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Des hyperquadriques et
droites associées de I'espace a n dimensions

De J.-P. SYDLER, Zurich A ma mére et a ma femme.

INTRODUCTION

Ce travail a été inspiré essentiellement par deux propriétés ne présen-
tant & premiére vue aucune relation. Il s’agit d'une part de la remar-
quable configuration étudiée par Segre: Dans ’espace & quatre dimen-
sions, toutes les droites qui coupent quatre espaces linéaires quelconques
a deux dimensions en coupent encore un et un seul (1)*. Ce cinquiéme
plan peut étre nommé associé des quatre premiers. Cette relation d’inci-
dence fait penser & une autre que Schlifls a trouvée dans un espace a »
dimensions: Les (n 4 1) droites joignant les sommets correspondants de
deux simplexes polaires réciproques par rapport a& une hyperquadrique,
sont telles que tout espace & (n — 2) dimensions qui en coupent n, coupe
la derniére; ces droites, hauteurs du simplexe en géométrie non-eucli-
dienne, sont donc aussi associées (2).

Notre deuxiéme source fut d’autre part un théoréme de Steiner : Dans
le plan euclidien, le lieu des foyers des paraboles inscrites & un triangle
en est le cercle circonscrit; les tangentes au sommet de ces paraboles
enveloppent une hypocycloide & trois rebroussements (3). Ici, on pense
aussitot aux droites et aux points de Simpson relatifs & un triangle,
points tels que les pieds des perpendiculaires abaissées sur les c6tés du
triangle sont sur une méme droite. C’est par 14 que nous avons commencé
notre généralisation.

La premiére question est de savoir quel espace adopter. Nous avons
choisi un espace ayant une hyperquadrique non dégénérée pour absolu,
car les propriétés d’incidence y présentent une plus grande symétrie.
Reconnaissons que nous n’avons pas toujours pu spécialiser nos résultats
dans le cas euclidien ou 1’absolu dégénére. Il est parfois plus facile de
passer de I’espace euclidien & I’espace non-euclidien en considérant la sec-
tion des variétés générales par I’hyperplan & I'infini, espace non-euclidien
de dimension plus petite.

Vouloir généraliser les droites de Simpson, c¢’est considérer les hyper-
quadriques de révolution inscrites & un simplexe et introduire immédiate-
ment la correspondance des foyers qui transforme un point dans le
deuxiéme foyer de I’hyperquadrique de révolution inscrite au simplexe
et ayant ce point pour foyer (4, 5).

*) Les indices renvoient & la littérature mentionnée en fin du travail.
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Ce sont quelques propriétés de cette transformation que nous étudions
dans le premier chapitre, ainsi qu’une relation entre la correspondance et
P’absolu.

Le deuxiéme chapitre est consacré essentiellement aux paraboloides
de révolution, c’est-a-dire aux hyperquadriques de révolution tangentes
a P'espace polaire d’un de leurs foyers principaux. Dans le cas euclidien,
le lieu des pieds des perpendiculaires abaissées des foyers principaux sur
les plans tangents & une quadrique de révolution est la sphére principale.
Cette variété se généralise presque sans modification pour un espace quel-
conque et, pour le paraboloide, dégénére également en deux hyperplans.
Grace a cette propriété, nous pouvons généraliser la notion de droites de
Simpson et montrer que leur enveloppe est une variété de (n + 1)¢ classe,
polaire réciproque du lieu (F) des foyers des paraboloides de révolution
inscrits au simplexe. L’étude de (F') dans le cas euclidien et de sa section
par 'espace a l'infini permet de trouver le lieu des foyers des hyper-
quadriques de révolution tangentes a (n + 2) hyperplans, puis & (n + &)
(h=3,...,mn+ 1).

Une configuration remarquable de la variété (F) conduit ensuite & une
nouvelle démonstration du théoréme de Schlifli que nous mentionnions.
Nous avons ainsi un lien entre les deux propriétés de départ.

Nous consacrons notre troisiéme chapitre aux droites associées; nous
nous sommes attachés en particulier & montrer combien de droites arbi-
traires peuvent étre complétées en un groupe de droites associées. Ces
considérations conduisent entre autres & deux résultats intéressants: Le
premier montre que la configuration de Segre est caractéristique de
I'espace & quatre dimensions; c’est uniquement dans cet espace qu’un
groupe de droites détermine univoquement les droites qui les complétent
en un groupe de droites associées; le deuxiéme a trait & la répartition des
conditions linéaires imposées & un groupe d’éléments géométriques.

Généralisant la notion de droites associées, nous exposons dans notre
quatriéme chapitre quelques propriétés des espaces linéaires associés. Les
espaces linéaires & & dimensions sont représentés par les points d’une
variété grassmannienne d’un espace supérieur. Cette correspondance nous
permet de donner quelques conditions nécessaires et suffisantes pour que
des espaces soient associés. Nous pouvons en déduire une propriété géo-
métrique des projections des espaces associés & partir des points de 'un
d’entre eux.

Nous avons tenu & ajouter dans notre cinquiéme chapitre quelques
propriétés particuliéres de 1’espace & deux dimensions. Nous y précisons
entre autres la classe ou l'ordre de quelques variétés.
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I
CORRESPONDANCE DES FOYERS

§ 1. Définitions

Nous considérerons un espace & n dimensions, ayant pour absolu une
hyperquadrique @ non dégénérée. L’enveloppe des hyperplans tangents
communs a @ et & une hyperquadrique quelconque H est en général une
variété de quatrieme classe. Si cette variété dégéneére en deux hypercones
de seconde classe, de sommets I, et F,, nous dirons que H est une hyper-
quadrique de révolution (par rapport a @), F', et F, étant ses foyers princi-
paux. Une hypersphére est une hyperquadrique de révolution dont les
deux foyers sont confondus, donc tangente & ’absolu le long d’une variété
quadratique & (n — 2) dimensions. Nous nommerons encore paraboloide
de révolution une hyperquadrique de révolution tangente & 1’espace po-
laire par rapport & @, d’'un de ses foyers principaux.

Nous désignerons par E* un espace linéaire & k dimensions et par
V¥ une variété & k dimensions d’ordre p.

Il nous arrivera aussi de nommer simplement quadriques et sphéres
les hyperquadriques et les hypersphéres de 1’espace & » dimensions.

