzig u. Berlin 1914, p. 401

bis 402.
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plus difficile de démontrer à l'aide de l'axiome du choix qu'un segment
d'une droite est une somme d'une suite infinie d'ensembles disjoints
deux à deux congruents, ce qui a été fait par M. J. von Neumann en
19287) qui a ainsi résolu un problème posé par M. H. Steinhaus en
19218). En 1920 8. Mazurkiewicz a démontré en s'appuyant sur le théorème

de Zermelo sur le bon ordre que le segment 0 < x < 1 est une
somme d'une infinité indénombrable (de puissance du continu)
d'ensembles non mesurables, sans points communs, superposables deux à

deux par translation8). En 1924 Stanislas Ruziewicz a démontré (en
utilisant l'axiome du choix mais sans admettre l'hypothèse du continu)
que pour tout nombre cardinal m < 2So la droite est une somme de

m ensembles non mesurables disjoints, deux à deux congruents9).

Une décomposition de la droite en m ensembles disjoints et congruents, où
Ko ^ m < 28o (mesurables ou non) peut être obtenue d'une façon plus simple
comme voici. Soit E un ensemble quelconque de nombres réels positifs de puissance
m et soit H l'ensemble de tous les nombres qui sont des sommes d'un nombre fini
de nombres, dont les valeurs absolues appartiennent à E. On démontre sans peine
que H m. Divisons maintenant tous les nombres réels en classes, en rangeant
dans une même classe deux nombres réels dans ce et seulement dans ce cas, si leur
différence appartient à H. Soit N un ensemble contenant un et un seul nombre de
chacune de ces classes, a étant un nombre réel, désignons par N(a) la translation
de N de longueur a. On démontre sans peine que la droite est une somme disjointe
de m ensembles congruents N(a), où a çH.

En admettant l'hypothèse du continu (2Ko Ki) on peut démontrer
qu'il existe un ensemble plan E, tel que le plan est une somme de 2No

ensembles disjoints, dont chacun est congruent avec E, et en même

temps le plan est une somme d'une infinité dénombrable d'ensembles,
dont chacun est congruent avec E10).

Or, m étant un nombre cardinal donné quelconque, si la droite est une somme
de m ensembles disjoints, dont chacun est superposable par translation avec un
ensemble E, la droite n'est pas une somme de moins que m ensembles, dont chacun
est superposable par translation ou rotation avec E11).

A et B étant deux ensembles de points nous dirons que le type métrique
de A est plus petit ou égal à celui de B si A est congruent à un sous-
ensemble de B: nous écrirons dans ce cas xA < tB. Nous dirons que
les ensembles A et B appartiennent au même type métrique et nous

7) Fund. Math. 11, pp. 230—238.
8) Fund. Math. 2, p. 8.

9) Fund. Math. 5, p. 92.

10) Voir Fund. Math. 21, p. 39; cf. aussi mon livre Hypothèse du continu (WarszaW
1934, Monografje Matematyczne t. IV).

u) Fund. Math. 24, p. 247.
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écrirons xA xB, si l'on a à la fois xA < xB et xB < xA. Nous
dirons que les types métriques de A et de B sont incomparables et nous
écrirons xA || xB, si l'on n'a ni xA < xB, ni xB < xA. On peut

démontrer qu'il existe une famille de 22 ensembles linéaires dont les

types métriques sont deux à deux incomparables. Or, je sais démontrer

à l'aide de l'hypothèse du continu qu'il existe une famille de 22
°

ensembles linéaires dont les types métriques sont distincts et deux à deux
comparables. Sans faire appel à l'hypothèse du continu je sais démontrer
qu'il existe une telle famille de puissance supérieure à celle du continu.
Je sais aussi nommer une famille formée de 2Kl ensembles linéaires dont
les types métriques sont distincts et deux à deux comparables. Il en
résulte qu'on sait nommer une famille d'ensembles linéaires dont les

types métriques sont distincts et deux à deux comparables et on peut
démontrer à l'aide de l'hypothèse du continu que cette famille est de

puissance 22

On peut démontrer que A étant un ensemble linéaire infini quelconque,
il existe toujours un ensemble linéaire B de même puissance que A et
dont le type métrique est inférieur à celui de A, et que, A étant un
ensemble linéaire infini de puissance inférieure à celle du continu, il existe
toujours un ensemble linéaire B de même puissance que A et dont le

type métrique est supérieur à celui de A12).
Une généralisation de la notion de congruence des ensembles est celle

de leur équivalence par décomposition finie.
Il est bien connu de la géométrie élémentaire qu'un

triangle orthogonal bilatéral ABC peut être décomposé par
sa hauteur BD en deux triangles dont on peut former un A ^—c
carré (p. e. en tournant le triangle BDC de 270° autour du
point B). Or, si l'on décompose à ce but le triangle ABC
en triangles ABC et BDC, ses derniers ont un côté commun |"~7j

