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Des hyperquadriques et
droites associées de l'espace à n dimensions
De J.-P. Sydler, Zurich A ma mère et à ma femme.

INTRODUCTION
Ce travail a été inspiré essentiellement par deux propriétés ne présentant

à première vue aucune relation. Il s'agit d'une part de la
remarquable configuration étudiée par Segre: Dans l'espace à quatre dimensions,

toutes les droites qui coupent quatre espaces linéaires quelconques
à deux dimensions en coupent encore un et un seul (1)*. Ce cinquième
plan peut être nommé associé des quatre premiers. Cette relation d'incidence

fait penser à une autre que Schlâfli a trouvée dans un espace à n
dimensions: Les (n -\- 1) droites joignant les sommets correspondants de
deux simplexes polaires réciproques par rapport à une hyperquadrique,
sont telles que tout espace à {n — 2) dimensions qui en coupent n, coupe
la dernière; ces droites, hauteurs du simplexe en géométrie non-euclidienne,

sont donc aussi associées (2).
Notre deuxième source fut d'autre part un théorème de Steiner : Dans

le plan euclidien, le lieu des foyers des paraboles inscrites à un triangle
en est le cercle circonscrit; les tangentes au sommet de ces paraboles
enveloppent une hypocycloïde à trois rebroussements (3). Ici, on pense
aussitôt aux droites et aux points de Simpson relatifs à un triangle,
points tels que les pieds des perpendiculaires abaissées sur les côtés du
triangle sont sur une même droite. C'est par là que nous avons commencé
notre généralisation.

La première question est de savoir quel espace adopter. Nous avons
choisi un espace ayant une hyperquadrique non dégénérée pour absolu,
car les propriétés d'incidence y présentent une plus grande symétrie.
Reconnaissons que nous n'avons pas toujours pu spécialiser nos résultats
dans le cas euclidien où l'absolu dégénère. Il est parfois plus facile de

passer de l'espace euclidien à l'espace non-euclidien en considérant la
section des variétés générales par l'hyperplan à l'infini, espace non-euclidien
de dimension plus petite.

Vouloir généraliser les droites de Simpson, c'est considérer les
hyperquadriques de révolution inscrites à un simplexe et introduire immédiatement

la correspondance des foyers qui transforme un point dans le
deuxième foyer de l'hyperquadrique de révolution inscrite au simplexe
et ayant ce point pour foyer (4, 5).

*) Les indices renvoient à la littérature mentionnée en fin du travail.
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Ce sont quelques propriétés de cette transformation que nous étudions
dans le premier chapitre, ainsi qu'une relation entre la correspondance et
l'absolu.

Le deuxième chapitre est consacré essentiellement aux paraboloïdes
de révolution, c'est-à-dire aux hyperquadriques de révolution tangentes
à l'espace polaire d'un de leurs foyers principaux. Dans le cas euclidien,
le lieu des pieds des perpendiculaires abaissées des foyers principaux sur
les plans tangents à une quadrique de révolution est la sphère principale.
Cette variété se généralise presque sans modification pour un espace
quelconque et, pour le paraboloïde, dégénère également en deux hyperplans.
Grâce à cette propriété, nous pouvons généraliser la notion de droites de

Simpson et montrer que leur enveloppe est une variété de (n -f- l)e classe,

polaire réciproque du lieu (F) des foyers des paraboloïdes de révolution
inscrits au simplexe. L'étude de (F) dans le cas euclidien et de sa section

par l'espace à l'infini permet de trouver le lieu des foyers des

hyperquadriques de révolution tangentes à {n + 2) hyperplans, puis à {n + h)
(h 3,...yn+ 1).

Une configuration remarquable de la variété (F) conduit ensuite à une
nouvelle démonstration du théorème de Schlâfli que nous mentionnions.
Nous avons ainsi un lien entre les deux propriétés de départ.

Nous consacrons notre troisième chapitre aux droites associées; nous
nous sommes attachés en particulier à montrer combien de droites
arbitraires peuvent être complétées en un groupe de droites associées. Ces

considérations conduisent entre autres à deux résultats intéressants : Le

premier montre que la configuration de Segre est caractéristique de

l'espace à quatre dimensions; c'est uniquement dans cet espace qu'un
groupe de droites détermine univoquement les droites qui les complètent
en un groupe de droites associées ; le deuxième a trait à la répartition des

conditions linéaires imposées à un groupe d'éléments géométriques.
Généralisant la notion de droites associées, nous exposons dans notre

quatrième chapitre quelques propriétés des espaces linéaires associés. Les

espaces linéaires à h dimensions sont représentés par les points d'une
variété grassmannienne d'un espace supérieur. Cette correspondance nous
permet de donner quelques conditions nécessaires et suffisantes pour que
des espaces soient associés. Nous pouvons en déduire une propriété
géométrique des projections des espaces associés à partir des points de l'un
d'entre eux.

Nous avons tenu à ajouter dans notre cinquième chapitre quelques
propriétés particulières de l'espace à deux dimensions. Nous y précisons
entre autres la classe ou l'ordre de quelques variétés.
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I.

CORRESPONDANCE DES FOYERS

§ 1. Définitions

Nous considérerons un espace à n dimensions, ayant pour absolu une
hyperquadrique Q non dégénérée. L'enveloppe des hyperplans tangents
communs à Q et à une hyperquadrique quelconque H est en général une
variété de quatrième classe. Si cette variété dégénère en deux hypercônes
de seconde classe, de sommets Fx et F2, nous dirons que H est une
hyperquadrique de révolution (par rapport à Q), F1 et F2 étant ses foyers principaux.

Une hypersphère est une hyperquadrique de révolution dont les

deux foyers sont confondus, donc tangente à l'absolu le long d'une variété
quadratique à (n — 2) dimensions. Nous nommerons encore paraboloide
de révolution une hyperquadrique de révolution tangente à l'espace
polaire par rapport à Q, d'un de ses foyers principaux.

Nous désignerons par Ek un espace linéaire à k dimensions et par
F* une variété à k dimensions d'ordre p.

Il nous arrivera aussi de nommer simplement quadriques et sphères
les hyperquadriques et les hypersphères de l'espace à n dimensions.

§ 2. Correspondance des foyers

Une hyperquadrique de révolution est déterminée par un de ses foyers
principaux et par {n + 1) hyperplans tangents. Connaissant donc un
foyer d'une hyperquadrique de révolution inscrite à un simplexe fixe,
nous pourrons déterminer le deuxième. C'est cette transformation
ponctuelle de l'espace que nous nommerons correspondance des foyers, deux
points correspondants étant dits inverses.

Une quadrique de révolution est telle que le faisceau tangentiel qu'elle
détermine avec l'absolu Q contient une quadrique dégénérée en deux
points, ses foyers principaux. Autrement dit, une quadrique de révolution
fait partie d'un faisceau tangentiel déterminé par deux points et la
quadrique absolue.

Soit un simplexe de sommets Ao,.. .,An; a% étant la face opposée à A% ;

A[ le pôle de at par rapport à Q ; a[ la face opposée à A[ dans le simplexe
(Ar0,.. .,A'n) polaire réciproque de (Ao,.. .,An). Soit J£ &iicuiuk 0

»,*

l'équation tangentielle de la quadrique absolue, le simplexe (Ao,. .,-4J
étant pris pour simplexe de référence des coordonnées homogènes ; soient
C(ct) et D(dt) les foyers principaux d'une quadrique de révolution dont
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l'équation aura la forme J£ (ctutdkuk + A<xtkutuk) — 0. Pour que cette
t,i

quadrique soit inscrite au simplexe (Ao,... ,An), il faut et il suffit qu'elle
vérifie les relations

ctdt + X<xtt 0 (i 0,. ..,n)

Ce sont les équations de la correspondance des foyers, correspondance
d'ordre n.

En particulier, les points doubles de cette transformation sont donnés

par les relations:

Il y a 2n points doubles qui sont les centres des sphères inscrites au
simplexe. Ces points appartiennent aux couples d'hyperplans

Ils déterminent par conséquent un système linéaire à (n — 1) dimensions
R d'hyperquadriques :

Toutes les quadriques de ce système sont harmoniquement circonscrites à

l'absolu (circonscrites à un simplexe polaire de Q), autrement dit équi-
latères, puisque l'on a la relation

JS (/** «Où) «.. — £ {Pi *zi) OCqo 0

i i

Quelles sont les quadriques harmoniquement inscrites à toutes les

quadriques du système RI Si £ Ptkutuk 0 es^ l'équation de l'une d'elles,
il faut que

(- S A*. OAo + £&,(/*, cxoo) - 0

pour tout [Ati c'est-à-dire

Ceci vaut en particulier pour les quadriques dégénérées en une paire de

points. Nous voyons donc que:
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1. Les foyers principaux d'une quadrique de révolution inscrite au sim~

plexe sont deux joints conjugués par rapport à toutes les quadriques du
système R et réciproquement.

Par conséquent, le simplexe (AQ,... ,An) est un simplexe polaire pour
toutes les quadriques du système. En effet, deux points pouvant être
considérés comme quadrique de révolution, un sommet At et un point
quelconque de la face a2, étant inscrits au simplexe, sont inverses. Les
sommets du simplexe sont des points singuliers de la correspondance des

foyers et il leur correspond tous les points de la face opposée. De même,
à un point d'un Ek du simplexe correspondent tous les points du En~k~1

opposé (Je — 0,.. n — 1).

Montrons encore que la correspondance est d'ordre n : Soit d une droite
quelconque ; les espaces polaires des points de cette droite par rapport à

n quadriques indépendantes du système R déterminent n faisceaux pro-
jectifs d'hyperplans ; les points d'intersection de n espaces homologues
décrivent une courbe de ne ordre, transformée de la droite. Cette courbe

passe par les (n + 1) sommets du simplexe, ces points correspondant
aux traces de la droite d dans les faces du simplexe.

La variété transformée d'un espace linéaire à (n — 1) dimensions est
d'ordre n. En effet, soit d une droite quelconque. Son inverse, F*, coupe
Phyperplan en n points dont les inverses sont les seuls points d'intersection

de la droite avec la variété FJJ"1.

§ 3. Propriétés de la correspondance des foyers

Correspondances induites

2. A une droite d passant par un sommet At du simplexe correspond une
droite d ' par le même sommet Al.

En effet, les espaces polaires des points de la droite d par rapport à n
quadriques indépendantes du système R forment n faisceaux perspectifs,
la face at leur étant commune ; les espaces homologues se coupent en une
droite df passant par At9 point inverse de la trace de d dans at.

Projetons tout l'espace sur at à partir de At. Soit Qt la projection de
l'absolu. Une quadrique de révolution de foyers Ft et F2 est projetée
suivant une quadrique de l'hyperplan at, de révolution par rapport à l'absolu

Qt, F[ et F'2 (projections de Ft et F2) étant ses foyers principaux. En
particulier, une quadrique de révolution inscrite au simplexe (Ao,... ,An)
est projetée en une quadrique de révolution inscrite au simplexe

\A0,. ,Al_1,At+1,. ,An)

165



Par conséquent, les droites correspondantes d et df, passant par un
sommet At, induisent dans la face opposée al une transformation
ponctuelle qui est la correspondance des foyers relative au simplexe

et à l'absolu Qt, projection de Q. Cette correspondance est d'ordre (n — 1) ;

les n points singuliers sont les sommets Ak contenus dans cette face; les
2n~1 points doubles sont les projections à partir de At des 2n points
doubles de l'espace, deux à deux alignés sur .4^

3. A tout espace à (k + 1) dimensions passant par un Ek du simplexe
correspond un Ek+1 par le même Ek.

Cette propriété étant vraie pour k 0, supposons-la vraie pour k et
démontrons-la pour (k + 1).

Soient fi un Ek+1 contenant les points Ao,.. .,Ak et <% un Ek compris
dans fi et passant par Ao,.. .,Ak_1. Les droites projetant les points de oc

à partir de Ak se transforment en droites par Ak projetant les points de
oc', correspondant de oc, donc Ek par AOf.. .iAk__1, Le transformé fi' de /?

est donc un Ek+1 par AQ}.. .,Ak. Les points de fi qui ne sont pas sur le

simplexe se transforment en points de fif; aux points de (Ao,. .,Ak)
correspond tout l'espace (Ak+1,.. .,An).

Si, comme précédemment, nous projetons tout l'espace à partir d'un
Ek du simplexe sur le En~k~1 opposé, nous voyons qu'une hyperquadrique
de révolution par rapport à Q, de foyers Ft et F2, inscrite au simplexe,
est projetée suivant une quadrique de ce En~k"1, inscrite au simplexe
déterminé par les sommets du simplexe primitif qui se trouvent dans cet

espace, et de révolution par rapport à la projection de Q, les foyers principaux

étant les projections de F± et de F2.
Par conséquent, les Ek+1 correspondants par un Ek du simplexe

déterminent une transformation ponctuelle du En~k~1 opposé, qui est une
correspondance des foyers relative au simplexe situé dans cet espace et à

l'absolu Q ', projection de Q à partir du Ek. Les {n — k) points singuliers
sont les sommets du simplexe; les points doubles sont les 2n~k~1 projections

des points doubles de l'espace qui sont 2k+1 à 2k+1 dans des Ek+1

passant par le Ek.
La correspondance des foyers induit autour de chaque Ek du simplexe

une correspondance entre les Ek+1: l'inverse d'un point d'un Ek+1 non
situé sur le simplexe, est un point du Ek+1 correspondant. En particulier,
elle induit une transformation ponctuelle de chacun des Ek+1 doubles,
confondus avec leur correspondant.
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Remarquons que la section d'une hyperquadrique de révolution (par
rapport à Q) par un Eh quelconque contenant les foyers principaux Fx et
F2, est une quadrique de ce Eh, de révolution par rapport à la section de

Q par cet espace, et de foyers principaux F1 et F2.
Par conséquent, la transformation induite dans un Ek+1 double est une

correspondance des foyers; l'absolu en est la trace de l'absolu primitif
dans le Ek+1 considéré; les 2k+1 points doubles sont ceux de l'espace En

qui se trouvent dans ce Ek+1-, les (Je -f 2) points singuliers sont: les
(Je -f 1) sommets du simplexe et le point H, trace du Ek+1 dans le En~k~1

opposé du simplexe. Cette correspondance est d'ordre (Je + 1). Nommons
Jfc41 cette correspondance.

