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Sur la congruence
des ensembles de points et ses généralisations™

/
Par WacLaw SiErpPINSKI, Varsovie

Une notion bien connue de la géométrie élémentaire est celle de con-
gruence des figures géométriques. Deux figures géométriques ou bien deux
ensembles de points situés sur une droite, ou dans un plan, ou dans
I’espace & 3 dimensions sont dits congruents ou superposables, 8’ils peuvent
étre obtenus I'un de I’autre par une translation ou par une rotation. On
écrit alors 4 =~ B.

On démontre que, pour que deux ensembles de points, 4 et B soient
congruents, il faut et il suffit qu’il existe entre les points de 4 et ceux de
B une correspondance biunivoque conservant les distances, c.-a-d. telle
que a, et a, étant deux points quelconques de I’ensemble 4 et b, et b,
les points de I'’ensemble B qui leur correspondent, la distance entre a,
et a, est égale a celle entre b, et b,. Une transformation des ensembles
conservant les distances est appellée isométrique. Au lieu de dire
ensembles congruents on dit donc aussi ensembles isométriques.

Il existe des ensembles de points, méme linéaires, superposables avec
une de leurs parties aliquotes, p. e. une demi-droite. En 1914 S. Mazur-
kiewicz (décédé en 1945) et moi, nous avons construit un ensemble plan
(non borné) qui se décompose en deux ensembles sans points communs
dont chacun est avec lui congruent?).

D’aprés A. Lindenbaum il n’existe aucun ensemble plan borné ou
linéaire qui jouisse de cette propriété?); or, il existe de tels ensembles
bornés dans I’espace & 3 dimensions.

Voici la construction que nous avons donnée avec S. Mazurkiewicz :
Soit ¢ la translation du plan de longueur 1 le long de I’axe d’abscisses et
soit p la rotation du plan autour du point 0 de I’angle égal & 1 [c.-a-d. =
(180/=)°[. Soit £ I’ensemble formé du point 0 et de tout point qu’on
obtient du point 0 en appliquant un nombre fini de fois les transforma-
tions ¢ et y dans un ordre quelconque. Soit A = ¢(E), B=y(£). On a
évidlemment 4 ~ K, B E et E= A+ B, et il reste & démontrer que
AB = 0 (c.-a-d. que les ensembles 4 et B sont sans point commun). A

*) Conférence tenue & 1'Université de Zurich le 22 Mai 1946.
1) C. R. Paris, 158, p. 618 (séance du 2 mars 1914).

?) Fundamenta Mathematicae 8 (1926), p. 218, renvoi 1).
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ce but il est & remarquer que dans le plan de nombres complexes les trans-
formations ¢ et y s’expriment par les formules

piz)=24+1 et p(z)=ce'z

et il en résulte sans peine que tout point p de E est un polynome en e’
aux coefficients entiers. De plus, son terme constant est positif si p appar-
tient & 4 et nul, si p appartient 4 B. S’il y avait done un point commun
aux ensembles 4 et B, nous aurions une équation algébrique en e’ aux
coefficients entiers, non identique, ce qui est impossible, e? étant, comme
on sait, un nombre transcendant.

Pendant les derniéres années j’ai trouvé une généralisation de cette
construction. J’ai construit notamment une famille de puissance du
continu d’ensembles plans sans points communs deux & deux, dont 1’en-
semble-somme est superposable avec chacun d’eux.

Il est & remarquer que en 1926 A. Lindenbaum a annoncé qu’il sait
démontrer & ’aide de ’axiome du choix qu'’il existe pour tout nombre
cardinal m < 2% un ensemble plan qui se décompose en m parties dis-
jointes superposables avec lui3).