BD : ils ne sont donc pas disjoints (c.-à-d. ne sont pas sans - D

points communs).
Dans la géométrie élémentaire on appelle deux polygones (ou

polyèdres) équivalents par décomposition, s'ils peuvent être décomposés en un
nombre fini et égal de polygones (ou polyèdres) respectivement con-
gruents qui n'ont pas de points intérieurs communs. Or, dans la théorie
des ensembles de points on envisage la notion d'équivalence dans un

12) Les démonstrations de tous ces théorèmes sur les types métriques paraîtront dans
ma note ,,Sur les types métriques d'ensembles linéaires".
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sens différent de celui de la géométrie élémentaire : deux ensembles de

points sont dits équivalents par décomposition finie s'ils peuvent être
décomposés en un nombre fini et égal d'ensembles de points arbitraires
respectivement congruents qui n'ont aucun point commun.

A et B étant deux ensembles de points et n un nombre naturel, nous
écrirons

A B

s'il existe des ensembles Alt A2,.. .,An et Bl9 B2, Bn, tels que

1°. A A1 + At+"-+An9 B^BX + J52+..+ Bn,
2°. AkAl BkBl 0 pour 1 < k < l < n
3°. Ak^Bk pour *= 1,2,...,»
Si A B, on a B A : la relation est donc symétrique (or,

comme nous le verrons plus loin, elle n'est pas transitive pour n>l). Les
formules A y B et A ^ B sont évidemment équivalentes. La formule
A ~ 1? entraîne évidemment la formule A~B pour tout nombre naturel
m > ?&.

Pour que les ensembles A et B soient équivalents par décomposition
finie, il faut et il suffit qu'il existe un nombre naturel n, tel que A~B:
nous écrirons alors A =4 B.

Il est facile de donner pour tout nombre naturel m un exemple de deux
ensembles linéaires A et B, tels que A B, mais qu'on n'a pas A B
pour aucun nombre naturel n<m (tels sont p. e. les ensembles A
{1,2,..., m} et B {m, 2m,.. m2}).

On voit sans peine que deux ensembles contenant un nombre fini de

points sont équivalents par décomposition finie dans ce et seulement dans
ce cas s'ils contiennent le même nombre de points.

Le problème si deux ensembles de points sont équivalents par
décomposition finie ou non est parfois difficile à résoudre. P. e. nous ne savons

pas si un cercle est équivalent par décomposition finie à un carré ayant
la même aire. Or, comme l'ont démontré S. Banach12) et A. Tarski, il
résulte de l'axiome du choix que la sphère est équivalente par décomposition

finie à un cube, d'ailleurs pas nécessairement de même volume.
Il est loin d'être évident que le triangle ABC envisagé plus haut est

équivalent par décomposition finie (dans le sens de la théorie des

ensembles) à un carré. Or, S. Banach et A. Tarski ont démontré14) que pour

13) Décédé à Lwôw en août 1945.

14) Fund. Math. 6, p. 260 (Corollaire 20). Cf. aussi A. Tarski, Sur l'équivalence des
polygones (en polonais) Przeglad Mat.-Fiz. 2, 1924, p. 12 et p. 14.
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que deux polygones (situés dans un plan) soient équivalents par
décomposition finie, il faut et il suffit qu'ils aient la même aire (il est à remarquer
que la nécessité de cette condition est beaucoup plus difficile à démontrer

que la suffisance).
On peut démontrer qu'un carré (fermé) est y avec un de ses vrais

sous-ensembles et qu'un segment (fermé) de droite est y (mais n'est pas

y) avec un de ses vrais sous-ensembles. On peut aussi démontrer à l'aide
de l'axiome du choix qu'un segment de droite est y avec un ensemble

non mesurable contenant ce segment15).
On peut démontrer qu'un segment de droite n'est équivalent par

décomposition finie à aucun segment plus petit. Cependant un segment de

droite est équivalent par décomposition dénombrable (en ensembles non
mesurables) à un segment plus petit. Pareillement un carré n'est équivalent

par décomposition finie à un carré plus petit, mais la démonstration
de cette proposition est beaucoup plus compliquée. Or, un cube est
équivalent par décomposition finie à un cube plus petit, comme l'ont démontré
à l'aide de l'axiome du choix S. Bawidi et A. Tarski.