De même, la transformation ponctuelle établie entre deux Ek+1

inverses passant par un Ek du simplexe, est d'ordre (Je + 1):

4. A une droite quelconque coupant un Ek du simplexe (et aucun autre)
correspond une variété d'ordre (Je + 1) coupant ce Ek en (Je + 1) points
(sommets du simplexe).

Par contre,

5. si une droite d coupe deux espaces Eh oc et Ek P du simplexe,
elle se transforme en une droite dr coupant ces mêmes espaces.

En effet, d étant dans un Eh+1 contenant oc et dans un Ek+1 contenant
P, d! se trouve dans l'intersection des Eh+1 et Ek+1 correspondants, par oc

et jff, donc une droite coupant oc et p.

6. La variété V™'1 y', inverse d'un hyperplan En~x y, contient
les Ek du simplexe avec la multiplicité (n — Je — 1) (Je 0,..., n — 2).

En effet, soit d' une droite quelconque par un point P d'un Ek du
simplexe; elle se transforme en une variété d, d'ordre (Je -f- 1), qui coupe
l'espace y en (Je + 1) points. A ces points correspondent les points d'intersection

de df avec yf, qui ne se trouvent pas dans le Ek. Par conséquent,
d1 coupant la variété y! en n points, le point P est de multiplicité
(n~ Je -l).
§ 4. Variétés correspondant aux espaces linéaires

Nous avons vu que l'inverse d'une droite est une variété d'ordre n, de
même que l'inverse d'un espace à (n — 1) dimensions. Quelle est la
transformée d'un espace linéaire quelconque? Soient Je variétés F^"1 contenant
les En~2 du simplexe. Quelle est leur intersection effective?
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Nommons F(1),..., Vik) ces variétés. Chacune contient les En~k du
simplexe avec la multiplicité (k — 1). Les variétés F(1) et F{2) se coupent

en une variété d'ordre n2 qui dégénère dans les T) En~2 du simplexe
\ 2 /

et une variété d'ordre n2 — j~ I I I Soit x3 Tordre de la variété

F(n~3), intersection effective des /variétés F(1),..., Fo) ; elle contient
les E"-1-1 du simplexe. D'autre part, Fo+1) contient les E71-?-1 du
simplexe avec la multiplicité j. L'intersection de ces deux variétés F(n~7)

et F(m) se compose donc de • T, • jEn~^~x et d'une variété d'ordre

Par conséquent, #,=(.). En effet, #2 ; si x3=(n.)9

x)+\ w( ')¦—?( •ii)==(-!1)- L'intersection de k F^"1 contenant

les ^Z*1"1 du simplexe est une variété V/n\ contenant les En~k~1 du

simplexe. Par conséquent:

7. [7?i JS?n~fc quelconque est transformé par la correspondance des foyers

en une variété d'ordre | contenant tous les En~k~1 du simplexe
\ A/ /

(4=1,...,»).
Une variété F* est déterminée par (n + 3) points Pt. En effet, une

correspondance projective étant donnée par trois positions des éléments
homologues, il suffit de considérer les n faisceaux d'hyperplans d'axes

(Pi,..., Pt_x, Pt+1,..., Pn) (i 1,..., n) et dont les éléments
homologues passent successivement par Pn+1, Pn+2 > Pn+z • Ces n faisceaux se

coupent en une F* passant par les (n + 3) points donnés. D'autre part,
toute F* se laisse engendrer de cette façon, un hyperplan par (Pl9... ,Pt-.i,
Pt+1,..., Pn) la coupant encore en un et un seul point. Donc:

Toute F* par les (n + 1) sommets du simplexe est l'inverse d'une
droite de l'espace.

Une variété FJJ""1 contenant les En~2 du simplexe est déterminée par n
autres points. Remarquons d'abord que par n points passe une telle
variété, à savoir la transformée de l'hyperplan déterminé par les n
inverses des points donnés. Supposons que par (n. + 1) points quelconques
passe une telle variété. Soient 1,..., n + 2 des points quelconques et
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considérons les n—1 variétés V* 1 déterminées par les (n+l) points
1,...,?' — 1,7 + l,...,n + 2 (j 4, 5,...,n + 2). Ces n—\ variétés
se coupent suivant une courbe F* passant par les sommets du simplexe
et par les points 1, 2, 3. Nous aurions alors une courbe de ne ordre

par {n + 4) points quelconques. Nos hypothèses sont donc fausses.

8. Une variété Vtn\ contenant les Ek~x du simplexe est déterminée par
(k + 1) autres points.

Remarquons de nouveau que la transformée de l'espace Ek déterminé

par les inverses des (k -f- 1) points est une telle variété. Supposons que
par (k + 2) points quelconques passe une telle variété. Considérons
d'autre part une variété F®"1 passant par (k + 1) de ces points et ne
passant pas par le (k -f- 2)e. Ces deux variétés ont pour intersection effec-

tive une variété Vi n \ Si donc il passe une variété V/n\ par les Ek~x du
k—1

simplexe et par (k + 2) points, il passe une variété F/ n \ par les Ek~2

du simplexe et par (k + 1) points et par suite, il passe une variété F^ par
les sommets du simplexe et par trois points, ce qui est faux. Par conséquent

:

je

9. Toute variété V(n\ contenant les Ek~x du simplexe est la transformée

d'un espace linéaire à k dimensions (k 1,...,t& — 1) dans la correspondance

des foyers.

En nous appuyant sur les résultats trouvés précédemment, nous
pouvons donner maintenant des propriétés générales de la correspondance
des foyers.

A un Eh contenant un Ek du simplexe correspond un cône ayant ce

(n £ ]\ En effet, la
lu Ki A /

trace du Eh dans le En~k~1 opposé du simplexe, qui est un Eh-k~1, est

transformée par la correspondance des foyers (d'ordre n — k — 1) induite

(n
£ 1\

qui, projetée à
th • A/ 1 /

partir du Ek, donne la variété cherchée. Par suite:

10. Un Eh quelconque est transformé par la correspondance des foyers
I n\en une variété à h dimensions, d'ordre 7 contenant tous les Eh~x du\hj

simplexe; les Ek+1 tangents à cette variété en un Ek du simplexe forment
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-»-x h-k- 1

Ce cône est en effet la transformée de l'espace à h dimensions projetant
à partir du Ek la trace du Eh donné dans le En-k~x opposé du simplexe.

11. A un Eh incident à un Ek du simplexe (et seulement à cet espace)

correspond une variété F/*+i\ coupant ce Ek suivant une variété F/*+i\
En effet, ce Eh est dans un Ek+1 contenant le Ek. Sa transformée est

dans le Ek+1 correspondant par le Ek; la correspondance entre les deux
espaces est d'ordre (k -f- !)• Remarquons que pour h k -f- 1, nous
retrouvons un théorème précédent.

Nous pouvons dès lors donner le résultat général suivant:

12. La correspondance des foyers transforme une variété V\ en une va-

riété Vtn\. h contenant tous les Ek~x du simplexe : les Em+1 tangents à

cette variété le long d'un Em du simplexe forment un cône ayant ce Em

7 7- • 7 7> 7 ln — m — 1\ 7
pour sommet, de dimension k et d ordre • h^ \k — m — 1/

En effet, soit un En~k quelconque; il coupe la variété transformée Vr

en x points; à chacun de ces points correspond un point d'intersection

de la transformée F/ n \ de ce En~k avec la variété donnée V, donc

x =1 A - h l
7

- h D'autre part, soit P un point de F dans un
\n — k/ \k / r r

fin-m-i (ju simplexe: l'espace à (m + 1) dimensions déterminé par P
et le Em opposé se transforme en un Em+1, par ce Em, et tangent à la
variété F/. La trace de F dans le En-m~1 est transformée dans cet

espace, en une variété V/n-m-i\ qui, projetée à partir du Em, donne

le cône cherché.

§ 5. Décomposition de la correspondance des foyers

Considérons un Ek~x a et un En~k~1 b du simplexe, sans point
commun. Soient oc un Ek double par a, p un En~k double par b. Nous avons
dans oc une correspondance/*.; dans fi, une correspondance e/n_fc. Ces deux

correspondances Jk et Jn__fc déterminent la correspondance de Vespace.

En effet, soit P un point quelconque. L'espace y (aP) Ek coupe p
en un point R; l'espace inverse y ' est un Ek passant par a et par le point
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Rf, correspondant de R dans Jn_k. De même, à l'espace ô (bP)
En~k, coupant oc en S, correspond l'espace ôf (bSf) En~k, Sr étant
le point inverse de S dans Jk. L'inverse Pf de P est le point d'intersection
des espaces y1 et àf.

Si nous décomposons de cette façon les correspondances Jk et /n_fc,
nous arrivons finalement au résultat suivant:

13. La correspondance des foyers est déterminée par n transformations Jv

Par exemple et plus exactement: la correspondance des foyers est
déterminée par les n points singuliers A1,.. .,An, un point double D et
les involutions biunivoques définies sur les n droites A%D.

En effet, soit P un point quelconque. L'espace (Ali.. .,Al_1, P,
At+1,. .,An) coupe la droite AXD en Rt. Soit R[ son correspondant sur
AtD. Les n espaces (A17.. .,Al^1) R[, Al+1,.. .,An) se coupent au point
P1', inverse de P.

Il va sans dire que nous pourrions combiner différemment les involutions

linéaires Jt, ou faire des raisonnements semblables avec les

correspondances des foyers induites dans les espaces du simplexe. La
correspondance des foyers peut donc se définir indépendamment de l'hyper-
quadrique absolue Q. Supposons le simplexe (Ao,.. ,,An) fixe. Quelles
sont les hyperquadriques qui engendrent la même correspondance des

foyers

§ 6, Correspondances des foyers et ensembles d5hyperquadriques

Etant donné un point de coordonnées c?, nous avons vu que son

inverse a pour coordonnées dt —— J£ octkuzuk 0 étant l'équation

tangentielle de l'hyperquadrique absolue. Par conséquent, la correspondance

des foyers est indépendante des coefficients <xlk (i ^ k). Nous

pouvons donc considérer comme absolu n'importe quelle hyperquadrique
du système

E (<*zkUiUk + PtkUtUk) 0
l,k

(fîti 03 filh quelconque) ; la correspondance sera la même. En d'autres
termes :

14. Soient Ft et F2 les foyers principaux d'une hyperquadrique
inscrite au simplexe (Ao,...,An) et de révolution par rapport à Q. Soit
Q! une hyperquadrique du faisceau tangentiel déterminé par Q et par une
hyperquadrique quelconque inscrite au simplexe. Il existe une hyper-
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quadrique inscrite au simplexe, de révolution par rapport à Qr et ayant F1
et F2 pour foyers principaux, c'est-à-dire inscrite au simplexe et aux deux
cônes de sommets Fx et F2 tangents à Q-

Nous pouvons retrouver ce résultat en nous appuyant sur la propriété
élémentaire suivante : Soient Cx, C2, C3, C4 quatre hyperquadriques. Si
les faisceaux tangentiels déterminés par Ox et C2 d'une part, C3 et C4

d'autre part, ont une hyperquadrique commune, il en est de même pour
les deux faisceaux tangentiels déterminés par ces quatre quadriques prises
deux à deux de façon quelconque. Remarquons que le faisceau tangentiel
déterminé par deux quadriques inscrites se compose de quadriques
inscrites. Par conséquent, soient Fx et F2 les deux foyers principaux d'une
quadrique inscrite, Jt, de révolution par rapport à Q ; Qf une quadrique
du faisceau déterminé par Q et par une quadrique inscrite J2 : les faisceaux
tangentiels {(F1,F2), Jx] et {Qf, J2} ayant en commun la quadrique
Q, les faisceaux {(Fx, F2), Q'} et {J1, J2} ont en commun une quadrique
J3. J3 est inscrite, de révolution par rapport à Qf et de foyers principaux
F1 et F2. Nous pouvons énoncer cette propriété comme suit en employant
le langage de l'espace euclidien :

15. Si Fx et F2 sont les foyers principaux d'une hyperquadrique de
révolution inscrite à un simplexe, les deux cônes de sommets Fx et F2, tangents à

une hyperquadrique homofocale à une hyperquadrique quelconque inscrite au
simplexe, sont tangents à une hyperquadrique inscrite au simplexe.

La correspondance des foyers est la même pour tout le système linéaire
n(n -\- 1)

à — "^ dimensions déterminé par toutes les quadriques inscrites et
Ji

par une quadrique quelconque. Chacun de ces systèmes contient une et
une seule quadrique admettant le simplexe pour simplexe polaire (car une
telle quadrique a pour équation J£ ocuu^ 0).

16. Toute correspondance des foyers est caractérisée par une
hyperquadrique admettant le simplexe pour simplexe polaire et réciproquement.

§ 7. Quelques variétés remarquables de l'espace euclidien

Considérons un espace ayant un hyperplan à l'infini a (l'espace euclidien

par exemple). Nommons milieu d'un segment BC le point conjugué par
rapport à BC de la trace de la droite BC dans l'hyperplan à l'infini.

Soit un espace à deux dimensions par une arête A^^ du simplexe, et
transformé en lui-même par la correspondance des foyers. (Rappelons
qu'il en existe 2n~2 par chaque arête.) Sa droite à l'infini a pour inverse
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une conique par neuf points : les deux sommets Ai et Ak, la trace H de ce

plan dans le En~2 opposé à Aiet Ak et les milieux des six segments
déterminés par deux des quatre points doubles situés dans ce plan, ces points
étant conjugués d'un point à l'infini par rapport à toutes les quadriques
du faisceau ponctuel déterminé par les 2n centres des hypersphères
inscrites au simplexe. Il y a donc 2n~z-n(n -\-1) coniques particulières.

Plus généralement, soit un Ek+1 double par un Ek du simplexe. L'inverse
de son Ek à l'infini est une variété F*+1, contenant les (k + 1) sommets
du simplexe, la trace H du Ek+1 dans le En-k-x opposé et les 2/c(2&+1— 1)

milieux des segments déterminés par les 2k+1 points doubles du Ek+1, pris
deux à deux.

Nous avons donc 2n-k~1 i '
j~ variétés particulières F|+1(ifc=0,... ,n-2).

Rappelons que toute variété F/w\ contenant les Ek~l du simplexe est

la transformée d'un Ek. Par conséquent :

k
17. Si une V/n\ contenant les Ek~x du simplexe coupe (k + 1) des

variétés particulières F*!*"1, elle les coupe toutes (en des points non situés

sur le simplexe).

En effet, son inverse est alors un Ek contenu dans l'hyperplan à l'infini
et coupant donc tous les En~k~1, transformés des variétés particulières.