La démonstration de A. Lindenbaum n’a pas été publiée et elle m’est
inconnue et 4. Lindenbaum, chargé de cours a I’Université de Varsovie
fut tué par la Gestapo en 1941. Or, je sais démontrer la proposition de
A. Lindenbaum sans faire appel a I’axiome du choix et d’une fagon effec-
tive?). Il en résulte en particulier qu’on sait nommer un ensemble plan
indénombrable qui est somme de deux ensembles disjoints superposables
avec lui. Cela résoit définitivement un probléme posé par M. H. Stein-
haus en 1921 (Fund. Math. 2, p. 4) qui a été regardé comme difficile et
pendant 25 années attendait sa solution. Mon éléve, Stanislas Ruziewicz,
avant la guerre Recteur de I’Académie de Commerce & Lwow, fusillée
par la Gestapo & Lwow en été de 1941 a donné en 1921 une solution
partielle et non effective de ce probléme en démontrant a I’aide de 1’axio-
me du choix qu'’il existe un ensemble plan indénombrable superposable
avec deux de ses sousensembles disjoints®).

On démontre sans peine 4 I’aide de I’axiome du choix que la circon-
férence est une somme d’une suite infinie d’ensembles deux & deux
superposables (par rotation) et sans points commun?®). Il est beaucoup

3) A. Lindenbaum et A. Tarski, Communication sur lesrecherches de la théorie
des ensembles, C. R. Soc. Sc. et L. de Varsovie 19 (1926), p. 327, th. 3*.

4) Voir Fund. Math. 84.

5) Fund. Math. 2, p. 4—17.

¢) Cf. F. Hausdorff, Grundziige der Mengenlehre, Leipzig u. Berlin 1914, p. 401
bis 402.

216



plus difficile de démontrer & 1’aide de ’axiome du choix qu’un segment
d’une droite est une somme d’une suite infinie d’ensembles disjoints
deux & deux congruents, ce qui a été fait par M. J. von Neumann en
19287) qui a ainsi résolu un probléme posé par M. H. Steinhaus en
19218). En 1920 8. Mazurkiewicz a démontré en s’appuyant sur le théo-
réme de Zermelo sur le bon ordre que le segment 0 < z <1 est une
somme d’une infinité indénombrable (de puissance du continu) d’en-
sembles non mesurables, sans points communs, superposables deux a
deux par translation®). En 1924 Stanislas Ruziewicz a démontré (en
utilisant I’axiome du choix mais sans admettre I’hypothése du continu)
que pour tout nombre cardinal m < 2% la droite est une somme de
m ensembles non mesurables disjoints, deux 4 deux congruents?).

Une décomposition de la droite en m ensembles disjoints et congruents, ou
Xo << m < 2% (mesurables ou non) peut étre obtenue d’une fagon plus simple
comme voici. Soit & un ensemble quelconque de nombres réels positifs de puissance

m et soit H I’ensemble de tous les nombres qui sont des sommes d’un nombre fini
de nombres, dont les valeurs absolues appartiennent & £. On démontre sans peine

que H = m. Divisons maintenant tous les nombres réels en classes, en rangeant
dans une méme classe deux nombres réels dans ce et seulement dans ce cas, si leur
différence appartient & H . Soit N un ensemble contenant un et un seul nombre de
chacune de ces classes. @ étant un nombre réel, désignons par N (a) la translation
de N de longueur a. On démontre sans peine que la droite est une somme disjointe
de m ensembles congruents N (a), o a € H.

En admettant 1’hypothése du continu (2% ={,) on peut démontrer
qu’il existe un ensemble plan E, tel que le plan est une somme de 2%
ensembles disjoints, dont chacun est congruent avec K, et en méme
temps le plan est une somme d’une infinité dénombrable d’ensembles,
dont chacun est congruent avec X 19).

Or, m étant un nombre cardinal donné quelconque, si la droite est une somme
de m ensembles disjoints, dont chacun est superposable par translation avec un

ensemble ¥, la droite n’est pas une somme de moins que m ensembles, dont chacun
est superposable par translation ou rotation avec K1),

A et B étant deux ensembles de points nous dirons que le type métrique
de A est plus petit ou égal & celui de B si A est congruent & un sous-
ensemble de B: nous écrirons dans ce cas 74 < v B. Nous dirons que
les ensembles A et B appartiennent au méme type métrique et nous

’) Fund. Math. 11, pp. 230—238.