On démontre que si

Aï E •> B et A B, on a i—^ 16) et que si i S et ^C5
on a A C 17) (le nombre mn ne peut pas être remplacé ici par un
nombre plus petit). Il en résulte que l'équivalence par décomposition finie
est une relation transitive.

On démontre que si A Bx c B et J5 Ax c A, on ai ^qr^ B et

il en résulte tout de suite que si A J=. Bx c B et B 1=A1 c A

on a ALB
On sait nommer une famille formée de 22No sous-ensembles de l'intervalle

(0, 1) dont aucun n'est équivalent par décomposition finie à un sous-
ensemble de l'autre. On sait aussi nommer une famille formée de 2Ko sous-
ensembles dénombrables de l'intervalle (0, 1) dont aucun n'est équivalent
par décomposition finie à un sous-ensemble de l'autre.

On connait des théorèmes concernant l'équivalence par décomposition
finie dont l'énoncé est simple, mais dont la démonstration est difficile. Tel
est p. e. le théorème suivant de D. Kônig et P. Valkô18):

15) Voir W. Sierpinski, Prace Matemat.-Fiz. 43 (1935), p. 1.

u) Voir W. Sierpinski, Fund. Math. 33, p. 230 (Lemme 1); cf. S. Banach et A. Tarski,
Fund. Math. 6, p. 252, Corollaire 9 et A. Lindenbaum et A. Tarski, Fund. Math. 6, p. 328,
th. 9.

17) Cf. S. Banach et A. Tarski, Fund. Math. 6, p. 246—248 (Th. 3).
18) Fund. Math. 8, p. 131. Pour m 2 voir C. Kuratvwski, Fund. Math. 6, p. 236, pour

m « 2n: 8. Banach et A. Tarski, Fund. Math. 6, p. 254.
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Si l'on a, pour un nombre naturel m, deux décompositions d'un
ensemble linéaire en m ensembles disjoints

où Al ~ Ak et Bt ~ Bk pour 1 <i<m, 1 < & < m, on a J^ ^î i?!.
La démonstration est difficile déjà pour m 3.

En 1914 jF. Hausdorff a démontré à l'aide de l'axiome du choix que la
surface d'une sphère est une somme de quatre ensembles disjoints A,B,
C, D, où D est un ensemble dénombrable et où ^^£^0^5 + 019).
En utilisant ce résultat S. Banach et A. Tarski ont démontré en 1924 que
toute sphère 8 (intérieur et surface) dans l'espace à 3 dimensions peut être
décomposée en un nombre fini de parties disjointes dont on peut obtenir
au moyen de mouvements convenables deux sphères disjointes de même

rayon que la sphère S20). Or, le nombre fini en question n'a pas été précisé

par ces auteurs.
En rapport avec ce résultat M. J. von Neumann affirme qu'on peut

décomposer toute sphère de rayon 1 en 9 parties disjointes dont on peut
former par des mouvements convenables deux sphères disjointes de

rayon 1, en prenant respectivement 5 et les 4 restantes de ces parties21).
Je ne sais pas comment M. von Neumann a déduit cette proposition des

résultats de MM. Banach et Tarski. Or, je sais démontrer le théorème
suivant :

Toute sphère S peut être décomposée en 8 parties disjointes, dont 5 et
3 donnent respectivement, après des mouvements convenables, deux
sphères disjointes de même rayon que la sphère S22).

En utilisant les notations que nous avons introduit, ce théorème peut
être exprimé de la façon suivante :

Toute sphère 8 peut être décomposée en 2 parties disjointes, S

N+(S — N) telles que SjN et S=f8 — N.
Naturellement les nots ,,peut être décomposée" sont ici pris dans le

sens idéaliste : les ensembles en lesquels on décompose la sphère sont ici
non mesurables et nous ne savons pas les définir effectivement : leur
existence résulte de l'axiome du choix.

