Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 19 (1946-1947)

Artikel: Des hyperquadriques et droites associés de l'espace à n dimensions.

Autor: Sydler, J.-P.

DOI: https://doi.org/10.5169/seals-17342

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Des hyperquadriques et droites associées de l'espace à n dimensions

De J.-P. Sydler, Zurich

A ma mère et à ma femme.

INTRODUCTION

Ce travail a été inspiré essentiellement par deux propriétés ne présentant à première vue aucune relation. Il s'agit d'une part de la remarquable configuration étudiée par Segre: Dans l'espace à quatre dimensions, toutes les droites qui coupent quatre espaces linéaires quelconques à deux dimensions en coupent encore un et un seul (1)*. Ce cinquième plan peut être nommé associé des quatre premiers. Cette relation d'incidence fait penser à une autre que Schläfli a trouvée dans un espace à n dimensions: Les (n+1) droites joignant les sommets correspondants de deux simplexes polaires réciproques par rapport à une hyperquadrique, sont telles que tout espace à (n-2) dimensions qui en coupent n, coupe la dernière; ces droites, hauteurs du simplexe en géométrie non-euclidienne, sont donc aussi associées (2).

Notre deuxième source fut d'autre part un théorème de Steiner: Dans le plan euclidien, le lieu des foyers des paraboles inscrites à un triangle en est le cercle circonscrit; les tangentes au sommet de ces paraboles enveloppent une hypocycloïde à trois rebroussements (3). Ici, on pense aussitôt aux droites et aux points de Simpson relatifs à un triangle, points tels que les pieds des perpendiculaires abaissées sur les côtés du triangle sont sur une même droite. C'est par là que nous avons commencé notre généralisation.

La première question est de savoir quel espace adopter. Nous avons choisi un espace ayant une hyperquadrique non dégénérée pour absolu, car les propriétés d'incidence y présentent une plus grande symétrie. Reconnaissons que nous n'avons pas toujours pu spécialiser nos résultats dans le cas euclidien où l'absolu dégénère. Il est parfois plus facile de passer de l'espace euclidien à l'espace non-euclidien en considérant la section des variétés générales par l'hyperplan à l'infini, espace non-euclidien de dimension plus petite.

Vouloir généraliser les droites de Simpson, c'est considérer les hyperquadriques de révolution inscrites à un simplexe et introduire immédiatement la correspondance des foyers qui transforme un point dans le deuxième foyer de l'hyperquadrique de révolution inscrite au simplexe et ayant ce point pour foyer (4, 5).

^{*)} Les indices renvoient à la littérature mentionnée en fin du travail.

Ce sont quelques propriétés de cette transformation que nous étudions dans le premier chapitre, ainsi qu'une relation entre la correspondance et l'absolu.

Le deuxième chapitre est consacré essentiellement aux paraboloïdes de révolution, c'est-à-dire aux hyperquadriques de révolution tangentes à l'espace polaire d'un de leurs foyers principaux. Dans le cas euclidien, le lieu des pieds des perpendiculaires abaissées des foyers principaux sur les plans tangents à une quadrique de révolution est la sphère principale. Cette variété se généralise presque sans modification pour un espace quelconque et, pour le paraboloïde, dégénère également en deux hyperplans. Grâce à cette propriété, nous pouvons généraliser la notion de droites de Simpson et montrer que leur enveloppe est une variété de $(n+1)^e$ classe, polaire réciproque du lieu (F) des foyers des paraboloïdes de révolution inscrits au simplexe. L'étude de (F) dans le cas euclidien et de sa section par l'espace à l'infini permet de trouver le lieu des foyers des hyperquadriques de révolution tangentes à (n+2) hyperplans, puis à (n+h) $(h=3,\ldots,n+1)$.

Une configuration remarquable de la variété (F) conduit ensuite à une nouvelle démonstration du théorème de Schläfli que nous mentionnions. Nous avons ainsi un lien entre les deux propriétés de départ.

Nous consacrons notre troisième chapitre aux droites associées; nous nous sommes attachés en particulier à montrer combien de droites arbitraires peuvent être complétées en un groupe de droites associées. Ces considérations conduisent entre autres à deux résultats intéressants: Le premier montre que la configuration de Segre est caractéristique de l'espace à quatre dimensions; c'est uniquement dans cet espace qu'un groupe de droites détermine univoquement les droites qui les complètent en un groupe de droites associées; le deuxième a trait à la répartition des conditions linéaires imposées à un groupe d'éléments géométriques.

Généralisant la notion de droites associées, nous exposons dans notre quatrième chapitre quelques propriétés des espaces linéaires associés. Les espaces linéaires à k dimensions sont représentés par les points d'une variété grassmannienne d'un espace supérieur. Cette correspondance nous permet de donner quelques conditions nécessaires et suffisantes pour que des espaces soient associés. Nous pouvons en déduire une propriété géométrique des projections des espaces associés à partir des points de l'un d'entre eux.

Nous avons tenu à ajouter dans notre cinquième chapitre quelques propriétés particulières de l'espace à deux dimensions. Nous y précisons entre autres la classe ou l'ordre de quelques variétés.

CORRESPONDANCE DES FOYERS

§ 1. Définitions

Nous considérerons un espace à n dimensions, ayant pour absolu une hyperquadrique Q non dégénérée. L'enveloppe des hyperplans tangents communs à Q et à une hyperquadrique quelconque H est en général une variété de quatrième classe. Si cette variété dégénère en deux hypercônes de seconde classe, de sommets F_1 et F_2 , nous dirons que H est une hyperquadrique de révolution (par rapport à Q), F_1 et F_2 étant ses foyers principaux. Une hypersphère est une hyperquadrique de révolution dont les deux foyers sont confondus, donc tangente à l'absolu le long d'une variété quadratique à (n-2) dimensions. Nous nommerons encore paraboloïde de révolution une hyperquadrique de révolution tangente à l'espace polaire par rapport à Q, d'un de ses foyers principaux.

Nous désignerons par E^k un espace linéaire à k dimensions et par V_p^k une variété à k dimensions d'ordre p.

Il nous arrivera aussi de nommer simplement quadriques et sphères les hyperquadriques et les hypersphères de l'espace à n dimensions.

§ 2. Correspondance des foyers

Une hyperquadrique de révolution est déterminée par un de ses foyers principaux et par (n + 1) hyperplans tangents. Connaissant donc un foyer d'une hyperquadrique de révolution inscrite à un simplexe fixe, nous pourrons déterminer le deuxième. C'est cette transformation ponctuelle de l'espace que nous nommerons correspondance des foyers, deux points correspondants étant dits inverses.

Une quadrique de révolution est telle que le faisceau tangentiel qu'elle détermine avec l'absolu Q contient une quadrique dégénérée en deux points, ses foyers principaux. Autrement dit, une quadrique de révolution fait partie d'un faisceau tangentiel déterminé par deux points et la quadrique absolue.

Soit un simplexe de sommets A_0, \ldots, A_n ; a_i étant la face opposée à A_i ; A_i' le pôle de a_i par rapport à Q; a_i' la face opposée à A_i' dans le simplexe (A_0, \ldots, A_n') polaire réciproque de (A_0, \ldots, A_n) . Soit $\sum_{i,k} \alpha_{ik} u_i u_k = 0$

l'équation tangentielle de la quadrique absolue, le simplexe (A_0, \ldots, A_n) étant pris pour simplexe de référence des coordonnées homogènes; soient $C(c_i)$ et $D(d_i)$ les foyers principaux d'une quadrique de révolution dont

l'équation aura la forme $\sum_{i,k} (c_i u_i d_k u_k + \lambda \alpha_{ik} u_i u_k) = 0$. Pour que cette quadrique soit inscrite au simplexe (A_0, \ldots, A_n) , il faut et il suffit qu'elle vérifie les relations

$$c_i d_i + \lambda \alpha_{ii} = 0 \qquad (i = 0, \ldots, n) .$$

Ce sont les équations de la correspondance des foyers, correspondance d'ordre n.

En particulier, les points doubles de cette transformation sont donnés par les relations:

$$e_i^2 + \lambda \alpha_{ii} = 0 \qquad (i = 0, \ldots, n) .$$

Il y a 2^n points doubles qui sont les centres des sphères inscrites au simplexe. Ces points appartiennent aux couples d'hyperplans

$$\alpha_{00} x_i^2 - \alpha_{ii} x_0^2 = 0$$
, $(i = 1, ..., n)$.

Ils déterminent par conséquent un système linéaire à (n-1) dimensions R d'hyperquadriques:

$$\sum_{i=1}^{n} \mu_{i} (\alpha_{00} x_{i}^{2} - \alpha_{ii} x_{0}^{2}) = 0 .$$

Toutes les quadriques de ce système sont harmoniquement circonscrites à l'absolu (circonscrites à un simplexe polaire de Q), autrement dit équilatères, puisque l'on a la relation

$$\sum_{i} (\mu_{i} \alpha_{00}) \alpha_{ii} - \sum_{i} (\mu_{i} \alpha_{ii}) \alpha_{00} = 0$$
.

Quelles sont les quadriques harmoniquement inscrites à toutes les quadriques du système R? Si $\sum \beta_{ik} u_i u_k = 0$ est l'équation de l'une d'elles, il faut que

$$(-\sum \mu_i \, \alpha_{ii}) \beta_{00} + \sum \beta_{ii} (\mu_i \, \alpha_{00}) = 0$$

pour tout μ_i , c'est-à-dire

$$\alpha_{ii}\,\beta_{00} - \alpha_{00}\,\beta_{ii} = 0$$
 $(i = 1, ..., n)$.

Ceci vaut en particulier pour les quadriques dégénérées en une paire de points. Nous voyons donc que:

1. Les foyers principaux d'une quadrique de révolution inscrite au simplexe sont deux points conjugués par rapport à toutes les quadriques du système R et réciproquement.

Par conséquent, le simplexe (A_0, \ldots, A_n) est un simplexe polaire pour toutes les quadriques du système. En effet, deux points pouvant être considérés comme quadrique de révolution, un sommet A_i et un point quelconque de la face a_i , étant inscrits au simplexe, sont inverses. Les sommets du simplexe sont des points singuliers de la correspondance des foyers et il leur correspond tous les points de la face opposée. De même, à un point d'un E^k du simplexe correspondent tous les points du E^{n-k-1} opposé $(k=0,\ldots,n-1)$.

Montrons encore que la correspondance est d'ordre n: Soit d une droite quelconque; les espaces polaires des points de cette droite par rapport à n quadriques indépendantes du système R déterminent n faisceaux projectifs d'hyperplans; les points d'intersection de n espaces homologues décrivent une courbe de n^e ordre, transformée de la droite. Cette courbe passe par les (n+1) sommets du simplexe, ces points correspondant aux traces de la droite d dans les faces du simplexe.

La variété transformée d'un espace linéaire à (n-1) dimensions est d'ordre n. En effet, soit d une droite quelconque. Son inverse, V_n^1 , coupe l'hyperplan en n points dont les inverses sont les seuls points d'intersection de la droite avec la variété V_n^{n-1} .

§ 3. Propriétés de la correspondance des foyers Correspondances induites

2. A une droite d passant par un sommet A_i du simplexe correspond une droite d' par le même sommet A_i .

En effet, les espaces polaires des points de la droite d par rapport à n quadriques indépendantes du système R forment n faisceaux perspectifs, la face a_i leur étant commune; les espaces homologues se coupent en une droite d' passant par A_i , point inverse de la trace de d dans a_i .

Projetons tout l'espace sur a_i à partir de A_i . Soit Q_i la projection de l'absolu. Une quadrique de révolution de foyers F_1 et F_2 est projetée suivant une quadrique de l'hyperplan a_i , de révolution par rapport à l'absolu Q_i , F_1' et F_2' (projections de F_1 et F_2) étant ses foyers principaux. En particulier, une quadrique de révolution inscrite au simplexe (A_0, \ldots, A_n) est projetée en une quadrique de révolution inscrite au simplexe

$$(A_0,\ldots,A_{i-1},A_{i+1},\ldots,A_n)$$
.

Par conséquent, les droites correspondantes d et d'; passant par un sommet A_i , induisent dans la face opposée a_i une transformation ponctuelle qui est la correspondance des foyers relative au simplexe

$$(A_0, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$$

et à l'absolu Q_i , projection de Q. Cette correspondance est d'ordre (n-1); les n points singuliers sont les sommets A_k contenus dans cette face; les 2^{n-1} points doubles sont les projections à partir de A_i des 2^n points doubles de l'espace, deux à deux alignés sur A_i .

3. A tout espace à (k+1) dimensions passant par un E^k du simplexe correspond un E^{k+1} par le même E^k .

Cette propriété étant vraie pour k = 0, supposons-la vraie pour k et démontrons-la pour (k + 1).

Soient β un E^{k+1} contenant les points A_0, \ldots, A_k et α un E^k compris dans β et passant par A_0, \ldots, A_{k-1} . Les droites projetant les points de α à partir de A_k se transforment en droites par A_k projetant les points de α' , correspondant de α , donc E^k par A_0, \ldots, A_{k-1} . Le transformé β' de β est donc un E^{k+1} par A_0, \ldots, A_k . Les points de β qui ne sont pas sur le simplexe se transforment en points de β' ; aux points de (A_0, \ldots, A_k) correspond tout l'espace (A_{k+1}, \ldots, A_n) .

Si, comme précédemment, nous projetons tout l'espace à partir d'un E^k du simplexe sur le E^{n-k-1} opposé, nous voyons qu'une hyperquadrique de révolution par rapport à Q, de foyers F_1 et F_2 , inscrite au simplexe, est projetée suivant une quadrique de ce E^{n-k-1} , inscrite au simplexe déterminé par les sommets du simplexe primitif qui se trouvent dans cet espace, et de révolution par rapport à la projection de Q, les foyers principaux étant les projections de F_1 et de F_2 .

Par conséquent, les E^{k+1} correspondants par un E^k du simplexe déterminent une transformation ponctuelle du E^{n-k-1} opposé, qui est une correspondance des foyers relative au simplexe situé dans cet espace et à l'absolu Q', projection de Q à partir du E^k . Les (n-k) points singuliers sont les sommets du simplexe; les points doubles sont les 2^{n-k-1} projections des points doubles de l'espace qui sont 2^{k+1} à 2^{k+1} dans des E^{k+1} passant par le E^k .

La correspondance des foyers induit autour de chaque E^k du simplexe une correspondance entre les E^{k+1} : l'inverse d'un point d'un E^{k+1} non situé sur le simplexe, est un point du E^{k+1} correspondant. En particulier, elle induit une transformation ponctuelle de chacun des E^{k+1} doubles, confondus avec leur correspondant.

Remarquons que la section d'une hyperquadrique de révolution (par rapport à Q) par un E^h quelconque contenant les foyers principaux F_1 et F_2 , est une quadrique de ce E^h , de révolution par rapport à la section de Q par cet espace, et de foyers principaux F_1 et F_2 .

Par conséquent, la transformation induite dans un E^{k+1} double est une correspondance des foyers; l'absolu en est la trace de l'absolu primitif dans le E^{k+1} considéré; les 2^{k+1} points doubles sont ceux de l'espace E^n qui se trouvent dans ce E^{k+1} ; les (k+2) points singuliers sont: les (k+1) sommets du simplexe et le point H, trace du E^{k+1} dans le E^{n-k-1} opposé du simplexe. Cette correspondance est d'ordre (k+1). Nommons J_{k+1} cette correspondance.

De même, la transformation ponctuelle établie entre deux E^{k+1} inverses passant par un E^k du simplexe, est d'ordre (k+1):

4. A une droite quelconque coupant un E^k du simplexe (et aucun autre) correspond une variété d'ordre (k + 1) coupant ce E^k en (k + 1) points (sommets du simplexe).

Par contre,

5. si une droite d coupe deux espaces $E^h = \alpha$ et $E^k = \beta$ du simplexe, elle se transforme en une droite d' coupant ces mêmes espaces.

En effet, d étant dans un E^{h+1} contenant α et dans un E^{k+1} contenant β , d' se trouve dans l'intersection des E^{h+1} et E^{k+1} correspondants, par α et β , donc une droite coupant α et β .

6. La variété $V_n^{n-1} = \gamma'$, inverse d'un hyperplan $E^{n-1} = \gamma$, contient les E^k du simplexe avec la multiplicité (n - k - 1) (k = 0, ..., n - 2).

En effet, soit d' une droite quelconque par un point P d'un E^k du simplexe; elle se transforme en une variété d, d'ordre (k+1), qui coupe l'espace γ en (k+1) points. A ces points correspondent les points d'intersection de d' avec γ' , qui ne se trouvent pas dans le E^k . Par conséquent, d' coupant la variété γ' en n points, le point P est de multiplicité (n-k-1).

§ 4. Variétés correspondant aux espaces linéaires

Nous avons vu que l'inverse d'une droite est une variété d'ordre n, de même que l'inverse d'un espace à (n-1) dimensions. Quelle est la transformée d'un espace linéaire quelconque? Soient k variétés V_n^{n-1} contenant les E^{n-2} du simplexe. Quelle est leur intersection effective?

Nommons $V_{(1)},\ldots,V_{(k)}$ ces variétés. Chacune contient les E^{n-k} du simplexe avec la multiplicité (k-1). Les variétés $V_{(1)}$ et $V_{(2)}$ se coupent en une variété d'ordre n^2 qui dégénère dans les $\binom{n+1}{2}$ E^{n-2} du simplexe et une variété d'ordre $n^2-\binom{n+1}{2}=\binom{n}{2}$. Soit x_j l'ordre de la variété $V^{(n-j)}$, intersection effective des j variétés $V_{(1)},\ldots,V_{(j)}$; elle contient les E^{n-j-1} du simplexe. D'autre part, $V_{(j+1)}$ contient les E^{n-j-1} du simplexe avec la multiplicité j. L'intersection de ces deux variétés $V^{(n-j)}$ et $V_{(j+1)}$ se compose donc de $\binom{n+1}{j+1} \cdot jE^{n-j-1}$ et d'une variété d'ordre x_{j+1} .