§) Fund. Math. 2, p. 8.

®) Fund. Math. 5, p. 92.

19) Voir Fund. Math. 21, p. 39; cf. aussi mon livre Hypothése du continu (Warszatwa
1934, Monografje Matematyczne t. IV).

11) Fund. Math. 24, p. 247.
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écrirons tA = tB, sil'ona alafois 74 < tB et vB <tA. Nous
dirons que les types métriques de 4 et de B sont incomparables et nous
écrirons 74 || vB, silonn’ani 74 < 7B, ni 7B <74. On peut

démontrer qu’il existe une famille de 22 ensembles linéaires dont les
types métriques sont deux & deux incomparables. Or, je sais démontrer

a l'aide de I’hypothése du continu qu’il existe une famille de 22" en-
sembles linéaires dont les types métriques sont distincts et deux & deux
comparables. Sans faire appel & I’hypothése du continu je sais démontrer
qu’il existe une telle famille de puissance supérieure a celle du continu.
Je sais aussi nommer une famille formée de 2% ensembles linéaires dont
les types métriques sont distincts et deux & deux comparables. Il en
résulte qu’'on sait nommer une famille d’ensembles linéaires dont les
types métriques sont distincts et deux & deux comparables et on peut
démontrer & l’aide de ’hypothése du continu que cette famille est de

. Ro
puissance 2% .

On peut démontrer que 4 étant un ensemble linéaire infini quelconque,
il existe toujours un ensemble linéaire B de méme puissance que A et
dont le type métrique est inférieur & celui de 4, et que, 4 étant un en-
semble linéaire infini de puissance inférieure a celle du continu, il existe
toujours un ensemble linéaire B de méme puissance que 4 et dont le
type métrique est supérieur & celui de 412).

Une généralisation de la notion de congruence des ensembles est celle
de leur équivalence par décomposition finie.

Il est bien connu de la géométrie élémentaire qu’un B
triangle orthogonal bilatéral A BC peut étre décomposé par A \
sa hauteur BD en deux triangles dont on peut former un 4/—5—¢

carré (p. e. en tournant le triangle BDC de 270° autour du
point B). Or, si I’on décompose & ce but le triangle 4 BC
en triangles A BC et BD(, ses derniers ont un ¢6té commun
BD: ils ne sont donc pas disjoints (c.-a-d. ne sont pas sans 4 D
points communs).

Dans la géométrie élémentaire on appelle deux polygones (ou poly-
édres) équivalents par décomposition, 8’ils peuvent étre décomposés en un
nombre fini et égal de polygones (ou polyédres) respectivement con-
gruents qui n’ont pas de points intérieurs communs. Or, dans la théorie
des ensembles de points on envisage la notion d’équivalence dans un

LY

E B

|

N

12) Les démonstrations de tous ces théorémes sur les types métriques paraitront dans
ma note ,,Sur les types métriques d’ensembles linéaires‘.
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sens différent de celui de la géométrie élémentaire : deux ensembles de
points sont dits équivalents par décomposition finie s’ils peuvent étre
décomposés en un nombre fini et égal d’ensembles de points arbitraires
respectivement congruents qui n’ont aucun point commun.

A et B étant deux ensembles de points et » un nombre naturel, nous

écrirons B
A5 B,

'l existe des ensembles A,, 4,,...,4, et B,, B,,..., B,, tels que

n?’

1°° A=A, +4,+---+4,, B=B 4 B,+--.+ B,,
2°. A, A, =B,B,=0 pour 1<k<l<n,
3°. A,=B, pour k=1,2,..,n.

Si A= B, on a B3 A: larelation 5 est donc symétrique (or,
comme nous le verrons plus loin, elle n’est pas transitive pour »n>1). Les
formules A5 B et 4 = B sont évidemment équivalentes. La formule
A= B entraine évidemment la formule A4 3 B pour tout nombre naturel
m=n.