II.

PARABOLOÏDES DE RÉVOLUTION INSCRITS
A UN SIMPLEXE

§ 1. Une propriété des foyers d'une hyperquadrique de révolution

Soient Fx et F2 les deux foyers principaux d'une quadrique, Hl9 de

révolution par rapport à l'absolu Q, c'est-à-dire inscrite aux cônes Cx

et C2 de sommets Fx et F2 tangents à Q. Soient fx et /2 les hyperplans
polaires de Fx et F2 par rapport à Q, oc± et ot2 leurs variétés quadratiques
d'intersection avec Q.

Une polarité par rapport à Q transforme la quadrique H1 en une
quadrique H2 contenant les variétés oct et a2.

Opérons encore une inversion de sommet Fx par rapport à Q : A un
point P correspond la trace P ' du rayon Fx P dans l'espace polaire de P
par rapport à Q. Cette transformation est quadratique. A la quadrique
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H2 correspond une variété de quatrième ordre qui dégénère dans le cône

Ct, inverse de <xt, et dans une nouvelle quadrique H3. H3 contient oct et
<x2 En effet, les points de <x2 sont transformés en eux-mêmes. Soit P un
point de oc1. Le rayon Fx P coupe H2 en un deuxième point Pt dont
l'inverse est le point P, l'espace polaire de Pt passant par P.

De même, si nous prenons F2 pour centre d'inversion, l'inverse de H2 se

compose du cône C2 et d'une quadrique 174, contenant % et oc2.

H3 et Hé sont identiques. En effet, soit R un des points d'intersection
de la droite FtF2 avec H2. Son inverse Rr est le même, que le centre
d'inversion soit Fx ou F2. Hz et HA faisant partie du même faisceau ponctuel

(déterminé par Q et par les deux hyperplans f1 et /2) et ayant un
point commun, coïncident.

Les quadriques H1 et H3 sont tangentes le long d'une variété quadratique.

Autrement dit : Soient P un point sur H1 et Hs ; a et b les hyper-
plans tangents à H1 et H2 en P : a et b sont identiques, quel que soit P.

En effet, le point P', inverse du point P de H3, est sur H2 et dans

l'espace polaire de P. L'hyperplan polaire de P ' est tangent à H1en P.
Pr est donc le pôle de a. Remarquons la propriété suivante : Soient C et
D deux points inverses, c et d leurs hyperplans polaires : L'inverse c ' de c

est une hyperquadrique tangente à d. En effet, supposons que cx coupe c£

en un point E ^ D. L'inverse E' de E étant dans c, l'espace polaire de

E contient la droite GE! si E! ^ C, donc toute la droite DE est sur c; ;

ou alors, si Ef — C, E D. cr est bien tangente à d. Soit / l'espace
tangent à H2 en P!. Son inverse est tangente à iï3, mais aussi à a. Par
conséquent, #! et H3 sont tangentes en tout point de leur intersection.

Soit g un hyperplan tangent à Hx et soit G son pôle par rapport à Q.
La droite FXO (perpendiculaire abaissée d'un foyer sur un espace tangent)
coupe g en un point de Hz. Par conséquent :

18. Le lieu des pieds des perpendiculaires abaissées des deux foyers
principaux d'une hyperquadrique H1, de révolution par rapport à une
hyperquadrique absolue Q, sur tous les hyperplans tangents à Hl9 est une hyper-
quadrique H3, tangente à Hx de long d'une variété quadratique, et appartenant

au faisceau ponctuel déterminé par Vabsolu Q et les deux hyperplans
polaires (par rapport à Q) des foyers.

Considérons le cas particulier où la quadrique Hx est un paraboloïde de

révolution, c'est-à-dire que Hx est tangente à l'hyperplan fl9 polaire de

Ft. L'hyperquadrique H2, polaire réciproque, passe par Fx et son inverse
HB dégénère dans les deux hyperplans f1 et /2 qui sont tangents à Hx.
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Nous pourrons donner une définition plus symétrique du paraboloïde
de révolution :

Un paraboloïde de révolution par rapport à Q est une hyperquadrique de

révolution tangente aux deux hyperplans polaires de ses foyers principaux.

Remarquons encore que les points de contact R et Rr du paraboloïde
avec ces hyperplans sont sur la droite des foyers principaux. En effet, les

points i\ et F2 constituent une quadrique du faisceau tangentiel, déterminé

par Q et H1. Les espaces fx et /2 se coupent en un espace (f^)
conjugué de la droite FXF2 par rapport à toutes les quadriques du faisceau,
étant conjugué par rapport à deux d'entre elles, Q et (F\F2). Les espaces

/i e^ fz » tangents à Hx, ont leur points de contact sur FXF2.

La propriété la plus importante de ce cas particulier est la suivante :

19. Le lieu des pieds des perpendiculaires abaissées d'un foyer principal
d'un paraboloïde, de révolution par rapport à une hyperquadrique absolue

Q, sur les hyperplans tangents à ce paraboloïde, est Vhyperplan polaire du
deuxième foyer par rapport à Vabsolu Q.

§ 2. Lieu des foyers des paraboloïdes de révolution inscrits à un simplexe

Podes et podaires

Nous avons déjà remarqué qu'une hyperquadrique de révolution est
déterminée par un foyer principal et par (n + 1) hyperplans tangents,
c'est-à-dire un simplexe de sommets Ao,.. .,An. Nous nous proposons
de déterminer le lieu des foyers des paraboloïdes de révolution inscrits à

ce simplexe. Ces points devant satisfaire à une condition linéaire (l'hyper -

quadrique est tangente à l'espace polaire d'un foyer), nous trouverons une
hypersurface que nous nommerons (F). D'après ce qui précède, nous

pouvons affirmer que :

20. (F) est le lieu des points P tels que les pieds des perpendiculaires
abaissées du point P sur les (n + 1) faces du simplexe sont dans un espace
linéaire à (n — 1) dimensions.

Nous dirons que cet espace des pieds est l'espace podaire, ou simplement

la podaire de P (par rapport au simplexe) et que P est le pode de cet
espace. Nous désignerons enfin par (T) l'enveloppe des podaires.
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D'après le théorème 2, nous voyons que :

21. Si Fx est un pode, son espace polaire fx est une podaire. Plus exactement

:

22. Le pode F2 de la polaire fx d'un pode Fx est aussi le pôle de la podaire
f2deF1.

23. Le pôle et le pode d'une podaire sont les deux foyers principaux d'un
paraboloïde de révolution inscrit au simplexe.

24. La classe de (T) est égale à l'ordre de (F).

Donnons encore une démonstration directe du théorème 21 : Par hypothèse,

la droite PA\ coupe la face at du simplexe en un point Bt, les

(n + 1) points B{ (i 0,..., n) étant dans un même En~x r. En
effectuant une polarité par rapport àQ, au point Bt correspond l'hyperplan
6e déterminé par l'intersection de p et de at et par le point A\. Ces (n+1)
espaces bt se coupent en un point B. La droite BAi coupe l'espace ai en
un point de p qui est donc une podaire de pode B.~

De cette démonstration découle la propriété suivante que nous
emploierons dans la suite :

25. Pour que le point P soit un pode, il faut et il suffit que les {n + 1)

hyperplans passant par A^ et conjugués des droites PA\ se coupent en un
point B. Ce point B est aussi un pode.

§ 3. Quelques propriétés des podes et des podaires

D'après la définition du pode, nous voyons facilement que la variété
(F), lieu de ces points, contient : tous les espaces à (n — 2) dimensions du
simplexe Ao,.. .,An ; les espaces d'intersection des faces homologues at
et a'j ; les sommets du simplexe A'o,... ,A'n. Dualement, tout hyperplan
par une hauteur AtA/i est une podaire, de même que tout hyperplan
contenant deux sommets au moins du simplexe (A'o,.. .,Arn).

26. Toute podaire contenant un seul sommet A\ contient toute la hauteur

AtA't.
Remarquons que le pode d'une podaire r est l'intersection des (n + 1)

hyperplans déterminés par un point A^ et l'intersection des espaces r et
ai (i 0,..., n). Par conséquent, si une podaire contient le point A'o par
exemple, elle contient son pode P. Les n hyperplans déterminés par A\ et
la trace de cette podaire dans la face at (i 1,..., n) devant se couper
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en P, P n'est autre que l'intersection des n faces a% (i 1,..., n), donc
le point A0.

A cause de notre remarque, nous pouvons aussi affirmer que :

Tout hyperplan par k sommets A[,.. .,A'k est une podaire admettant

pour pode n'importe quel point de son intersection avec l'espace
(Aly.. .,Ak). Tout espace par k sommets A[ a donc oofc~2 podes.

27 Pour qu'une podaire contienne son pode, il faut et il suffit qu'elle
contienne un "sommet au moins du simplexe (Ar0,.. .,A'n).

La suffisance découle de ce qui précède. D'autre part, supposons qu'une
podaire contienne son pode et aucun des points A[ : Elle devrait alors
contenir le point d'intersection des (n + 1) espaces at (i 0,..., n), ce

qui est exclu.
En résumé, si une podaire passe par le point A'o, elle contient ou le

point Ao, ou un sommet A[. Dualement, les seuls podes qui se trouvent
dans la face a0 sont les points des espaces à (n — 2) dimensions du sim-
plexe et les points de l'intersection des faces a0 et af0. Donc :

28. La variété (F) est d'ordre {n + 1) ; la variété (T) est de classe

{n + 1).

§ 4. Variété (F)
Pour éviter d'employer le principe de la conservation du nombre,

donnons une démonstration directe de ce dernier théorème.
Soient Q l'absolu, (Ao,.. .,An) le simplexe, at la face opposée à At,

A[ le pôle de at par rapport kQ, d une droite quelconque, dl sa projection
sur a% à partir de A[, P un point quelconque de d, Pt sa projection de

A[ sur d%.

Combien existe-t-il de points P tels que l'espace (Pl9..., Pn) coupe d0

en Po? Si P est quelconque, l'espace (Ply..., Pn) coupe d0 en P'o.

L'ordre de (F) est égal au nombre de points doubles de la correspondance
PqPq. Soit Xn+1 ce nombre. A un point Po correspond un seul point
Pq. A un point Pf0 correspondent Xn points Po. Xn est égal au nombre

d'hyperplans menés par PfQ et coupant les/droites dt en des points Rt tels

que les droites A[Rt se coupent sur d. Spit P[ l'intersection de l'espace
(Po, P2,..., Pn) avec la droite dx. Xn est égal au nombre de points
doubles de la correspondance PiP{. A un point Px correspond un seul

point P[; à un point P'x correspondent Xn_t points Pt. Xw-1 Xn — 1

Xn+1— 2. Généralement Xn_h est égal au nombre d'hyperplans menés
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par P'o,..., Prh coupant les droites d{ en des points R{ {i h -f 1 • •. n)
tels que les droites A\ JBt se coupent sur d, c'est-à-dire si Pfh+1 est le point
d'intersection de l'espace (P^,... P'h9 Ph+2,..., P») avec la droite dh+1

c'est le nombre de points doubles de la correspondance Ph+1 Prh+1- Xn^h
Xn__h+1 — 1 Xn+1 — h — 1. Pour h n — l Xx est le nombre de

points doubles de la correspondance P'nPnP!n étant fixe, X1= 1. Par
conséquent, Xn+1 n + 1. L'ordre de (F) est bien égal à (n + 1).

29. La variété (F) contient tous les En~k du simplexe avec la multiplicité
(4-1).

Remarquons tout d'abord que la variété (F) est transformée en elle-
même par la correspondance des foyers relative à l'absolu Q.

Soit d une droite quelconque, coupant (F) en (n + 1) points. Sa
transformée d ' dans la correspondance des foyers est une variété F*, passant

par les sommets du simplexe, points de multiplicité y sur (F), A tout
point d'intersection de d et de (F) correspond un point d'intersection de

d1 et de (F), d1 coupant (F) en n(n + l) points dont y(n + 1) sont
singuliers, nous devons avoir

n + 1 n(n + 1) — y(n + 1) ; y n — 1

Soit / une droite quelconque par un point P d'un En~k du simplexe.
d coupe (F) en (n + 1) points dont x sont confondus en P. A chaque point
d'intersection de d et de (F), (différent de P), correspond un point d'intersection

non singulier de la transformée d1 de d, et de (F). Or d1 est une
variété Vxn_k+1 passant par les (n — k + 1) sommets du simplexe situés
dans le En~k considéré, chacun de ces points ayant la multiplicité {n — 1).

Par conséquent, df coupant (F) en (n ~ k -{- l)n points dont (n — k + 1)

(n — 1) sont singuliers, nous avons donc :

n — x (n — k + l)n — (n — k + 1) (n — 1)

x k — 1, (4 1,..., w)

§ 5. Variétés (F) transformées en elles-mêmes par une correspondance
des foyers

Nous avons vu que nous obtenons la même correspondance des foyers
si nous considérons une hyperquadrique absolue Q ou n'importe quelle
hyperquadrique du faisceau tangentiel déterminé par Q et par une
hyperquadrique quelconque inscrite au simplexe. Or à chaque hyperquadrique
d'un tel faisceau correspond une variété (F), lieu des foyers des para-
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boloïdes inscrits au simplexe et de révolution par rapport à cette hyper-
quadrique. Chacune de ces variétés est transformée en elle-même par la
correspondance des foyers commune au faisceau. Par conséquent, chaque

variété à (n — h) dimensions d'ordre h intersection de k variétés (F)
\rC/

est également transformée en elle-même. Nous pouvons donc parler de
sous-variétés invariantes pour la correspondance des foyers.