 $x_{j+1} = n \cdot x_j - j \binom{n+1}{j+1}$.

Par conséquent, $x_j = \binom{n}{j}$. En effet, $x_2 = \binom{n}{2}$; si $x_j = \binom{n}{j}$, $x_{j+1} = n\binom{x}{j} - j\binom{n+1}{j+1} = \binom{n}{j+1}$. L'intersection de k V_n^{n-1} contenant les E^{n-1} du simplexe est une variété $V_{\binom{n}{k}}^{n-k}$, contenant les E^{n-k-1} du simplexe. Par conséquent:

7. Un E^{n-k} quelconque est transformé par la correspondance des foyers en une variété d'ordre $\binom{n}{k}$ contenant tous les E^{n-k-1} du simplexe $(k=1,\ldots,n)$.

Une variété V_n^1 est déterminée par (n+3) points P_i . En effet, une correspondance projective étant donnée par trois positions des éléments homologues, il suffit de considérer les n faisceaux d'hyperplans d'axes $(P_1, \ldots, P_{i-1}, P_{i+1}, \ldots, P_n)$ $(i=1,\ldots,n)$ et dont les éléments homologues passent successivement par $P_{n+1}, P_{n+2}, P_{n+3}$. Ces n faisceaux se coupent en une V_n^1 passant par les (n+3) points donnés. D'autre part, toute V_n^1 se laisse engendrer de cette façon, un hyperplan par $(P_1, \ldots, P_{i-1}, P_{i+1}, \ldots, P_n)$ la coupant encore en un et un seul point. Donc:

Toute V_n^1 par les (n+1) sommets du simplexe est l'inverse d'une droite de l'espace.

Une variété V_n^{n-1} contenant les E^{n-2} du simplexe est déterminée par n autres points. Remarquons d'abord que par n points passe une telle variété, à savoir la transformée de l'hyperplan déterminé par les n inverses des points donnés. Supposons que par (n+1) points quelconques passe une telle variété. Soient $1, \ldots, n+2$ des points quelconques et

considérons les n-1 variétés V_n^{n-1} déterminées par les (n+1) points $1, \ldots, j-1, j+1, \ldots, n+2$ $(j=4, 5, \ldots, n+2)$. Ces n-1 variétés se coupent suivant une courbe V_n^1 passant par les sommets du simplexe et par les points 1, 2, 3. Nous aurions alors une courbe de n^e ordre par (n+4) points quelconques. Nos hypothèses sont donc fausses.

8. Une variété $V_{\binom{n}{k}}^k$ contenant les E^{k-1} du simplexe est déterminée par (k+1) autres points.

Remarquons de nouveau que la transformée de l'espace E^k déterminé par les inverses des (k+1) points est une telle variété. Supposons que par (k+2) points quelconques passe une telle variété. Considérons d'autre part une variété V_n^{n-1} passant par (k+1) de ces points et ne passant pas par le $(k+2)^e$. Ces deux variétés ont pour intersection effective une variété $V_{\binom{n}{k-1}}^{k-1}$. Si donc il passe une variété $V_{\binom{n}{k-1}}^{k}$ par les E^{k-1} du simplexe et par (k+2) points, il passe une variété $V_{\binom{n}{k-1}}^{k-1}$ par les E^{k-2} du simplexe et par (k+1) points et par suite, il passe une variété V_n^1 par les sommets du simplexe et par trois points, ce qui est faux. Par conséquent:

9. Toute variété $V_{\binom{n}{k}}$ contenant les E^{k-1} du simplexe est la transformée d'un espace linéaire à k dimensions $(k = 1, \ldots, n - 1)$ dans la correspondance des foyers.

En nous appuyant sur les résultats trouvés précédemment, nous pouvons donner maintenant des propriétés générales de la correspondance des foyers.

A un E^h contenant un E^k du simplexe correspond un cône ayant ce E^k pour sommet, de dimension h et d'ordre $\binom{n-k-1}{h-k-1}$. En effet, la trace du E^h dans le E^{n-k-1} opposé du simplexe, qui est un E^{h-k-1} , est transformée par la correspondance des foyers (d'ordre n-k-1) induite dans cet espace, en une variété d'ordre $\binom{n-k-1}{h-k-1}$, qui, projetée à partir du E^k , donne la variété cherchée. Par suite:

10. Un E^h quelconque est transformé par la correspondance des foyers en une variété à h dimensions, d'ordre $\binom{n}{h}$, contenant tous les E^{h-1} du simplexe; les E^{k+1} tangents à cette variété en un E^k du simplexe forment

un cône ayant ce E^k pour sommet, de dimension h et d'ordre $\binom{n-k-1}{h-k-1} = \binom{n-k-1}{n-h}$.

Ce cône est en effet la transformée de l'espace à h dimensions projetant à partir du E^k la trace du E^h donné dans le E^{n-k-1} opposé du simplexe.

11. A un E^h incident à un E^k du simplexe (et seulement à cet espace) correspond une variété $V_{\binom{k+1}{h}}$ coupant ce E^k suivant une variété $V_{\binom{k+1}{h}}$.

En effet, ce E^h est dans un E^{k+1} contenant le E^k . Sa transformée est dans le E^{k+1} correspondant par le E^k ; la correspondance entre les deux espaces est d'ordre (k+1). Remarquons que pour h=k+1, nous retrouvons un théorème précédent.

Nous pouvons dès lors donner le résultat général suivant:

12. La correspondance des foyers transforme une variété V_h^k en une variété $V_{\binom{n}{k} \cdot h}^k$, contenant tous les E^{k-1} du simplexe : les E^{m+1} tangents à cette variété le long d'un E^m du simplexe forment un cône ayant ce E^m pour sommet, de dimension k et d'ordre $\binom{n-m-1}{k-m-1} \cdot h$.

En effet, soit un E^{n-k} quelconque; il coupe la variété transformée V' en x points; à chacun de ces points correspond un point d'intersection de la transformée $V_{\binom{n-k}{n-k}}^{n-k}$ de ce E^{n-k} avec la variété donnée V, donc $x = \binom{n}{n-k} \cdot h = \binom{n}{k} \cdot h$. D'autre part, soit P un point de V dans un E^{n-m-1} du simplexe: l'espace à (m+1) dimensions déterminé par P et le E^m opposé se transforme en un E^{m+1} , par ce E^m , et tangent à la variété V'. La trace de V dans le E^{n-m-1} est transformée dans cet espace, en une variété $V_{\binom{n-m-1}{k-m-1}}^{k-m-1}$ qui, projetée à partir du E^m , donne le cône cherché.

§ 5. Décomposition de la correspondance des foyers

Considérons un $E^{k-1}=a$ et un $E^{n-k-1}=b$ du simplexe, sans point commun. Soient α un E^k double par a, β un E^{n-k} double par b. Nous avons dans α une correspondance J_k ; dans β , une correspondance J_{n-k} . Ces deux correspondances J_k et J_{n-k} déterminent la correspondance de l'espace.

En effet, soit P un point quelconque. L'espace $\gamma = (aP) = E^k$ coupe β en un point R; l'espace inverse γ' est un E^k passant par a et par le point

R', correspondant de R dans J_{n-k} . De même, à l'espace $\delta = (bP) = E^{n-k}$, coupant α en S, correspond l'espace $\delta' = (bS') = E^{n-k}$, S' étant le point inverse de S dans J_k . L'inverse P' de P est le point d'intersection des espaces γ' et δ' .

Si nous décomposons de cette façon les correspondances J_k et J_{n-k} , nous arrivons finalement au résultat suivant:

13. La correspondance des foyers est déterminée par n transformations J_1 .

Par exemple et plus exactement: la correspondance des foyers est déterminée par les n points singuliers A_1, \ldots, A_n , un point double D et les involutions biunivoques définies sur les n droites A_iD .

En effet, soit P un point quelconque. L'espace $(A_1, \ldots, A_{i-1}, P, A_{i+1}, \ldots, A_n)$ coupe la droite A_iD en R_i . Soit R'_i son correspondant sur A_iD . Les n espaces $(A_1, \ldots, A_{i-1}, R'_i, A_{i+1}, \ldots, A_n)$ se coupent au point P', inverse de P.

Il va sans dire que nous pourrions combiner différemment les involutions linéaires J_1 , ou faire des raisonnements semblables avec les correspondances des foyers induites dans les espaces du simplexe. La correspondance des foyers peut donc se définir indépendamment de l'hyperquadrique absolue Q. Supposons le simplexe (A_0, \ldots, A_n) fixe. Quelles sont les hyperquadriques qui engendrent la même correspondance des foyers?

§ 6. Correspondances des foyers et ensembles d'hyperquadriques

Etant donné un point de coordonnées c_i , nous avons vu que son inverse a pour coordonnées $d_i = \frac{\alpha_{ii}}{c_i}$, $\sum_{i,k} \alpha_{ik} u_i u_k = 0$ étant l'équation tangentielle de l'hyperquadrique absolue. Par conséquent, la correspondance des foyers est indépendante des coefficients α_{ik} $(i \neq k)$. Nous pouvons donc considérer comme absolu n'importe quelle hyperquadrique du système

$$\sum_{i,k} (\alpha_{ik} u_i u_k + \beta_{ik} u_i u_k) = 0 ,$$

 $(\beta_{ii}=0\,,\,\,\beta_{ik}$ quelconque); la correspondance sera la même. En d'autres termes :

14. Soient F_1 et F_2 les foyers principaux d'une hyperquadrique inscrite au simplexe (A_0, \ldots, A_n) et de révolution par rapport à Q. Soit Q' une hyperquadrique du faisceau tangentiel déterminé par Q et par une hyperquadrique quelconque inscrite au simplexe. Il existe une hyper-

quadrique inscrite au simplexe, de révolution par rapport à Q' et ayant F_1 et F_2 pour foyers principaux, c'est-à-dire inscrite au simplexe et aux deux cônes de sommets F_1 et F_2 tangents à Q.

Nous pouvons retrouver ce résultat en nous appuyant sur la propriété élémentaire suivante : Soient C_1 , C_2 , C_3 , C_4 quatre hyperquadriques. Si les faisceaux tangentiels déterminés par C_1 et C_2 d'une part, C_3 et C_4 d'autre part, ont une hyperquadrique commune, il en est de même pour les deux faisceaux tangentiels déterminés par ces quatre quadriques prises deux à deux de façon quelconque. Remarquons que le faisceau tangentiel déterminé par deux quadriques inscrites se compose de quadriques inscrites. Par conséquent, soient F_1 et F_2 les deux foyers principaux d'une quadrique inscrite, J_1 , de révolution par rapport à Q; Q' une quadrique du faisceau déterminé par Q et par une quadrique inscrite J_2 : les faisceaux tangentiels $\{(F_1, F_2), J_1\}$ et $\{Q', J_2\}$ ayant en commun la quadrique Q, les faisceaux $\{(F_1, F_2), Q'\}$ et $\{J_1, J_2\}$ ont en commun une quadrique J_3 . J_3 est inscrite, de révolution par rapport à Q' et de foyers principaux F_1 et F_2 . Nous pouvons énoncer cette propriété comme suit en employant le langage de l'espace euclidien :

15. Si F_1 et F_2 sont les foyers principaux d'une hyperquadrique de révolution inscrite à un simplexe, les deux cônes de sommets F_1 et F_2 , tangents à une hyperquadrique homofocale à une hyperquadrique quelconque inscrite au simplexe, sont tangents à une hyperquadrique inscrite au simplexe.

La correspondance des foyers est la même pour tout le système linéaire à $\frac{n(n+1)}{2}$ dimensions déterminé par toutes les quadriques inscrites et par une quadrique quelconque. Chacun de ces systèmes contient une et une seule quadrique admettant le simplexe pour simplexe polaire (car une telle quadrique a pour équation $\sum \alpha_{ii} u_i^2 = 0$).

16. Toute correspondance des foyers est caractérisée par une hyperquadrique admettant le simplexe pour simplexe polaire et réciproquement.

§ 7. Quelques variétés remarquables de l'espace euclidien

Considérons un espace ayant un hyperplan à l'infini a (l'espace euclidien par exemple). Nommons milieu d'un segment BC le point conjugué par rapport à BC de la trace de la droite BC dans l'hyperplan à l'infini.

Soit un espace à deux dimensions par une arête A_iA_k du simplexe, et transformé en lui-même par la correspondance des foyers. (Rappelons qu'il en existe 2^{n-2} par chaque arête.) Sa droite à l'infini a pour inverse

une conique par neuf points: les deux sommets A_i et A_k , la trace H de ce plan dans le E^{n-2} opposé à A_i et A_k et les milieux des six segments déterminés par deux des quatre points doubles situés dans ce plan, ces points étant conjugués d'un point à l'infini par rapport à toutes les quadriques du faisceau ponctuel déterminé par les 2^n centres des hypersphères inscrites au simplexe. Il y a donc $2^{n-3} \cdot n (n+1)$ coniques particulières.

Plus généralement, soit un E^{k+1} double par un E^k du simplexe. L'inverse de son E^k à l'infini est une variété V_{k+1}^k , contenant les (k+1) sommets du simplexe, la trace H du E^{k+1} dans le E^{n-k-1} opposé et les $2^k(2^{k+1}-1)$ milieux des segments déterminés par les 2^{k+1} points doubles du E^{k+1} , pris deux à deux.

Nous avons donc $2^{n-k-1} \binom{n+1}{k+1}$ variétés particulières $V_{k+1}^k (k=0,\ldots,n-2)$.

Rappelons que toute variété $V_{\binom{n}{k}}^k$ contenant les E^{k-1} du simplexe est la transformée d'un E^k . Par conséquent :

17. Si une $V_{\binom{n}{k}}^k$ contenant les E^{k-1} du simplexe coupe (k+1) des variétés particulières V_{n-k}^{n-k-1} , elle les coupe toutes (en des points non situés sur le simplexe).

En effet, son inverse est alors un E^k contenu dans l'hyperplan à l'infini et coupant donc tous les E^{n-k-1} , transformés des variétés particulières.

II.

PARABOLOÏDES DE RÉVOLUTION INSCRITS A UN SIMPLEXE

§ 1. Une propriété des foyers d'une hyperquadrique de révolution

Soient F_1 et F_2 les deux foyers principaux d'une quadrique, H_1 , de révolution par rapport à l'absolu Q, c'est-à-dire inscrite aux cônes C_1 et C_2 de sommets F_1 et F_2 tangents à Q. Soient f_1 et f_2 les hyperplans polaires de F_1 et F_2 par rapport à Q, α_1 et α_2 leurs variétés quadratiques d'intersection avec Q.

Une polarité par rapport à Q transforme la quadrique H_1 en une quadrique H_2 contenant les variétés α_1 et α_2 .

Opérons encore une inversion de sommet F_1 par rapport à Q: A un point P correspond la trace P' du rayon F_1P dans l'espace polaire de P par rapport à Q. Cette transformation est quadratique. A la quadrique

 H_2 correspond une variété de quatrième ordre qui dégénère dans le cône C_1 , inverse de α_1 , et dans une nouvelle quadrique H_3 . H_3 contient α_1 et α_2 . En effet, les points de α_2 sont transformés en eux-mêmes. Soit P un point de α_1 . Le rayon F_1P coupe H_2 en un deuxième point P_1 dont l'inverse est le point P, l'espace polaire de P_1 passant par P.

De même, si nous prenons F_2 pour centre d'inversion, l'inverse de H_2 se compose du cône C_2 et d'une quadrique H_4 , contenant α_1 et α_2 .

 H_3 et H_4 sont identiques. En effet, soit R un des points d'intersection de la droite F_1F_2 avec H_2 . Son inverse R' est le même, que le centre d'inversion soit F_1 ou F_2 . H_3 et H_4 faisant partie du même faisceau ponctuel (déterminé par Q et par les deux hyperplans f_1 et f_2) et ayant un point commun, coïncident.

Les quadriques H_1 et H_3 sont tangentes le long d'une variété quadratique. Autrement dit : Soient P un point sur H_1 et H_3 ; a et b les hyperplans tangents à H_1 et H_3 en P: a et b sont identiques, quel que soit P.

En effet, le point P', inverse du point P de H_3 , est sur H_2 et dans l'espace polaire de P. L'hyperplan polaire de P' est tangent à H_1 en P. P' est donc le pôle de a. Remarquons la propriété suivante : Soient C et D deux points inverses, c et d leurs hyperplans polaires : L'inverse c' de c est une hyperquadrique tangente à d. En effet, supposons que c' coupe d en un point $E \neq D$. L'inverse E' de E étant dans c, l'espace polaire de E contient la droite CE' si $E' \neq C$, donc toute la droite DE est sur c'; ou alors, si E' = C, E = D. c' est bien tangente à d. Soit f l'espace tangent à H_2 en P'. Son inverse est tangente à H_3 , mais aussi à a. Par conséquent, H_1 et H_3 sont tangentes en tout point de leur intersection.