§ 2. Correspondance des foyers

Une hyperquadrique de révolution est déterminée par un de ses foyers
principaux et par (n + 1) hyperplans tangents. Connaissant donc un
foyer d’une hyperquadrique de révolution inscrite & un simplexe fixe,
nous pourrons déterminer le deuxieme. C’est cette transformation ponc-
tuelle de I’espace que nous nommerons correspondance des foyers, deux
points correspondants étant dits inmverses.

Une quadrique de révolution est telle que le faisceau tangentiel qu’elle
détermine avec I'absolu @ contient une quadrique dégénérée en deux
points, ses foyers principaux. Autrement dit, une quadrique de révolution
fait partie d’un faisceau tangentiel déterminé par deux points et la
quadrique absolue.

Soit un simplexe de sommets 4,,...,4, ; a, étant la face opposée & 4, ;
A} le pole de a, par rapport & @ ; a; la face opposée & A’ dans le simplexe
(4g,...,4.) polaire réciproque de (4,,...,4,). Soit ¥ o, u;u, =0

ik
Péquation tangentielle de la quadrique absolue, le simplexe (A4,,...,4,)
étant pris pour simplexe de référence des coordonnées homogénes; soient
C(c;) et D(d,) les foyers principaux d’une quadrique de révolution dont

163



Iéquation aura la forme ¥ (c,u,d,u;, + Ax;u;u,) = 0. Pour que cette

quadrique soit inscrite au simplexe (4,,...,4,), il faut et il suffit qu’elle
vérifie les relations
¢;d, + Aoy, =0 (3=0,...,m) .

Ce sont les équations de la correspondance des foyers, correspondance
d’ordre n.

En particulier, les points doubles de cette transformation sont donnés
par les relations:

e%"‘{"‘l(x“:O (1:-—‘-'0,...,%).

Il y a 2" points doubles qui sont les centres des sphéres inscrites au sim-
plexe. Ces points appartiennent aux couples d’hyperplans

2 2 &
(xoowi"—aiixo:’:—(), (@:1,...,7&)

Ils déterminent par conséquent un systéme linéaire & (n — 1) dimensions
R d’hyperquadriques :

n
> (o af — oy Xg) = 0
i=1

Toutes les quadriques de ce systéme sont harmoniquement circonscrites a
Pabsolu (circonscrites & un simplexe polaire de ), autrement dit équa-
latéres, puisque 1’'on a la relation

E (15 0v00) 655 — E (15 005) oo = 0 .

? [
Quelles sont les quadriques harmoniquement inscrites & toutes les qua-
driques du systéme R? Si ¥ B,,u,u, = 0 est I’équation de 'une d’elles,
il faut que

(— X ps %3)Boo + & Bii(1; 060) = 0
pour tout u;, c’est-a-dire

“iiﬂm_“mﬂiizo (7:-—“:1,...,7?/).

Ceci vaut en particulier pour les quadriques dégénérées en une paire de
points. Nous voyons donc que:
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1. Les foyers principaux d’une quadrique de révolution inscrite au sim-
plexe sont deux points conjugués par rapport a toutes les quadriques du
systéme R et réciproquement.

Par conséquent, le simplexe (4,,...,4,) est un simplexe polaire pour
toutes les quadriques du systéeme. En effet, deux points pouvant étre
considérés comme quadrique de révolution, un sommet 4, et un point
quelconque de la face @,, étant inscrits au simplexe, sont inverses. Les
sommets du simplexe sont des points singuliers de la correspondance des
foyers et il leur correspond tous les points de la face opposée. De méme,
& un point d’'un E* du simplexe correspondent tous les points du E»—%-1
opposé (k=0,...,n — 1).

Montrons encore que la correspondance est d’ordre % : Soit d une droite
quelconque; les espaces polaires des points de cette droite par rapport a
n quadriques indépendantes du systéme R déterminent n faisceaux pro-
jectifs d’hyperplans; les points d’intersection de » espaces homologues
décrivent une courbe de 7n® ordre, transformée de la droite. Cette courbe
passe par les (» 4 1) sommets du simplexe, ces points correspondant
aux traces de la droite d dans les faces du simplexe.

La variété transformée d’un espace linéaire & (n — 1) dimensions est
d’ordre n. En effet, soit d une droite quelconque. Son inverse, V},, coupe
I’hyperplan en n points dont les inverses sont les seuls points d’inter-
section de la droite avec la variété Vi1,

§ 3. Propriétés de la correspondance des foyers
Correspondances induites

2. A ume droite d passant par un sommet A, du ssmplexe correspond une
droite d' par le méme sommet A,.

En effet, les espaces polaires des points de la droite d par rapport a »
quadriques indépendantes du systéeme R forment n faisceaux perspectifs,
la face a; leur étant commune; les espaces homologues se coupent en une
droite d’ passant par A4,, point inverse de la trace de d dans a,.

Projetons tout ’espace sur @, a partir de 4,. Soit @, la projection de
Pabsolu. Une quadrique de révolution de foyers F', et F, est projetée sui-
vant une quadrique de I’hyperplan a,, de révolution par rapport a I’ab-
solu @,, F; et F, (projections de F, et F,) étant ses foyers principaux. En
particulier, une quadrique de révolution inscrite au simplexe (4,,...,4,)
est projetée en une quadrique de révolution inscrite au simplexe

(A, AsysAsyy,. . A,) -
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Par conséquent, les droites correspondantes d et d’; passant par un
sommet A4;, induisent dans la face opposée a; une transformation pone-
tuelle qui est la correspondance des foyers relative au simplexe

(Agy. -y A1y Asr,. . A,)

et a ’absolu §);, projection de @ . Cette correspondance est d’ordre (n — 1);
les » points singuliers sont les sommets 4, contenus dans cette face; les
271 points doubles sont les projections & partir de 4, des 2" points
doubles de I'espace, deux & deux alignés sur 4,.

3. A tout espace a (k + 1) dimensions passant par un E* du simplexe
correspond un E*+1 par le méme E*.

Cette propriété étant vraie pour k = 0, supposons-la vraie pour k et
démontrons-la pour (k -+ 1).

Soient § un E¥*+! contenant les points 4,,...,4, et « un E* compris
dans § et passant par 4,,...,4,_,. Les droites projetant les points de «
a partir de 4, se transforment en droites par 4, projetant les points de
«’, correspondant de «, donc E* par 4,,...,4,_,. Le transformé g8’ de
est donc un E*+! par 4,,...,4,. Les points de 8 qui ne sont pas sur le
simplexe se transforment en points de B8’; aux points de (4,,...,4,)
correspond tout l’espace (4;.;,...,4,).