30. Par tout point de Vespace passent (n -{- \) des variétés (F) relatives
à un faisceau tangentiel d'hyperquadriques.

En effet, soient R un point quelconque, dt le lieu des pôles de la face ai
par rapport à toutes les quadriques du faisceau, di la projection à partir
de R de cette droite c^- sur la face aiy Pi un pôle particulier, P\ sa projection

correspondante.
Il passe autant de variétés (F) par R qu'il y a d'ensembles de points

(Pq P^) qui sont dans un hyperplan. En général, l'espace (P[,..., Prn)

coupant la droite d'o en un point P* il y en a autant que de points doubles
dans la correspondance P*P'O. Soit Xn ce nombre. A un point Pf0

correspond un et un seul point P*, le point Pf0 déterminant une quadrique
du faisceau, donc aussi l'espace (P[,..., Prn). A un point P* correspondent
Xn__x Xn — 1 points Pq, Xn_1 étant égal au nombre d'hyperplans
passant par P* et coupant d^ en un point Pfit projection du pôle de ai
par rapport à une certaine quadrique indépendante de i (i 1,.. n).
Autrement dit, soit P* l'intersection de d[ et de l'espace (P*, Pf2,..., P'n)9

Xn_t est égal au nombre de points doubles de la correspondance P* P[.
Généralement, soit P* l'intersection de la droite dfh et de l'espace
(P* ,P*_!, P'h+x,..., P'n) et soit Xw_ft le nombre de points doubles
de la correspondance P*Prh • Xn_h Xn — h. Pour h n, P* est
l'intersection de l'espace (P* P*_x) et de la droite drn, c'est donc un
point fixe. La correspondance P* P!n a un seul point double, c'est-à-dire
Xo — 1 et par suite : Xn X0-\-n n-\-l.

Si, par un point de l'espace, passent (n + 2) variétés (F) relatives à un
faisceau, toutes passent par ce point.

Si le faisceau d'hyperquadriques considéré contient une hyperquadrique
inscrite au simplexe, la correspondance des foyers est la même pour tout
le faisceau et chacune des variétés (F) est transformée en elle-même par
cette correspondance. L'ensemble des variétés (F) détermine sur chacune

d'elles un système de variétés à (n — 2) dimensions Vtn\ également

invariantes. Par tout point d'une variété passent n sous-variétés invariantes
situées dans la variété ; s'il en passe (n -f- 1), il en passe une infinité. Nous

179



avons ainsi obtenu une décomposition de tout l'espace en variétés Vrn\

transformées en elles-mêmes par la correspondance des foyers (le simplexe
étant singulier).

Si, au lieu de considérer un faisceau d'hyperquadriques, nous avions
pris le système déterminé par une quadrique quelconque et l'ensemble
des quadriques inscrites au simplexe, nous aurions obtenu un ensemble

plus complet de variétés (F) transformées en elles-mêmes par la
correspondance des foyers commune à ce système, par chaque point de

In — 1) (n + 2) .,x, ._.
respace passant alors oo- '-^—!—- variétés (F).

§ 6. Variété (F) dans le cas euclidien

Les résultats que nous avons obtenus jusqu'ici sont valables quelle
que soit l'hyperquadrique absolue Q. Il est intéressant de voir ce que
devient la variété (F) dans le cas où l'absolu dégénère. Prenons donc pour
absolu, une variété quadratique Q! à (n — 2) dimensions, située dans un
hyperplan oc. Dans ce cas, la polaire par rapport à Qr d'un point non situé
dans oc est l'espace oc ; la polaire d'un point de oc est un hyperplan
quelconque passant par le En~2 polaire de ce point par rapport à Qf. Inversement,

le pôle de oc est un point quelconque de l'espace ; le pôle d'un hyperplan

est le pôle de sa trace dans oc par rapport à Qr. La correspondance
des foyers relative à Q ' et à un simplexe est bien déterminée. D'après nos
définitions générales, un paraboloïde de révolution est maintenant une
hyperquadrique de révolution tangente à l'hyperplan oc, polaire d'un
foyer Fx. La podaire de Fx (non situé dans oc) étant différente de oc, le
deuxième foyer est dans oc (puisque c'est le pôle de cette podaire).
Réciproquement, tout point de oc est un pode, sa podaire étant l'espace a lui-
même. Par conséquent:

31. La variété (F) d'ordre (n -f- 1) dégénère dans le cm euclidien et se

compose de Vespace oc et de la variété {Fr), transformée de oc dans la
correspondance des foyers, variété d'ordre n.

Dualement, l'enveloppe (T) dégénère et se compose de l'hyperplan (oc)

et d'une variété (Tf) de classe (n + 1)> mais d'ordre plus petit que celui
de (T).

Remarquons que la trace (J5) de (F') dans oc, variété à (n — 2) dimensions

d'ordre n, est transformée en elle-même par la correspondance des

foyers. Si un point X de (Ff) tend vers un point P de (B), son inverse Xf
sur oc tend vers un point Pf également sur (JS). La trace de la podaire de
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X dans oc est l'espace à (n — 2) dimensions polaire de Xr par rapport à
Qr dans oc. Si X P, la podaire est l'espace <% lui-même. Si X décrit une
courbe sur (Ff) passant par P, les podaires enveloppent une variété
tangente à oc le long de l'espace polaire de P '. L'enveloppe des podaires
de (Ff) touche oc le long d'une variété qui est l'enveloppe des espaces En~2

polaires de (B) par rapport à Qf.

32. La variété (Tr) touche Vespace oc le long de la variété polaire
réciproque de la trace de (Fr) dans oc par rapport à Vabsolu dégénéré Q!.

§ 7. Variété des foyers des hyperquadriques de révolution tangentes à

(n +p + 1) hyperplans

Quelle est la signification géométrique de la variété (B)ï Deux points
correspondants de (B) sont les foyers principaux d'une hyperquadrique
de révolution inscrite au simplexe et tangente à oc, donc contenue dans oc,

c'est-à-dire dégénérée en une hyperquadrique à (n — 2) dimensions. Par
conséquent, la variété (B) est le lieu des foyers des hyperquadriques de

oc, de révolution par rapport à Q! et inscrites au simplexe. En considérant
Q ' comme absolu non dégénéré de l'espace oc, nous arrivons au résultat :

33. Le lieu des foyers des hyperquadriques de révolution par rapport à

un absolu non dégénéré Q et tangentes à (n + 2) hyperplans de Vespace à

n dimensions, est une variété d'ordre {n -f- 1) et de dimension (n — 1)

contenant les (n
^ espaces d'intersection des hyperplans pris deux à deux.

Dès lors se pose la question : Quelle est la variété des foyers des

hyperquadriques de révolution tangentes à (n + P + 1) hyperplans?
Soient 1,..., n + p -\- 1 les hyperplans donnés, F{ la variété des

foyers des hyperquadriques de révolution tangentes aux hyperplans
1, 2,..., n + 1, n + 1 + i, (* 1 ••.>?>)• Chacune de ces variétés est
de dimension (n— 1), d'ordre {n-\- 1); les points d'un En~k, intersection
de le des hyperplans l,...,n-{-l,n-\-l-\-i, sont des points de

multiplicité (k — 1) pour cette variété.
Le lieu des foyers des hyperquadriques de révolution tangentes aux

(n -f p + 1) hyperplans est l'intersection non singulière de p variétés
Ft. En effet, une hyperquadrique de révolution étant déterminée par un
foyer principal et (n + 1) hyperplans tangents, l'hyperquadrique de

foyer P et tangente k 1,.. ,,n + 1, n + 2 est identique à l'hyperquadrique

de foyer P et tangente i l,...,»+l,% + 3.
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L'intersection de Fx et de F2 est une variété de dimension (n — 2) et

d'ordre (n + l)2; mais elle contient les \~t) ®n~2 d'intersection

des espaces 1,..., n + 1. Par conséquent, Tordre de l'intersection

effective de Fx et de F2 est égal à x(2) (n + l)2 — (™ + 1) Cette

variété (F1F2) contient tous les En~z d'intersection des espaces
1, 2,..., (n -f- 2) pris trois à trois.

L'intersection de (F^^F^ et de F3 est une variété de dimension
(n — 2) et d'ordre x(2)>{n + 1) ; mais elle contient certains En~z : les

espaces (1, 2, 3),..., {(n — 1), n, (n + 1)} ont la multiplicité 2 sur
Fz ; les espaces

{1, 2, (n + 2)},..., {n, {n + 1), (n + 2)}

{l,2,(n+ 3)},..., {», (n+ 1), (n + 3)}

la multiplicité 1. Par conséquent, l'intersection de (FtF2) et de ^3 contient

2(U "3" X) + 2C 2" 0 es

de (F1F2F3) est égal à

"3" X) + 2C 2" 0 esPaces jErn~3 et 1>ordre de l'intersection effective

Généralement, soit x(k — 1) l'ordre de l'intersection effective de

(i\,..., Fk_1), variété de dimension (n — k + 1). Que vaut #(&)?
L'intersection totale de (Fx,..., -F^) et de Fk est d'ordre (w + 1 • x (k — 1

mais elle contient certains En~k : les En~k d'intersection de k des espaces

1,..., n + 1 ont la multiplicité (k — 1) sur Fk ; les En~k d'intersection de

(k — j) des espaces 1,..., n + 1 et de j des espaces n + 2,..., n + &

sont contenus simplement dans (i^,..., ^fc_i) et ont la multiplicité
(k — j — 1) dans Fk (j 0,..., k — 1). Par conséquent, l'intersection

àe(Fl9..., JVi) et de 1^ contenant V (i - - 1) (j + J) (* T X

espaces J?n~fc, l'ordre de l'intersection effective (F1,.. .,Fk) est égal à

182



Si .,»-„ _ C^1) ,m _ (» + *) Or ««2, -
cette formule vaut généralement par induction complète. Par conséquent :

34. Le lieu des foyers des hyperquadriques de révolution par rapport à

un absolu Q et tangentes à (n + p + 1) hyperplans est une variété de dimension

(n — p) et d'ordre y
~"~ ^) contenant les \ jï~t espaces à

(n — p— 1) dimensions, intersections de (p+1) des (n + p+l) hyper-
plans donnés.

En particulier, pour p n et en remarquant qu'une hyperquadrique
de révolution a deux foyers principaux, (n > 2) nous obtenons le résultat
suivant :

35. Il existe \ 1 — hyperquadriques de révolution

tangentes à (2n + 1) hyperplans quelconques de Vespace à n dimensions

{n > 3)

Pour n 2, comme une conique a six foyers, nous retrouvons

M2/ *' con*cïue unique tangente à cinq droites.

Il nous a semblé intéressant de donner encore une démonstration
directe d'un cas particulier de ce dernier théorème : Dans l'espace à

trois dimensions, il existe dix quadriques de révolution par rapport à une
quadrique Q et tangentes à sept plans quelconques. Les trois variétés des

foyers relatives à cinq quelconques de ces plans se coupant en un point
au moins, nous pouvons supposer qu'il existe une telle quadrique Ix.
Soient Fx et F2 ses foyers. Si le faisceau tangentiel déterminé par la
quadrique dégénérée (F1F2) et une quadrique quelconque I2 tangente aux
sept plans contient une autre quadrique dégénérée en deux points F3 et
JT4, ces deux points sont les foyers d'une quadrique de révolution /3
tangente aux sept plans. En effet, les faisceaux {Q.Ix} et {(FZF4)>I2}
ayant en commun la quadrique (FlF2), les faisceaux {Q, (F3Fé)} et
{/1/2} ont aussi une quadrique commune /3.

Pour que le faisceau tangentiel déterminé par (F1F2) et par une
quadrique / contienne une autre quadrique dégénérée (FSFA), il faut et il
suffit que F passe par les points Fx et F2. En effet, si (FlFt) et (F3FA)
déterminent un faisceau, tout plan par une des droites FxF3, F1Fi, F2Fs,
F2Ft, est tangent à toutes les quadriques du faisceau, qui contiennent
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donc ces quatre points. Inversement, si / passe par F1 et F2, les deux
génératrices de / par F1 coupent les génératrices par F2 en deux points
F3 et F& qui appartiennent au faisceau.

Soient donc Fx et F2 les deux foyers d'une quadrique de révolution
inscrite aux sept plans donnés. Il y a neuf quadriques passant par ces
deux points et tangentes à ces sept plans. Par conséquent, il existe dix
quadriques de révolution tangentes à sept plans.

Dans l'espace à n dimensions, comme il existe hyperquadri-

ques de révolution tangentes à {2n-\- 1) hyperplans, nous pouvons dire
de même :

36. Soient Fx et F2 deux points quelconques. Il existe n~ — 1

\ n I
hyperquadriques tangentes à (2n + 1) hyperplans et dont le faisceau tangen-
tiel déterminé avec Vhyperquadrique dégénérée (FtF2) contienne une autre
hyperquadrique dégénérée en deux points F3 et F4. En effet, nous pouvons
toujours considérer deux points quelconques Fx et F2 comme foyers
principaux d'une hyperquadrique tangente à (2n + 1) hyperplans et de
révolution par rapport à un certain absolu, hyperquadrique quelconque du
faisceau déterminé par Fx et F2 et l'hyperquadrique tangente.

§ 8. Variété des foyers des paraboloïdes de révolution tangents à (n -\-p)
hyperplans

Une hyperquadrique de révolution étant déterminée par un foyer principal

et (n + 1) hyperplans tangents, la variété des foyers des paraboloïdes

de révolution tangents à (n + p) hyperplans est égale à
l'intersection de la variété des foyers des hyperquadriques de révolution
tangentes à ces (n + p) hyperplans et de la variété des foyers des
paraboloïdes de révolution tangents à (n + 1) quelconques de ces hyperplans.
En reprenant les raisonnements du paragraphe précédent, nous voyons
que nous pouvons procéder exactement de la même façon. Nous trouvons
ainsi :

37. Le lieu des foyers des paraboloïdes de révolution tangents à (n -f p)

hyperplans est une variété de dimension (n—p) et d'ordre y "¦ ^J contenant

les espaces à (n —¦ p — 1) dimensions, intersections des (n + p) hyperplans

pris (p + 1) à (p + 1).
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En particulier, pour p n :

38. Il existe I 1 paraboloïdes de révolution tangents à 2 n hyper-\ n j
plans quelconques.

Il semble que la condition imposée à un paraboloïde de révolution
d'être tangent à l'espace polaire d'un de ses foyers, est complètement
analogue du point de vue énumératif à la condition d'être tangent à un
hyperplan fixe.

En répétant les mêmes considérations pour le cas euclidien, où les

variétés (F) sont à remplacer par les variétés (Fr) d'ordre n, nous trouvons

les résultats suivants :

39. Le lieu des foyers (situés dans le fini) des paraboloïdes de révolution
de l'espace euclidien tangents à (n + p) hyperplans est une variété de

dimension (n — p) et d'ordre "¦" ^ J • (n ^ 3).

Remarquons que la section de ces variétés par l'hyperplan à l'infini est

une variété V/n+p-i\ qui est le lieu des foyers des hyperquadriques
\ v

tangentes à (n + p) hyperplans dans l'espace à (n — 1) dimensions, ce

qui coïncide avec nos résultats précédents.