Soit g un hyperplan tangent à H_1 et soit G son pôle par rapport à Q. La droite F_1G (perpendiculaire abaissée d'un foyer sur un espace tangent) coupe g en un point de H_3 . Par conséquent:

18. Le lieu des pieds des perpendiculaires abaissées des deux foyers principaux d'une hyperquadrique H_1 , de révolution par rapport à une hyperquadrique absolue Q, sur tous les hyperplans tangents à H_1 , est une hyperquadrique H_3 , tangente à H_1 de long d'une variété quadratique, et appartenant au faisceau ponctuel déterminé par l'absolu Q et les deux hyperplans polaires (par rapport à Q) des foyers.

Considérons le cas particulier où la quadrique H_1 est un paraboloïde de révolution, c'est-à-dire que H_1 est tangente à l'hyperplan f_1 , polaire de F_1 . L'hyperquadrique H_2 , polaire réciproque, passe par F_1 et son inverse H_3 dégénère dans les deux hyperplans f_1 et f_2 qui sont tangents à H_1 .

Nous pourrons donner une définition plus symétrique du paraboloïde de révolution :

Un paraboloïde de révolution par rapport à Q est une hyperquadrique de révolution tangente aux deux hyperplans polaires de ses foyers principaux.

Remarquons encore que les points de contact R et R' du paraboloïde avec ces hyperplans sont sur la droite des foyers principaux. En effet, les points F_1 et F_2 constituent une quadrique du faisceau tangentiel, déterminé par Q et H_1 . Les espaces f_1 et f_2 se coupent en un espace (f_1f_2) conjugué de la droite F_1F_2 par rapport à toutes les quadriques du faisceau, étant conjugué par rapport à deux d'entre elles, Q et (F_1F_2) . Les espaces f_1 et f_2 , tangents à H_1 , ont leur points de contact sur F_1F_2 .

La propriété la plus importante de ce cas particulier est la suivante :

19. Le lieu des pieds des perpendiculaires abaissées d'un foyer principal d'un paraboloïde, de révolution par rapport à une hyperquadrique absolue Q, sur les hyperplans tangents à ce paraboloïde, est l'hyperplan polaire du deuxième foyer par rapport à l'absolu Q.

§ 2. Lieu des foyers des paraboloïdes de révolution inscrits à un simplexe Podes et podaires

Nous avons déjà remarqué qu'une hyperquadrique de révolution est déterminée par un foyer principal et par (n+1) hyperplans tangents, c'est-à-dire un simplexe de sommets A_0, \ldots, A_n . Nous nous proposons de déterminer le lieu des foyers des paraboloïdes de révolution inscrits à ce simplexe. Ces points devant satisfaire à une condition linéaire (l'hyperquadrique est tangente à l'espace polaire d'un foyer), nous trouverons une hypersurface que nous nommerons (F). D'après ce qui précède, nous pouvons affirmer que:

20. (F) est le lieu des points P tels que les pieds des perpendiculaires abaissées du point P sur les (n + 1) faces du simplexe sont dans un espace linéaire à (n - 1) dimensions.

Nous dirons que cet espace des pieds est l'espace podaire, ou simplement la podaire de P (par rapport au simplexe) et que P est le pode de cet espace. Nous désignerons enfin par (T) l'enveloppe des podaires.

D'après le théorème 2, nous voyons que:

- 21. Si F_1 est un pode, son espace polaire f_1 est une podaire. Plus exactement :
- 22. Le pode F_2 de la polaire f_1 d'un pode F_1 est aussi le pôle de la podaire f_2 de F_1 .
- 23. Le pôle et le pode d'une podaire sont les deux foyers principaux d'un paraboloïde de révolution inscrit au simplexe.
 - 24. La classe de (T) est égale à l'ordre de (F).

Donnons encore une démonstration directe du théorème 21: Par hypothèse, la droite PA'_i coupe la face a_i du simplexe en un point B_i , les (n+1) points B_i $(i=0,\ldots,n)$ étant dans un même $E^{n-1}=r$. En effectuant une polarité par rapport à Q, au point B_i correspond l'hyperplan b_i déterminé par l'intersection de p et de a_i et par le point A'_i . Ces (n+1) espaces b_i se coupent en un point R. La droite RA'_i coupe l'espace a_i en un point de p qui est donc une podaire de pode R.

De cette démonstration découle la propriété suivante que nous emploierons dans la suite:

25. Pour que le point P soit un pode, il faut et il suffit que les (n + 1) hyperplans passant par A'_i et conjugués des droites PA'_i se coupent en un point R. Ce point R est aussi un pode.

§ 3. Quelques propriétés des podes et des podaires

D'après la définition du pode, nous voyons facilement que la variété (F), lieu de ces points, contient : tous les espaces à (n-2) dimensions du simplexe A_0, \ldots, A_n ; les espaces d'intersection des faces homologues a_i et a'_i ; les sommets du simplexe A'_0, \ldots, A'_n . Dualement, tout hyperplan par une hauteur $A_iA'_i$ est une podaire, de même que tout hyperplan contenant deux sommets au moins du simplexe (A'_0, \ldots, A'_n) .

26. Toute podaire contenant un seul sommet A'_i contient toute la hauteur $A_i A'_i$.

Remarquons que le pode d'une podaire r est l'intersection des (n+1) hyperplans déterminés par un point A'_i et l'intersection des espaces r et a_i $(i=0,\ldots,n)$. Par conséquent, si une podaire contient le point A'_0 par exemple, elle contient son pode P. Les n hyperplans déterminés par A'_i et la trace de cette podaire dans la face a_i $(i=1,\ldots,n)$ devant se couper

en P, P n'est autre que l'intersection des n faces a_i (i = 1, ..., n), donc le point A_0 .

A cause de notre remarque, nous pouvons aussi affirmer que:

Tout hyperplan par k sommets A'_1, \ldots, A'_k est une podaire admettant pour pode n'importe quel point de son intersection avec l'espace (A_1, \ldots, A_k) . Tout espace par k sommets A'_i a donc ∞^{k-2} podes.

27. Pour qu'une podaire contienne son pode, il faut et il suffit qu'elle contienne un sommet au moins du simplexe (A'_0, \ldots, A'_n) .

La suffisance découle de ce qui précède. D'autre part, supposons qu'une podaire contienne son pode et aucun des points A'_i : Elle devrait alors contenir le point d'intersection des (n+1) espaces a_i $(i=0,\ldots,n)$, ce qui est exclu.

En résumé, si une podaire passe par le point A'_0 , elle contient ou le point A_0 , ou un sommet A'_i . Dualement, les seuls podes qui se trouvent dans la face a_0 sont les points des espaces à (n-2) dimensions du simplexe et les points de l'intersection des faces a_0 et a'_0 . Donc:

28. La variété (F) est d'ordre (n+1); la variété (T) est de classe (n+1).

\S 4. Variété (F)

Pour éviter d'employer le principe de la conservation du nombre, donnons une démonstration directe de ce dernier théorème.

Soient Q l'absolu, (A_0, \ldots, A_n) le simplexe, a_i la face opposée à A_i , A'_i le pôle de a_i par rapport à Q, d une droite quelconque, d_i sa projection sur a_i à partir de A'_i , P un point quelconque de d, P_i sa projection de A'_i sur d_i .

Combien existe-t-il de points P tels que l'espace (P_1, \ldots, P_n) coupe d_0 en P_0 ? Si P est quelconque, l'espace (P_1, \ldots, P_n) coupe d_0 en P_0' . L'ordre de (F) est égal au nombre de points doubles de la correspondance P_0P_0' . Soit X_{n+1} ce nombre. A un point P_0 correspond un seul point P_0' . A un point P_0' correspondent X_n points P_0 . X_n est égal au nombre d'hyperplans menés par P_0' et coupant les droites d_i en des points R_i tels que les droites $A_i'R_i$ se coupent sur d. Soit P_1' l'intersection de l'espace (P_0', P_2, \ldots, P_n) avec la droite d_1 . X_n est égal au nombre de points doubles de la correspondance P_1P_1' . A un point P_1 correspond un seul point P_1' ; à un point P_1' correspondent X_{n-1} points P_1 . $X_{n-1} = X_n - 1 = X_{n+1} - 2$. Généralement X_{n-n} est égal au nombre d'hyperplans menés

par P'_0, \ldots, P'_h coupant les droites d_i en des points R_i $(i=h+1\ldots n)$ tels que les droites A'_iR_i se coupent sur d, c'est-à-dire si P'_{h+1} est le point d'intersection de l'espace $(P'_0, \ldots P'_h, P_{h+2}, \ldots, P_n)$ avec la droite d_{h+1} c'est le nombre de points doubles de la correspondance P_{h+1} $P'_{h+1} \cdot X_{n-h} = X_{n-h+1} - 1 = X_{n+1} - h - 1$. Pour h = n - 1, X_1 est le nombre de points doubles de la correspondance $P'_nP_n \cdot P'_n$ étant fixe, $X_1 = 1$. Par conséquent, $X_{n+1} = n + 1$. L'ordre de (F) est bien égal à (n+1).

29. La variété (F) contient tous les E^{n-k} du simplexe avec la multiplicité (k-1).

Remarquons tout d'abord que la variété (F) est transformée en ellemême par la correspondance des foyers relative à l'absolu Q.

Soit d une droite quelconque, coupant (F) en (n+1) points. Sa transformée d' dans la correspondance des foyers est une variété V_n^1 , passant par les sommets du simplexe, points de multiplicité y sur (F). A tout point d'intersection de d et de (F) correspond un point d'intersection de d' et de (F). d' coupant (F) en n(n+1) points dont y(n+1) sont singuliers, nous devons avoir

$$n+1=n(n+1)-y(n+1); y=n-1.$$

Soit f une droite quelconque par un point P d'un E^{n-k} du simplexe. d coupe (F) en (n+1) points dont x sont confondus en P. A chaque point d'intersection de d et de (F), (différent de P), correspond un point d'intersection non singulier de la transformée d' de d, et de (F). Or d' est une variété V^1_{n-k+1} passant par les (n-k+1) sommets du simplexe situés dans le E^{n-k} considéré, chacun de ces points ayant la multiplicité (n-1). Par conséquent, d' coupant (F) en (n-k+1)n points dont (n-k+1) (n-1) sont singuliers, nous avons donc:

$$n-x = (n-k+1)n - (n-k+1)(n-1)$$

 $x = k-1, (k = 1,...,n).$

§ 5. Variétés (F) transformées en elles-mêmes par une correspondance des foyers

Nous avons vu que nous obtenons la même correspondance des foyers si nous considérons une hyperquadrique absolue Q ou n'importe quelle hyperquadrique du faisceau tangentiel déterminé par Q et par une hyperquadrique quelconque inscrite au simplexe. Or à chaque hyperquadrique d'un tel faisceau correspond une variété (F), lieu des foyers des para-

boloïdes inscrits au simplexe et de révolution par rapport à cette hyperquadrique. Chacune de ces variétés est transformée en elle-même par la correspondance des foyers commune au faisceau. Par conséquent, chaque variété à (n-k) dimensions d'ordre $\binom{n}{k}$, intersection de k variétés (F) est également transformée en elle-même. Nous pouvons donc parler de sous-variétés invariantes pour la correspondance des foyers.

30. Par tout point de l'espace passent (n + 1) des variétés (F) relatives à un faisceau tangentiel d'hyperquadriques.

En effet, soient R un point quelconque, d_i le lieu des pôles de la face a_i par rapport à toutes les quadriques du faisceau, d_i' la projection à partir de R de cette droite d_i sur la face a_i , P_i un pôle particulier, P_i' sa projection correspondante.

Il passe autant de variétés (F) par R qu'il y a d'ensembles de points (P'_0, \ldots, P'_n) qui sont dans un hyperplan. En général, l'espace (P'_1, \ldots, P'_n) coupant la droite d'_0 en un point P^*_0 , il y en a autant que de points doubles dans la correspondance $P^*_0P'_0$. Soit X_n ce nombre. A un point P'_0 correspond un et un seul point P^*_0 , le point P'_0 déterminant une quadrique du faisceau, donc aussi l'espace (P'_1, \ldots, P'_n) . A un point P^*_0 correspondent $X_{n-1} = X_n - 1$ points P'_0 , X_{n-1} étant égal au nombre d'hyperplans passant par P^*_0 et coupant d'_i en un point P'_i , projection du pôle de a_i par rapport à une certaine quadrique indépendante de i $(i = 1, \ldots, n)$. Autrement dit, soit P^*_1 l'intersection de d'_1 et de l'espace $(P^*_0, P'_2, \ldots, P'_n)$, X_{n-1} est égal au nombre de points doubles de la correspondance $P^*_1P'_1$. Généralement, soit P^*_h l'intersection de la droite d'_h et de l'espace $(P^*_0, \ldots, P^*_{h-1}, P'_{h+1}, \ldots, P'_n)$ et soit X_{n-h} le nombre de points doubles de la correspondance $P^*_hP'_h \cdot X_{n-h} = X_n - h$. Pour h = n, P^*_n est l'intersection de l'espace $(P^*_0, \ldots, P^*_{n-1})$ et de la droite d'_n , c'est donc un point fixe. La correspondance $P^*_nP'_n$ a un seul point double, c'est-à-dire $X_0 = 1$ et par suite: $X_n = X_0 + n = n + 1$.

Si, par un point de l'espace, passent (n + 2) variétés (F) relatives à un faisceau, toutes passent par ce point.

Si le faisceau d'hyperquadriques considéré contient une hyperquadrique inscrite au simplexe, la correspondance des foyers est la même pour tout le faisceau et chacune des variétés (F) est transformée en elle-même par cette correspondance. L'ensemble des variétés (F) détermine sur chacune d'elles un système de variétés à (n-2) dimensions $V_{\binom{n}{2}}^{n-2}$ également invariantes. Par tout point d'une variété passent n sous-variétés invariantes situées dans la variété; s'il en passe (n+1), il en passe une infinité. Nous

avons ainsi obtenu une décomposition de tout l'espace en variétés $V_{\binom{n}{k}}^k$ transformées en elles-mêmes par la correspondance des foyers (le simplexe étant singulier).

Si, au lieu de considérer un faisceau d'hyperquadriques, nous avions pris le système déterminé par une quadrique quelconque et l'ensemble des quadriques inscrites au simplexe, nous aurions obtenu un ensemble plus complet de variétés (F) transformées en elles-mêmes par la correspondance des foyers commune à ce système, par chaque point de l'espace passant alors $\infty \frac{(n-1)(n+2)}{2}$ variétés (F).

\S 6. Variété (F) dans le cas euclidien

Les résultats que nous avons obtenus jusqu'ici sont valables quelle que soit l'hyperquadrique absolue Q. Il est intéressant de voir ce que devient la variété (F) dans le cas où l'absolu dégénère. Prenons donc pour absolu, une variété quadratique Q' à (n-2) dimensions, située dans un hyperplan α . Dans ce cas, la polaire par rapport à Q' d'un point non situé dans α est l'espace α ; la polaire d'un point de α est un hyperplan quelconque passant par le E^{n-2} polaire de ce point par rapport à Q'. Inversement, le pôle de α est un point quelconque de l'espace; le pôle d'un hyperplan est le pôle de sa trace dans α par rapport à Q'. La correspondance des foyers relative à Q' et à un simplexe est bien déterminée. D'après nos définitions générales, un paraboloïde de révolution est maintenant une hyperquadrique de révolution tangente à l'hyperplan a, polaire d'un foyer F_1 . La podaire de F_1 (non situé dans α) étant différente de α , le deuxième foyer est dans a (puisque c'est le pôle de cette podaire). Réciproquement, tout point de α est un pode, sa podaire étant l'espace α luimême. Par conséquent:

31. La variété (F) d'ordre (n+1) dégénère dans le cas euclidien et se compose de l'espace α et de la variété (F'), transformée de α dans la correspondance des foyers, variété d'ordre n.

Dualement, l'enveloppe (T) dégénère et se compose de l'hyperplan (α) et d'une variété (T') de classe (n+1), mais d'ordre plus petit que celui de (T).

Remarquons que la trace (B) de (F') dans α , variété à (n-2) dimensions d'ordre n, est transformée en elle-même par la correspondance des foyers. Si un point X de (F') tend vers un point P de (B), son inverse X' sur α tend vers un point P' également sur (B). La trace de la podaire de

X dans α est l'espace à (n-2) dimensions polaire de X' par rapport à Q' dans α . Si X=P, la podaire est l'espace α lui-même. Si X décrit une courbe sur (F') passant par P, les podaires enveloppent une variété tangente à α le long de l'espace polaire de P'. L'enveloppe des podaires de (F') touche α le long d'une variété qui est l'enveloppe des espaces E^{n-2} polaires de (B) par rapport à Q'.

32. La variété (T') touche l'espace α le long de la variété polaire réciproque de la trace de (F') dans α par rapport à l'absolu dégénéré Q'.

§ 7. Variété des foyers des hyperquadriques de révolution tangentes à (n + p + 1) hyperplans

Quelle est la signification géométrique de la variété (B)? Deux points correspondants de (B) sont les foyers principaux d'une hyperquadrique de révolution inscrite au simplexe et tangente à α , donc contenue dans α , c'est-à-dire dégénérée en une hyperquadrique à (n-2) dimensions. Par conséquent, la variété (B) est le lieu des foyers des hyperquadriques de α , de révolution par rapport à Q' et inscrites au simplexe. En considérant Q' comme absolu non dégénéré de l'espace α , nous arrivons au résultat :

33. Le lieu des foyers des hyperquadriques de révolution par rapport à un absolu non dégénéré Q et tangentes à (n+2) hyperplans de l'espace à n dimensions, est une variété d'ordre (n+1) et de dimension (n-1) contenant les $\binom{n+2}{2}$ espaces d'intersection des hyperplans pris deux à deux.

Dès lors se pose la question : Quelle est la variété des foyers des hyperquadriques de révolution tangentes à (n + p + 1) hyperplans?