Si, comme précédemment, nous projetons tout 1’espace & partir d’un
E* du simplexe sur le £"—*-1 opposé, nous voyons qu’une hyperquadrique
de révolution par rapport a ¢, de foyers F, et F,, inscrite au simplexe,
est projetée suivant une quadrique de ce E"%-1 inscrite au simplexe
déterminé par les sommets du simplexe primitif qui se trouvent dans cet
espace, et de révolution par rapport a la projection de @, les foyers princi-
paux étant les projections de F; et de F,.

Par conséquent, les E*+1 correspondants par un E* du simplexe déter-
minent une transformation ponctuelle du E"—*-1 opposé, qui est une
correspondance des foyers relative au simplexe situé dans cet espace et a
’absolu @', projection de @ & partir du E*. Les (» — k) points singuliers
sont les sommets du simplexe; les points doubles sont les 27—*-1 projec-
tions des points doubles de ’espace qui sont 2¥+1 § 2k+1 dans des E¥+!
passant par le E*.

La correspondance des foyers induit autour de chaque E* du simplexe
une correspondance entre les E¥+1: I'inverse d’'un point d’un E¥+! non
situé sur le simplexe, est un point du E*+! correspondant. En particulier,
elle induit une transformation ponctuelle de chacun des E*+! doubles,
confondus avec leur correspondant.
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Remarquons que la section d’'une hyperquadrique de révolution (par
rapport & @) par un E* quelconque contenant les foyers principaux F, et
F,, est une quadrique de ce E*, de révolution par rapport a la section de
@ par cet espace, et de foyers principaux F, et F,.

Par conséquent, la transformation induite dans un E*+! double est une
correspondance des foyers; ’absolu en est la trace de 'absolu primitif
dans le E*+1 considéré; les 2%+ points doubles sont ceux de I’espace E™
qui se trouvent dans ce E*+1; les (k + 2) points singuliers sont: les
(k + 1) sommets du simplexe et le point H, trace du E¥+! dans le E»—*-1
opposé du simplexe. Cette correspondance est d’ordre (£ + 1). Nommons
J .1 cette correspondance.

De méme, la transformation ponctuelle établie entre deux E¥*+! in-
verses passant par un E* du simplexe, est d’ordre (k + 1):

4. A une droite quelconque coupant un E* du simplexe (et aucun autre)
correspond une variété d’ordre (k + 1) coupant ce E¥ en (k + 1) points
(sommets du simplexe).

Par contre,

5. st ume droite d coupe deux espaces E* = « et E* = f du simplexe,
elle se transforme en une droite d’ coupant ces mémes espaces.

En effet, d étant dans un E*+1 contenant « et dans un E*+! contenant
B, d’ se trouve dans 'intersection des E»+! et E¥+! correspondants, par «
et f, donc une droite coupant x et S.

6. La variété Vi~' = y’, inverse d’'un hyperplan E"' =y, contient
les E* du simplexe avec la multiplicité (n — k — 1) (k= 0,...,n — 2).

En effet, soit d’ une droite quelconque par un point P d'un E* du
simplexe; elle se transforme en une variété d, d’ordre (k 4 1), qui coupe
Pespace y en (k + 1) points. A ces points correspondent les points d’inter-
section de d’ avec p’, qui ne se trouvent pas dans le E*. Par conséquent,
d’ coupant la variété y’ en n points, le point P est de multiplicité
(mn—k--1).

§ 4. Variétés correspondant aux espaces linéaires

Nous avons vu que I'inverse d’une droite est une variété d’ordre n, de
méme que I'inverse d’un espace & (» — 1) dimensions. Quelle est la trans-
formée d’un espace linéaire quelconque ? Soient k variétés V7! contenant
les £"% du simplexe. Quelle est leur intersection effective?
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Nommons V,,,...,V ces variétés. Chacune contient les E** du
simplexe avec la multiplicité (¢ — 1). Les variétés V,, et ¥, se coupent

n -+ 1

9 E"—2dusimplexe

en une variété d’ordre n? qui dégénere dans les (

22 2 9 1. . ’ LIS
et une variété d’ordre n? — <n—;— ) = ( :) . Soit z; 'ordre de la variété
V{*=1 | intersection effective des j variétés V,,,...,V; ; elle contient

les E"~-1 du simplexe. D’autre part, V;,,, contient les E"-i-1 du
simplexe avec la multiplicité j. I.’intersection de ces deux variétés V-1

\

1 . 3 224 ! b
et V,, se compose donc de (n H ) - JE"7-1 et d’une variété d’ordre

j+1
Byny s
ah .(n+1
iy =N 2; — ] j+1)°
Par conséquent, x,:(?) En effet, x2=<g>; si sz(?.'),
x .n+1) (n > . . =

=0l )—7{. == |, . L’intersection de & V! contenant
J+1 <?) ?(7+1 ?+1 m Ctl n contenarn

les E"~1 du simplexe est une variété V’('z—) , contenant les HE"*1 du

simplexe. Par conséquent:
7. Un E"* quelconque est transformé par la correspondance des foyers

en une variété d’ordre (
(k=1,...,n).

Une variété V7 est déterminée par (n -+ 3) points P;. En effet, une cor-
respondance projective étant donnée par trois positions des éléments ho-
mologues, il suffit de considérer les n faisceaux d’hyperplans d’axes
(Py,..., Py, Pipy,...,P,) 1 =1,...,n) et dont les éléments homo-
logues passent successivement par P, ,, P,.,, P,.;. Ces n faisceaux se
coupent en une V! passant par les (n + 3) points donnés. D’autre part,
toute V), se laisse engendrer de cette fagon, un hyperplan par (P,,...,P;,_,,
P.,,...,P,) la coupant encore en un et un seul point. Done:

Toute V. par les (n 4 1) sommets du simplexe est l'inverse d’une
droite de l’espace.

Une variété V! contenant les E*~2 du simplexe est déterminée par n
autres points. Remarquons d’abord que par » points passe une telle
variété, a savoir la transformée de I’hyperplan déterminé par les n in-
verses des points donnés. Supposons que par (n -+ 1) points quelconques
passe une telle variété. Soient 1,...,7n 4+ 2 des points quelconques et

n :
) contenant tous les E" %1 du simplexe

k
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considérons les n—1 variétés V' déterminées par les (n -4 1) points
1,...,7—L94+1,...,n4+2 (=4, 5,...,n+2). Ces n— 1 variétés
se coupent suivant une courbe V), passant par les sommets du simplexe
et par les points 1, 2, 3. Nous aurions alors une courbe de n¢ ordre
par (n 4 4) points quelconques. Nos hypothéses sont donc fausses.

i NS 4 k A » 2’ * I d
8. Umne variété V(Z) contenant les E¥~1 du simplexe est déterminée par

(k + 1) autres points.