Pour que les ensembles 4 et B soient équivalents par décomposition
finie, il faut et il suffit qu’il existe un nombre naturel »n, tel que 4= B:
nous écrirons alors 4 L B.

11 est facile de donner pour tout nombre naturel m un exemple de deux
ensembles linéaires 4 et B, tels que 4 77 B, mais quonn’a pas A5 B
pour aucun nombre naturel n<<m (tels sont p. e. les ensembles 4 =
{1,2,...,m} et B= {m,2m,..., m?}).

On voit sans peine que deux ensembles contenant un nombre fini de
points sont équivalents par décomposition finie dans ce et seulement dans
ce cas §’ils contiennent le méme nombre de points.

Le probléme si deux ensembles de points sont équivalents par décom-
position finie ou non est parfois difficile & résoudre. P. e. nous ne savons
pas si un cercle est équivalent par décomposition finie & un carré ayant
la méme aire. Or, comme 'ont démontré S. Banach?®) et A. Tarski, il
résulte de ’axiome du choix que la sphére est équivalente par décomposi-
tion finie & un cube, d’ailleurs pas nécessairement de méme volume.

I1 est loin d’étre évident que le triangle 4 BC envisagé plus haut est
équivalent par décomposition finie (dans le sens de la théorie des en-
sembles) & un carré. Or, S. Banach et A. Tarski ont démontré*) que pour

13) Décédé a Lwow en aolt 1945.

14) Fund. Math. 6, p. 260 (Corollaire 20). Cf. aussi 4. Tarski, Sur I'’équivalence des
polygones (en polonais) Przeglad Mat.-Fiz. 2, 1924, p. 12 et p. 14.
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que deux polygones (situés dans un plan) soient équivalents par décom-
position finie, il faut et il suffit qu’ils aient la méme aire (il est & remarquer
que la nécessité de cette condition est beaucoup plus difficile & démontrer
que la suffisance).

On peut démontrer qu'un carré (fermé) est 5 avec un de ses vrais
sous-ensembles et qu’un segment (fermé) de droite est 5 (mais n’est pas
) avec un de ses vrais sous-ensembles. On peut aussi démontrer & I’aide
de P’axiome du choix qu’un segment de droite est 3 avec un ensemble
non mesurable contenant ce segment?®).

On peut démontrer qu’'un segment de droite n’est équivalent par dé-
composition finie & aucun segment plus petit. Cependant un segment de
droite est équivalent par décomposition dénombrable (en ensembles non
mesurables) & un segment plus petit. Pareillement un carré n’est équiva-
lent par décomposition finie & un carré plus petit, mais la démonstration
de cette proposition est beaucoup plus compliquée. Or, un cube est équi-
valent par décomposition finie & un cube plus petit, comme ’ont démontré
a ’aide de ’axiome du choix S. Banach et A. Tarsk:.

On démontre que si

A>E>B et A5 B, ona A;57E %) et quesi A5 B et B, C,

on a Az C ") (le nombre mn ne peut pas étre remplacé ici par un
nombre plus petit). Il en résulte que 1’équivalence par décomposition finie
est une relation fransitive.

On démontre que si 45 B, (B et B4, (A, on a A/ B et
il en résulte tout de suite que si 4L B, (B et BLA, c4,
ona ALB.

On sait nommer une famille formée de 2 sous-ensembles de I'inter-
valle (0, 1) dont aucun n’est équivalent par décomposition finie & un sous-
ensemble de ’autre. On sait aussi nommer une famille formée de 2¥ sous-
ensembles dénombrables de I’intervalle (0, 1) dont aucun n’est équivalent
par décomposition finie & un sous-ensemble de l'autre.

On connait des théorémes concernant 1’équivalence par décomposition
finie dont 1’énoncé est simple, mais dont la démonstration est difficile. Tel
est p. e. le théoréme suivant de D. Kdonig et P. Valké'®):

18) Voir W. Sierpinski, Prace Matemat.-Fiz. 43 (1935), p. 1.