Soient $1, \ldots, n+p+1$ les hyperplans donnés, F_i la variété des foyers des hyperquadriques de révolution tangentes aux hyperplans $1, 2, \ldots, n+1, n+1+i$, $(i=1,\ldots,p)$. Chacune de ces variétés est de dimension (n-1), d'ordre (n+1); les points d'un E^{n-k} , intersection de k des hyperplans $1, \ldots, n+1, n+1+i$, sont des points de multiplicité (k-1) pour cette variété.

Le lieu des foyers des hyperquadriques de révolution tangentes aux (n+p+1) hyperplans est l'intersection non singulière de p variétés F_i . En effet, une hyperquadrique de révolution étant déterminée par un foyer principal et (n+1) hyperplans tangents, l'hyperquadrique de foyer P et tangente à $1, \ldots, n+1, n+2$ est identique à l'hyperquadrique de foyer P et tangente à $1, \ldots, n+1, n+3$.

L'intersection de F_1 et de F_2 est une variété de dimension (n-2) et d'ordre $(n+1)^2$; mais elle contient les $\binom{n+1}{2}$ E^{n-2} d'intersection des espaces $1,\ldots,n+1$. Par conséquent, l'ordre de l'intersection effective de F_1 et de F_2 est égal à $x(2)=(n+1)^2-\binom{n+1}{2}$. Cette variété (F_1F_2) contient tous les E^{n-3} d'intersection des espaces $1,2,\ldots,(n+2)$ pris trois à trois.

L'intersection de (F_1F_2) et de F_3 est une variété de dimension (n-2) et d'ordre $x(2)\cdot(n+1)$; mais elle contient certains E^{n-3} : les espaces $(1,2,3),\ldots$, $\{(n-1),n,(n+1)\}$ ont la multiplicité 2 sur F_3 ; les espaces

$$\{1, 2, (n+2)\}, \ldots, \{n, (n+1), (n+2)\},$$

 $\{1, 2, (n+3)\}, \ldots, \{n, (n+1), (n+3)\}$

la multiplicité 1. Par conséquent, l'intersection de (F_1F_2) et de F_3 contient $2\binom{n+1}{3}+2\binom{n+1}{2}$ espaces E^{n-3} et l'ordre de l'intersection effective de $(F_1F_2F_3)$ est égal à

$$x(3) = x(2) \cdot (n+1) - \left\{ 2\binom{n+1}{3} + 2\binom{n+1}{2} \right\}$$

Généralement, soit x(k-1) l'ordre de l'intersection effective de (F_1,\ldots,F_{k-1}) , variété de dimension (n-k+1). Que vaut x(k)? L'intersection totale de (F_1,\ldots,F_{k-1}) et de F_k est d'ordre $(n+1)\cdot x(k-1)$, mais elle contient certains E^{n-k} : les E^{n-k} d'intersection de k des espaces $1,\ldots,n+1$ ont la multiplicité (k-1) sur F_k ; les E^{n-k} d'intersection de (k-j) des espaces $1,\ldots,n+1$ et de j des espaces $n+2,\ldots,n+k$ sont contenus simplement dans (F_1,\ldots,F_{k-1}) et ont la multiplicité (k-j-1) dans F_k $(j=0,\ldots,k-1)$. Par conséquent, l'intersection de (F_1,\ldots,F_{k-1}) et de F_k contenant $\sum_{j=0}^{k-1} (k-j-1) \binom{n+1}{k-j} \binom{k-1}{j}$ espaces E^{n-k} , l'ordre de l'intersection effective (F_1,\ldots,F_k) est égal à

$$x(k) = (n+1) \cdot x(k-1) - \sum_{j=0}^{k-1} (k-j-1) \binom{n+1}{k-j} \binom{k-1}{j} = (n+1) \cdot x(k-1) - (n+1) \sum_{j=0}^{k-1} \binom{k-1}{j} \binom{n}{k-j-1} + \sum_{j=0}^{k-1} \binom{n+1}{j} \binom{n+1}{k-j}$$

$$x(k) = (n+1) \cdot x(k-1) - (n+1) \binom{n+k-1}{k-1} + \binom{n+k}{k}.$$

Si
$$x(k-1) = \binom{n+k-1}{k-1}$$
, $x(k) = \binom{n+k}{k}$. Or $x(2) = \binom{n+2}{2}$;

cette formule vaut généralement par induction complète. Par conséquent :

34. Le lieu des foyers des hyperquadriques de révolution par rapport à un absolu Q et tangentes à (n+p+1) hyperplans est une variété de dimension (n-p) et d'ordre $\binom{n+p}{p}$ contenant les $\binom{n+p+1}{p+1}$ espaces à (n-p-1) dimensions, intersections de (p+1) des (n+p+1) hyperplans donnés.

En particulier, pour p = n et en remarquant qu'une hyperquadrique de révolution a deux foyers principaux, (n > 2) nous obtenons le résultat suivant :

35. Il existe $\frac{1}{2}\binom{2n}{n} = \binom{2n-1}{n}$ hyperquadriques de révolution tangentes à (2n+1) hyperplans quelconques de l'espace à n dimensions $(n \geq 3)$.

Pour n=2, comme une conique a six foyers, nous retrouvons $\frac{1}{6} \binom{4}{2} = 1$, conique unique tangente à cinq droites.

Il nous a semblé intéressant de donner encore une démonstration directe d'un cas particulier de ce dernier théorème: Dans l'espace à trois dimensions, il existe dix quadriques de révolution par rapport à une quadrique Q et tangentes à sept plans quelconques. Les trois variétés des foyers relatives à cinq quelconques de ces plans se coupant en un point au moins, nous pouvons supposer qu'il existe une telle quadrique I_1 . Soient F_1 et F_2 ses foyers. Si le faisceau tangentiel déterminé par la quadrique dégénérée (F_1F_2) et une quadrique quelconque I_2 tangente aux sept plans contient une autre quadrique dégénérée en deux points F_3 et F_4 , ces deux points sont les foyers d'une quadrique de révolution I_3 tangente aux sept plans. En effet, les faisceaux $\{Q, I_1\}$ et $\{(F_3F_4), I_2\}$ ayant en commun la quadrique (F_1F_2) , les faisceaux $\{Q, (F_3F_4)\}$ et $\{I_1I_2\}$ ont aussi une quadrique commune I_3 .

Pour que le faisceau tangentiel déterminé par $(F_1 F_2)$ et par une quadrique I contienne une autre quadrique dégénérée $(F_3 F_4)$, il faut et il suffit que F passe par les points F_1 et F_2 . En effet, si $(F_1 F_2)$ et $(F_3 F_4)$ déterminent un faisceau, tout plan par une des droites $F_1 F_3$, $F_1 F_4$, $F_2 F_3$, $F_2 F_4$, est tangent à toutes les quadriques du faisceau, qui contiennent

donc ces quatre points. Inversement, si I passe par F_1 et F_2 , les deux génératrices de I par F_1 coupent les génératrices par F_2 en deux points F_3 et F_4 qui appartiennent au faisceau.

Soient donc F_1 et F_2 les deux foyers d'une quadrique de révolution inscrite aux sept plans donnés. Il y a neuf quadriques passant par ces deux points et tangentes à ces sept plans. Par conséquent, il existe dix quadriques de révolution tangentes à sept plans.

Dans l'espace à n dimensions, comme il existe $\binom{2n-1}{n}$ hyperquadriques de révolution tangentes à (2n+1) hyperplans, nous pouvons dire de même :

36. Soient F_1 et F_2 deux points quelconques. Il existe $\binom{2n-1}{n}-1$ hyperquadriques tangentes à (2n+1) hyperplans et dont le faisceau tangentiel déterminé avec l'hyperquadrique dégénérée (F_1F_2) contienne une autre hyperquadrique dégénérée en deux points F_3 et F_4 . En effet, nous pouvons toujours considérer deux points quelconques F_1 et F_2 comme foyers principaux d'une hyperquadrique tangente à (2n+1) hyperplans et de révolution par rapport à un certain absolu, hyperquadrique quelconque du faisceau déterminé par F_1 et F_2 et l'hyperquadrique tangente.

§ 8. Variété des foyers des paraboloïdes de révolution tangents à (n+p) hyperplans

Une hyperquadrique de révolution étant déterminée par un foyer principal et (n + 1) hyperplans tangents, la variété des foyers des paraboloïdes de révolution tangents à (n + p) hyperplans est égale à l'intersection de la variété des foyers des hyperquadriques de révolution tangentes à ces (n + p) hyperplans et de la variété des foyers des paraboloïdes de révolution tangents à (n + 1) quelconques de ces hyperplans. En reprenant les raisonnements du paragraphe précédent, nous voyons que nous pouvons procéder exactement de la même façon. Nous trouvons ainsi:

37. Le lieu des foyers des paraboloïdes de révolution tangents à (n + p) hyperplans est une variété de dimension (n-p) et d'ordre $\binom{n+p}{p}$ contenant les espaces à (n-p-1) dimensions, intersections des (n+p) hyperplans pris (p+1) à (p+1).

En particulier, pour p = n:

38. Il existe $\binom{2n-1}{n}$ paraboloïdes de révolution tangents à 2 n hyperplans quelconques.

Il semble que la condition imposée à un paraboloïde de révolution d'être tangent à l'espace polaire d'un de ses foyers, est complètement analogue du point de vue énumératif à la condition d'être tangent à un hyperplan fixe.

En répétant les mêmes considérations pour le cas euclidien, où les variétés (F) sont à remplacer par les variétés (F') d'ordre n, nous trouvons les résultats suivants :

39. Le lieu des foyers (situés dans le fini) des paraboloïdes de révolution de l'espace euclidien tangents à (n+p) hyperplans est une variété de dimension (n-p) et d'ordre $\binom{n+p-1}{p} \cdot (n \geqslant 3)$.

Remarquons que la section de ces variétés par l'hyperplan à l'infini est une variété $V_{\binom{n-p-1}{p}}^{n-p-1}$ qui est le lieu des foyers des hyperquadriques tangentes à (n+p) hyperplans dans l'espace à (n-1) dimensions, ce qui coïncide avec nos résultats précédents.

En particulier, pour p = n, un paraboloïde n'ayant qu'un foyer dans le fini:

40. Il existe $\binom{2n-1}{n}$ paraboloïdes de révolution tangents à 2n hyperplans $(n\geqslant 3)$.

Pour n=2, les points cycliques étant sur toutes les variétés (F'), ils font aussi partie du lieu. Par conséquent, il y a $\binom{3}{2}-2=1$ parabole tangente à quatre droites.

III.

DROITES ASSOCIÉES

§ 1. Lemme

Pour établir notre prochain théorème, démontrons analytiquement une propriété particulière: Soient, dans un espace à n dimensions, (n+1) droites parallèles $1, \ldots, n+1$, perpendiculaires à l'espace des (n-1) premières coordonnées et soient a_1^j, \ldots, a_{n-1}^j les (n-1) premières coordonnées d'un point de la droite j, x^j la dernière. Considérons sur la droite j

(n+1) points P_1^j, \ldots, P_{n+1}^j , de n^e coordonnée x_1^j, \ldots, x_{n+1}^j , jouissant des propriétés suivantes : Les ponctuelles P_1^j, \ldots, P_{n+1}^j sont perspectives $(j=1,\ldots,n+1)$, les points à l'infini se correspondant ; de plus, $x_j^i=x_i^j$. Nous aurons nécessairement les relations :

$$x^{i} = (\lambda x_{i}^{1} - \lambda x_{1}^{1} + 1)(x^{1} - x_{1}^{1}) + x_{1}^{i}$$

c'est-à-dire $x^i = A \, x_i^1 \, x^1 + B \, x^1 + B \, x_i^1 + C$ où A, B, C sont des constantes. En effet, à cause de la perspectivité: $x^i = a_i \, x^1 + b_i$. Comme $x_i^1 = x_1^i$, $x^i = a_i (x^1 - x_1^1) + x_1^i$. Devant avoir $x_k^i = x_i^k$, nous trouvons $a_i (x_k^1 - x_1^1) + x_1^i = a_k (x_i^1 - x_1^1) + x_1^k$, c'est-à-dire $\frac{a_i - 1}{x_i^1 - x_1^1} = \frac{a_k - 1}{x_k^1 - x_1^1} = \lambda$; $a_i = \lambda (x_i^1 - x_1^1) + 1$.

Nous prétendons que: Les (n+1) espaces à (n-1) dimensions $(P_k^1 P_k^2, \ldots, P_k^{k-1}, P_k^{k+1}, \ldots, P_k^{n+1})$ $(k=1,\ldots,n+1)$ se coupent en un point; autrement dit, il existe une identité entre les déterminants

 $\boldsymbol{y_i}$ étant les coordonnées d'un point courant. Soit \boldsymbol{D} le déterminant

et soient m_k^i ses mineurs. Il existe l'identité en y_i : $\sum_{k=1}^{n+1} D_k \equiv 0$. En effet,

$$\begin{split} D_k &= (A \, x_k^1 + B) \, \left(m_k^0 + \sum_{i=1}^{n-1} \, y_i \, m_k^i \right) + (y_n - B \, x_k^1 - C) \, m_k^n \; . \\ \sum D_k &= A \, \sum \, x_k^1 m_k^0 + B \, \sum \, m_k^0 + \; \sum \, y_i \left[A \, \sum_k \, x_k^1 \, m_k^i + B \, \sum_k \, m_k^i \right] + \\ &\quad + (y_n - C) \, \sum \, m_k^n - B \, \sum \, x_k^1 \, m_k^n \; \; . \end{split}$$

Or $\sum_{k} x_{k}^{1} m_{k}^{i} = 0$, étant égal à D où l'on a remplacé la i^{e} colonne par la dernière; $\sum_{k} m_{k}^{i} = 0$ (i = 1, ..., n), étant égal à D où l'on a remplacé la i^{e} colonne par la première; $\sum_{k} m_{k}^{0} = D$; $\sum_{k} x_{k}^{1} m_{k}^{n} = D$; donc $\sum_{k} D_{k} = BD - BD = 0$, identiquement en y_{i} .

§ 2. Une propriété remarquable de la variété (F)

Nous nous proposons d'appliquer notre lemme pour trouver une propriété intéressante de la variété (F), lieu des foyers des paraboloïdes de révolution inscrits à un simplexe. Nous nous appuierons sur le théorème 25 du chapitre précédent.

41. Soient sur une droite d, n points de (F), P_1, \ldots, P_n . Soient Q_1, \ldots, Q_n les pôles des podaires de P_1, \ldots, P_n et nommons β l'espace à (n-1) dimensions (Q_1, \ldots, Q_n) . L'intersection de d et de β est un point de (F).

En effet, soit X un point variable de la droite d. Les hyperplans conjugés de XA_i' et passant par A_i' déterminent dans β un faisceau d'espaces b passant par un espace B à (n-3) dimensions; le faisceau b et la ponctuelle X sont projectifs. En particulier, aux points P_1, \ldots, P_n correspondent des espaces b_1, \ldots, b_n , contenant les points Q_1, \ldots, Q_n . Si nous projetons le faisceau b à partir de P_1 , la ponctuelle X à partir de b_1 , nous obtenons deux faisceaux perspectifs qui se coupent sur un hyperplan h_i passant par A_i' et par B. Cet espace est conjugué de la droite $A_i'P$, P étant l'intersection de d et de β .

L'espace h_i contient le point d'intersection Q des n espaces

$$(P_i Q_1 \dots Q_{i-1} Q_{i+1} \dots Q_n)$$
 $(j = 1, \dots, n)$.

En effet, projetons les points Q_1, \ldots, Q_n à partir de P_j sur h_i . Nous obtenons des points Q_1^j, \ldots, Q_n^j , $(j = 1, \ldots, n)$. De même, les espaces b_1, \ldots, b_n , projetés à partir de P_j , donnent dans h_i des espaces b_1^j, \ldots, b_n^j . Remarquons que:

- $1) \quad b_k^j = b_j^k \, ;$
- 2) les points Q_k^1, \ldots, Q_k^n sont situés sur une droite passant par le point d'intersection E de d et de h_i ;
- 3) les ponctuelles Q_k^1, \ldots, Q_k^n sont perspectives $(k = 1, \ldots, n)$, le point E se correspondant à lui-même. D'après le lemme précédent, l'espace h_i contient l'intersection des espaces $(Q_1^j, \ldots, Q_{j-1}^j Q_{j+1}^j, \ldots, Q_n^j)$ $(j = 1, \ldots, n)$, c'est-à-dire l'intersection des hyperplans

$$(P_j Q_1, \ldots, Q_{j-1} Q_{j+1}, \ldots, Q_n) \qquad (j = 1, \ldots, n).$$

Cet espace h_i contenant un point Q indépendant de i, les (n + 1) hyperplans h_i se coupent en ce point. En vertu du théorème 25, les points P et Q sont deux podes, ce qui démontre notre théorème.

Cette propriété peut s'énoncer de diverses façons:

- 42. Soient P_1, \ldots, P_{n+1} les (n+1) points d'intersection d'une droite d avec la variété $(F), Q_1, \ldots, Q_{n+1}$ les inverses des points P_1, \ldots, P_{n+1} dans la correspondance des foyers: L'hyperplan $(Q_1, \ldots, Q_{k-1}, Q_{k+1}, \ldots, Q_n)$ coupe la droite d en P_k .
- 43. Soient (n + 1) points de (F) sur une droite. Les espaces podaires de n d'entre eux et l'espace polaire du dernier se coupent en un point.