Remarquons de nouveau que la transformée de I’espace E* déterminé
par les inverses des (k + 1) points est une telle variété. Supposons que
par (k + 2) points quelconques passe une telle variété. Considérons
d’autre part une variété V. ! passant par (k£ + 1) de ces points et ne

passant pas par le (k 4 2)¢. Ces deux variétés ont pour intersection effec-
1

k- k
tive une variété V(k'i ) Si done il passe une variété V(z) par les £*-1 du
. k—
simplexe et par (k + 2) points, il passe une variété V(kfll) par les E¥-2
du simplexe et par (k -+ 1) points et par suite, il passe une variété V), par
les sommets du simplexe et par trois points, ce qui est faux. Par consé-
quent:

* sy 2 k 2 Id
9. Toute variété V(Z) contenant les E*—1 du simplexe est la transformée

d’un espace linéaire a k dimensions (k =1,...,n — 1) dans la correspon-
dance des foyers.

En nous appuyant sur les résultats trouvés précédemment, nous pou-
vons donner maintenant des propriétés générales de la correspondance
des foyers.

A un E* contenant un E* du simplexe correspond un céne ayant ce
Z:z:i) .  En effet, la
trace du E* dans le E" %1 opposé du simplexe, qui est un E*%*-1  est

E* pour sommet, de dimension A et d’ordre (

transformée par la correspondance des foyers (d’ordre n — k — 1) induite
TV s n — k - l . . ’ \
dans cet espace, en une variété d’ordre (h ok 1), qui, projetée a

partir du E*, donne la variété cherchée. Par suite:

10. Un E* quelconque est transformé par la correspondance des foyers
s s . . , n
en une variété a h dimensions, d’ordre ( h) , contenant tous les E"1 du

simplexe; les E*+1 tangents a celte variété en un E* du simplexe forment
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un come ayant ce E¥ pour sommet, de dimension h et d’ordre (n —k— 1)

n—k—1 h—k—1
"":( n—h )

Ce cone est en effet la transformée de I’espace & k dimensions projetant
a partir du E* la trace du E* donné dans le E"—*-1 opposé du simplexe.

11. A un E® incident o un E* du simplexe (et seulement & cet espace)
correspond une variété V(k;:rl) coupant ce E* sutvant une variété V(Z;) .
En effet, ce E* est dans un E*+! contenant le £*. Sa transformée est
dans le E*+! correspondant par le E*; la correspondance entre les deux
espaces est d’ordre (¥ 4 1). Remarquons que pour A = k + 1, nous re-

trouvons un théoréme précédent.
Nous pouvons dés lors donner le résultat général suivant:

12. La correspondance des foyers transforme une variété V¥ en une va-
4 k - 1
rieté V(Z) .5 » contenant tous les E*' du simplexe: les E™+! tangents &

cette variété le long d’un E™ du simplexe forment un come ayant ce E™

. . — 1
pour sommet, de dimension k et d’ordre (7;; Z 1) - h .
En effet, soit un E"—* quelconque; il coupe la variété transformée V'
en x points; a chacun de ces points correspond un point d’intersection

’ n—.k - V4 rd
de la transformée V( ") de ce E"* avec la variété donnée V, donc
n

x = (n f"_ Ia) - h = <Z’) - h . D’autre part, soit P un point de V dans un

E"—m-1 du simplexe: 'espace a (m -+ 1) dimensions déterminé par P
et le E™ opposé se transforme en un E™+1, par ce E™, et tangent & la

variété V’'. La trace de V dans le E"-™-1 est transformée dans cet
L T4 k—m—1 . . s by .
espace, en une variété V('i—m_i) qui, projetée & partir du E™, donne
_m—_

le cOne cherché.

§ 6. Décomposition de la correspondance des foyers

Considérons un E*¥1 =g et un E"*1 = b du simplexe, sans point
commun. Soient « un E* double par a, 8 un E"—* double par b. Nous avons
dans « une correspondance J,; dans §, une correspondance J,,_,.. Ces deux
correspondances J, et J,_, déterminent la correspondance de lespace.

En effet, soit P un point quelconque. L’espace y = (a P) = E* coupe
en un point R; ’espace inverse y’ est un E* passant par a et par le point
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R’, correspondant de R dans J,_,. De méme, & 'espace 6 = (b P) =
E"—%_ coupant « en S, correspond l’espace 6’ = (bS’) = E"-*, §'étant
le point inverse de S dans J,,. L’inverse P’ de P est le point d’intersection
des espaces y’ et 4.

Si nous décomposons de cette fagon les correspondances J, et J,_,,
nous arrivons finalement au résultat suivant:

13. La correspondance des foyers est déterminée par n transformations J,.

Par exemple et plus exactement: la correspondance des foyers est
déterminée par les n points singuliers 4,,...,4,, un point double D et
les involutions biunivoques définies sur les n droites 4,D.

En effet, soit P un point quelconque. L’espace (4,,...,4,_,, P,
A;.,...,4,) coupe la droite 4,D en R,. Soit R; son correspondant sur
A,D. Les n espaces (4,,...,4,,, R}, 4,,,,...,A4,) se coupent au point
P’, inverse de P.

Il va sans dire que nous pourrions combiner différemment les involu-
tions linéaires J;, ou faire des raisonnements semblables avec les cor-
respondances des foyers induites dans les espaces du simplexe. La cor-
respondance des foyers peut donc se définir indépendamment de 1’hyper-
quadrique absolue . Supposons le simplexe (4,,...,4,) fixe. Quelles
sont les hyperquadriques qui engendrent la méme correspondance des
foyers?