18) Voir W. Sierpinski, Fund. Math. 33, p. 230 (Lemme 1); cf. S. Banach et A. Tarski,
Fund. Math. 6, p. 252, Corollaire 9 et 4. Lindenbaum et A. Tarski, Fund. Math. 6, p. 328,
th. 9.

17) Cf. S. Banach et A. Tarski, Fund. Math. 6, p. 246—248 (Th. 3).

18) Fund. Math. 8, p. 131. Pour m = 2 voir C. Kuratowski, Fund. Math. 6, p. 236, pour
m = 27: 8. Banach et A. Tarski, Fund. Math. 6, p. 254,

280
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Si ’on a, pour un nombre naturel m, deux décompositions d’'un en-
semble linéaire en m ensembles disjoints

A, +4,++A4,=B + By +---+ B, ,

ol 4, A, et B,=B, pour 1 <t <m, 1 <k<m, ona 4, B,.
La démonstration est difficile déja pour m = 3.

En 1914 F. Hausdorff a démontré a ’aide de ’axiome du choix que la
surface d’une sphére est une somme de quatre ensembles disjoints 4, B,
C, D, ou D est un ensemble dénombrableetou 4 ~ B> C = B + C").
En utilisant ce résultat S. Banach et A. Tarski ont démontré en 1924 que
toute sphére S (intérieur et surface) dans ’espace 4 3 dimensions peut étre
décomposée en un nombre fint de parties disjointes dont on peut obtenir
au moyen de mouvements convenables deux sphéres disjointes de méme
rayon que la sphére §2°). Or, le nombre fini en question n’a pas été précisé
par ces auteurs.

En rapport avec ce résultat M. J. von Neumann affirme qu'on peut
décomposer toute sphére de rayon 1 en 9 parties disjointes dont on peut
former par des mouvements convenables deux sphéres disjointes de
rayon 1, en prenant respectivement 5 et les 4 restantes de ces parties®!).
Je ne sais pas comment M. von Neumann a déduit cette proposition des
résultats de MM. Banach et Tarski. Or, je sais démontrer le théoréme
suivant :

Toute sphére S peut étre décomposée en 8 parties disjointes, dont 5 et
3 donnent respectivement, aprés des mouvements convenables, deux
sphéres disjointes de méme rayon que la sphére S§22).

En utilisant les notations que nous avons introduit, ce théoréme peut
étre exprimé de la fagon suivante :

Toute sphére S peut étre décomposée en 2 parties disjointes, S =
N 4+ (8—N) telles que S7Z7 N et S5TFS—N.

Naturellement les nots ,,peut étre décomposée’’ sont ici pris dans le
sens idéaliste : les ensembles en lesquels on décompose la sphére sont ici
non mesurables et nous ne savons pas les définir effectivement : leur
existence résulte de ’axiome du choix.

Je sais aussi démontrer le théoréme suivant :

Toute sphére S se décompose en deux parties disjointes, § =
M4+ (S—M), oh STM et STS—M=B).

19) F. Hausdorff, Grundziige der Mengenlehre, Leipzig 1914, p. 469—472.
20) S. Banach et A. Tarski, Fund. Math. 6, p. 262 (Lemme 22).

21) J.von Neumann, Fund. Math. 18 (1929) p. 77.

#2) voir Fund. Math. 33 (1945), p. 229.

23) Fund. Math. 33, p. 234.
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Il me semble difficile de résoudre le probléme s’il existe une décompo-
sition d’une sphére en moins que 8 parties disjointes, dont on pourrait
former deux sphéres.

Or, on peut démontrer que toute sphére S contient une infinité dénom-
brable de parties disjointes et deux & deux congruentes dont chacune
est 7= §%).