Dualement:

Soient par un E^{n-2} , (n+1) espaces tangents à (T), A_1, \ldots, A_{n+1} les podes de ces podaires. Le pôle de l'espace $(A_1, \ldots, A_{k-1}, A_{k+1}, \ldots, A_{n+1})$ est dans la podaire de A_k , c'est-à-dire

44. Le $(n + 1)^e$ espace tangent mené à (T) par un E^{n-2} quelconque passe par le pôle de l'hyperplan déterminé par les podes des n premiers espaces tangents.

C'est en particulier sous cette forme que nous allons employer notre théorème pour en déduire une propriété des hauteurs d'un simplexe.

§ 3. Droites associées

Définition: (n+1) droites de l'espace à n dimensions sont dites associées si tout espace à (n-2) dimensions qui en coupe n, coupe aussi la $(n+1)^e$.

Dualement, (n + 1) E^{n-2} sont associés si toute droite qui en coupe n, coupe le dernier.

45. Les (n + 1) hauteurs d'un simplexe sont associées.

En effet, soit d un espace à (n-2) dimensions quelconque coupant n hauteurs $A_i A_i'$ $(i=1,\ldots,n)$. n des espaces tangents menés à (T) par d sont déterminés par les hauteurs $A_i A_i'$. Les podes de ces podaires sont les points A_i $(i=1,\ldots,n)$. La (n+1) podaire par d contenant le point A_0' , pôle de (A_1,\ldots,A_n) , contient toute la hauteur $A_0 A_0'$, d'après une propriété établie précédemment (26). Cette hauteur coupe donc d.

Dualement, les (n + 1) intersections des faces homologues a_i et a'_i sont associées.

Si nous prenons en particulier pour absolu une hyperquadrique inscrite au simplexe, nous voyons que: 46. Soient B_i les points de contact d'une hyperquadrique Q inscrite au simplexe $(A_0 ... A_n)$. Les (n + 1) droites $A_i B_i$ sont associées.

De plus, les droites A_iB_i sont conjuguées des faces a_i par rapport à ∞^{n+1} hyperquadriques. En effet, soient Q_1,\ldots,Q_{n+1} (n+1) hyperquadriques indépendantes admettant le simplexe pour simplexe polaire. Les droites A_iB_i étant conjuguées des faces a_i par rapport à Q et à toutes les Q_i , elles le sont aussi par rapport au système linéaire tangentiel $Q+\sum \lambda_i Q_i$.

Réciproquement, si les droites A_iB_i sont conjuguées des faces a_i par rapport à une hyperquadrique Q', il existe une et une seule hyperquadrique Q inscrite au simplexe aux points B_i . En effet, les droites A_iB_i sont conjuguées des faces a_i par rapport à tout le système $Q' + \sum \lambda_i Q_i$. Soient $\sum b_{ik} u_i u_k = 0$ l'équation de Q', $u_i^2 = 0$ celle de Q_i ; seule l'hyperquadrique correspondant aux valeurs $\lambda_i = -b_{ii}$ dans le système $\sum b_{ik} u_i u_k + \sum \lambda_i u_i^2 = 0$ est inscrite au simplexe. Les droite A_iB_i étant également conjuguées des faces a_i par rapport à cette quadrique, les points B_i sont bien les points de contact.

Pour pouvoir traiter plus aisément ce qui suit, nous avons repris un théorème de Berzolari, qui contient d'ailleurs nos propositions précédentes (6).

47. Pour que les (n + 1) droites

$$\frac{x_0}{a_{k0}} = \frac{x_1}{a_{k1}} = \frac{x_2}{a_{k2}} = \cdots = \frac{x_{k-1}}{a_{k, k-1}} = \frac{x_{k+1}}{a_{k, k+1}} = \cdots = \frac{x_n}{a_{k, n}} (k = 0, 1, \dots, n)$$

soient associées, il faut et il suffit que

$$a_{ik}=a_{ki} \qquad (i, k=0,\ldots,n).$$

Rappelons la démonstration duale : Pour que les (n+1) E^{n-2} α_0,\ldots,α_n d'équations $x_i=0$ et $\sum_{k=0}^n$ $a_{ik}x_k=0$ $(i=0,\ldots,n)$, soient associés, il faut et il suffit que

$$a_{ik} = a_{ki}$$
.

En effet, nous pouvons tout d'abord supposer $a_{0k} = a_{k0}$. Par tout point P de α_0 passe une droite coupant les n autres E^{n-2} , c'est-à-dire que les n E^{n-1} projetant $\alpha_1, \ldots, \alpha_n$ à partir de P se coupent en une droite ; il doit exister une relation linéaire entre leurs équations.

Soit $P(p_i)$ un point de α_0 , $\sum a_{0k}p_k = \sum a_{k0}p_k = 0$. L'espace $(P\alpha_i)$ a pour équation $\sum_{k=0}^{n} a_{ik}(p_k x_i - p_i x_k) = 0$. Supposons tous les p_i nuls, sauf p_r et p_s . Les n hyperplans $(P\alpha_i)$ ont dès lors pour équations:

$$(a_{ir}p_r + a_{is}p_s) x_i = 0 , i \neq 0, r, s .$$

$$(a_{rr}p_r + a_{rs}p_s) x_r - p_r \sum_{k=0}^{n} a_{rk} x_k = 0 ,$$

$$(a_{sr}p_r + a_{ss}p_s) x_s - p_s \sum_{k=0}^{n} a_{sk} x_k = 0 .$$

Une relation linéaire ne peut exister entre ces équations que si les coefficients de x_0 , x_r et x_s sont proportionnels dans les deux dernières, c'est-àdire que les deux relations

$$a_{rs}p_{s}x_{r} - p_{r}a_{r0}x_{0} - p_{r}a_{rs}x_{s} = 0$$

 \mathbf{et}

$$a_{sr}p_{r}x_{s} - p_{r}a_{s0}x_{0} - p_{s}a_{sr}x_{r} = 0$$

sont identiques. Comme

$$a_{r0}p_r + a_{s0}p_s = 0 ,$$

il vient nécessairement

$$a_{rs} = a_{sr}$$
.

Réciproquement, si $a_{rs} = a_{sr}$, on a l'identité

$$\sum_{i=1}^{n} \sum_{k=0}^{n} a_{ik} (p_k x_i - p_i x_k) = 0 ,$$

quel que soit le point P dans α_0 , ce qui démontre le théorème.

48. Soient A_iB_i (n+1) droites associées. Il existe une et une seule hyperquadrique inscrite au simplexe (A_0, \ldots, A_n) aux points B_i .

En effet, prenons le simplexe (A_0, \ldots, A_n) pour simplexe de référence et soient b_{ik} $(k = 0, \ldots, n, b_{ii} = 0)$ les coordonnées du point B_i . Les droites $A_i B_i$ ont pour équations

$$\frac{x_0}{b_{i0}} = \frac{x_j}{b_{ij}} \ (j \neq i, \quad j = 1, \ldots, n) \ ;$$

comme elles sont associées, $b_{ij} = b_{ji}$.

L'hyperquadrique $\sum b_{ij}u_iu_j=0$ est l'hyperquadrique cherchée. En résumé, soient par les sommets d'un simplexe (A_0,\ldots,A_n) (n+1) droites A_iB_i , B_i étant les traces dans les faces opposées a_i .

- 49. Les propriétés suivantes sont équivalentes:
- 1. Les droites A_iB_i sont associées.
- 2. Les droites $A_i B_i$ sont conjuguées des faces a_i par rapport à une hyperquadrique (et par conséquent par rapport à tout un système linéaire à (n+1) dimensions).
 - 3. Il existe une hyperquadrique tangente au simplexe aux points B_i .
- 4. Les droites A_iB_i joignent les sommets correspondants de deux simplexes polaires réciproques par rapport à une certaine hyperquadrique.

§ 4. Exemples de droites associées

- 1. Soient Q l'hyperquadrique absolue, Q_i sa projection sur a_i à partir de A_i , S_i sa trace dans a_i . Ces deux quadriques sont tangentes le long d'une variété quadratique située dans un espace à (n-2) dimensions e_i . Soit E_i le pôle de e_i par rapport à Q_i et à S_i . (Si nous considérons Q_i (ou S_i) comme absolu de l'espace a_i , E_i est le centre de la sphère S_i (ou Q_i))
 - 50. Les droites $A_i E_i$ sont associées. Les espaces e_i sont associés.

En effet, soit $\sum_{i=0}^{n} a_{jk}u_{j}u_{k} = 0$ l'équation de $Q: Q_{i}$ a pour équation

$$\sum_{0}^{n} a_{jk} u_{j} u_{k} = 0 \qquad (j, \ k \neq i)$$

et S_i

$$\sum_{0}^{n} (a_{ii}a_{jk} - a_{ij}a_{ik})u_{j}u_{k} = 0 (j, k \neq i) .$$

Toutes les hyperquadriques du faisceau tangentiel déterminé dans a_i par Q_i et S_i , ayant pour équation

$$\sum' (a_{ii}a_{jk} - a_{ij}a_{ik} - \lambda a_{jk})u_ju_k = 0 ,$$

nous trouvons pour $\lambda = a_{ii}$:

$$\sum (a_{ij}u_j)^2=0 ;$$

le centre E_i a donc pour coordonnées dans $a_i : a_{ij}$. Comme $a_{ij} = a_{ji}$, les droites $A_i E_i$ sont associées. 2. Si nous considérons S_i comme absolu de la face a_i , les centres des sphères de l'espace a_i inscrites au simplexe $(A_0, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$ sont les points doubles de la correspondance des foyers relative à ce simplexe et à S_i . Ils sont donnés par les relations

$$f_{ij}^2 = a_{ii}a_{jj} - a_{ij}^2$$
.

En prenant les signes convenablement, nous voyons que $f_{ij} = f_{ji}$. En particulier, si le point F_i a tous les signes positifs:

51. les droites A_iF_i sont associées.

Généralement, il y a dans chaque face 2^{n-1} sphères inscrites. Nous pouvons classer les $(n+1)\cdot 2^{n-1}$ centres en 2^{n-1} groupes de (n+1) points qui déterminent avec les sommets opposés du simplexe, 2^{n-1} groupes de droites associées.

- 3. Remarquons que (n+1) droites concourantes sont associées. Si nous prenons Q_i pour absolu de la face a_i , les sphères inscrites dans les faces sont les projections des sphères inscrites au simplexe. Les droites joignant les sommets du simplexe aux centres des sphères correspondantes inscrites dans les faces sont également associées, puisque concourantes.
- 4. Soient A_iC_i (n+1) droites associées. Considérons dans la face a_i la correspondance des foyers ayant S_i pour absolu. Au point C_i correspond un point C_i' .
 - 52. Les droites $A_i C'_i$ sont associées.

En effet, soient c_{ij} les coordonnées de C_i . Par hypothèse, $c_{ij}=c_{ji}$. Les coordonnées de C_i' étant

$$c'_{ij} = rac{a_{ii} \, a_{jj} - a_{ij} \, a_{ij}}{c_{ij}}$$
 ,

nous avons bien

$$c'_{ij} = c'_{ji} .$$

5. Considérons également dans a_i la correspondance des foyers ayant Q_i pour absolu. Au point C_i correspond un point C_i'' . Les droites A_iC_i'' sont associées.

En effet, $C_i^{\prime\prime}$ a pour coordonnées

$$c_{ij}^{\prime\prime} = \frac{a_{ij}}{c_{ij}} \cdot a_{ii} .$$

Comme nous l'avons vu, la correspondance des foyers dans l'espace transforme la droite A_iC_i dans la droite A_iC_i'' . Par conséquent :

53. La correspondance des foyers transforme (n + 1) droites associées par les sommets du simplexe en (n + 1) droites associées.

§ 5. Propriétés des droites associées

Soient d_0, d_1, \ldots, d_n (n+1) droites associées. Prenons sur la droite d_i un point A_i quelconque et soit B_i la trace de d_i dans l'espace $(A_0, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$. Il existe une hyperquadrique H inscrite au simplexe (A_0, \ldots, A_n) et tangente aux points B_i . Projetons cette hyperquadrique sur la face a_j à partir de A_j . Nous obtenons une hyperquadrique inscrite au simplexe $(A_0, \ldots, A_{j-1}, A_{j+1}, \ldots, A_n)$, tangente aux points B_i' , projections des points B_i . Les droites $A_i B_i'$ $(i \neq j)$ sont donc associées dans l'espace a_j . Nous pouvons affirmer:

54. Soient (n + 1) droites associées. Les projections de n de ces droites sur un E^{n-1} quelconque à partir d'un point de la $(n + 1)^e$ sont n droites associées.

Plus généralement, projetons l'hyperquadrique H à partir de l'espace (A_0, \ldots, A_k) sur l'espace (A_{k+1}, \ldots, A_n) . Comme nous obtenons de nouveau une quadrique inscrite au simplexe (A_{k+1}, \ldots, A_n) , tangente aux projections des points B_i , nous aurons le théorème suivant:

55. Soient (n+1) droites associées, α un E^k coupant les (k+1) premières, β un E^{n-k-1} coupant les (n-k) dernières. Les projections à partir de α sur β des (n-k) dernières droites sont (n-k) droites associées dans β .

Remarquons qu'il existe $\infty^{n-2} E^{n-2}$ incidents à (n+1) droites associées. Dans β , il existe donc $\infty^{n-k-3} E^{n-k-3}$ coupant les (n-k) droites associées. Considérons l'un d'eux. Projeté à partir de α , il donne un E^{n-2} coupant les (n+1) droites primitives. Inversement, tout E^{n-2} par α coupant les (n+1) droites associées, a pour trace dans β un E^{n-k-3} coupant les (n-k) droites. Par conséquent:

56. Par tout E^k incident à (k+1) droites d'un groupe de (n+1) droites associées passent ∞^{n-k-3} E^{n-2} incidents aux (n+1) droites.

En particulier, pour k = n - 3:

57. Par tout E^{n-3} incident à (n-2) droites d'un groupe de (n+1) droites associées passe un et un seul E^{n-2} coupant les (n+1) droites.

Soient n droites et un point P tel que les projections des droites à partir de P sur un espace à (n-1) dimensions soient associées dans cet hyperplan.

58. Par P passe une et une seule droite formant avec les n droites un groupe de (n + 1) droites associées.

En effet, soient A_1, \ldots, A_n les points d'intersection de l'hyperplan α avec les droites données d_i ; soit P_i la trace de la projection de d_i sur α avec l'espace $(A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n)$. D'après nos hypothèses, il existe dans α une quadrique Q inscrite au simplexe (A_1, \ldots, A_n) aux points P_i . Considérons le simplexe (P, A_1, \ldots, A_n) et soit P_i' la trace de d_i dans la face opposée à A_i . L'hyperplan (P_1', \ldots, P_n') coupe le cône C de sommet P et de base Q suivant une variété quadratique à (n-2) dimensions Q'. Toute hyperquadrique tangente au cône C le long de la quadrique Q' est tangente au simplexe (P, A_1, \ldots, A_n) aux points P_i' . Parmi le faisceau de ces hyperquadriques, il en est une et une seule tangente à l'hyperplan (A_1, \ldots, A_n) en un point P'. Les (n+1) droites d_1, \ldots, d_n , PP' sont associées et par P ne passe que la droite PP' qui jouisse de cette propriété.

Plus généralement, soit β un espace à (n-k-1) dimensions coupant (n-k) droites d_i en des points P_1, \ldots, P_{n-k} . Soit α un E^k projetant les (n-k) droites sur β en (n-k) droites associées.

59. Il existe au moins un groupe de (k+1) droites coupant α et formant avec les (n-k) droites d_i un groupe de (n+1) droites associées.

En effet, soit $\gamma_i = (\alpha, P_1, \dots, P_{i-1}, P_{i+1}, \dots, P_{n-k}) = E^{n-1}$; cet hyperplan coupe d_i en Q_i . La projection de Q_i sur β à partir de α est un point Q_i' de l'espace $(P_1, \dots, P_{i-1}, P_{i+1}, \dots, P_{n-k})$. D'après nos hypothèses, les droites P_iQ_i' sont associées, il existe donc dans β une variété quadratique inscrite au simplexe (P_1, \dots, P_{n-k}) et tangente aux points Q_i' . Par conséquent, il existe dans l'espace (Q_1, \dots, Q_{n-k}) une variété quadratique tangente aux espaces γ_i aux points Q_i , et par suite, il existe dans l'espace, au moins une hyperquadrique H tangente aux hyperplans γ_1 aux points Q_i . Menons par β (k+1) E^{n-1} indépendants, δ_i , tangents à H aux points R_1, \dots, R_{k+1} . Ces hyperplans coupent α suivant un simplexe (S_1, \dots, S_{k+1}) , S_i étant l'intersection des espaces $(\alpha, \delta_1, \dots, \delta_{i-1}, \delta_{i+1}, \dots, \delta_{k+1})$. L'hyperquadrique H étant inscrite au simplexe $(P_1, \dots, P_{n-k}, S_1, \dots, S_{k+1})$ et tangente aux points $Q_1, \dots, Q_{n-k}, R_1, \dots, R_{k+1}$, les droites P_i Q_i ; R_i forment un groupe associé.

Examinons du point de vue énumératif le théorème précédent et cher-

chons combien de groupes de (k + 1) droites peuvent compléter (n - k) droites données en un groupe associé.

Rappelons qu'une hyperquadrique dépend de $\frac{n(n+3)}{2}$ paramètres; que se donner un hyperplan tangent et son point de contact, c'est se donner n conditions pour une hyperquadrique; que (n+1) droites associées doivent remplir $\frac{n(n-1)}{2}$ conditions linéaires (il faut et il suffit que la matrice de leurs coefficients soit égale à la somme d'une matrice diagonale et d'une matrice symétrique gauche (Th. 47)).