§ 6. Correspondances des foyers et ensembles d’hyperquadriques

Etant donné un point de coordonnées c,, nous avons vu que son in-

’ (0 27} 7 z .
verse a pour coordonnées d, = c“ , X oou;u, =0 étant 1’équation
tangentielle de I’hyperquadrique absolue. Par conséquent, la correspon-
dance des foyers est indépendante des coefficients «,, (2 % k). Nous
pouvons done considérer comme absolu n’importe quelle hyperquadrique

du systéme

S (xapw;uy + Bapuuy) = 0,
ik

(B;; = 0, B, quelconque); la correspondance sera la méme. En d’autres
termes :

14. Soient F, et F, les foyers principaux d’une hyperquadrique
inscrite au simplexe (4,,...,4,) et de révolution par rapport & . Soit
Q' une hyperquadrique du faisceau tangentiel déterminé par @ et par une
hyperquadrique quelconque inscrite au simplexe. Il existe une hyper-
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quadrique inscrite au simplexe, de révolution par rapport @ Q' et ayant F,
et Fy pour foyers principaux, c’est-a-dire inscrite au simplexe et aux deux
cones de sommets F, et F, tangents a Q-

Nous pouvons retrouver ce résultat en nous appuyant sur la propriété
élémentaire suivante : Soient C,, C,, C;, C, quatre hyperquadriques. Si
les faisceaux tangentiels déterminés par C, et C, d’une part, C, et C,
d’autre part, ont une hyperquadrique commune, il en est de méme pour
les deux faisceaux tangentiels déterminés par ces quatre quadriques prises
deux & deux de fagon quelconque. Remarquons que le faisceau tangentiel
déterminé par deux quadriques inscrites se compose de quadriques in-
scrites. Par conséquent, soient F'; et F, les deux foyers principaux d’une
quadrique inscrite, J,, de révolution par rapport & @ ; @’ une quadrique
du faisceau déterminé par ) et par une quadrique inscrite J, : les faisceaux
tangentiels {(F,, F,),J,} et {@’,J,} ayant en commun la quadrique
Q, les faisceaux {(¥,, F,),Q’'} et {J,, J,} onten commun une quadrique
J;. J, est inscrite, de révolution par rapport & @' et de foyers principaux
F, et F,. Nous pouvons énoncer cette propriété comme suit en employant
le langage de l’espace euclidien :

15. St F, et F, sont les foyers principaux d’une hyperquadrique de révo-
lution inscrite @ un simplexe, les deux cones de sommets F, et F,, tangents o
une hyperquadrique homofocale @ une hyperquadrique quelconque inscrite au
simplexe, sont tangents & une hyperquadrique inscrite aw stmplexe.

La correspondance des foyers est la méme pour tout le systéme linéaire
, n(n41) '
P
par une quadrique quelconque. Chacun de ces systémes contient une et

une seule quadrique admettant le simplexe pour simplexe polaire (car une
telle quadrique a pour équation ¥ o, uZ = 0).

dimensions déterminé par toutes les quadriques inscrites et

16. Toute correspondance des foyers est caractérisée par une hyper-
quadrique admettant le simplexe pour simplexe polaire et réciproquement.

§ 7. Quelques variétés remarquables de 1’espace euclidien

Considérons un espace ayant un hyperplan & I'infini e (I’espace euclidien
par exemple). Nommons milieu d’un segment BC le point conjugué par
rapport & BC de la trace de la droite BC' dans I'’hyperplan & l'infini.

Soit un espace & deux dimensions par une aréte 4,4, du simplexe, et
transformé en lui-méme par la correspondance des foyers. (Rappelons
qu’il en existe 2"-2 par chaque aréte.) Sa droite & I'infini a pour inverse
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une conique par neuf points: les deux sommets 4, et 4,, la trace H de ce
plan dans le E"~% opposé & 4, et 4, et les milieux des six segments déter-
minés par deux des quatre points doubles situés dans ce plan, ces points
étant conjugués d’un point a l'infini par rapport & toutes les quadriques
du faisceau ponctuel déterminé par les 2" centres des hypersphéres
inscrites au simplexe. Il y a donc 2"~%.%(n + 1) coniques particuliéres.
Plus généralement, soit un £¥+! double par un E* du simplexe. L’inverse
de son E* & Vinfini est une variété V% ,, contenant les (k + 1) sommets
du simplexe, la trace H du E*+! dans le E"~*-1 opposé et les 2% (2k+1— 1)
milieux des segments déterminés par les 2k+1 points doubles du E*+1, pris
deux & deux.
n+41
k-1
Rappelons que toute variété V(if) contenant les £%-1 du simplexe est

Nous avons donc 2"—%-1 ( ) variétés particuliéres Vi (k=0,...,n-2).

la transformée d’un E*. Par conséquent :

17. S¢ une V(%E) contenant les E*-1 du simplexe coupe (k 1+ 1) des

variétés particuliéres V%=1 elle les coupe toutes (en des points non situés
sur le simplexe).

En effet, son inverse est alors un E* contenu dans I’hyperplan a l'infini
et coupant donc tous les "% -1 transformés des variétés particuliéres.

1I.

PARABOLOIDES DE REVOLUTION INSCRITS
A UN SIMPLEXE

§ 1. Une propriété des foyers d’une hyperquadrique de révolution

Soient F'; et F, les deux foyers principaux d’une quadrique, H,, de
révolution par rapport & I’absolu @, c’est-a-dire inscrite aux cones C,
et C, de sommets I, et F, tangents & . Soient f, et f, les hyperplans
polaires de F', et I, par rapport a @, «, et «, leurs variétés quadratiques
d’intersection avec Q.

Une polarité par rapport a ¢ transforme la quadrique H, en une qua-
drique H, contenant les variétés «, et «,.

Opérons encore une inversion de sommet F, par rapport & ¢ : A un
point P correspond la trace P’ du rayon F, P dans ’espace polaire de P
par rapport a . Cette transformation est quadratique. A la quadrique
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H, correspond une variété de quatriéme ordre qui dégénére dans le cone
C,, inverse de «,, et dans une nouvelle quadrique H,. H; contient «, et
oy. En effet, les points de «, sont transformés en eux-mémes. Soit P un
point de «,. Le rayon F, P coupe H, en un deuxieme point P, dont I’in-
verse est le point P, I’espace polaire de P, passant par P.

De méme, si nous prenons F, pour centre d’inversion, I'inverse de H, se
compose du cone C, et d’'une quadrique H,, contenant «, et «,.

H, et H, sont identiques. En effet, soit R un des points d’intersection
de la droite F,F, avec H,. Son inverse R’ est le méme, que le centre
d’inversion soit ¥, ou F,. H; et H, faisant partie du méme faisceau ponc-
tuel (déterminé par ¢ et par les deux hyperplans f, et f,) et ayant un
point commun, coincident.

Les quadriques H, et H, sont tangentes le long d’une variété quadra-
tique. Autrement dit : Soient P un point sur H; et H,; a et b les hyper-
plans tangents 4 H, et H; en P : a et b sont identiques, quel que soit P.