Je sais aussi démontrer le théorème suivant :

Toute sphère 8 se décompose en deux parties disjointes, 8
M+(S — M), où SyJf et 8^8 — if23).

19) F. Hausdorff, Grundzuge der Mengenlehre, Leipzig 1914, p. 469—472.
20) S. Banach et A. Tarski, Fund. Math. 6, p. 262 (Lemme 22).
21) J. von Neumann, Fund. Math. 13 (1929) p. 77.
M) voir Fund. Math. 33 (1945), p. 229.
23) Fund. Math. 33, p. 234.
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Il me semble difficile de résoudre le problème s'il existe une décomposition

d'une sphère en moins que 8 parties disjointes, dont on pourrait
former deux sphères.

Or, on peut démontrer que toute sphère S contient une infinité dénom-
brable de parties disjointes et deux à deux congruentes dont chacune
est "f S23).

En utilisant une méthode développée à un but différent, mais connexe,
par M. von Neumann24), j'ai démontré le théorème suivant :

Toute sphère S est une somme d'une famille de puissance du continu
d'ensembles disjoints dont chacun est =^ $25)- La démonstration de ce

théorème est d'ailleurs fort compliquée. On peut encore démontrer les

théorèmes suivants :

La surface S d'une sphère est une somme de 2Ko ensembles disjoints
dont chacun est =j^ S.

L'espace à trois dimensions, i?3, est une somme de 2Ko ensembles
disjoints dont chacun est ^ Rs.

Deux polyèdres sont toujours équivalents par décomposition finie ; or,
comme l'a démontré Dehn, même deux polyèdres ayant même volume
peuvent pas être équivalents au sens de la géométrie élémentaire, en
particulier un tétraèdre régulier n'est pas équivalent au sens de la
géométrie élémentaire à une somme de deux tétraèdres26).

On dit qu'un ensemble de points E admet une décomposition paradoxale
s'il est une somme de deux ensembles disjoints dont chacun lui est
équivalent par décomposition finie.

On peut démontrer d'une façon élémentaire qu'aucun ensemble
linéaire non vide n'admet de décompositions paradoxales. Or, comme
nous avons vu, il existe des ensembles plans, même indénombrables
admettant des décompositions paradoxales. Cependant le carré n'admet
pas de décompositions paradoxales. Or, le cube en admet.

Pour le segment de droite et pour le carré nous avons cependant un
autre paradoxe, trouvée par M. J. von Neumann en 1929.

A et B étant deux ensembles de points, nous dirons que l'ensemble B est

métriquement plus petit que l'ensemble A, s'il existe une transformation bi-
univoque f de A en B qui diminue les distances entre les points. Plus
précisément g(p,q) désignant la distance de p à g, on doit avoir toujours
Q (f(p) i /(#)) <Q(P>9) pour p c A et q e A. Nous dirons que l'ensemble
B est plus petit par décomposition finie que l'ensemble A, s'il existe une

24) Fund. Math. 13 (1929), pp. 73—116, surtout pp. 109—111.
M) Fund. Math. 33, p. 244.

*) Math. Ann. 60.
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décomposition des ensembles A et B en le même nombre fini n
d'ensembles disjoints, A Ax + A2 H 4n, JS Bx + I?2 + • • • + Bn,
tels que, pour & 1, 2, n l'ensemble jB^ est métriquement plus
petit que l'ensemble Ak.

M. J. von Neumann a démontré à l'aide de l'axiome du choix qu'un
segment de droite est plus petit par décomposition finie qu'un segment
de longueur plus petite27). Sa démonstration est fort compliquée. Or,
S. Banach et A. Tarshi ont démontré à l'aide de l'axiome du choix que
deux ensembles A et B situés sur la surface de la même sphère qui ne
sont pas ensembles frontières (par rapport à cette sphère) sont équivalents
par décomposition finie28). En partant de ce théorème on peut sans peine
déduire qu'un cercle K1 (intérieur et circonférence) est plus petit par
décomposition finie qu'un cercle K de rayon deux fois plus petit que celui
du cercle Kx.