1. Il existe $\infty \frac{(k+1)(k+2)}{2}$ hyperquadriques H. En effet, les (n-k) hyperplans γ_i ayant pour traces dans l'espace (Q_1,\ldots,Q_{n-k}) des E^{n-k-2} tangents en Q_1,\ldots,Q_{n-k} à une variété quadratique, les points P_1,\ldots,P_{n-k} et les hyperplans γ_i remplissent

$$y = (n-k)(n-k-1) - \frac{(n-k-1)(n-k+2)}{2}$$

conditions. Se donner (n-k) hyperplans dont les points de contact remplissent y conditions, c'est se donner n(n-k)-y conditions pour l'hyperquadrique, et par conséquent, il existe ∞^z hyperquadriques tangentes, à ces hyperplans en ces points,

$$z = \frac{n(n+3)}{2} - n(n-k) + y = \frac{(k+1)(k+2)}{2}$$
.

2. Par un E^{n-k-1} , on peut mener ∞^{k^2-1} groupes de (k+1) E^{n-1} tangents à une hyperquadrique. En effet, le E^k conjugué du E^{n-k-1} par rapport à l'hyperquadrique la coupe en une variété V_2^{k-1} ayant ∞^{k-1} E^{k-1} tangents. Un E^{n-1} tangent par le E^{n-k-1} est déterminé par un quelconque de ces E^{k-1} . Il y a donc $\infty^{(k+1)(k-1)}$ groupes de (k+1) E^{n-1} tangents.

Par conséquent, s'il existe un E^k jouissant des propriétés de projection éconcées, il existe ∞^u groupes de (k+1) droites complétant les (n-k) droites données en un groupe associé. $u = \frac{3k(k+1)}{2}$.

Supposons que (k+1) droites d'un groupe associé puissent être prises quelconques. Les $\frac{n(n-1)}{2}$ conditions du groupe associé sont remplies par les (n-k) dernières droites, donc (n-k) 2 $(n-1) \geqslant \frac{n(n-1)}{2}$,

 $n-k \geqslant \frac{n}{4}$. S'il existe ∞^x groupes de (n-k) droites, nous avons exactement (n-k) 2 $(n-1) = \frac{n(n-1)}{2} + x$. Or si les (k+1) droites peuvent être complétées en un groupe associé, elles le sont de ∞^x façons,

$$x\geqslant \frac{3\left(n-k\right)\left(n-k-1\right)}{2}\;,\;\;\mathrm{done}\;\;n-k\geqslant \frac{n}{4}+\frac{3\left(n-k\right)\left(n-k-1\right)}{2\cdot2\left(n-1\right)}\;,$$
 c'est-à-dire $k+1\leqslant \frac{2\,n+4}{3}\;.$

Montrons que l'on a exactement $k+1=\left[\frac{2\,n+4}{3}\right]$ pour le maximum de (k+1).

Quand (k+1) droites d_i peuvent-elles être complétées par (n-k) droites en un groupe de (n+1) droites associées? Autrement dit, pour quelles valeurs de k existe-t-il un E^{n-k-1} projetant les (k+1) droites sur un E^k qui leur est incident, en (k+1) droites associées? Remarquons que s'il existe un tel E^{n-k-1} , il en existe ∞^{n-k} au moins.

Soit β un E^k fixe, coupant en P_i les (k+1) droites d_i données. Prenons un système de coordonnées homogènes ayant ces points P_i pour sommets du simplexe de référence. Soit R_i un point quelconque de la droite d_i et soit R_i' de coordonnées r_p^i , $(p=1,\ldots,k+1)$, sa projection à partir d'un E^{n-k-1} sur l'espace β . Si les (k+1) projections des droites d_i sont associées, nous avons les relations $\varrho^i r_p^i = \varrho^p r_i^p$ $(i, p=1,\ldots,k+1)$, quels que soient les points R_i . k de ces relations peuvent être remplies par les paramètres ϱ^i , nous pouvons donc n'en considérer que $\frac{k(k-1)}{2}$.

Le E^{n-k-1} que nous cherchons dépend de (n-k)(k+1) paramètres. Pour qu'il existe un espace α et par conséquent ∞^{n-k} , il faut et il suffit que les (k+1)(n-k) paramètres de cet espace remplissent $\frac{k(k-1)}{2}$ conditions de ∞^{n-k} façons, c'est-à-dire:

$$(n-k)(k+1)-\frac{k(k-1)}{2}\geqslant n-k; \ \ 3(k+1)\leqslant 2n+4.$$

Dès que cette inégalité a lieu, nous avons une solution, donc max. $(k+1) = \left\lceil \frac{2n+4}{3} \right\rceil$.

60. p droites quelconques de l'espace à n dimensions peuvent être complétées par (n+1-p) droites en un groupe de (n+1) droites associées pour tout $p \leq \left[\frac{2n+4}{3}\right]$. Il est impossible de le faire pour un p plus grand.

Remarquons encore que les n+1-p=z dernières droites dépendent de $z\,2\,(n-1)$ paramètres et doivent remplir $\frac{n\,(n-1)}{2}$ conditions. Nous pourrons donc compléter le groupe associé de ∞^t façons, $t=2\,(n-1)\,\left(n+1-\left[\frac{2\,n+4}{3}\right]\right)-\frac{n\,(n-1)}{2}$.

Considérons en particulier le cas où $\frac{2n+4}{3}$ est un nombre entier 2r : n=3r-2 .

Dans l'espace à 3r-2 dimensions, 2r droites quelconques peuvent être complétées de ∞^u ($u=\frac{3}{2}(r-1)(r-2)$) façons par (r-1) droites en un groupe de (3r-1) droites associées.

Ce cas est particulièrement intéressant pour r=2, n=4:

Dans l'espace à quatre dimensions, il existe une et une seule droite associée à quatre droites quelconques (1). C'est la fameuse configuration étudiée par Segre et qui prend un relief encore plus prononcé puisque nous pouvons dire de plus que:

61. C'est uniquement dans l'espace à quatre dimensions qu'un groupe de droites détermine univoquement les droites qui les complètent en un groupe associé. (Nous faisons abstraction de l'espace à une dimension, peu intéressant.) Dans tous les autres espaces, il y a toujours une infinité de possibilités de les compléter.

Terminons ces considérations énumératives par la remarque suivante : Si nous avions pu distribuer de façon quelconque les $\frac{n(n-1)}{2}$ conditions que doivent remplir (n+1) droites pour être associées, nous aurions pu en charger les y dernières et dire $y \geqslant \frac{n}{4}$, $n+1-y=\left[\frac{3n}{4}\right]+1^*$), ce qui n'est pas conforme à nos résultats. Nous pouvons donc énoncer le théorème général suivant :

62. Si un groupe d'éléments géométriques est soumis à des conditions linéaires, ces conditions ne peuvent pas être distribuées de façon quelconque entre les éléments.

^{*)} La borne supérieure $1 + \left[\frac{3n}{4}\right]$ a été indiquée par M. Longhi en réponse à une lettre de M. Kollros. ("Sur les droites associées" Elemente der Mathematik, I, (1946) p. 5).

ESPACES ASSOCIÉS

§ 1. Définitions et propriétés générales

Nous nous proposons de généraliser la notion de droites associées. Nous dirons que $(n-k+2)E^k$ de l'espace E^n sont associés si tout E^{n-k-1} qui en coupe (n-k+1) coupe encore le dernier $(k=1,\ldots,n-1)$. Pour k=1, nous retrouvons les (n+1) droites associées.

Pour arriver aux conditions nécessaires et suffisantes pour que des espaces soient associés, rappelons d'abord quelques propriétés de géométrie réglée.

Soient p_{i_0, \ldots, i_k} les coordonnées radiales d'un $E^k = \alpha$ de l'espace à n dimensions, c'est-à-dire les déterminants formés par les colonnes i_0, \ldots, i_k de la matrice à (k+1) lignes et (n+1) colonnes déterminée par les coordonnées homogènes de (k+1) points indépendants du E^k . Soient $p^{j_0, \ldots, j_{n-k-1}}$ les coordonnées axiales de ce même espace (obtenues de façon analogue en considérant (n-k) E^{n-1} indépendants par le E^k). Il existe les relations

$$p_{i_0 \dots i_k} = egin{pmatrix} 0 \,, \, 1 \,, \, \dots \dots & n \ i_0 \, \dots \, i_k \, j_0 \, \dots \, j_{n-k-1} \end{pmatrix} \, p^{j_0 \dots j_{n-k-1}} \;,$$

les j_s étant différents des i_s , $\begin{pmatrix} 0 & \dots & n \\ i_0 & \dots & i_k & j_0 & \dots & j_{n-k-1} \end{pmatrix}$ désignant le signe de la permutation des nombres $0, \dots, n$ dans les nombres i_0, \dots, i_k , j_0, \dots, j_{n-k-1} .

Soit d'autre part $q_{i_0...i_{n-k-1}}$ les coordonnées radiales d'un $E^{n-k-1}=\beta$ et $q^{i_0...i_k}$ ses coordonnées axiales. Si les deux espaces α et β ont un point commun, il existe la relation

$$\sum \begin{pmatrix} 0 \dots n \\ i_0 \dots i_k j_0 \dots j_{n-k-1} \end{pmatrix} p_{i_0 \dots i_k} q_{j_0 \dots j_{n-k-1}} = 0$$

la somme s'étendant sur tous les groupes différents d'indices i_0, \ldots, i_k , c'est-à-dire

$$\sum p_{i_0 \ldots i_k} q^{i_0 \ldots i_k} = 0 .$$

Ceci est la condition nécessaire et suffisante pour que les espaces α et β aient un point commun. Considérons les coordonnées $p_{i_0} \dots_{i_k}$ comme les coordonnées homogènes d'un point de l'espace E^m à $m = \binom{n+1}{k+1} - 1$

dimensions. Les E^k et les E^{n-k-1} de l'espace à n dimensions sont représentés dans cet espace par une variété grassmannienne V de dimension (k+1)(n-k) et d'ordre

$$\frac{1! \ 2! \dots k! \left[(k+1) (n-k) \right]!}{(n-k)! \ (n-k+1)! \dots n!}$$
 (Détermination de Schubert) (9).

Soit α un E^k fixe et considérons tous les E^{n-k-1} qui le coupent. Ils seront représentés par les points de la section de V par l'hyperplan $p_{i_0 \ldots i_k} \ q^{i_0 \cdots i_k} = 0$, les q étant maintenant des variables. Cet hyperplan est l'hyperplan polaire du point $P(p_{i_0 \ldots i_k})$ par rapport à l'hyperquadrique $\sum x_{i_0 \ldots i_k}^2 = 0$.

Nous pouvons considérer h E^k quelconques représentés dans E^m par les h points $P^j(p^j_{i_0...i_k})$, (j=1,...,h). Tous les E^{n-k-1} qui coupent ces h E^k sont représentés par les points de V qui se trouvent dans l'intersection des h hyperplans polaires des points P^j . Si tous ces E^{n-k-1} doivent encore couper p autres E^k , il faut et il suffit que les hyperplans polaires des points Q^1, \ldots, Q^p représentant ces espaces passent par l'intersection des h premiers hyperplans. Par conséquent, tous les points P^1, \ldots, P^h , Q^1, \ldots, Q^p sont dans un même E^{h-1} .

En particulier, dans notre cas:

- 63. Pour que $(n-k+2)E^k$ soient associés, il faut et il suffit que les (n-k+2) points qui les représentent dans l'espace à $\binom{n+1}{k+1}-1$ dimensions soient dans un espace à (n-k) dimensions.
- 64. Autrement dit, pour que $(n-k+2)E^k$ soient associés dans E^n , il faut et il suffit qu'il existe des nombres λ^j tels que

$$\sum_{j=1}^{n-k+2} \lambda^j \, p_{i_0,\ldots,i_k}^j = 0$$

pour tout groupe d'indices.

Remarquons que les λ^j sont univoquement déterminés si les espaces E^k sont en position générale.

Nous aurions pu donner une définition plus générale des espaces associés, mais nous nous bornerons à celle que nous avons choisie qui nous permettra de trouver quelques propriétés en rapport avec celles des droites associées (10).

§ 2. Section des espaces associés

Rappelons une propriété de géométrie réglée. Soit α un E^k de coordonnées radiales p_{i_0,\ldots,i_k} et soit β un E^{n-p} quelconque de coordonnées axiales $q^{s_0,\ldots,s_{p-1}}$. Les coordonnées radiales du E^{k-p} , intersection de α et de β , sont données par

$$p_{i_0,\ldots,i_{k-p}} = \sum_{s_k=1}^{n+1} q^{s_0\ldots s_{p-1}} p_{s_0\ldots s_{p-1} i_0\ldots i_{k-p}}$$

65. La section de $(n-k+2)E^k$ associés α_i de E^n par un E^{n-p} quelconque se compose de $(n-k+2)E^{k-p}$ associés dans ce E^{n-p} .

Par hypothèse, nous avons

$$\sum_{j=1}^{n-k+2} \lambda^j \, p_{i_0 \dots i_k}^j = 0 \quad \text{pour tout } (i_0, \dots, i_k)$$

et par conséquent

$$\begin{split} \sum_{j=1}^{n-k+2} \lambda^j \, p^j_{i_0 \dots i_{k-p}} &= \sum_{j=1}^{n-k+2} \, \sum_{s_i=1}^{n+1} \, \lambda^j \, q^{s_0 \dots s_{p-1}} \, p^j_{s_0 \dots s_{p-1} \, i_0 \dots \, i_{k-p}} = \\ &= \sum_{s_i} \, q^{s_0 \dots s_{p-1}} \, \sum_{j=1}^{n-k+2} \lambda^j p^j_{s_0 \dots s_{p-1} \, i_0 \dots \, i_{k-p}} = 0 \end{split} .$$

Soit P_i un point quelconque de α_i $(i=1,\ldots,n-k+2)$. L'espace $(P_1,\ldots,P_{n-k+2})=E^{n-k+1}$ coupe α_i en une droite γ_i $(i=1,\ldots,n-k+2)$. Les (n-k+2) droites γ_i sont associées. Par conséquent, en nous basant sur le théorème 55, nous pouvons dire que:

Soient α un E^h coupant $(h+1)E^k$ d'un groupe de $(n-k+2)E^k$ associés et β un E^{n-k-h} coupant les (n-k-h+1) derniers.

66. Les projections des (n-k-h+1) derniers E^k à partir de α sur β sont (n-k-h+1) droites associées dans ce E^{n-k-h} $(h=0,\ldots,n-k)$.

§ 3. Une condition nécessaire et suffisante

67. Pour que $(n-k+2)E^k$ en position générale soient associés, il faut et il suffit que chacune des sections de ces E^k par $(n+1)E^{n-1}$ indépendants de E^n se compose de $(n-k+2)E^{k-1}$ associés $(k \geq 2)$.

Cette condition nécessaire est suffisante. En effet, soient $p_{i_0...i_k}^j$ les coordonnées radiales du $j^e E^k$. Les coordonnées de la trace β_i de cet espace

dans l'hyperplan $x_r=0$ sont $p^i_{i_0...i_{k-1},r}$. Ces $(n-k+2)E^{k-1}$ étant associés par hypothèse, il existe une relation

$$\sum_{i} \mu^{j}(r) p^{j}_{i_{0}...i_{k-1},r} = 0, \qquad (1)$$

pour toute combinaison d'indices.

De même, en considérant les traces γ^j dans l'hyperplan $x_s = 0$, il existe une relation

$$\sum_{j} \mu^{j}(s) \ p^{j}_{i_{0} \dots i_{k-1}, s} = 0 \ . \tag{2}$$

Or la section des espaces β_j par l'espace $x_r=x_s=0$ étant composée de $(n-k+2)E^{k-2}$ associés, nous avons

$$\sum_{j} \lambda^{j} p_{i_{0} \dots i_{k-2}, r, s}^{j} = 0 , \qquad (3)$$

et cette relation est la même si l'on considère la trace des γ^j dans l'espace $x_r = x_s = 0$. Mais les E^k étant généraux, la relation (3) est univoque. Comme les relations (1) et (2) sont valables également pour les groupes d'indices $(i_0, \ldots, i_{k-2}, r, s)$, on a

$$\mu^j(r) = \mu^j(s) = \lambda^j$$
.

Pour que $(n-k+2)E^k$ soient associés, il faut et il suffit que la relation $\sum_{j} \lambda^{j} p_{i_0...i_k}^{j} = 0$ soit vérifiée pour tout groupe d'indices et l'on peut obtenir tous ces indices en faisant varier i_k de 1 à (n+1).

Par conséquent:

68. Pour que $(n-k+2)E^k$ soient associés, il faut et il suffit que les sections de ces $(n-k+2)E^k$ par chacun des E^{n-k+1} d'un simplexe général de l'espace E^n se composent de (n-k+2) droites associées.

Remarquons ici que, puisque l'on peut donner arbitrairement au plus $\left[\frac{2n'+4}{3}\right]$ droites d'un groupe de (n'+1) droites associées de l'espace à n' dimensions,

69. On ne peut donner arbitrairement que $\left[\frac{2n-2k+6}{3}\right]$ E^k au plus d'un groupe de $(n-k+2)E^k$ associés.

Notons qu'il s'agit ici d'une borne supérieure, et non d'une limite.