En particulier, pour p n, un paraboloïde n'ayant qu'un foyer dans
le fini :

40. Il existe n ~ \ paraboldides de révolution tangents à 2n

hyperplans (n > 3).

Pour n 2, les points cycliques étant sur toutes les variétés (Fr), ils
/3\font aussi partie du lieu. Par conséquent, il y a I ~ — 2 ~ 1 parabole

tangente à quatre droites.

III.
DROITES ASSOCIÉES

§ 1. Lemme

Pour établir notre prochain théorème, démontrons analytiquement une
propriété particulière : Soient, dans un espace à n dimensions, (n + 1)

droites parallèles 1,..., n + 1, perpendiculaires à l'espace des (n — 1)

premières coordonnées et soient a{,..., a\_x les (n — 1) premières
coordonnées d'un point de la droite j, xj la dernière. Considérons sur la droite /
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(n -f- 1) points Pj,.. ,P*+1, de ne coordonnée x{,..., #£+1, jouissant
des propriétés suivantes : Les ponctuelles P[,...,P£+1 sont perspectives
(; 1,..., n + 1), les points à l'infini se correspondant ; de plus, x* x\.
Nous aurons nécessairement les relations :

x* (Xx\ - kx\ + 1) (a* - a;}) + x[

c'est-à-dire a;^! Ax^x1 + .Ba;1 -f- ^B^ + C où A, B, C sont des

constantes. En effet, à cause de la perspectivité : xi at^x + 6t. Comme

x$ x{, xi a^x1 — x\) -\- x[. Devant avoir x\ x\, nous trouvons

ai ix\ — x\) + xi ak (x) ~ xi) + xi ' c'est-à-dire -| r
Je 1

A ;

Nous prétendons que : Les (n + 1) espaces à (n — 1) dimensions

lPl,...,P*"1,P*+1,...,P£+1) (Jfc 1,...,»+ 1) ^e ccmpenl ew ^n
; autrement dit, il existe une identité entre les déterminants

étant les coordonnées d'un point courant. Soit D le déterminant

D

1 a\

rtn+la an-l xl

n+1
et soient ml ses mineurs. Il existe l'identité en ^ : Jj£ Dk 0. En effet,

n-l
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Or j£ x\ ml 0, étant égal à D où Ton a remplacé la ie colonne par
k

la dernière ; J£ ml 0 (i 1,..., n), étant égal à D où Ton a
remplacé la ie colonne par la première ; J£ ml D ; J£ #J mj D ;

donc £ Dk BD — BD 0 identiquement en yt.

§ 2. Une propriété remarquable de la variété (F)
Nous nous proposons d'appliquer notre lemme pour trouver une

propriété intéressante de la variété (F), lieu des foyers des paraboloïdes de
révolution inscrits à un simplexe. Nous nous appuierons sur le théorème
25 du chapitre précédent.

4L Soient sur une droite d, n points de (F), P1,...,Pn. Soient
Qi - •., Qn les pôles des podaires de Pl9...9Pn et nommons p l'espace à

(n — 1) dimensions (Q19..., Qn). L'intersection de d et de p est un point
de (F).

En effet, soit X un point variable de la droite d. Les hyperplans con-
jugés de XA\ et passant par A[ déterminent dans /$ un faisceau d'espaces
b passant par un espace B à (n — 3) dimensions ; le faisceau 6 et la
ponctuelle X sont projectifs. En particulier, aux points Pl3..., Pn correspondent

des espaces bl9..., 6n, contenant les points Ç1}..., Qn. Si nous
projetons le faisceau 6 à partir de P1, la ponctuelle X à partir de bx, nous
obtenons deux faisceaux perspectifs qui se coupent sur un hyperplan h%

passant par A[ et par B. Cet espace est conjugué de la droite A[P, P
étant l'intersection de d et de p.

L'espace ht contient le point d'intersection Q des n espaces

En effet, projetons les points Q19..., Qn à partir de P3 sur ht. Nous
obtenons des points Q{,..., Ql, (j 1,..., n). De même, les espaces
bx,..., bn, projetés à partir de P3, donnent dans ht des espaces b{,..., bJn.

Remarquons que :

i) *i ôf;
2) les points Q^,..., Ql sont situés sur une droite passant par le

point d'intersection E de d et de ht ;

3) les ponctuelles Q\,..., Ql sont perspectives (k 1,..., n), le
point E se correspondant à lui-même. D'après le lemme précédent,
l'espace ht contient l'intersection des espaces (Q[,..., Q5-i#;+i > • • • » #»)

1,..., n), c'est-à-dire l'intersection des hyperplans

{P,Q1,...,Q,-1Q,+1,...,Qn) 0*=l,... n)
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Cet espace ht contenant un point Q indépendant de i, les (n + 1) hyper-
plans ht se coupent en ce point. En vertu du théorème 25 les points P
et Q sont deux podes, ce qui démontre notre théorème.

Cette propriété peut s'énoncer de diverses façons:

42. Soient Px,..., Pn+1 les (n + 1) points d'intersection d'une droite
d avec la variété (F), Qx,..., Qn+1 les inverses des points Px,..., Pn+1
dans la correspondance des foyers : Uhyperplan (Q±,... ,Qk_x Qk+1,... ,Qn)

coupe la droite d en Pk.

43. Soient (n + 1) points de (F) sur une droite. Les espaces podaires
de n d'entre eux et Vespace polaire du dernier se coupent en un point.

Dualement :

Soient par un En~2, (n + 1) espaces tangents à (T), Al9.. .9AP+1 les

podes de ces podaires. Le pôle de l'espace (Al9.. .,Ak_xAk+1,.. ,,An+1)
est dans la podaire de Ak, c'est-à-dire

44. Le (n -f- l)e espace tangent mené à (T) par un En~2 quelconque passe

par le pôle de Vhyperplan déterminé par les podes des n premiers espaces
tangents.

C'est en particulier sous cette forme que nous allons employer notre
théorème pour en déduire une propriété des hauteurs d'un simplexe.

§ 3. Droites associées

Définition : (n + 1) droites de l'espace à n dimensions sont dites
associées si tout espace à (n — 2) dimensions qui en coupe n, coupe aussi
la {n + l)e.

Dualement, (n + 1) En~2 sont associés si toute droite qui en coupe n,
coupe le dernier.

45. Les (n + 1) hauteurs d'un simplexe sont associées.

En effet, soit d un espace à (n — 2) dimensions quelconque coupant n
hauteurs AtA[ (i 1,..., n). n des espaces tangents menés à (T) par d
sont déterminés par les hauteurs AtA[. Les podes de ces podaires sont les

points A% (i 1,..., n). La (n + 1) podaire par d contenant le point A'o,

pôle de (A1,.. .,An), contient toute la hauteur AQA'O, d'après une
propriété établie précédemment (26). Cette hauteur coupe donc d.

Dualement, les (n + 1) intersections des faces homologues at et a[ sont
associées.

Si nous prenons en particulier pour absolu une hyperquadrique inscrite
au simplexe, nous voyons que :

188



46. Soient Bl les points de contact d'une hyperquadrique Q inscrite au
simplexe (Ao.. .An). Les (n + 1) droites AtB% sont associées.

De plus, les droites AtBt sont conjuguées des faces at par rapport à
oon+1 hyperquadriques. En effet, soient Ql9.. .,Qn+1 (n-\- 1) hyper-
quadriques indépendantes admettant le simplexe pour simplexe polaire.
Les droites AtBt étant conjuguées des faces at par rapport à Q et à toutes
les Qt, elles le sont aussi par rapport au système linéaire tangentiel
Q+ 2KQt.

Réciproquement, si les droites A%B% sont conjuguées des faces ax par
rapport à une hyperquadrique Q ', il existe une et une seule hyperquadrique

Q inscrite au simplexe aux points Bt. En effet, les droites AtBt sont
conjuguées des faces at par rapport à tout le système Q ' -f- Jj£ Xt Qt.
Soient £btkutuk 0 l'équation de Qf,ul 0 celle de Qt ; seule Phy-
perquadrique correspondant aux valeurs kt — btt dans le système

^ bticuiuk H~ ^^zul== 0 es^ inscrite au simplexe. Les droite ^2^ étant
également conjuguées des faces a% par rapport à cette quadrique, les

points Bt sont bien les points de contact.
Pour pouvoir traiter plus aisément ce qui suit, nous avons repris un

théorème de Berzolari, qui contient d'ailleurs nos propositions
précédentes (6).

47. Pour que les {n -f- 1) droites

J n
ak0 aJel ak2 ak,Jc-l ak,k+l ak,n

soient associées, il faut et il suffit que

axk aki (*, A 0,.. W)

Rappelons la démonstration duale : Pour que les (n + l) En~2 oco,... ,otn
n

d'équations xt 0 et J£ atkxk 0 (i 0,..., w), soient associés, il faut

et il suffit que

En effet, nous pouvons tout d'abord supposer aOk afc0. Par tout point
P de <%0 passe une droite coupant les n autres En~2, c'est-à-dire que les

n En~x projetant <xl9.. .,<xn à partir de P se coupent en une droite ; il doit
exister une relation linéaire entre leurs équations.
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Soit P(Pi) un point de oco, ?j?aQkpk SakOpk=p. L'espace (Pa4) a
n

pour équation ^,di1c(Vkxi ~~ Pixk) 0- Supposons tous les p{ nuls, sauf

2?r et 2>g. Les n hyperplans (Poct) ont dès lors pour équations :

(atrpr + aisp8) x{ 0 i # 0, r, a

n

(arrpr + ar8p8) xr — pr£ arkxk 0
fc=O

n

(asrpr + assp8)x8 - p8Ha8kxk 0

Une relation linéaire ne peut exister entre ces équations que si les coefficients

de x0, xr et x8 sont proportionnels dans les deux dernières, c'est-à-
dire que les deux relations

<*>rsPsxr — Pr<*<rOXQ ~ Pr^rsx8 °
et

(*>srPrxs ~ Pr<*>sOXO ~ Ps<*>srxr 0

sont identiques. Comme

VroPr + dsoPs ° y

il vient nécessairement

tors asr •

Réciproquement, si arg asr, on a l'identité

quel que soit le point P dans oc0, ce qui démontre le théorème.

48. Soient A{B{ (n + 1) droites associées. Il existe une et une seule

hyperqwxdrique inscrite au simplexe (Ao,.. .,An) aux points B{.

En effet, prenons le simplexe (^4Oî. ..,An) pour simplexe de référence

et soient bik (k 0,..., n, bu 0) les coordonnées du point B{. Les

droites AiBi ont pour équations

comme elles sont associées, biS 6it.
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L'hyperquadrique J£ bt3utUj 0 est Phyperquadrique cherchée.
En résumé, soient par les sommets d'un simplexe {Ao,... ,An) (n + 1)

droites AtBt, Bt étant les traces dans les faces opposées at.

49. Les propriétés suivantes sont équivalentes:

1. Les droites AtBt sont associées.

2. Les droites At Bt sont conjuguées des faces at 'par rapport à une hyper-
quadrique (et par conséquent par rapport à tout un système linéaire à

(n + 1) dimensions).
3. Il existe une hyperquadrique tangente au simplexe aux points Bt.
4. Les droites AtBt joignent les sommets correspondants de deux sim-

plexes polaires réciproques par rapport à une certaine hyperquadrique.

§ 4. Exemples de droites associées

1. Soient Q l'hyperquadrique absolue, Qt sa projection sur at à partir
de Ati 8t sa trace dans at. Ces deux quadriques sont tangentes le long
d'une variété quadratique située dans un espace à (n — 2) dimensions et.
Soit Et le pôle de et par rapport à Qt et à St. (Si nous considérons Qt (ou
St) comme absolu de l'espace at, Et est le centre de la sphère 8t (ou Q{))

50. Les droites AtEt sont associées. Les espaces et sont associés.
n

En effet, soit J£ a3ku}uk 0 l'équation de Q : Qt a pour équation
o

n

J£ ajkUjUk $ (h k ¥" i)

et 8t n

-2 (ana,k - a.,a.*K"* 0 (j, k ^i)
o

Toutes les hyperquadriques du faisceau tangentiel déterminé dans at par
Qt et 8t, ayant pour équation

-2' («,.<fyfc ~ «.,«.* ~ tojk)u,uk 0

nous trouvons pour A aît :

% (a%,u,Y 0 ;

le centre J5t a donc pour coordonnées dans at : al3.
Comme at0 — an, les droites AtE% sont associées.
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2. Si nous considérons St comme absolu de la face at, les centres des

sphères de l'espace at inscrites au simplexe (Ao,.. .,At_1,Al+1,.. .,An)
sont les points doubles de la correspondance des foyers relative à ce

simplexe et à 8t. Ils sont donnés par les relations

En prenant les signes convenablement, nous voyons que fXi fn. En
particulier, si le point F% a tous les signes positifs :

51. les droites AXF% sont associées.

Généralement, il y a dans chaque face 2n~1 sphères inscrites. Nous

pouvons classer les (n + l)'^71-1 centres en 2n~1 groupes de (n + 1)

points qui déterminent avec les sommets opposés du simplexe, 2W-1

groupes de droites associées.

3. Remarquons que (n + 1) droites concourantes sont associées. Si

nous prenons Qt pour absolu de la face at, les sphères inscrites dans les

faces sont les projections des sphères inscrites au simplexe. Les droites

joignant les sommets du simplexe aux centres des sphères correspondantes
inscrites dans les faces sont également associées, puisque concourantes.

4. Soient AtCt (n + 1) droites associées. Considérons dans la face a%

la correspondance des foyers ayant 8t pour absolu. Au point Ct correspond
un point C[.

52. Les droites AtC[ sont associées.

En effet, soient cl0 les coordonnées de Ct. Par hypothèse, cl} cn. Les
coordonnées de C[ étant

__
al% an — at0

c — -
c

nous avons bien

5. Considérons également dans at la correspondance des foyers ayant
Qt pour absolu. Au point Ct correspond un point C[r. Les droites AtC[f
sont associées.

En effet, C[r a pour coordonnées
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Comme nous l'avons vu, la correspondance des foyers dans l'espace transforme

la droite AtCt dans la droite AtC" Par conséquent:

53. La correspondance des foyers transforme (n + 1) droites associées

par les sommets du simplexe en (n + 1) droites associées.