En utilisant une méthode développée & un but différent, mais connexe,
par M. von Neumann??), j’ai démontré le théoréme suivant :

Toute sphére § est une somme d’une famille de puissance du continu
d’ensembles disjoints dont chacun est 5 §?°). La démonstration de ce
théoréme est d’ailleurs fort compliquée. On peut encore démontrer les
théorémes suivants :

La surface § d’une sphére est une somme de 2% ensembles disjoints
dont chacun est 5 §.

L’espace & trois dimensions, R,, est une somme de 2% ensembles dis-
joints dont chacun est 5 R;.

Deux polyédres sont toujours équivalents par décomposition finie ; or,
comme l’a démontré Dehn, méme deux polyédres ayant méme volume
peuvent pas étre équivalents au sens de la géomeétrie élémentaire, en
particulier un tetraédre régulier n’est pas équivalent au sens de la géo-
meétrie élémentaire & une somme de deux tetraédres?6).

On dit qu'un ensemble de points E admet une décomposition paradoxale
8’1l est une somme de deux ensembles disjoints dont chacun lui est équi-
valent par décomposition finie.

On peut démontrer d’une facon élémentaire qu’aucun ensemble li-
néaire non vide n’admet de décompositions paradoxales. Or, comme
nous avons vu, il existe des ensembles plans, méme indénombrables
admettant des décompositions paradoxales. Cependant le carré n’admet
pas de décompositions paradoxales. Or, le cube en admet.

Pour le segment de droite et pour le carré nous avons cependant un
autre paradoxe, trouvée par M. J.von Neumann en 1929.

A et B étant deux ensembles de points, nous dirons que I’ensemble B est
métriqguement plus petit que ’ensemble 4 , §’il existe une transformation bi-
univoque f de 4 en B qui diminue les distances entre les points. Plus
précisément o (p, q) désignant la distance de p a ¢, on doit avoir toujours
o(f(p), f(@))<e(p,q) pour pe A et qe A. Nous dirons que I’ensemble
B est plus petit par décomposition finie que 'ensemble 4, s’il existe une

) Fund. Math. 13 (1929), pp. 73—116, surtout pp. 109—111.
%) Fund. Math. 33, p. 244.
26) Math. Ann. 60.
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décomposition des ensembles A et B en le méme nombre fini » d’en-
sembles disjoints, 4 = A4, + 4, +---4,, B=B,+ B, +---+ B,
tels que, pour £ =1,2,...,n Dlensemble B, est métriquement plus
petit que I’ensemble A4,.

M. J. von Neumann a démontré a I'aide de ’axiome du choix qu’un
segment de droite est plus petit par décomposition finie qu’un segment
de longueur plus petite®’). Sa démonstration est fort compliquée. Or,
S. Banach et A. T'arski ont démontré a I'aide de 'axiome du choix que
deux ensembles A et B situés sur la surface de la méme sphére qui ne
sont pas ensembles frontiéres (par rapport & cette sphére) sont équivalents
par décomposition finie?®). En partant de ce théoréme on peut sans peine
déduire qu'un cercle K, (intérieur et circonférence) est plus petit par dé-
composition finie qu'un cercle K de rayon deux fois plus petit que celui
du cercle K.

Soit K le cercle x2 + y% < r%. A tout point p(x, y) de K faisons correspondre le

. z y a? y? :
point  f(p) = 472 — — — — ). . La fonction f transforme, comme

2’27 4 4
on voit sans peine, d’une facon biunivoque le cercle K en la partie @ de la surface
de la sphére 8 = [2? + y? + 22 = 47%], ou z > V215 r. Or, on prouve que

e (f(p), F(q) <% o(p,q) pour pe K, qe K, ce qui pi'ouve que ’ensemble @

est métriquement plus petit que K. D’aprés le théoréme cité de Ranach et Tarski
Pensemble @ est équivalent par décomposition finie & la demi-sphére
S; =[x+ y? + 22 = 472, 2> 0] . Or, lecercle K, = [2? + y? < 47%] est évi-
demment métriquement plus petit que S; (puisque K, est la projection de S,
sur le plan z = 0). On en déduit toute de suite que le cercle K; dont le rayon est
deux fois plus grand que celui du cercle K, est plus petit par décomposition finie
que le cercle K. Pour plus de détails voir ma note qui paraitra dans le t. 34 des
Fundamenta Mathematicae.