§ 4. Projection des espaces associés

Soient $p_{i_0...i_k}$ les coordonnées radiales d'un E^k ; $q_{j_0...j_k}$ celles d'un E^h ; $r_{s_0...s_{k+h+1}}$ celles de l'espace E^{k+h+1} déterminé par ces deux espaces. Rappelons qu'il existe les relations:

$$r_{i_0\ldots i_{k+h+1}} = \sum_{t_i s_i=i_0}^{i_{k+h+1}} \begin{pmatrix} i_0\ldots i_{k+h+1} \\ s_0\ldots s_k t_0\ldots t_h \end{pmatrix} p_{s_0\ldots s_k} q_{t_0\ldots t_h}.$$

70. Si l'on projette p E^k associés à partir d'un E^h quelconque, on obtient p E^{h+k+1} associés.

En effet, par hypothèse, $\sum_{j} \lambda^{j} p_{s_{0}...s_{k}}^{j} = 0$ et par conséquent, à cause de la relation précédente :

$$\sum_{j} \lambda^{j} r_{i_0 \dots i_{k+h+1}}^{j} = 0 .$$

Nous obtenons ainsi des exemples de E^k associés, mais non l'exemple le plus général. En particulier :

71. Soient P_1, \ldots, P_{n-k+2} (n-k+2) points quelconques de E^n et soient a_1, \ldots, a_{n-k+2} leurs hyperplans polaires par rapport à une hyperquadrique Q. Soit encore d_i le E^{k-1} d'intersection des (n-k+2) espaces $(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n-k+2})$. Les $(n-k+2)E^k$ (P_id_i) sont associés $(k=1,\ldots,n-1)$. En effet, nous pouvons les obtenir en projetant à partir du E^{k-2} polaire réciproque de l'espace (P_1,\ldots,P_{n-k+2}) , les (n-k+2) droites associées joignant les sommets des deux simplexes (P_1,\ldots,P_{n-k+2}) et (P'_1,\ldots,P'_{n-k+2}) , polaires réciproques par rapport à la section de Q par l'espace (P_1,\ldots,P_{n-k+2}) .

§ 5. Expression analytique des conditions nécessaires et suffisantes

Soient $\alpha_1, \ldots, \alpha_{n-k+2}$ $(n-k+2)E^k$ associés de l'espace à n dimensions. Choisissons le simplexe de référence (A_1, \ldots, A_{n+1}) de façon suivante : Le point A_i est un point quelconque de α_i $(i=1,\ldots,n-k+1)$; les points $A_{n-k+2}, \ldots, A_{n+1}$ sont quelconques dans α_{n-k+2} . Nommons $p_{i_0}^i, \ldots_{i_k}$ les coordonnées radiales de α_j . Pour que les espaces $\alpha_1, \ldots, \alpha_{n-k+2}$ soient associés, il faut et il suffit qu'il existe des valeurs $\lambda^1, \ldots, \lambda^{n-k+2}$ telles que :

$$\sum_{j=1}^{n-k+2} \lambda^j \ p_{i_0...i_k}^j = 0 \ \text{pour tout groupe d'indices } (i_0,...,i_k) \ . \tag{1}$$

En particulier, remarquons que:

- a) $p_{j,n-k+2,\ldots,n+1}^{n-k+2}$ sont les seules coordonnées de α^{n-k+2} qui ne soient pas nulles.
- b) $p_{i_0,\ldots,i_k}^j=0$, si aucun des indices i_k n'est égal à j; en particulier $p_{i_0,n-k+2,\ldots,n+1}^j=0$, $i_0\neq j$. Donc, si nous considérons les indices $(j,n-k+2,\ldots,n+1)$, nous voyons qu'il faut nécessairement que

$$\lambda^{j} p_{j,n-k+2,\ldots,n+1}^{j} + \lambda^{n-k+2} p_{j,n-k+2,\ldots,n+1}^{n-k+2} = 0$$

En posant $\lambda^{n-k+2} = -1$,

$$\lambda^j = rac{p_{j,n-k+2,\ldots,n+1}^{n-k+2}}{p_{j,n-k+2,\ldots,n+1}^j} \; .$$

72. Les conditions nécessaires et suffisantes pour que les $(n-k+2)E^k$ soient associées peuvent s'écrire:

$$\sum_{j=1}^{n-k+1} \frac{p_{j,n-k+2,\ldots,n+1}^{n-k+2}}{p_{j,n-k+2,\ldots,n+1}^{j}} p_{i_0\ldots i_k}^{j} = p_{i_0\ldots i_k}^{n-k+2}$$

ou encore

$$\sum_{j=0}^{k} \frac{p_{i_{j}, n-k+2, \dots, n+1}^{n-k+2}}{p_{i_{j}, n-k+2, \dots, n+1}^{i_{j}}} p_{i_{0} \dots i_{k}}^{i_{j}} = p_{i_{0} \dots i_{k}}^{n-k+2}$$
(2)

pour tout groupe d'indices (i_0, \ldots, i_k) .

§ 6. Droites associées

En reprenant les résultats généraux précédemment établis, démontrons de nouveau le théorème de Berzolari (théorème 47).

Etant données (n+1) droites associées, prenons le simplexe de référence (A_1, \ldots, A_{n+1}) inscrit à ces droites et soit B_j la trace de la droite j dans l'espace opposé de ce simplexe, $(b_1^j, \ldots, b_{n+1}^j)$ étant les coordonnées de ce point. Dès lors

$$p_{ik}^{j} = 0$$
 , $i, k \neq j$; $p_{jk}^{j} = -p_{kj}^{j} = b_{k}^{j}$.

Les relations nécessaires et suffisantes (2) deviennent

$$\frac{b_{i_0}^{n+1}}{b_{n+1}^{i_0}}b_{i_1}^{i_0} = \frac{b_{i_1}^{n+1}}{b_{n+1}^{i_1}}b_{i_0}^{i_1}.$$

En posant $b_1^{n+1} = b_{n+1}^1$, comme il est permis, nous trouvons bien $b_{i_1}^{i_0} = b_{i_0}^{i_1}$ pour tout $i_0 i_1$, comme conditions nécessaires et suffisantes pour que (n+1) droites soient associées.

§ 7. Plans associés

Soient $\alpha_1, \ldots, \alpha_n$ nE^2 associés de E^n . Choisissons notre simplexe de référence comme nous l'avons proposé, A_i étant dans α_i $(i=1,\ldots,n-1)$, A_n et A_{n+1} dans α_n . Soient B_j (b_i^j) la trace de α_j dans l'espace $(A_1,\ldots,A_{j-1},A_{j+1},\ldots,A_{n-1},A_n)$; C_j (c_i^j) la trace de α_j dans $(A_1,\ldots,A_{j-1},A_{j+1},\ldots,A_{n-1},A_{n+1})$ $(j=1,\ldots,n-1)$; $B_n=C_{n+1}$ $(b_i^n=c_i^{n+1})$ la trace de α_n dans (A_1,\ldots,A_{n-1}) . Les droites A_jB_j $(j=1,\ldots,n)$ étant associées dans (A_1,\ldots,A_n) , il existe une quadrique Q_1 inscrite dans le simplexe (A_1,\ldots,A_n) et tangente en B_j , son équation tangentielle étant $b_i^ju_ju_i=0$, $b_i^j=b_j^i$; $b_i^i=0$; $b_{n+1}^j=0$. De même, il existe une quadrique Q_2 inscrite au simplexe $(A_1,\ldots,A_{n-1},A_{n+1})$, tangente en C_j et d'équation $c_i^ju_ju_i=0$, $c_n^j=0$, $c_n^j=0$. D'autre part, remarquons qu'il existe une quadrique Q inscrite au simplexe $(A_1,\ldots,A_{n-1},A_{n+1})$ et tangente en D_j , D_j étant sur la droite A_jB_n $(j=1,\ldots,n-1)$; elle a pour équation

$$b_i^n b_i^n u_i u_i = 0$$
; $b_n^n = b_{n+1}^n = 0$.

L'espace $\alpha_n = (B_n A_n A_{n+1})$ a pour coordonnées radiales :

$$p_{i_0 i_1 i_2}^n = 0 ; \quad p_{i_0, n, n+1}^n = b_{i_0}^n$$

celles de l'espace $\alpha_i = (A_{i_0}, \, B_{i_0}, \, C_{i_0})$ étant :

$$p_{i_0\,i_1\,i_2}^{i_0} = \left|egin{array}{ccc} b_{i_1}^{i_0} & b_{i_2}^{i_0} \ c_{i_1}^{i_0} & c_{i_2}^{i_0} \end{array}
ight| \; .$$

En particulier:

$$\left. p_{i_0 \, n \, n+1}^{i_0} = \left| egin{array}{cc} b_n^{i_0} & 0 \ 0 & c_{n+1}^{i_0} \end{array}
ight| = (b_n^{i_0})^2 = (b_{i_0}^n)^2 \; .$$

Les équations nécessaires et suffisantes deviennent:

$$\frac{1}{b_{i_0}^n} \begin{vmatrix} b_{i_1}^{i_0} & b_{i_2}^{i_0} \\ c_{i_1}^{i_0} & c_{i_2}^{i_0} \end{vmatrix} - \frac{1}{b_{i_1}^n} \begin{vmatrix} b_{i_0}^{i_1} & b_{i_2}^{i_1} \\ c_{i_0}^{i_1} & c_{i_2}^{i_1} \end{vmatrix} + \frac{1}{b_{i_2}^n} \begin{vmatrix} b_{i_0}^{i_2} & b_{i_1}^{i_2} \\ c_{i_0}^{i_2} & c_{i_1}^{i_2} \end{vmatrix} = 0$$

c'est-à-dire

pour tout groupe d'indices i_0 , i_1 , i_2 ($i_j = 1, \ldots, n-1$). Or si nous considérons les coniques

nous voyons que:

73. Pour que n E^2 soient associés, il faut et il suffit que les projections des quadriques Q_1 , Q_2 , Q sur chaque E^2 du simplexe (A_1, \ldots, A_{n-1}) à partir de l'espace opposé du simplexe (A_1, \ldots, A_{n+1}) soient trois coniques du même faisceau tangentiel.

Autrement dit:

Que par tout E^{n-5} du simplexe (A_1, \ldots, A_{n-1}) passe, outre les trois E^{n-3} du simplexe, un E^{n-3} tangent aux trois hyperquadriques Q, Q'_1 , Q'_2 , Q'_1 et Q'_2 étant les projections de Q_1 et de Q_2 sur (A_1, \ldots, A_{n-1}) à partir de $(A_n A_{n+1})$.

§ 8. Espaces associés

Soient $\alpha_1, \ldots, \alpha_{n-k+2}$ (n-k+2) E^k associés de l'espace E^n, A_j un point quelconque de α_j $(j = 1, ..., n - k + 1), A_{n-k+2}, ..., A_{n+1}$ k points de α_{n-k+2} , P sa trace dans l'espace $\alpha = (A_1, \ldots, A_{n-k+1}) = E^{n-k}$. L'espace $(A_{n-k+1+h}, \alpha)$ coupant les (n-k+2) E^k en (n-k+2) droites associées, ces droites définissent une hyperquadrique Q'_h projetée à partir de $A_{n-k+1+h}$ sur α en une hyperquadrique Q_h $(h=1,\ldots,k)$, inscrite au simplexe. Au point P correspond de même une hyperquadrique Q_0 . Les points de contact des hyperquadriques Q_0, \ldots, Q_k avec la face $(A_1, \ldots, A_{j-1}, \ldots, A_{j-1})$ $A_{j+1}, \ldots A_{n-k+1}$) déterminent un espace à k dimensions qui n'est autre que l'intersection avec cette face de l'espace déterminé par α_{n-k+2} et α_i , donc en général un E^{2k+1} . Si l'on projette les (k+1) quadriques Q à partir d'un E^p du simplexe (A_1, \ldots, A_{n-k+1}) sur l'espace opposé, (A_1, \ldots, A_{n-k+1}) A_{n-k-p}) par exemple, l'espace déterminé par les points de contact des projections des quadriques avec la face $(A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_{n-k-n})$ n'est autre que l'intersection avec cet espace de l'espace déterminé par α_j, α_{n-k+2} et les points $A_{n-k-p+1}, \ldots, A_{n-k+1},$ donc un E^{2k+p+2} . L'intersection est en général un E^k . Mais si n-k-p-1 < k, les (k+1) points de contact seront dépendants linéairement et par conséquent, les hyperquadriques également. Nous pourrons donc dire que :

74. Pour que $(n-k+2)E^k$ soient associés, il faut que les projections des (k+1) hyperquadriques Q_0, \ldots, Q_k sur tous les E^{k-j} du simplexe (A_0, \ldots, A_{n-k+1}) soient (k+1) hyperquadriques d'un même système tangentiel linéaire à (k-j-1) dimensions $(j=1,\ldots,k-2)$.

Nous prétendons que ces conditions sont suffisantes.

Nous procèderons par induction. Ces conditions étant nécessaires et suffisantes pour k=2 dans un espace quelconque, nous les supposerons nécessaires et suffisantes pour (k-1). Posons nos hypothèses dans un espace à (n-1) dimensions :

Si les projections des k hyperquadriques Q_0, \ldots, Q_{k-1} sur tous les E^{k-j} du simplexe (A_1, \ldots, A_{n-k+1}) font partie d'un système tangentiel linéaire à (k-j-1) dimensions, les $(n-k+2)E^{k-1}$ sont associés dans l'espace E^{n-1} .

Nous supposons que:

Les projections des (k+1) hyperquadriques Q_0, \ldots, Q_k sur chacun des E^{k-j} du simplexe (A_1, \ldots, A_{n-k+1}) font partie d'un système tangentiel linéaire à (k-j-1) dimensions.

Les $(n-k+2)E^k$ sont associés dans E^n .

Considérons la section des $(n-k+2)E^k$ par l'espace $x_{n+1-k+h}=0$; $(h=1,\ldots,k)$; les $(n-k+2)E^{k-1}$ sont associés dans cet espace. En effet, les k quadriques $(Q_0,\ldots,Q_{h-1},Q_{h+1},\ldots,Q_k)$ remplissent les conditions nécessaires et suffisantes postulées. Par conséquent, si nous désignons par \overline{p} les coordonnées radiales des espaces à (k-1) dimensions de la section par $x_{n+1}=0$; par p_j les coordonnées du point P, nous avons donc

$$\sum_{j=0}^{k-1} \frac{1}{(p_{i_j})^{k-2}} \, \overline{p}_{i_0,\ldots,i_{k-1}}^{i_j} = \overline{p}_{i_0,\ldots,i_{k-1}}^{n-k+2} \tag{1}$$

pour tout groupe d'indice $\{i_0,\ldots,i_{k-1}\}$, $i_j=1,\ldots,n$.

Soient $\sum_{i,j=1}^{n-k+1} a_{i_j}^h u_i u_j = 0$ l'équation de $Q_h (h=1,\ldots,k)$ et $\sum_{i,j=1}^{n-k+1} p_i p_j u_i u_j = 0$ celle de Q_0 . L'équation de Q_h' étant

$$\sum_{i,j=1}^{n-k+1} a_{i_j}^h u_i u_j + \sum_{i=1}^{n-k+1} p_i u_i u_{n-k+h+1} = 0$$

le point de contact B_j^h de Q_h' avec la face $x_j=0$ a pour coordonnées

$$B_i^h\{a_{ii}^h\ (i=1,\ldots,n-k+1),\,0\,,\,x_{n-k+h+1}=p_i\,,\,0\}$$
.

L'espace α_j est déterminé par les points $\{A_j B_j^h (h = 1, ..., k)\}$, il existe donc les relations

$$p_{i_0...i_k}^j = \sum_{s=0}^k (-1)^s a_{ji_s}^k \, \overline{p}_{i_0...i_{s-1}}^j \, i_{s+1}...i_k \,,$$

$$p_{i_0 \dots i_{k-1}, n+1}^j = p_j \, \overline{p}_{i_0 \dots i_{k-1}}^j \, .$$

L'espace α_{n-k+2} étant donné par les points $(P, A_{n-k+2}, \ldots, A_{n+1})$, on a aussi

$$p_{i_0\ldots i_{k-1},\,n+1}^{n-k+2} = \overline{p}_{i_0\ldots i_{k-1}}^{n-k+2} = 0$$

$$p_{j,\,n-k+2,\,\ldots,\,n+1}^{n-k+2} = \overline{p}_{j,\,n-k+2,\,\ldots,\,n}^{n-k+2} = p_j$$
.

Nous prétendons que les $(n-k+2)E^k$ de E^n : $\alpha_1, \ldots, \alpha_{n-k+2}$, sont associés, donc remplissent les conditions

$$\sum \frac{1}{(p_{i_i})^{k-1}} p_{i_0 \dots i_k}^{i_j} = p_{i_0 \dots i_k}^{n-k+2}$$

pour tout groupe d'indices.

Supposons qu'un des indices soit égal à (n + 1). Alors, d'après les égalités (1)

$$\sum \frac{1}{(p_{i_j})^{k-1}} p_{i_0 \dots i_{k-1}, n+1}^{i_j} = \sum \frac{1}{(p_{i_j})^{k-2}} \overline{p}_{i_0 \dots i_{k-1}}^{i_j} = \overline{p}_{i_0 \dots i_{k-1}}^{n-k+2} = p_{i_0 \dots i_{k-1}, n+1}^{n-k+2}.$$

De même si un des indices était égal à un des nombres $n-k+2,\ldots,n+1$.

Nous pourrons donc supposer maintenant que tous les indices i_0, \ldots, i_k sont compris dans la suite $1, \ldots, n-k+1$. Exprimons analytiquement nos hypothèses sur les hyperquadriques Q_j : Il existe des nombres $\lambda_i^{i_0, \ldots, i_k}$ tels que

$$\sum_{t=1}^{k} \sum_{i,h=i_0}^{i_k} \lambda_t^{i_0 \cdots i_k} a_{ih}^t u_i u_h + \sum_{i,h} \lambda^{i_0 \cdots i_k} p_i p_h u_i u_h = 0$$

pour tout groupe d'indices i_0, \ldots, i_k .