§ 5. Propriétés des droites associées

Soient dQ,dt,...,dn (n+1) droites associées. Prenons sur la droite dt un
point At quelconque et soit B% la trace de d% dans l'espace (Ao,.. .,At_x,
At+l9. .,An). Il existe une hyperquadrique H inscrite au simplexe
(Ao,.. .*An) et tangente aux points Bt. Projetons cette hyperquadrique
sur la face a3 à partir de A}. Nous obtenons une hyperquadrique inscrite
au simplexe (Ao,.. .,A3_l9A}+1,...,An), tangente aux points B[, projections

des points Bt. Les droites AtB[ (i =fi j) sont donc associées dans
Pespace a3. Nous pouvons affirmer :

54. Soient (n -f- 1) droites associées. Les projections de n de ces droites

sur un En~x quelconque à partir d'un point de la (n + l)e sont n droites
associées.

Plus généralement, projetons l'hyperquadrique H à partir de l'espace
(A09.. .,Ak) sur l'espace (Ak+1,.. .,An). Comme nous obtenons de
nouveau une quadrique inscrite au simplexe (Ak+li.. .,An), tangente aux
projections des points Bx, nous aurons le théorème suivant :

55 Soient (n + 1) droites associées, x un Ek coupant les (k + 1)

premières, p un En~k~1 coupant les (n — k) dernières. Les projections à

partir de oc sur /} des (n — k) dernières droites sont (n — k) droites associées

dans p.
Remarquons qu'il existe oon~2 En~2 incidents à (n + 1) droites associées.

Dans j8, il existe donc oo*1"*-3 En~k~z coupant les (n — k) droites
associées. Considérons l'un d'eux. Projeté à partir de oc, il donne un En~2

coupant les (n + 1) droites primitives. Inversement, tout En~2 par oc

coupant les (n + 1) droites associées, a pour trace dans (} un En~k~z

coupant les (n — k) droites. Par conséquent :

56. Par tout Ek incident à {k -f- 1) droites d'un groupe de (n -f- 1)

droites associées passent oon~fc~3 En~2 incidents aux (n + 1) droites.

En particulier, pour k n — 3 :

57. Par tout En~z incident à (n — 2) droites d'un groupe de (n + 1)

droites associées passe un et un seul En~2 coupant les (n -\- \) droites.
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Soient n droites et un point P tel que les projections des droites à

partir de P sur un espace à (n — 1) dimensions soient associées dans cet
hyperplan.

58. Par P passe une et une seule droite formant avec les n droites un
groupe de (n + 1) droites associées.

En effet, soient Al9.. .,An les points d'intersection de Fhyperplan oc

avec les droites données dt ; soit Pt la trace de la projection de dt sur oc

avec l'espace (Al9.. .,At_l9 At+19..., An). D'après nos hypothèses, il
existe dans oc une quadrique Q inscrite au simplexe (A19.. -,An) aux
points Pt, Considérons le simplexe (P, Al9.. .,An) et soit P'% la trace de

dt dans la face opposée à At. L'hyperplan (P[,..., Prn) coupe le cône G de
sommet P et de base Q suivant une variété quadratique à {n — 2) dimensions

Qr. Toute hyperquadrique tangente au cône C le long de la
quadrique Q ' est tangente au simplexe (P, Al9... ,An) aux points P[. Parmi
le faisceau de ces hyperquadriques, il en est une et une seule tangente à

l'hyperplan (Al9.. -,An) en un point Pf. Les (n + 1) droites dx,.. .,dn,
PP! sont associées et par P ne passe que la droite PP1 qui jouisse de
cette propriété.

Plus généralement, soit /? un espace à (n — k — 1) dimensions coupant
(n — k) droites dt en des points Px,..., Pw_fc. Soit oc un Ek projetant les

{n — k) droites sur /S en (n — k) droites associées.

59. Il existe au moins un groupe de (k + 1) droites coupant oc et formant
avec les (n — k) droites dt un groupe de (n -f- 1) droites associées.

En effet, soit yt (oc, Px,..., Pt_t, Pm,..., Pn_k) E^1 ; cet hyper-
plan coupe dt en Qt. La projection de Qt sur p à partir de oc est un point
Q'% de l'espace (Pl9...,Pt_x,Pl+1,.. .,Pn_k). D'après nos hypothèses, les
droites PtQ[ sont associées, il existe donc dans p une variété quadratique
inscrite au simplexe (P1?.. .,Pn_fc) et tangente aux points Q[. Par
conséquent, il existe dans l'espace (Q19.. .,Qn-h) une variété quadratique
tangente aux espaces yt aux points Qt, et par suite, il existe dans l'espace,
au moins une hyperquadrique H tangente aux hyperplans yx aux points
Qt. Menons par p (k + 1) E"-1 indépendants, ôt, tangents à H aux points
Rx,..., iJft+x. Ces hyperplans coupent oc suivant un simplexe (Sx,..., Sk+1),

St étant l'intersection des espaces (oc, ô1,..., ôt_1, <5t+1,..., ôk+1). L'hyper-
quadrique H étant inscrite au simplexe (P1?.. ,,Pn_k, 8l9.. 'tSk+1) et
tangente aux points Ql9... ,Qn-k, Bl9..., Rk+l, les droites Pt Qt ; Rt8%

forment un groupe associé.
Examinons du point de vue énumératif le théorème précédent et cher-
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chons combien de groupes de (le + 1) droites peuvent compléter (n — le)

droites données en un groupe associé.

Rappelons qu'une hyperquadrique dépend de —-—™—- paramètres ;

que se donner un hyperplan tangent et son point de contact, c'est se
donner n conditions pour une hyperquadrique ; que (n + 1) droites asso-

ciées doivent remplir —-—- conditions linéaires (il faut et il suffit que

la matrice de leurs coefficients soit égale à la somme d'une matrice
diagonale et d'une matrice symétrique gauche (Th. 47)).

1. Il existe oo- —- hyperquadriques H. En effet, les

(n — le) hyperplans y{ ayant pour traces dans l'espace (Q1?.. Qw_fc) des
jgn-k-2 tangents en d5...,Qn_& à une variété quadratique, les points
P1,. Pn_fc et les hyperplans yt remplissent

conditions. Se donner (n — le) hyperplans dont les points de contact
remplissent y conditions, c'est se donner n(n — le) — y conditions pour
l'hyperquadrique, et par conséquent, il existe oo* hyperquadriques
tangentes, à ces hyperplans en ces points,

2. Par un En~k~1, on peut mener oo^2-1 groupes de (le + 1) En~1

tangents à une hyperquadrique. En effet, le Ek conjugué du En~~k~1 par
rapport à l'hyperquadrique la coupe en une variété Ff"1 ayant oo^"1
Ek~1 tangents. Un En~x tangent par le En-k~x est déterminé par un
quelconque de ces Ek~x. Il y a donc oo(jfc+1) (/c-1) groupes de (le -f 1) En-X

tangents.
Par conséquent, s'il existe un Ek jouissant des propriétés de projection

éconcées, il existe oow groupes de (le + 1) droites complétant les (n — le)

A '4- A 'X 3*(fc+l)droites données en un groupe associé, u ~ ~

Supposons que (le + 1) droites d'un groupe associé puissent être prises

nt remplie

—

quelconques. Les ——-—- conditions du groupe associé sont remplies

par les (n — le) dernières droites, donc (n — le) 2 (n — 1)
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n — k > j S'il existe oox groupes de (n — k) droites, nous avons exactement

(n - h) 2 (n - 1)
ni<n~l) + x. Qr si les (* + 1) droites

peuvent être complétées en un groupe associé, elles le sont de oo* façons,

3(n — k) (n — k — 1) i^nt 3(n~k) (n —k — 1)
x ^ —i '—±- '— donc n — k ^ —| '-j

2^ + 4
c est-a-dire k + 1 ^ ~—

o

Montrons que l'on a exactement k + 1 —-— J pour le maximum
de (4 + 1).

L 3 J

Quand (k + 1) droites dt peuvent-elles être complétées par (n — k)
droites en un groupe de (n + 1) droites associées? Autrement dit, pour
quelles valeurs de k existe-t-il un En~k~1 projetant les (k + 1) droites sur
un Ek qui leur est incident, en (k + 1) droites associées? Remarquons que
s'il existe un tel En~k~1, il en existe oo™-* au moins.

Soit p un Ek fixe, coupant en Pt les (k + 1) droites dt données. Prenons
un système de coordonnées homogènes ayant ces points Pt pour sommets
du simplexe de référence. Soit R% un point quelconque de la droite dt et
soit R^ de coordonnées rlp, (p 1 ,...,&+ 1), sa projection à partir d'un
jjn-fc-i sur l'espace p. Si les (k + 1) projections des droites dt sont
associées, nous avons les relations qxr%v çPrv% (i, p 1,..., k + 1), quels
que soient les points Rt. k de ces relations peuvent être remplies par les

paramètres (j\ nous pouvons donc n'en considérer que —^—-—-

Le En~k~x que nous cherchons dépend de {n — k)(k + 1) paramètres.
Pour qu'il existe un espace oc et par conséquent oon~fc, il faut et il suffit

que les (k + 1) (w — k) paramètres de cet espace remplissent
conditions de oon~fc façons, c'est-à-dire :

(»-

Dès que cette inégalité a lieu, nous avons une solution, donc

60. p droites quelconques de Vespace à n dimensions peuvent être

complétées par (n + l—p) droites en un groupe de (n + 1) droites associées

[2 n + 41
~-— I Il est impossible de le faire pour un p plus

grand.
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Remarquons encore que les n + 1 — p z dernières droites dépen-
m iiyk 1 \

dent de z2(n— 1) paramètres et doivent remplir——-—- conditions.

Nous pourrons donc compléter le groupe associé de oo* façons,

2% 4- 4
Considérons en particulier le cas où —-— est un nombre entier

o

2r: n= 3r—2

Dans Vespace à 3r — 2 dimensions, 2 r droites quelconques peuvent être

complétées de oo^ (u |(r — l)(r — 2)) façons par (r — 1) droites en un
groupe de (3r — 1) droites associées.

Ce cas est particulièrement intéressant pour r 2, n 4 :

Dans Vespace à quatre dimensions, il existe une et une seule droite associée

à quatre droites quelconques (1). C'est la fameuse configuration étudiée par
Segre et qui prend un relief encore plus prononcé puisque nous pouvons
dire de plus que :

61. C'est uniquement dans Vespace à quatre dimensions qu'un groupe
de droites détermine univoquement les droites qui les complètent en un groupe
associé. (Nous faisons abstraction de l'espace à une dimension, peu
intéressant.) Dans tous les autres espaces, il y a toujours une infinité de

possibilités de les compléter.
Terminons ces considérations énumératives par la remarque suivante :

Si nous avions pu distribuer de façon quelconque les ——^ condi-

tions que doivent remplir (n -f- 1) droites pour être associées, nous aurions
n F3 Til

pu en charger les y dernières et dire y^j, w + 1 — j/ I —— I -f- 1*),

ce qui n'est pas conforme à nos résultats. Nous pouvons donc énoncer le
théorème général suivant :

62. Si un groupe d'éléments géométriques est soumis à des conditions
linéaires, ces conditions ne peuvent pas être distribuées de façon quelconque
entre les éléments.

*) La borne supérieure 1 -j- I — I a été indiquée par M. Longhi en réponse à une
L 4 J

lettre de M.Kollros. (,,Sur les droites associées" Elemente der Mathematik, I, (1946) p. 5).
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IV.

ESPACES ASSOCIÉS

§ 1. Définitions et propriétés générales

Nous nous proposons de généraliser la notion de droites associées. Nous
dirons que (n — k -{- 2)Ek de l'espace En sont associés si tout En~k-1 qui en

coupe {n — k + 1) coupe encore le dernier (k 1,..., n — 1). Pour k= 1,

nous retrouvons les (n + 1) droites associées.

Pour arriver aux conditions nécessaires et suffisantes pour que des

espaces soient associés, rappelons d'abord quelques propriétés de
géométrie réglée.

Soient p«0, ,%k
les coordonnées radiales d'un Ek <x de l'espace à

n dimensions, c'est-à-dire les déterminants formés par les colonnes

i0,..., ik de la matrice à (k -f- 1) lignes et (n + 1) colonnes déterminée

par les coordonnées homogènes de (k + 1) points indépendants du Ek.
Soient pHf »'»-*-i les coordonnées axiales de ce même espace
(obtenues de façon analogue en considérant (n — k) En~x indépendants par
le Ek). Il existe les relations

n

les js étant différents des i8f .*'*".'*.*'*. 1 désignant le signe

de la permutation des nombres 0,...,w dans les nombres io,...,ifc,

Soit d'autre part qH %n k t
les coordonnées radiales d'un En~k~-1==^

et qH 7k ses coordonnées axiales. Si les deux espaces oc et fi ont un
point commun, il existe la relation

^ /0 n \2i\i i A A I Ao -tt\ H ' ' • lk /0 • • • /n-fc-1 /

la somme s'étendant sur tous les groupes différents d'indices i0,..., ik,
c'est-à-dire

Ceci est la condition nécessaire et suffisante pour que les espaces a et
aient un point commun. Considérons les coordonnées pt %k comme les

coordonnées homogènes d'un point de l'espace Em à m~
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dimensions. Les Ek et les En~k~1 de l'espace à n dimensions sont
représentés dans cet espace par une variété grassmannienne F de dimension
(k + l)(n — le) et d'ordre

1! 2! ...k\[(k + l}^~k))1 (Détermination de Schubert) (9).
(n — k)\ (n — k + 1)!.. .ni

Soit <x un Ek fixe et considérons tous les En~k-X qui le coupent. Ils
seront représentés par les points de la section de F par Fhyperplan
Pi0 %jc Ql°'"lk ~ ^> ^es # étant maintenant des variables. Cet hyperplan
est l'hyperplan polaire du point P(p{ ik) par rapport à Fhyperquadrique

Nous pouvons considérer h Ek quelconques représentés dans Em par
les h points P*(Pio...ik), (j' 1,..., A). Tous les En~k~x qui coupent ces

^ Ek sont représentés par les points de F qui se trouvent dans l'intersection

des h hyperplans polaires des points PK Si tous ces En~k~1 doivent
encore couper p autres Ek, il faut et il suffit que les hyperplans polaires
des points Q1,..., Qp représentant ces espaces passent par l'intersection
des h premiers hyperplans. Par conséquent, tous les points P1,.. .,P^,
Q1,..., Qp sont dans un même E11'1.

En particulier, dans notre cas :

63. Pour que (n — k + 2)Ek soient associés, il faut et il suffit que les

(n — k -f 2) points qui les représentent dans Vespace à JT — 1 dimensions

soient dans un espace à (n — k) dimensions.