En effet, le point P’, inverse du point P de H,, est sur H, et dans
Pespace polaire de P. L’hyperplan polaire de P’ est tangent & H, en P.
P’ est donc le pole de a. Remarquons la propriété suivante : Soient C et
D deux points inverses, ¢ et d leurs hyperplans polaires : L’inverse ¢’ de ¢
est une hyperquadrique tangente & d. En effet, supposons que ¢’ coupe d
en un point £ # D. L’inverse £’ de E étant dans ¢, ’espace polaire de
E contient la droite CE’ si E’ # C, donc toute la droite DE est sur ¢’ ;
ou alors, si £/ = C, E = D. ¢’ est bien tangente & d. Soit f I'espace
tangent & H, en P’. Son inverse est tangente & H,, mais aussi & a. Par
conséquent, H, et H, sont tangentes en tout point de leur intersection.

Soit g un hyperplan tangent & H, et soit (' son pdle par rapport a .
La droite F',G (perpendiculaire abaissée d’un foyer sur un espace tangent)
coupe g en un point de H,;. Par conséquent :

18. Le liew des pieds des perpendiculaires abaissées des deux foyers
principaux d’une hyperquadrique H, , de révolution par rapport & une hyper-
quadrique absolue @, sur tous les hyperplans tangents a H ,, est une hyper-
quadrique H,, tangente @ H, de long d’une variété quadratique, et apparte-
nant au faisceau ponctuel déterminé par Uabsolu @ et les deux hyperplans
polaires (par rapport a Q) des foyers.

Considérons le cas particulier ou la quadrique H, est un paraboloide de
révolution, c’est-a-dire que H, est tangente a I’hyperplan f,, polaire de
F,. L’hyperquadrique H,, polaire réciproque, passe par I, et son inverse
H, dégénére dans les deux hyperplans f, et f, qui sont tangents a H,.
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Nous pourrons donner une définition plus symétrique du paraboloide
de révolution :

Un paraboloide de révolution par rapport a ¢ est une hyperquadrique de
révolution tangente aux deux hyperplans polaires de ses foyers principaux.

Remarquons encore que les points de contact R et R’ du paraboloide
avec ces hyperplans sont sur la droite des foyers principaux. En effet, les
points ¥, et F, constituent une quadrique du faisceau tangentiel, déter-
miné par @ et H,. Les espaces f, et f, se coupent en un espace (f,f,) con-
jugué de la droite F'\ F', par rapport a toutes les quadriques du faisceau,
étant conjugué par rapport a deux d’entre elles, @ et (', F,). Les espaces
f, et f,, tangents & H,, ont leur points de contact sur F F,.

La propriété la plus importante de ce cas particulier est la suivante :

19. Le lieu des preds des perpendicularres abaissées d’un foyer principal
d’un paraboloide, de révolution par rapport a une hyperquadrique absolue
Q, sur les hyperplans tangents a ce paraboloide, est Uhyperplan polaire du
deuxiéme foyer par rapport a Uabsolu Q.

§ 2. Lieu des foyers des paraboloides de révolution inserits & un simplexe
Podes et podaires

Nous avons déja remarqué qu’une hyperquadrique de révolution est
déterminée par un foyer principal et par (» + 1) hyperplans tangents,
c’est-a-dire un simplexe de sommets 4,,...,4,. Nous nous proposons
de déterminer le lieu des foyers des paraboloides de révolution inscrits &
ce simplexe. Ces points devant satisfaire & une condition linéaire (I’hyper-
quadrique est tangente & 1’espace polaire d’un foyer), nous trouverons une
hypersurface que nous nommerons (F). D’aprés ce qui précéde, nous
pouvons affirmer que:

20. (F) est le lieu des points P tels que les pieds des perpendiculaires
abaissées du point P sur les (n + 1) faces du simplexe sont dans un espace
linéaire & (n — 1) dimensions.

Nous dirons que cet espace des pieds est I’espace podaire, ou simple-
ment la podaire de P (par rapport au simplexe) et que P est le pode de cet
espace. Nous désignerons enfin par (7') I'enveloppe des podaires.
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D’apres le théoréme 2, nous voyons que:

21. Si F, est un pode, son espace polaire f, est une podaire. Plus exacte-
ment :

22. Le pode F, de la polaire f, d’un pode F, est ausst le pole de la podaire
fode .

23. Le pole et le pode d’une podaire sont les deux foyers principaux d’un
paraboloide de révolution tnscrit au simplezxe.

24. La classe de (T) est égale a Uordre de (F').

Donnons encore une démonstration directe du théoréme 21 : Par hypo-
thése, la droite P A, coupe la face a; du simplexe en un point B,, les
(n + 1) points B, (¢ = 0,. .., n) étant dans un méme E"-! = r. En effec-
tuant une polarité par rapport & @, au point B, correspond ’hyperplan
b; déterminé par l'intersection de p et de a, et par le point 4}. Ces (n+1)
espaces b, se coupent en un point R. La droite RA; coupe ’espace a; en
un point de p qui est donc une podaire de pode R..

De cette démonstration découle la propriété suivante que nous em-
ploierons dans la suite :

25.  Pour que le point P soit un pode, il faut et il suffit que les (n + 1)
hyperplans passant par A; et conjugués des droites P A} se coupent en un
point R. Ce point R est aussi un pode.

§ 3. Quelques propriétés des podes et des podaires

D’aprés la définition du pode, nous voyons facilement que la variété
(F'), lieu de ces points, contient : tous les espaces & (» — 2) dimensions du
simplexe 4,,...,4,; les espaces d’intersection des faces homologues a;,
et a; ; les sommets du simplexe A/,...,A,. Dualement, tout hyperplan
par une hauteur iﬂliA:, est une podaire, de méme que tout hyperplan con-
tenant deux sommets au moins du simplexe (4g,...,4,).

26. Toute podaire contenant un seul sommet A, contient toute la hauteur
4,4 '

Remarquons que le pode d’une i)odaire r est l'intersection des (n + 1)
hyperplans déterminés par un point A4 et I'intersection des espaces r et
a; (¢t = 0,...,n). Par conséquent, si une podaire contient le point 4, par
exemple, elle contient son pode P. Les n hyperplans déterminés par 4] et
la trace de cette podaire dans la face a, (¢ = 1,..., n) devant se couper
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en P, P n’est autre que 'intersection des » faces a, (: = 1,..., n), donc
le point 4,.

A cause de notre remarque, nous pouvons aussi affirmer que:

Tout hyperplan par k sommets A,...,A} est une podaire admet-
tant pour pode n’importe quel point de son intersection avec l’espace
(4,,...,4,). Tout espace par k sommets A; a donc ook—2 podes.