Dès lors:

$$\begin{split} \sum_{j=0}^k \ \frac{1}{(p_{i_j})^{k-1}} \ p_{i_0 \dots i_k}^{ij} &= \sum_{s=0}^k \ \sum_{j=0}^k \frac{1}{(p_{i_j})^{k-1}} (-1)^s \, a_{i_j i_s}^k \, \overline{p}_{i_0 \dots i_{s-1}, i_{s+1} \dots i_k}^{ij} = \\ &= -\frac{1}{\lambda_k^{i_0 \dots i_k}} \sum_{s=0}^k \ \sum_{j=0}^k \sum_{t=1}^{k-1} \frac{\lambda_t^{i_0 \dots i_k}}{(p_{i_i})^{k-1}} (-1)^s \, a_{i_j i_s}^t \, \overline{p}_{i_0 \dots i_{s-1} i_{s+1} \dots i_k}^{ij} - \\ &\qquad -\frac{1}{\lambda_k^{i_0 \dots i_k}} \sum_{s=0}^k \ \sum_{j=0}^k \frac{(-1)^s}{(p_{i_j})^{k-2}} \, \lambda^{i_0 \dots i_k} \, p_{i_s} \, \overline{p}_{i_0 \dots i_{s-1} i_{s+1} \dots i_k}^{ij} \, . \end{split}$$
 Or
$$\sum_j \frac{1}{(p_{i_j})^{k-2}} \, \overline{p}_{i_0 \dots i_{s-1} i_{s+1} \dots i_k}^{ij} = 0$$

$$\sum_j (-1)^s \, a_{i_j i_s}^k \, \overline{p}_{i_0 \dots i_{s-1} i_{s+1} \dots i_k}^{ij} = 0 \, ,$$

étant égal au déterminant $p_{i_0,\ldots,i_k}^{i_j}$ dont la première ligne est remplacée par la k^e . Par conséquent

$$\sum_{j=0}^k rac{1}{(p_{i_j})^{k-1}} \, p_{i_0 \dots i_k}^{i_j} = p_{i_0 \dots i_k}^{n-k+2} \; ,$$

les $(n-k+2)E^k$ sont donc associés.

§ 9. Condition géométrique

Afin de donner une autre forme aux conditions nécessaires et suffisantes que nous venons d'établir, nous ferons d'abord quelques remarques sur les systèmes linéaires de quadriques.

n hyperquadriques générales de l'espace à n dimensions ont 2^n points communs. Une hyperquadrique est déterminée par $\frac{n(n+3)}{2}$ points. Considérons une hyperquadrique passant par $\frac{n(n+3)}{2} - (n-1) = \frac{n^2 + n + 2}{2}$ points pris parmi les 2^n points d'intersection de n hyperquadriques données. Cette hyperquadrique fait partie du système ponctuel linéaire déterminé par les n hyperquadriques et par conséquent passe par les 2^n points d'intersection.

Toute hyperquadrique passant par $\frac{n^2+n+2}{2}$ points d'intersection de n hyperquadriques de l'espace à n dimensions passent par les 2^n points d'intersection.

Par conséquent, si (n + k) hyperquadriques ont $\frac{n^2 + n + 2}{2}$ points communs, elles en ont au moins 2^n et font partie d'un système ponctuel linéaire à (n - 1) dimensions au plus.

Il va sans dire que nous avons les mêmes résultats duaux pour les systèmes linéaires tangentiels.

Nous pouvons dès lors exprimer ainsi les conditions trouvées:

75. Pour que les $(n-k+2)E^k$ soient associés, il faut et il suffit que par tout E^{n-k-3} du simplexe $S^{n-k} = (A_1, \ldots, A_{n-k+1})$ passe, outre les faces du simplexe, un E^{n-k-1} tangent aux (k+1) hyperquadriques Q_0, \ldots, Q_k .

Ces conditions sont nécessaires puisque les projections de Q_0, \ldots, Q_k sur tous les E^2 du simplexe, font partie du même faisceau tangentiel qui a quatre tangentes.

Ces conditions sont suffisantes, c'est-à-dire que, si elles sont remplies, les projections de Q_0, \ldots, Q_k sur chaque E^{k-1} sont (k+1) variétés d'un même système linéaire à (k-j-1) dimensions.

En effet, soit un $E^{n-2k+j-1}$ du simplexe S^{n-k} , opposé à un E^{k-j} . Par cet espace passent $\binom{k-j+1}{3}E^{n-k-3}$ du simplexe et (k-j+1) faces du simplexe. Donc, dans l'espace E^{k-j} , les (k+1) projections des variétés Q_0,\ldots,Q_k ont $\binom{k-j+1}{3}+(k-j+1)E^{k-j-1}$ tangents. D'après notre remarque, ces (k+1) variétés font partie d'un système linéaire tangentiel à (k-j-1) dimensions au plus. En effet,

$${k-j+1 \choose 3} + (k-j+1) \geqslant \frac{(k-j)^2 + (k-j) + 2}{2} \text{ pour } k-j \geqslant 2.$$

§ 10. Une propriété des espaces associés

Soient de nouveau $\alpha_1, \ldots, \alpha_{n-k+2}$ $(n-k+2)E^k$ associés de E^n , A_1, \ldots, A_{n-k+1} des points de $\alpha_1, \ldots, \alpha_{n-k+1}$. Nommons β l'espace (A_1, \ldots, A_{n-k+1}) . Les projections sur β des (n-k+1) espaces $\alpha_1, \ldots, \alpha_{n-k+1}$ sont (n-k+1) droites associées dans β , qui déterminent donc une hyperquadrique Q (P) inscrite au simplexe (A_1, \ldots, A_{n-k+1}) .

76. Toutes les hyperquadriques Q (P) font partie d'un système linéaire tangentiel à k dimensions, inscrit au simplexe (A_1, \ldots, A_{n-k+1}) et tel que par tout E^{n-k-1} du simplexe passe un E^{n-k-1} tangent à toutes les hyperquadriques du système (outre les faces du simplexe).

En effet, soient P_0, \ldots, P_k (k+1) points indépendants de $\alpha_{n-k+2}, Q_0, \ldots, Q_k$ les hyperquadriques correspondantes. Soit encore $C_j(P)$ le point de contact de Q (P) avec la face $(A_1, \ldots, A_{j-1}, A_{j+1}, \ldots, A_{n-k+1})$. $C_j(P)$ n'est autre que le point commun à cette face et à l'espace $(P\alpha_j)$. Nommons encore $C_j(0), \ldots, C_j(k)$ les points correspondant à P_0, \ldots, P_k . Tout point P pouvant se mettre sous la forme $P = \sum \lambda^i P_i$, on a de même

 $C_j(P) = \sum \lambda^i C_j(i)$

et par suite

$$Q(P) = \sum \lambda^i Q_i$$
.

Toute quadrique Q(P) fait partie du système tangentiel Q_0, \ldots, Q_k qui jouit des propriétés énoncées.

V. CAS PARTICULIER:

ESPACE A DEUX DIMENSIONS

§ 1. Cas non-euclidien

Spécialisons nos résultats généraux dans le cas du plan où nous pourrons donner encore quelques propriétés particulières.

Soient Q la conique absolue, ABC un triangle quelconque (a, b, c) étant les côtés opposés à A, B, C); A'B'C' son triangle polaire réciproque par rapport à Q.

77. Le lieu des foyers des paraboles inscrites au triangle ABC est une courbe de troisième ordre circonscrite au triangle; cette courbe est aussi le lieu des foyers des paraboles inscrites au triangle A'B'C'.

En effet, soit F le foyer d'une parabole, tangente à a, b, c, à la polaire f de F par rapport à Q et aux deux tangentes à Q menées par F, D et E étant leurs points de contact avec Q. Une polarité par rapport à Q montre qu'il existe une conique passant par les six points A', B', C', F, D et E et par conséquent qu'il existe une conique inscrite aux triangles A' B' C', F DE. F est donc aussi le foyer d'une parabole inscrite à A' B' C'.

Nommons podaires (1) les podaires relatives au triangle ABC; podaires (2) les podaires relatives à A'B'C' (parlons de même de podes (1) et podes (2)); F', deuxième foyer de la parabole de foyer F inscrite au triangle ABC, est le pôle de la podaire (1) de F et aussi le pode (1) de la polaire de F; F'', pôle de la podaire (2), est aussi le pode (2) de la polaire de F. Soit F^* le pôle de la podaire (2) de F'; c'est aussi le pôle de la podaire (1) de F'' et le pode (1) de la podaire (2) de F. Etant donné un foyer F, nous pouvons donc lui faire correspondre trois points F', F'' et F^* . Si nous considérons une droite quelconque coupant la courbe F aux trois points F_1 , F_2 et F_3 , nous avons quatre groupes de points F_i , F'_i , F''_i , F''_i , F^*_i . D'après le théorème général 41, la droite $F'_1F'_2$ passe par le point F_3 . Ce théorème étant également valable pour les podaires (2), on voit que;

- 78. Les quatre droites $F_1 F_2$, $F_1' F_2'$, $F_1'' F_2''$, $F_1^* F_2^*$ passent par un même point F_3 (de même pour toute permutation des indices).
 - 79. Les droites $F_1' F_1''$, $F_2' F_2''$, $F_3' F_3''$ se coupent en un point.

En effet, soit E le point d'intersection des droites $F_1'F_1''$ et $F_2'F_2''$ et considérons la collinéation de centre E et d'axe F_1F_2 dont F_1' et F_1'' sont deux points correspondants. Les points F_3' et F_3'' sont deux points correspondants (intersection des droites $F_1'F_2$ et $F_2'F_1$ d'une part, $F_1''F_2$ et $F_2''F_1$ d'autre part). La droite $F_3'F_3''$ passe par E. On montre de même que les droites $F_i'F_i^*$ et $F_i''F_i^*$ se coupent en un point.

Donnons encore une application plus intéressante du théorème général et de la propriété ci-dessus.

Soit t la tangente en un point 1 = 2 de la courbe (F), 3 étant le dernier point d'intersection de t avec la courbe. Soient 1' = 2', 3'; 1'' = 2'', 3''; $1^* = 2^*$, 3^* les points correspondants, t', t'', t^* les tangentes à (F) en 1', 1'' et 1^* .

- 80. Les quatre tangentes t, t', t'', t^* se coupent en un point 3 de la courbe (F).
 - 81. La courbe (F) est de sixième classe.

En considérant les groupes de trois points alignés 1, 2, 3; 1*, 2*, 3; 1", 2" 3; 1, 2*, 3* et en prenant les pôles des podaires (1) ou (2), nous voyons que:

Les droites 22' et 2" 2* se coupent en 3'; les droites 22" et 2' 2* se coupent en 3"; les droites 22* et 2' 2" se coupent en 3*. Par conséquent :

82. Si d'un point P de la courbe (F), on mène les quatre tangentes, les quatre points de contact sont les foyers de deux paraboles inscrites au triangle ABC et les foyers de deux paraboles inscrites au triangle A'B'C'. Ces quatre points déterminent un quadrangle complet dont les trois intersections des diagonales sont les trois points correspondants de P.

Inversement, les tangentes à la courbe (F) en deux points inverses 1 et 1' se coupent en un point 3' qui est l'inverse de l'intersection 3 de la droite 11' avec (F). En effet, supposons que la droite 3' 1 coupe (F) en 4. La droite 31' = 11' coupe 3' 1 en 1. Donc 4 = 1: La droite 3' 1 est bien tangente à (F) en 1. Le point 3 étant sur la droite 1'' 1*, les tangentes en 1'' et 1^* se coupent en 3'.

Ou encore:

83. Les trois points diagonaux 3, 3", 3* du quadrangle complet déterminés par quatre points correspondants 1, 1', 1", 1* ont pour quatrième point correspondant le point de concours des tangentes à la courbe (F) en 1, 1', 1", 1*.

Nous pouvons spécialiser encore en prenant P en un point d'inflexion et nous obtenons le théorème :

84. Les points de contact des trois tangentes à la courbe (F) menées par un point d'inflexion de cette courbe sont sur une droite.

Rappelons que nous nommons points correspondants:

- P le foyer d'une parabole inscrite au triangle ABC;
- P' le deuxième foyer;
- P'' le deuxième foyer de la parabole de foyer P inscrite au triangle A'B'C':
- P^* le deuxième foyer de la parabole de foyer P' inscrite au triangle A'B'C'.

Disons que les quatre polaires de ces points sont correspondantes et nous pourrons énoncer la propriété duale suivante:

- 85. Soit p une tangente quelconque de (T) et soient 1, 2, 3, 4 ses quatre autres points d'intersection avec (T). Les quatre tangentes en 1, 2, 3, 4 (différentes de p) forment un quadrilatère complet dont les trois diagonales sont les correspondantes de p.
- 86. La tangente en un point de rebroussement de la courbe (T) coupe cette courbe en trois autres points; les tangentes en ces points sont concourantes.

§ 2. Cas euclidien

Spécialisons encore et prenons pour absolu une conique dégénérée en deux points R et S sur une droite i. La courbe (F) se compose de la droite i et d'une conique (F'). Cette conique passe par les points R et S. Supposons au contraire que (F') coupe i en deux points R' et S' différents de R et de S. Ces deux points sont deux foyers correspondants, c'est-à-dire foyers d'une même conique inscrite au triangle; cette conique devrait être tangente à i en R' et en S', ce qui est exclu. Si R' = R et $S' \neq S$, cette conique, tangente à i en S', aurait pour foyers l'intersection des tangentes issues de S et de R, dont un n'est pas sur la droite i. Donc:

87. Le lieu des foyers des paraboles inscrites à un triangle est la conique circonscrite à ce triangle et passant par les deux points absolus, complétée par la droite de ces points.

Dualement, d'après le théorème général:

88. L'enveloppe (T') des podaires est tangente à i aux points R et S, ces points étant leurs propres conjugués par rapport à l'absolu.

Remarquons que la coube (T) se compose de l'enveloppe (T') et de la droite i comptée doublement ; la courbe (T') est de quatrième ordre, comme on le voit en reprenant nos raisonnements généraux.

Dans le cas spécial où les points R et S sont les points cycliques, le lieu des foyers des paraboles inscrites devient le cercle circonscrit complété par la droite à l'infini. L'enveloppe des podaires est alors l'hypocycloïde étudiée directement par Steiner (3). Cette étude fait ressortir de nombreuses propriétés métriques que nous n'avons pas abordées, mais elle ignore les propriétés symétriques qui apparaissent d'elles-mêmes si l'absolu n'est pas dégénéré. Nous pouvons dire par exemple que l'hypocycloïde (complétée par la droite à l'infini) est la courbe polaire réciproque du cercle circonscrit à un triangle et de la droite à l'infini, propriété qu'il est impossible d'établir directement et qui n'est vraie que comme limite, si nous appelons polaire d'un point à l'infini la polaire particulière qui est la podaire de son inverse dans la correspondance des foyers. Nous renonçons aussi à spécialiser nos résultats généraux et nous n'énoncerons dans le cas euclidien, que le théorème 41 sur lequel nous nous sommes essentiellement basés:

89. Soit d'une droite quelconque coupant le cercle circonscrit à un triangle en deux points 1 et 2; soient a et b les axes des paraboles inscrites au triangle et de foyers 1 et 2; soit 3 le foyer de la parabole inscrite au triangle et d'axe parallèle à d: La droite 13 est parallèle à l'axe a; la droite 23 est parallèle à l'axe b.

Donnons encore une autre forme de cette propriété:

90. Soient 1 et a, 2 et b, les foyers et les axes de deux paraboles inscrites à un triangle. Menons par 1 une parallèle à b, par 2 une parallèle à a et soit 3 leur point d'intersection. 3 est le foyer d'une parabole inscrite au triangle et d'axe parallèle à 12.

LITTÉRATURE

- 1. Segre, Alcune considerationi elementari... Rendiconti di Palermo, II (1888).
- 2. Schläfli, Erweiterung des Satzes, daß zwei polare Dreiecke perspektivisch liegen, auf eine beliebige Zahl von Dimensionen. Crelles Journal 65 (1866), 189—197.
- 3. Steiner, Über eine besondere Kurve dritter Klasse (und vierten Grades). Steiners gesammelte Werke II (Berlin 1882), 639—647.
- 4. Reye, Die Geometrie der Lage. Tome II (4. Ed. Stuttgart 1907) 209-214; Tome III (Leipzig 1910) 134-143, 233-237.
- 5. Geiser, Zur Theorie der Fläche zweiten und dritten Grades. Crelles Journal 69 (1868), 197-221.
- 6. Berzolari, Sui sistemi di n+1 rette dello spazio ad n dimensioni, situate in posizione di Schläfli. Rendiconti di Palermo XIX (1905), 229—247.
- 7. Bertini, Einführung in die projektive Geometrie mehrdimensionaler Räume. (Traduction allemande de Duschek, Vienne 1924.)
- 8. Meyer, Über Grundzüge einer Theorie des Tetraeders. Verhandlungen des III. intern. Math.-Kongresses in Heidelberg 1904 (Leipzig 1905), 324—346.
- 9. Schubert, Anzahl-Bestimmung für lineare Räume beliebiger Dimension. Acta math. 8 (1886), 97.
- 10. B. Segre, Sui gruppi di S_k associati di un S_r . Rendi conti di Bologna. N. S. XXXVIII (1933—34).
- 11. Duporca, Premiers principes de géométrie moderne. (3e éd. Paris 1938.)

(Reçu le 14 juin 1946.)