En admettant I’hypothése du continu je sais démontrer que la droite
est une somme d’une famille de puissance du continu d’ensembles dis-
joints dont chacun est équivalent a la droite par décomposition dénom-
brable.

Il y a une liaison étroite entre 'existence de décompositions para-
doxales et le probléme de la mesure.

P. e. le fait que le segment est équivalent par décomposition dénom-
brable & un segment plus petit entraine la non-existence pour les en-
sembles linéaires (bornés) d’'une mesure non nulle identiquement, dé-

?7) Fundamenta Mathematicae 13, pp. 73—116.
28) Fund. Math. 6 (1924), p. 267, Th. 31.
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nombrablement additive et invariante par rapport aux transformations
isométriques.

Pareillement le fait qu'une sphére dans l’espace & 3 dimensions est
équivalente par décomposition finie & une sphére plus petite entraine pour
tous les ensembles (bornés) dans ’espace & 3 dimensions la non-existence
d’'une mesure non nulle identiquement, simplement (c.-a-d. finiment)
additive et invariante par rapport aux transformations isométriques.

Or, comme on sait, un segment n’est pas équivalent par décomposition
finie & un segment plus petit ni un carré a un carré plus petit. D’autre part
S. Banach a démontré I’existence pour tous les ensembles linéaires, re-
spectivement plans d’une mesure non nulle identiquement, simplement
additive et invariante par rapport aux transformations isométriques??).

Il se montre que la non-existence des décompositions paradoxales est
une condition nécessaire et suffisante pour l’existence d’une mesure.
M. A. Tarsk: a envisagé cette condition sous une forme purement algé-
brique. Il a notamment démontré ce théoréme3°):

Soit S un ensemble formé d’éléments quelconques dans lequel est
définie et exécutable une opération binaire, 4, commutative et associa-
tive. Soit ¢ un élément de S. Alors pour qu’il existe une fonction f(3)
faisant correspondre & tout élément $ de S un nombre réel fini ou infini
f(3) =0, et telle que f(e) =1 et flx + B) = f(x) + f(B) pour xeS
et B, il faut et il suffit qu'on ait (x4 1) e #xe et (x +1)e+n Fxe
pour x=1,2,... et ned.

La notion de congruence des ensembles de méme que celle de leur
équivalence par décomposition finie peuvent étre appliquées aux en-
sembles plus généraux que les ensembles de points dans les espaces eu-
clidiens. Il est évident qu’on peut appliquer ces notions a tous les en-
sembles entre les éléments desquels on a défini une distance, en particulier
aux espaces métriques, semi-métriques, & une métrique faible, générale-
ment métriques et autres.

Un espace métrique M c’est un ensemble d’éléments quelconques, dits
points de cet espace, ou on I’a défini pour chaques deux points a et b de M
un nombre réel non négatif p(a,b), de sorte que les trois conditions
suivantes soient toujours remplies :

1) ¢(a,b) =0 dans ce et seulement dans ce cas, ou a = b,
2) o(a,b) =p0(b,a) (loi de symmétrie),
3) ol(a,c) <po(a,b)+ o(,c) (loi du triangle).

®) Fund. Math. 4, pp. 7—33.
30) Fund. Math. 81, p. 56. Cf. C. R. Soc. Sc. Varsovie 21 (1929), p. 114.
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On voit sans peine que tout espace métrique formé de deux points est
congruent avec un sous-ensemble de la droite et que tout espace métrique
formé de trois points est congruent avec un sous-ensemble du plan.