64. Autrement dit, pour que (n — k + 2)Ek soient associés dans En,

il faut et il suffit qu'il existe des nombres X1 tels que

n-k+2

pour tout groupe d'indices.
Remarquons que les X1 sont univoquement déterminés si les espaces Ek

sont en position générale.
Nous aurions pu donner une définition plus générale des espaces associés,

mais nous nous bornerons à celle que nous avons choisie qui nous
permettra de trouver quelques propriétés en rapport avec celles des

droites associées (10).
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§ 2. Section des espaces associés

Rappelons une propriété de géométrie réglée. Soit oc un Ek de coordonnées

radiales fto,...,tÂ. et soit fi un En~p quelconque de coordonnées
axiales q*o>~"*p-i. Les coordonnées radiales du Ek~p, intersection de oc

et de fi, sont données par
n+l

Pi0 ik-p 2d Q Pto-tp-iio-ik-p

65. La section de (n — k -f 2)Ek associés oci de En par un En~p

quelconque se compose de (n — k + 2)Ek~p associés dans ce En~p.

Par hypothèse, nous avons

n-Jb+2

i9...ik ° p°ur tout (v- • •> »*)

2

et par conséquent

n-Jfc+2 n-Jfc+2

tJSQ...Sp.1l(i...lk-p

Soit Pi un point quelconque de a^ (i 1,..., n — k + 2). L'espace
(Px,..., Pn_fc+2) En~k+1 coupe «< en une droite yf (i 1,..., n — k + 2).
Les (n — k + 2) droites yt sont associées. Par conséquent, en nous
basant sur le théorème 55, nous pouvons dire que :

Soient oc un Eh coupant (h + l)Ek d'un groupe de (n — k + 2)Ek
associés et fi un En~k~h coupant les (n — k — h + 1) derniers.

66. Les projections des (n — k — h + 1) derniers Ek à partir de oc sur fi
sont (n — k — h + 1) droites associées dans ce En~k~h (h — 0,..., n ~ k),

§ 3. Une condition nécessaire et suffisante

67. Pour que (n — k + 2)Ek en position générale soient associés, il faut
et il suffit que chacune des sections de ces Ek par (n + lji?^1 indépendants
de En se compose de (n — k + 2)Ek-~1 associés (k > 2).

Cette condition nécessaire est suffisante. En effet, soient Pio,.,ik les

coordonnées radiales du je Ek. Les coordonnées de la trace fij de cet espace
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dans Fhyperplan xr 0 sont p\Q %l if Ces (n — fc+ 2)Ek~~1 étant
associés par hypothèse, il existe une relation

!>'(»•) ri. «,^ 0, (i)

pour toute combinaison d'indices.
De même, en considérant les traces y3 dans Fhyperplan x8 0, il

existe une relation

Or la section des espaces f}3 par l'espace ^r #s 0 étant composée de

(n — k + 2)Ek~2 associés, nous avons

JH'K .*_„,,. o, (3)

et cette relation est la même si l'on considère la trace des yJ dans l'espace

xr xs 0. Mais les i£fc étant généraux, la relation (3) est univoque.
Comme les relations (1) et (2) sont valables également pour les groupes
d'indices (i0,.. .,ik-.2> r¦> 5)> on a

Pour que (n — k -\- 2)Ek soient associés, il faut et il suffit que la relation

2 Mp[ lk 0 soit vérifiée pour tout groupe d'indices et l'on peut
j

obtenir tous ces indices en faisant varier ik de 1 à (n + 1)«

Par conséquent :

68. Pour que (n — k + 2)Ek soient associés, il faut et il suffit que les

sections de ces (n — k + 2)Ek par chacun des En~k+1 d'un simplexe général

de l'espace En se composent de (n — k + 2) droites associées.

Remarquons ici que, puisque l'on peut donner arbitrairement au plus

I
^

1 droites d'un groupe de (n ' -f- 1) droites associées de l'espace à

n1 dimensions,

69. On ne peut donner arbitrairement que Ek au plus
d'un groupe de (n — k + 2)Ek associés.

Notons qu'il s'agit ici d'une borne supérieure, et non d'une limite.
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§ 4. Projection des espaces associés

Soient plo lk les coordonnées radiales d'un Ek ; qH lh
celles d'un

Eh ; rgQ 8h+h+i ce^es de l'espace Ek+h+1 déterminé par ces deux espaces.
Rappelons qu'il existe les relations :

th '

70. Si l'on projette p Ek associés à partir d'un Eh quelconque, on obtient

p Eh+k+1 associés.

En effet, par hypothèse, 2 V p7H 8k — 0 et par conséquent, à cause

de la relation précédente :

Nous obtenons ainsi des exemples de Ek associés, mais non l'exemple le

plus général. En particulier :

71. Soient Pl9. .,Pn_k+2 (n — k + 2) points quelconques de En et
soient %,..., aw_fc+2 leurs hyperplans polaires par rapport à une hyper-
quadrique Q. Soit encore dz le Ek~x d'intersection des (n — k + 2) espaces
(«!,.. .,af_lf aï+1,. an_fe+2)- ^e5 (n — â; + 2)jB& (PtdJ 50^ associés

(k 1,..., n — 1). En effet, nous pouvons les obtenir en projetant à partir
du Ek~2 polaire réciproque de l'espace (P1?..., Pw_fc+2)? tes (w — A; + 2)

droites associées joignant les sommets des deux simplexes (Px,..., Pw_fc+2)

et (P'19.. .,P^_jl+2), polaires réciproques par rapport à la section de Ç

par l'espace (P1?.. .,Pw_fc+2).

§ 5. Expression analytique des conditions nécessaires et suffisantes

Soient al9.. -,ocn__k^2 (n — k + 2)Ek associés de l'espace à n dimensions.

Choisissons le simplexe de référence (Al9. ..,An+1) de façon
suivante : Le point At est un point quelconque de <xt (i — 1,. n — k + 1) ;

les points ^4w_fc+2,... An+1 sont quelconques dans <xn_k+2. Nommons
plo...iJc les coordonnées radiales de oc3. Pour que les espaces (xlt. ,.y
(xn-k+2 soient associés, il faut et il suffit qu'il existe des valeurs A1

%n-h+2 telles que:

n-k+2
2 M Pi0 ** ° Pour tout g1011?6 d'indices (i0>..., ik) (1)
7 1
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En particulier, remarquons que :

a) P* n-^+2 ,w+i son^ les seules coordonnées de an~k+2 qui ne soient pas
nulles.

k) P\ ,%](¦ ~ ^ > s* aucun des indices i\ n'est égal à j; en particulier
p\ ,n-fc+2, ,w+i ~ ^> h^j- Donc, si nous considérons les indices

n — & + 2,..., n -f- 1), nous voyons qu'il faut nécessairement que

A Pj,n-k±2 ,n+l i ^ Pi,n-l + 2, ,n + i — u

En posant An~^+2 — 1,

72. Les conditions nécessaires et suffisantes pour que les {n—k-{-2)Ek
soient associées peuvent s'écrire:

n-k+l tfi-k+2

ou encore
n-k-i 2

P% n-k+2,2 (2)

pour tout groupe d'indices (ioj««»»H)«

§ 6. Droites associées

En reprenant les résultats généraux précédemment établis, démontrons

de nouveau le théorème de Berzolari (théorème 47).
Etant données (n + 1) droites associées, prenons le simplexe de

référence (Al9.. .,^4n41) inscrit à ces droites et soit B} la trace de la droite j
dans l'espace opposé de ce simplexe, (b{,..., b'n+1) étant les coordonnées
de ce point. Dès lors

Plk ° > h fc # 7 ; Pji - Pi, - b\

Les relations nécessaires et suffisantes (2) deviennent

bn+i bn+i
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En posant b%+1 6]j+1, comme il est permis, nous trouvons bien
6Jo j*i pour tout ioi19 comme conditions nécessaires et suffisantes pour
que (n + 1) droites soient associées.

§ 7. Plans associés

Soient oc19.. .9<xn nE2 associés de En. Choisissons notre simplexe de
référence comme nous l'avons proposé, At étant dans ocl (i 1,..., n—1),
An et An+1 dans ocn. Soient B3 (b\) la trace de oc3 dans l'espace (Al9...,
A9_l9 A,+l9..., An_l9 An); C3 (c{) la trace de oc, dans (i^,..., As_l9

trace de ocn dans (-4x,.. ,-4w_!). Les droites A3B3 (j 1,..., w) étant
associées dans (-4l9.. .,-4n), il existe une quadrique QY inscrite dans le

simplexe {Al9.. -9An) et tangente en B3, son équation tangentielle étant
b\u3ut 0, 6J 6J ; 6* 0 ; bJn+1 0. De même, il existe une
quadrique Q2 inscrite au simplexe (Al9... An_l9An+1)9 tangente en C3 et
d'équation c\u3ut 0, c^ 0, cj 0. D'autre part, remarquons qu'il
existe une quadrique Q inscrite au simplexe (A1,.. .,An_x) et tangente en
D3, D3 étant sur la droite A3Bn (j — 1,..., n — 1) ; elle a pour équation

L'espace ocn (BnAnAn+1) a pour coordonnées radiales :

celles de l'espace <xt (A1q, B1q, Ch) étant :

En particulier :

Les équations nécessaires et suffisantes deviennent :

pl°

Pionn+1

Kl
cil

0

cil

1

K
K\

<\

c'est-à-dire
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i
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1
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b\l Kl

cil
0



/»^0 f*1^^- f*^2

0

pour tout groupe d'indices i0, il9 i2 (i} 1,..., n — 1). Or si nous
considérons les coniques

K K «•. «u + *h *:, «n «., + *r2 *:0 «*, «ta o

nous voyons que:
73. Po^r que n E2 soient associés, il faut et il suffit que les projections

des quadriques Qlf Q2, Q sur chaque E2 du simplexe (Al9.. .,An_x) à partir
de Vespace opposé du simplexe (A1,.. .,An+1) soient trois coniques du
même faisceau tangentiel.

Autrement dit :

Que par tout En~5 du simplexe (Alf.. ,,An_1) passe, outre les trois En~z

du simplexe, un En~z tangent aux trois hyperquadriques Q, Q[, Qr2, Q[ et
Q2 étant les projections de Qx et de Q2 sur (Al9.. .,An_t) à partir de

(AnAn+1).

§ 8. Espaces associés

Soient ax,..., ocn_k+2 (n — k -\- 2) Ek associés de l'espace]!?™, A3 un point
quelconque de <x3 (j=l,...,»-i+l), An_k+2,..., An+1 k points
de otn_k+2, P sa trace dans l'espace oc (Alf... ,An_k+1) En~k. L'espace
(An_k+1+h, oc) coupant les (n — k + 2) Ek en (n — k + 2) droites
associées, ces droites définissent une hyperquadrique Qfh projetée à partir de

An_k+1+h sur oc en une hyperquadrique Qh (h 1,..., k), inscrite au
simplexe. Au point P correspond de même une hyperquadrique Qo. Les points
de contact des hyperquadriques QOy.*,Qk avec la face (Al9.. .,A}_19

AJ+li... An_k+1) déterminent un espace à k dimensions qui n'est autre
que l'intersection avec cette face de l'espace déterminé par ocn_k+2 et ocJ9

donc en général un E2k+1. Si l'on projette les (k + 1) quadriques Q à

partir d'un Ep du simplexe (Al9...,An_k+1) sur l'espace opposé, (Ax,...,
An_k_v) par exemple, l'espace déterminé par les points de contact des

projections des quadriques avec la face {A1,..., A3_x, A}+19. An_k_p)
n'est autre que l'intersection avec cet espace de l'espace déterminé par
oc},ocn_k+2 et les points An_k_p+1,..., An_k+1, donc un E2k+p+2. L'inter-
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section est en général un Ek. Mais si n — k — p — 1 <k, les (k + 1)

points de contact seront dépendants linéairement et par conséquent,
les hyperquadriques également. Nous pourrons donc dire que :

74. Pour que (n — k -f 2)Ek soient associés, il faut que les projections
des (k -\~ 1 hyperquadriques Qo,..., Qk sur tous les Ek~i du simplexe
(AQ An_k^1) soient (k + 1) hyperquadriques d'un même système tangen-
tiel linéaire à (k — j — 1) dimensions (j 1,..., k — 2).

Nous prétendons que ces conditions sont suffisantes.
Nous procéderons par induction. Ces conditions étant nécessaires et

suffisantes pour k 2 dans un espace quelconque, nous les supposerons
nécessaires et suffisantes pour (k — 1). Posons nos hypothèses dans un
espace à (n — 1) dimensions :

Si les projections des k hyperquadriques QQ,..., Q^x sur tous les Ek~~*

du simplexe (Al9.. .,An_k+1) font partie d'un système tangentiel linéaire
à (k — j — 1) dimensions, les (n — k + 2)Ek~1 sont associés dans
l'espace En~x.

Nous supposons que:
Les projections des (k -f- 1) hyperquadriques Qo,..., Qk sur chacun des

Ek~i du simplexe (Al9.. .,An_k+l) font partie d'un système tangentiel
linéaire à (k — j — 1) dimensions.

Les (n — k + 2)Ek sont associés dans En.

Considérons la section des (n — k + 2)Ek par l'espace xn+1_k+h 0 ;

(h 1,..., k) ; les (n — k + 2)Ek~1 sont associés dans cet espace. En
effet, les k quadriques (Qo,..., Qft_x, G^+i>- • •> Ç*) remplissent les conditions

nécessaires et suffisantes postulées. Par conséquent, si nous
désignons par J) les coordonnées radiales des espaces à (k — 1) dimensions
de la section par xn+1 0 ; par pj les coordonnées du point P, nous
avons donc

k-i 1

pour tout groupe d'indice {i0,..., ifc_,} iir 1,..., w.

n-fc-fi
Soient 2 aj. ut ui 0 l'équation de Qh (h 1,.. k) et

2 PiPjuiu3 ^ ce^e de Qo. L'équation de Ç)[ étant

n-k+l n-k+1
2 «i ^t % + 2 Pi Ui Un-k+h+l 0
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le point de contact B^ de Qrh avec la face ^ 0a pour coordonnées

B){a)% (t 1,...,»- fc + 1), 0, xn_k+h+1 p,,0}

L'espace oc, est déterminé par les points {A3B*} (h 1,..., k)} il existe
donc les relations

k

Pi0 il-i^n-j-l V) PiQ ijt_j •

L'espace an_^2 étant donné par les points (P, -4n_&+2,.. .,^4n+1), on a
aussi

n-i+2 __ —n-k+2 _P?,n-k+2, n+1— Jr;,n-*+2, n — i'j •

Nous prétendons que les (w — & + 2)2^ de jBn * #l5..., ^n_fc+2J sont
associés, donc remplissent les conditions

pour tout groupe d'indices.
Supposons qu'un des indices soit égal à (n + 1)- Alors, d'après les

égalités (1)

y l v*i y _
1

m*? ^«-^+2 ^n-^+2
(p» )*~1 ° lk~1 n+1 (Pi )k~2 ° lk~x ° tjUl ° **-i»tt+1

De même si un des indices était égal à un des nombres n — k + 2,...,
n + 1.