Soit K le cercle x2 -f y2 ^ r2. A tout point p(x, y) de K faisons correspondre le

(x y i I x2 y2* \
~2 ' ~2 ' \/ ^r2 1 T ' ka fonction / transforme, comme

on voit sans peine, d'une façon biunivoque le cercle K en la partie Q de la surface

de la sphère S [x2 -\- y2 -\- z2 4r2], où 2^ —¦— r. Or, on prouve que
8

Q(i(v) y /(#)) < te Q(P>y) P°ur peK, qeK9 ce qui prouve que l'ensemble Q

est métriquement plus petit que K. D'après le théorème cité de Banach et Tarski
l'ensemble Q est équivalent par décomposition finie à la demi-sphère
Sx [x2 + y2 -f z2 4r2, z ^ 0] Or, le cercle Kx [x2 + y2 ^ 4r2] est
évidemment métriquement plus petit que St (puisque Kx est la projection de S,
sur le plan z 0). On en déduit toute de suite que le cercle K1 dont le rayon est
deux fois plus grand que celui du cercle K, est plus petit par décomposition finie
que le cercle K. Pour plus de détails voir ma note qui paraîtra dans le t. 34 des
Fundamenta Mathematicae.

En admettant l'hypothèse du continu je sais démontrer que la droite
est une somme d'une famille de puissance du continu d'ensembles
disjoints dont chacun est équivalent à la droite par décomposition dénom-
brable.

Il y a une liaison étroite entre l'existence de décompositions
paradoxales et le problème de la mesure.

P. e. le fait que le segment est équivalent par décomposition dénom-
brable à un segment plus petit entraîne la non-existence pour les
ensembles linéaires (bornés) d'une mesure non nulle identiquement, dé-

27) Fundamenta Mathematicae 13, pp. 73—116.
28) Fund. Math. 6 (1924), p. 267, Th. 31.
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nombrablement additive et invariante par rapport aux transformations
isométriques.

Pareillement le fait qu'une sphère dans l'espace à 3 dimensions est

équivalente par décomposition finie à une sphère plus petite entraîne pour
tous les ensembles (bornés) dans l'espace à 3 dimensions la non-existence
d'une mesure non nulle identiquement, simplement (c.-à-d. finiment)
additive et invariante par rapport aux transformations isométriques.

Or, comme on sait, un segment n'est pas équivalent par décomposition
finie à un segment plus petit ni un carré à un carré plus petit. D'autre part
S. Banach a démontré l'existence pour tous les ensembles linéaires,
respectivement plans d'une mesure non nulle identiquement, simplement
additive et invariante par rapport aux transformations isométriques29).

Il se montre que la non-existence des décompositions paradoxales est

une condition nécessaire et suffisante pour l'existence d'une mesure.
M. A. Tarski a envisagé cette condition sous une forme purement
algébrique. Il a notamment démontré ce théorème30) :

Soit S un ensemble formé d'éléments quelconques dans lequel est
définie et exécutable une opération binaire, -f-, commutative et associative.

Soit e un élément de 8. Alors pour qu'il existe une fonction /(£)
faisant correspondre à tout élément g de S un nombre réel fini ou infini
f(g) ^ 0, et telle que f{e) 1 et f(oc + fi) =/(«) +/(/?) pour a c 8
et /?, il faut et il suffit qu'on ait (x + 1) e ^ x e et (x + 1) e + r\ =£ x e

pour x 1,2,... et rj e 8.
La notion de congruence des ensembles de même que celle de leur

équivalence par décomposition finie peuvent être appliquées aux
ensembles plus généraux que les ensembles de points dans les espaces
euclidiens. Il est évident qu'on peut appliquer ces notions à tous les

ensembles entre les éléments desquels on a défini une distance, en particulier
aux espaces métriques, semi-métriques, à une métrique faible, généralement

métriques et autres.
Un espace métrique M c'est un ensemble d'éléments quelconques, dits

points de cet espace, où on l'a défini pour chaques deux points a et b de M
un nombre réel non négatif g(a,b), de sorte que les trois conditions
suivantes soient toujours remplies :

1) ç(a, b) — 0 dans ce et seulement dans ce cas, où a 6,

2) g(a, b) Q(b, a) (loi de symmétrie),
3) g(a, c) < Q(a, b) + ç(b, c) (loi du triangle).

a9) Fund. Math. 4, pp. 7—33.
30) Fund. Math. 31, p. 56. Cf. C. R. Soc. Se. Varsovie 21 (1929), p. 114.
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On voit sans peine que tout espace métrique formé de deux points est

congruent avec un sous-ensemble de la droite et que tout espace métrique
formé de trois points est congruent avec un sous-ensemble du plan.