27. Pour qu’une podaire conttenne son pode, il faut et il suffit qu’elle
contienne un sommet au moins du simplexe (4,,...,A.).

La suffisance découle de ce qui précéde. D’autre part, supposons qu’une
podaire contienne son pede et aucun des points A;: Elle devrait alors
contenir le point d’intersection des (n 4 1) espaces a, (: = 0,..., n), ce
qui est exclu.

En résumé, si une podaire passe par le point A, elle contient ou le
point 4,, ou un sommet 4. Dualement, les seuls podes qui se trouvent
dans la face a, sont les points des espaces & (n — 2) dimensions du sim-
plexe et les points de l'intersection des faces a, et a,. Donc:

28. La variété (F) est d’ordre (n + 1); la variété (T) est de classe
(n + 1).

§ 4. Variété (F)

Pour éviter d’employer le principe de la conservation du nombre,
donnons une démonstration directe de ce dernier théoréme.

Soient @ 'absolu, (4,,...,4,) le simplexe, @, la face opposée & 4,,
A’ le podle de a, par rapport & @, d une droite quelconque, d; sa projection
sur a, 4 partir de 4}, P un point quelconque de d, P, sa projection de
A; sur d;.

Combien existe-t-il de points P tels que 1’espace (P,,..., P,) coupe d,
en P,? Si P est quelconque, l'espace (P,,..., P,) coupe d, en P;.
L’ordre de (F') est égal au nombre de points doubles de la correspondance
Py P,. Soit X,,, ce nombre. A un point P, correspond un seul point
P;. A un point P} correspondent X, points P,. X, est égal au nombre
d’hyperplans menés par P, et coupant les.droites d; en des points R; tels
que les droites A’ R, se coupent sur d. Soit P; l'intersection de l'espace
(P}, P,,..., P,) avec la droite d,. X, est égal au nombre de points
doubles de la correspondance P, P,. A un point P, correspond un seul
point P ; & un point P, correspondent X, , points P,. X, , = X, — 1
= X,,;— 2. Généralement X,_, est égal au nombre d’hyperplans menés
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par P),..., P, coupant les droites d;en des points R, (i =h + 1 ... n)
tels que les droites A; R, se coupent sur d, c’est-a-dire si P}, , est le point
d’intersection de I'espace (Pj,... P,:, P,.s,..., P,) avecladroited,
c’est le nombre de points doubles de la correspondance P, Pj., X,
=X, —1=X,,,—h—1. Pourh=n—1, X, est le nombre de
points doubles de la correspondance P, P,-P, étant fixe, X, = 1. Par
conséquent, X, ., =n + 1. L’ordre de (F) est bien égal & (n + 1).

29. La variété (F) contient tous les E** du simplexe avec la multiplicité
(k —1).

Remarquons tout d’abord que la variété (¥) est transformée en elle-
méme par la correspondance des foyers relative a 1’absolu @.

Soit d une droite quelconque, coupant (¥) en (» + 1) points. Sa trans-
formée d’ dans la correspondance des foyers est une variété V)., passant
par les sommets du simplexe, points de multiplicité y sur (F). A tout
point d’intersection de d et de (¥) correspond un point d’intersection de
d’ et de (F). d’ coupant (F) en n(n + 1) points dont y(n + 1) sont sin-
guliers, nous devons avoir

n+1=nn-+1)—ynr+1); y=mn—1.

Soit f une droite quelconque par un point P d’un E** du simplexe.
d coupe (F') en (n + 1) points dont x sont confondus en P. A chaque point
d’intersection de d et de (F'), (différent de P), correspond un point d’inter-
section non singulier de la transformée d’ de d, et de (F). Or d’ est une
variété V,_,., passant par les (o — k 4 1) sommets du simplexe situés
dans le E** considéré, chacun de ces points ayant la multiplicité (n — 1).
Par conséquent, d’ coupant (F) en (n — k + 1)» points dont (n — k& 4 1)
(» — 1) sont singuliers, nous avons donc:

n—x=n—-k+Dn—m—%k+1)(n—1)
x=Fk—1, k=1,...,n) .

§ 6. Variétés (F) transformées en elles-mémes par une correspondance
des foyers

Nous avons vu que nous obtenons la méme correspondance des foyers

si nous considérons une hyperquadrique absolue  ou n’importe quelle

hyperquadrique du faisceau tangentiel déterminé par ¢ et par une hyper-

quadrique quelconque inscrite au simplexe. Or & chaque hyperquadrique

d’un tel faisceau correspond une variété (F), lieu des foyers des para-
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boloides inscrits au simplexe et de révolution par rapport a cette hyper-
quadrique. Chacune de ces variétés est transformée en elle-méme par la
correspondance des foyers commune au faisceau. Par conséquent, chaque

variété a (n — k) dimensions d’ordre (Z), intersection de k variétés (F')

est également transformée en elle-méme. Nous pouvons donc parler de
sous-variétés invariantes pour la correspondance des foyers.

30. Par tout pornt de Uespace passent (n + 1) des variétés (F) relatives
a un faisceau tangentiel d’hyperquadriques.

En effet, soient R un point quelconque, d, le lieu des péles de la face a;
par rapport & toutes les quadriques du faisceau, d; la projection & partir
de R de cette droite d; sur la face a,, P, un pdle particulier, P; sa projec-
tion correspondante.

Il passe autant de variétés (') par R qu’il y a d’ensembles de points
(Py,. .., P)) quisont dans un hyperplan. En général, I’espace (P;,. .., P;)
coupant la droite dj en un point Py , il y en a autant que de points doubles
dans la correspondance PJfP,. Soit X, ce nombre. A un point P, cor-
respond un et un seul point PF, le point P, déterminant une quadrique
du faisceau, donc aussi I’espace (P;,. .., P,). A un point P} correspondent
X,,=X,—1 points P;, X, , étant égal au nombre d’hyperplans
passant par Py et coupant d; en un point P}, projection du péle de a;
par rapport & une certaine quadrique indépendante de ¢z (z = 1,..., n).
Autrement dit, soit P} 'intersection de dj et de I’espace (Pg, P,,...,P;),
X ,_, est égal au nombre de points doubles de la correspondance P P;.
Généralement, soit P; lintersection de la droite d, et de l'espace
(PS,....Pr 1, Pyyyse.., Py) et soit X, , le nombre de points doubles
de la correspondance Py P; - X, ,= X, —h. Pour h=n, P} est
I'intersection de ’espace (Py ,..., P¥_,) et de la droite d,,, c’est donc un
point fixe. La correspondance P P/ a un seul point double, c’est-a-dire
Xo=1let parsuite: X, =X, +n=mn -+ 1.