Nous pourrons donc supposer maintenant que tous les indices iOi... ,ik
sont compris dans la suite 1,..., t& — Je + 1. Exprimons analytiquement
nos hypothèses sur les hyperquadriques Q} : II existe des nombres
AJ0' »•* tels que

pour tout groupe d'indices i0,..., ik.
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Dès lors :

k-, k k

S (^'2 •*

2 k k k-1 pQ i]c
^2 2 2 ^ ^ *N ^'

Or

t° %k 2 2 2 (V )*-"ï
^~~ ^ *N l* ^»o' Ws+i * ~

« «=0 ;=O t=l K^lif

l k k <_iy^ ^ v ' ; ^o ik rrt ~fiij

¦K—p%> o
\K—2 r% % % lh

%k

étant égal au déterminant p*i dont la première ligne est remplacée

par la if. Par conséquent

* 1

les (n — k + 2)Ek sont donc associés.

§ 9. Condition géométrique

Afin de donner une autre forme aux conditions nécessaires et
suffisantes que nous venons d'établir, nous ferons d'abord quelques remarques
sur les systèmes linéaires de quadriques.

n hyperquadriques générales de l'espace à n dimensions ont 2n points

communs. Une hyperquadrique est déterminée par —^——- points.

Considérons une hyperquadrique passant par —^—-—- — (n — 1)

points pris parmi les 2n points d'intersection de n

hyperquadriques données. Cette hyperquadrique fait partie du système ponctuel

linéaire déterminé par les n hyperquadriques et par conséquent
passe par les 2n points d'intersection.
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72,2 I % I O

Toute hyperquadrique passant par points d'intersection de n

hyperquadriques de l'espace à n dimensions passent par les 2n points d'intersection.

n2 I n I 2
Par conséquent, si (n -\- k) hyperquadriques ont points

communs, elles en ont au moins 2n et font partie d'un système ponctuel
linéaire à (n — 1) dimensions au plus.

Il va sans dire que nous avons les mêmes résultats duaux pour les

systèmes linéaires tangentiels.

Nous pouvons dès lors exprimer ainsi les conditions trouvées:

75. Pour que les (n — k ~f 2)Ek soient associés, il faut et il suffit que

par tout En~k~z du simplexe Sn~k (Al9.. .,An__k+1) passe, outre les faces
du simplexe, un En~k~1 tangent aux (k + 1) hyperquadriques Qo,.. .,Qk.

Ces conditions sont nécessaires puisque les projections de Qo,.. .,Qk
sur tous les E2 du simplexe, font partie du même faisceau tangentiel qui
a quatre tangentes.

Ces conditions sont suffisantes, c'est-à-dire que, si elles sont remplies,
les projections de Qo,..., Qk sur chaque Ek~x sont (k + 1) variétés d'un
même système linéaire à (k — j — 1) dimensions.

En effet, soit un jp«-a*+/-i du simplexe Sn~k, opposé à un Ek~K Par cet

espace passent « En~k~z du simplexe et (k — j + 1) faces du

simplexe. Donc, dans l'espace Ek~i, les (k-\-1) projections des variétés

QQ,..., Qk ont (* ~ ^+ 1) + (k - j + 1) JEf*-'-1 tangents. D'après notre

remarque, ces (k -f- 1) variétés font partie d'un système linéaire tangentiel
à (k — / — 1) dimensions au plus. En effet,

§ 10. Une propriété des espaces associés

Soient de nouveau <xlf..., <xn__k+2 (n — k + 2)Ek associés de En,
Ax,... ,An_k+1 des points de <xx,..., ocn__k+1. Nommons /S l'espace (At,...,
An__k+1). Les projections sur /? des (n — k + 1) espaces «i,.. •, #w-*+i
sont (n — k + 1) droites associées dans ft, qui déterminent donc une
hyperquadrique Q (P) inscrite au simplexe (Al9.. ,,An_k+l).
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76. Toutes les hyperquudriques Q (P) font partie d'un système linéaire
tangentiél à k dimensions, inscrit au simplexe (A1,... ,An_k+1) et tel que par
tout En~k~x du simplexe passe un En-k~x tangent à toutes les hyper-
quadriques du système (outre les faces du simplexe).

En effet, soient P0,...,Pfc (& + 1) points indépendants de ocn_k+2,

Qo,--,Qk ^es hyperquadriques correspondantes. Soit encore C0(P) le

point de contact de Q (P) avec la face (At,.. .,Aj_lyA}+1,. .,An_k+1).
C3{P) n'est autre que le point commun à cette face et à l'espace (Pocj).
Nommons encore C3 (0),..., C3 (k) les points correspondant à Po,..., Pk.
Tout point P pouvant se mettre sous la forme P J£ X1 Pt, on a de même

et par suite

Toute quadrique Q(P) fait partie du système tangentiél Qo,..., Qk qui
jouit des propriétés énoncées.

V. CAS PARTICULIER:

ESPACE A DEUX DIMENSIONS

§ 1. Cas non-euclidien

Spécialisons nos résultats généraux dans le cas du plan où nous pourrons

donner encore quelques propriétés particulières.
Soient Q la conique absolue, ABC un triangle quelconque (a, 6, c étant

les côtés opposés à A, jB, C) ; A 'BfCf son triangle polaire réciproque par
rapport à Q.

77. Le lieu des foyers des paraboles inscrites au triangle ABC est une
courbe de troisième ordre circonscrite au triangle; cette courbe est aussi le

lieu des foyers des paraboles inscrites au triangle ArBrCf.

En effet, soit F le foyer d'une parabole, tangente à a, 6, c, à la polaire
f de F par rapport à Q et aux deux tangentes à Q menées par F, D et E
étant leurs points de contact avec Q. Une polarité par rapport à Q montre
qu'il existe une conique passant par les six points A ', B\ Cf, F, D et E
et par conséquent qu'il existe une conique inscrite aux triangles Ar Bf C\
FDE. F est donc aussi le foyer d'une parabole inscrite à A1Bf'C'.
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Nommons podaires (1) les podaires relatives au triangle ABC; po-
daires (2) les podaires relatives à A' BlGf (parlons de même de podes (1)
et podes (2)) ; F', deuxième foyer de la parabole de foyer F inscrite au
triangle A BC, est le pôle de la podaire (1) de F et aussi le pode (1) de la
polaire de F ; F", pôle de la podaire (2), est aussi le pode (2) de la polaire
de F. Soit F* le pôle de la podaire (2) de Ff ; c'est aussi le pôle de la
podaire (1) de Fn et le pode (1) de la podaire (2) de F. Etant donné un foyer
F', nous pouvons donc lui faire correspondre trois points Fr, F/f et F*.
Si nous considérons une droite quelconque coupant la courbe (F) aux
trois points F1, F2 et Fz, nous avons quatre groupes de points Ft, F[,
F[r, F*. D'après le théorème général 41, la droite FrxF2 passe par le

point Fz. Ce théorème étant également valable pour les podaires (2), on
voit que ;

78. Les quatre droites FXF2, F[F2, F[f F2, F* F* passent par un
même point F3 (de même pour toute permutation des indices).

79. Les droites F[F", F2F2 FZFZ se coupent en un point.

En effet, soit E le point d'intersection des droites F[ F" et F2 F2
et considérons la collinéation de centre E et d'axe Fx F2 dont F[ et F"
sont deux points correspondants. Les points Ffz et Fz sont deux points
correspondants (intersection des droites F[ F2 et F2 F± d'une part,
F" F2 et F2 Fx d'autre part). La droite Fz Fz passe par E. On montre
de même que les droites Ff{ Ff et F" Ff se coupent en un point.

Donnons encore une application plus intéressante du théorème général
et de la propriété ci-dessus.

Soit t la tangente en un point 1 2 de la courbe (F), 3 étant le dernier
point d'intersection de t avec la courbe. Soient 1; 2 ', 3; ; 1n 2/;, 3 " ;

1* 2*, 3* les points correspondants, tr, t'\ t* les tangentes à (F) en 1;,
1;/ et 1*.

80. Les quatre tangentes t, tf, t", t* se coupent en un point 3 de la
courbe (F).

81. La courbe (F) est de sixième classe.

En considérant les groupes de trois points alignés 1,2,3; 1*, 2*, 3;
l/;5 2;/ 3 ; 1, 2*, 3* et en prenant les pôles des podaires (1) ou (2), nous
voyons que :

Les droites 22; et 2" 2* se coupent en 3;; les droites 22n et 2' 2* se

coupent en 3!! ; les droites 22* et 2f 2;/ se coupent en 3*. Par conséquent :
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82. Si d'un point P de la courbe (F), on mène les quatre tangentes, les

quatre points de contact sont les foyers de deux paraboles inscrites au triangle
ABC et les foyers de deux paraboles inscrites au triangle A!B!CT. Ces

quatre points déterminent un quadrangle complet dont les trois intersections
des diagonales sont les trois points correspondants de P.

Inversement, les tangentes à la courbe (F) en deux points inverses 1 et
1 ' se coupent en un point 3 ' qui est l'inverse de l'intersection 3 de la
droite 11l avec (F). En effet, supposons que la droite 3 ' 1 coupe (F) en 4.

La droite 31' 11! coupe 3/1 en 1. Donc 4=1: La droite 3 ' 1 est bien
tangente à (F) en 1. Le point 3 étant sur la droite 1!! 1*, les tangentes en
\" et 1* se coupent en 3'.

Ou encore :

83. Les trois points diagonaux 3, 3", 3* du quadrangle complet
déterminés par quatre points correspondants 1, 1', l/;, 1* ont pour quatrième
point correspondant le point de concours des tangentes à la courbe (F) en 1,

i', i", i*.
Nous pouvons spécialiser encore en prenant P en un point d'inflexion

et nous obtenons le théorème :

84. Les points de contact des trois tangentes à la courbe (F) menées par un
point d'inflexion de cette courbe sont sur une droite.

Rappelons que nous nommons points correspondants :

P le foyer d'une parabole inscrite au triangle ABC;
Pf le deuxième foyer;
P" le deuxième foyer de la parabole de foyer P inscrite au triangle

A'B'C'\
P* le deuxième foyer de la parabole de foyer P' inscrite au triangle

A'B'C.
Disons que les quatre polaires de ces points sont correspondantes et

nous pourrons énoncer la propriété duale suivante :

85. Soit p une tangente quelconque de (T) et soient 1, 2, 3, 4 ses quatre
autres points d'intersection avec (T). Les quatre tangentes en 1, 2, 3, 4

(différentes de p) forment un quadrilatère complet dont les trois diagonales
sont les correspondantes de p.

86. La tangente en un point de rebroussement de la courbe (T) coupe
cette courbe en trois autres points ; les tangentes en ces points sont concourantes.
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§ 2. Cas euclidien

Spécialisons encore et prenons pour absolu une conique dégénérée en
deux points RetS sur une droite i. La courbe (F) se compose de la droite i
et d'une conique (Ff). Cette conique passe par les points R et S. Supposons

au contraire que (Ff) coupe i en deux points Rr et 8f différents de R
et de S. Ces deux points sont deux foyers correspondants, c'est-à-dire
foyers d'une même conique inscrite au triangle ; cette conique devrait
être tangente à i en Rr et en S\ ce qui est exclu. Si Rf R et S' ^ 8,
cette conique, tangente à i en 8', aurait pour foyers l'intersection des

tangentes issues de S et de R, dont un n'est pas sur la droite i. Donc :

87. Le lieu des foyers des paraboles inscrites à un triangle est la conique
circonscrite à ce triangle et passant par les deux points absolus, complétée par
la droite de ces points.

Dualement, d'après le théorème général :

88. L'enveloppe (Tr) des podaires est tangente à i aux points R et S, ces

points étant leurs propres conjugués par rapport à l'absolu.
Remarquons que la coube (T) se compose de l'enveloppe (Tr) et de la

droite i comptée doublement ; la courbe (Tf) est de quatrième ordre, comme
on le voit en reprenant nos raisonnements généraux.

Dans le cas spécial où les points R et 8 sont les points cycliques, le lieu
des foyers des paraboles inscrites devient le cercle circonscrit complété par
la droite à l'infini. L'enveloppe des podaires est alors l'hypocycloïde
étudiée directement parSTEiNER(3). Cette étude fait ressortir de nombreuses

propriétés métriques que nous n'avons pas abordées, mais elle ignore les

propriétés symétriques qui apparaissent d'elles-mêmes si l'absolu n'est
pas dégénéré. Nous pouvons dire par exemple que l'hypocycloïde
(complétée par la droite à l'infini) est la courbe polaire réciproque du cercle
circonscrit à un triangle et de la droite à l'infini, propriété qu'il est
impossible d'établir directement et qui n'est vraie que comme limite, si nous
appelons polaire d'un point à l'infini la polaire particulière qui est la
podaire de son inverse dans la correspondance des foyers. Nous renonçons
aussi à spécialiser nos résultats généraux et nous n'énoncerons dans le cas

euclidien, que le théorème 41 sur lequel nous nous sommes essentiellement

89. Soit d une droite quelconque coupant le cercle circonscrit à un triangle
en deux points 1 et 2 ; soient a etb les axes des paraboles inscrites au triangle
et de foyers 1 et 2 ; soit 3 le foyer de la parabole inscrite au triangle et d'axe
parallèle à d: La droite 13 est parallèle à Vaxe a ; la droite 23 est parallèle
à Vaxe b.
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Donnons encore une autre forme de cette propriété :

90. Soient 1 et a, 2 et b, les foyers et les axes de deux paraboles
inscrites à un triangle. Menons par 1 une parallèle à b, par 2 une parallèle à

a et soit 3 leur point d'intersection. 3 est le foyer d'une parabole inscrite au
triangle et d'axe parallèle à 12.
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