Cependant il existe des espaces métriques formés de 4 points qui ne
sont congruents à aucun sous-ensemble de l'espace à 3 (ou même à un
nombre fini quelconque de) dimensions. Or, on peut démontrer que tout
espace métrique (et même semi-métrique, c.-à-d. dont la distance satisfait

seulement aux conditions 1) et 2), dont tous 4 points forment un
ensemble congruent à un sous-ensemble d'une droite est congruent à un
sous-ensemble d'une droite. C'est un cas particulier d'un théorème plus
général de M. Menger, d'après lequel un espace semi-métrique dont tous
n + 3 points forment un ensemble congruent à un sous-ensemble de

l'espace euclidien Rn à n dimensions, est congruent à un sous-ensemble
de -Rnzl). Or, si un espace semi-métrique a plus que 4 points dont tous 3

forment un ensemble congruent à un sous-ensemble d'une droite, cet

espace est congruent à un sous-ensemble d'une droite32).
Appelons espace métrique universel de puissance m tout espace métrique

de puissance m qui contient pour tout autre espace métrique M de

puissance m un ensemble isométrique avec M.
On démontre sans peine qu'il n'existe aucun espace métrique universel

dénombrable et, plus généralement, aucun espace métrique universel de

puissance inférieure à celle du continu. Or, en admettant l'hypothèse du
continu j'ai démontré l'existence d'un ensemble métrique universel de

puissance du continu. Plus généralement j'ai démontré que si m est un
nombre cardinal > 2Ko tel qu'il n'existe aucun nombre cardinal n
satisfaisant à l'inégalité n<m<2n, il existe un espace métrique universel de

puissance m. On en déduit que l'hypothèse du continu (2*° Xi) est
équivalente à l'existence d'un espace métrique universel de puissance &i-
Tous ces résultats, dont la démonstration est assez compliquée, j'ai
trouvé en 1940 : une note préliminaire a paru dans le vol. 75 des Atti délia
R. Accademia délia Scienze di Torino (séance du 24 avril 1940) et la
démonstration détaillée se trouve dans le tome 33 des Fundamenta Maihe-
maticae (1945).

Parmi les espaces métriques un rôle important jouent, comme on sait,
les espaces séparables. Ce sont les espaces métriques qui contiennent un
ensemble dénombrable dense dans l'espace considéré, en d'autres termes
des espaces métriques qui contiennent une suite infinie de points, telle
que tout point de l'espace considéré est limite d'une suite extraite de

ai) Math. Ann. 100, p. 116; Amer. Joum. of Math. 53 (1931), p. 721.

32) K. Menger, Jahresb. d. deutsch. Math,-Ver. 40, p. 210.
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cette suite. En 1925 Paul Urysohn a donné le premier exemple d'un
espace métrique séparable U qui contient un ensemble congruent avec
tout espace métrique séparable33). Cet exemple est artificiel et fort
compliquée. Or S. Banach et S. Mazur ont démontré que l'espace (C) de

toutes les fonctions continues dans l'intervalle (0 < x < 1) avec la
distance r(f, g) définie par la formule

/•(/,</) max \f(t) — g(t)\
0< t<l

(qui, comme on sait, est un espace séparable) contient aussi un ensemble

congruent avec tout espace métrique séparable. La démonstration publiée
par 8. BanachM) fait usage de la théorie des fonctionnelles linéaires. Une
démonstration directe et plus élémentaire de ladite propriété de l'espace
(C) a été donné par moi dans le dernier volume des Fundamenta Maihe-
maticae35).

On peut démontrer qu'il existe 2m types métriques différents d'espaces
métriques infinis de puissance m.

On voit ainsi comment une notion si simple et élémentaire comme celle
de congruence des ensembles de points conduit aux problème parfois
difficiles et même encore non résolus.

(Reçu le premier juillet 1946.)

33) C. R. Paris 180, p. 83 et Bull. Se. Math., 2* série 51 (1927) pp. 1—38.
3*) S. Banach, Théorie des opérations linéaires, Monografie matematyczne I

(Varsovie 1932), p. 187.
w) Fund. Math. 33, pp. 115—122; cf. aussi ma note dans les Atti délia R. Accademia di

Torino, vol. 75.

226


	Sur la congruence des ensembles de points et ses généralisations.