Cependant il existe des espaces métriques formés de 4 points qui ne
sont congruents a aucun sous-ensemble de 1’espace & 3 (ou méme & un
nombre fini quelconque de) dimensions. Or, on peut démontrer que tout
espace métrique (et méme semi-métrique, c.-a-d. dont la distance satis-
fait seulement aux conditions 1) et 2), dont tous 4 points forment un en-
semble congruent & un sous-ensemble d’une droite est congruent & un
sous-ensemble d’une droite. C’est un cas particulier d’'un théoréme plus
général de M. Menger, d’aprés lequel un espace semi-métrique dont tous
n + 3 points forment un ensemble congruent & un sous-ensemble de
Pespace euclidien R, & n dimensions, est congruent & un sous-ensemble
de R,3!). Or, si un espace semi-métrique a plus que 4 points dont tous 3
forment un ensemble congruent & un sous-ensemble d’une droite, cet
espace est congruent a un sous-ensemble d’une droite?®2).

Appelons espace métrique universel de puissance m tout espace meétrique
de puissance m qui contient pour tout autre espace métrique M de puis-
sance m un ensemble isométrique avec M.

On démontre sans peine qu’il n’existe aucun espace métrique universel
dénombrable et, plus généralement, aucun espace métrique universel de
puissance inférieure a celle du continu. Or, en admettant I’hypothése du
continu j’ai démontré l’existence d'un ensemble métrique universel de
puissance du continu. Plus généralement j’ai démontré que si m est un
nombre cardinal > 2% tel qu’il n’existe aucun nombre cardinal » satis-
faisant a 'inégalité »<<m < 2", il existe un espace métrique universel de
puissance m. On en déduit que I’hypothése du continu (2% = R,) est
équivalente a ’existence d’un espace métrique universel de puissance ¥, .
Tous ces résultats, dont la démonstration est assez compliquée, j’ai
trouvé en 1940 : une note préliminaire a paru dans le vol. 76 des Att: della
R. Accademia della Scienze di Torino (séance du 24 avril 1940) et la dé-
monstration détaillée se trouve dans le tome 33 des Fundamenta Mathe-
maticae (1945).

Parmi les espaces métriques un role important jouent, comme on sait,
les espaces séparables. Ce sont les espaces métriques qui contiennent un
ensemble dénombrable dense dans 1’espace considéré, en d’autres termes
des espaces métriques qui contiennent une suite infinie de points, telle
que tout point de l’espace considéré est limite d’une suite extraite de

31) Math. Ann. 100, p. 116; Amer. Journ. of Math. 53 (1931), p. 721.
32) K. Menger, Jahresb. d. deutsch. Math.-Ver. 40, p. 210.
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cette suite. En 1925 Paul Urysohn a donné le premier exemple d’un
espace métrique séparable U qui contient un ensemble congruent avec
tout espace métrique séparable3). Cet exemple est artificiel et fort com-
pliquée. Or 8. Banach et S. Mazur ont démontré que l’espace (C) de
toutes les fonctions continues dans l'intervalle (0 < ax < 1) avec la
distance r(f, g) définie par la formule

r(f, 9) = max |f(t) —g()|
0o<t<1

(qui, comme on sait, est un espace séparable) contient aussi un ensemble
congruent avec tout espace métrique séparable. La démonstration publiée
par S. Banach3*) fait usage de la théorie des fonctionnelles linéaires. Une
démonstration directe et plus élémentaire de ladite propriété de ’espace
(C) a été donné par moi dans le dernier volume des Fundamenta Mathe-
maticae3?).

On peut démontrer qu’il existe 2™ types métriques différents d’espaces
métriques infinis de puissance m.

On voit ainsi comment une notion si simple et élémentaire comme celle
de congruence des ensembles de points conduit aux probléme parfois
difficiles et méme encore non résolus.

(Regu le premier juillet 1946.)

33) C. R. Paris 180, p. 83 et Bull. Sc. Math., 2€ série 51 (1927) pp. 1—38.

34) S. Banach, Théorie des opérations linéaires, Monografie matematyczne I
(Varsovie 1932), p. 187.

35) Fund. Math. 83, pp. 115—122; cf. aussi ma note dans les Atti della R. Accademia di
Torino, vol. 75.
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