Si, par un point de I’espace, passent (n 4 2) variétés (F') relatives & un
faisceau, toutes passent par ce point.

Si le faisceau d’hyperquadriques considéré contient une hyperquadrique
inscrite au simplexe, la correspondance des foyers est la méme pour tout
le faisceau et chacune des variétés (F) est transformée en elle-méme par

cette correspondance. L’ensemble des variétés (¥') détermine sur chacune
d’elles un systéme de variétés & (» — 2) dimensions V?;'_)2 également in-

variantes. Par tout point d’une variété passent n sous-variétés invariantes
situées dans la variété ; s’il en passe (n 4 1), il en passe une infinité. Nous
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avons ainsi obtenu une décomposition de tout ’espace en variétés V('i)

transformées en elles-mémes par la correspondance des foyers (le simplexe
étant singulier).

Si, au lieu de considérer un faisceau d’hyperquadriques, nous avions
pris le systéme déterminé par une quadrique quelconque et ’ensemble
des quadriques inscrites au simplexe, nous aurions obtenu un ensemble
plus complet de variétés (¥) transformées en elles-mémes par la cor-
respondance des foyers commune & ce systéme, par chaque point de
(n—1) (n+ 2)

I’espace passant alors oo 5

variétés (F').

§ 6. Variété (F) dans le cas euclidien

Les résultats que nous avons obtenus jusqu’ici sont valables quelle
que soit I’hyperquadrique absolue €. Il est intéressant de voir ce que
devient la variété (') dans le cas ou I’absolu dégénere. Prenons donec pour
absolu, une variété quadratique @’ & (n — 2) dimensions, située dans un
hyperplan «. Dans ce cas, la polaire par rapport & @’ d’un point non situé
dans « est I'espace « ; la polaire d’'un point de « est un hyperplan quel-
conque passant par le "2 polaire de ce point par rapport & Q. Inverse-
ment, le p6le de x est un point quelconque de ’espace ; le péle d’un hyper-
plan est le pole de sa trace dans « par rapport & Q’. La correspondance
des foyers relative & @’ et & un simplexe est bien déterminée. D’apreés nos
définitions générales, un paraboloide de révolution est maintenant une
hyperquadrique de révolution tangente a I’hyperplan «, polaire d’un
foyer F,. La podaire de F; (non situé dans «) étant différente de «, le
deuxiéme foyer est dans « (puisque c’est le pdle de cette podaire). Réci-
proquement, tout point de x est un pode, sa podaire étant ’espace « lui-
méme. Par conséquent:

31. La variété (F) d’ordre (n + 1) dégénére dans le cas euclidien et se
compose de Uespace « et de la variété (F'), transformée de x dans la cor-
respondance des foyers, variété d’ordre n.

Dualement, I’enveloppe (7') dégénére et se compose de ’hyperplan (o)
et d’une variété (7'') de classe (n + 1), mais d’ordre plus petit que celui
de (7).

Remarquons que la trace (B) de (#') dans «, variété & (n — 2) dimen-
sions d’ordre 7, est transformée en elle-méme par la correspondance des
foyers. Si un point X de (¥’) tend vers un point P de (B), son inverse X’
sur x tend vers un point P’ également sur (B). La trace de la podaire de
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X dans « est I'espace & (n — 2) dimensions polaire de X’ par rapport &
@’ dans «. Si X = P, la podaire est ’espace « lui-méme. Si X décrit une
courbe sur (F’) passant par P, les podaires enveloppent une variété
tangente & « le long de 'espace polaire de P’. L’enveloppe des podaires
de (') touche « le long d’une variété qui est I'enveloppe des espaces B2
polaires de (B) par rapport & Q’.

32. La variété (T') touche Uespace « le long de la variété polavre réci-
proque de la trace de (F') dans « par rapport & U'absolu dégénéré Q.

§ 7. Variété des foyers des hyperquadriques de révolution tangentes &
(n 4+ p + 1) hyperplans

Quelle est la signification géométrique de la variété (B)? Deux points
correspondants de (B) sont les foyers principaux d’une hyperquadrique
de révolution inscrite au simplexe et tangente a «, donc contenue dans «,
c’est-a-dire dégénérée en une hyperquadrique & (» — 2) dimensions. Par
conséquent, la variété (B) est le lieu des foyers des hyperquadriques de
« , de révolution par rapport & @’ et inscrites au simplexe. En considérant
@)’ comme absolu non dégénéré de 1’espace «, nous arrivons au résultat :

33. Le lieu des foyers des hyperquadriques de révolution par rapport a
un absolu non dégénéré Q) et tangentes a (n + 2) hyperplans de Uespace a
n dimensions, est une variété d’ordre (n + 1) et de dimension (n — 1)

contenant les (™ + 2 espaces d’intersection des hyperplans pris deux a deux.
2 pa yperp P

Des lors se pose la question : Quelle est la variété des foyers des hyper-
quadriques de révolution tangentes a (n 4+ p + 1) hyperplans?

Soient 1,...,n 4+ p + 1 les hyperplans donnés, ¥, la variété des
foyers des hyperquadriques de révolution tangentes aux hyperplans
1,2,...,n4+1,n+ 14172, (¢=1,...,p). Chacune de ces variétés est
de dimension (n — 1), d’ordre (n + 1); les points d’un E"*, intersection
de k& des hyperplans 1,....,n -+ 1,n+ 1+ 7, sont des points de
multiplicité (¢ — 1) pour cette variété.

Le lieu des foyers des hyperquadriques de révolution tangentes aux
(n + p + 1) hyperplans est l'intersection non singuliére de p variétés
F;. En effet, une hyperquadrique de révolution étant déterminée par un
foyer principal et (n + 1) hyperplans tangents, I’hyperquadrique de
foyer P et tangente & 1,...,n + 1, n + 2 est identique & 1’hyperqua-
drique de foyer P et tangente & 1,...,% + 1, » + 3.
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L’intersection de F', et de F, est une variété de dimension (n» — 2) et
d’ordre (n + 1)?; mais elle contient les (n '%_ l) E"?  d’intersection
des espaces 1,...,n 4+ 1. Par conséquent, l'ordre de l'intersection
effective de F', et de F, est égal & z(2) = (n + 1)* — (n "g 1) . Cette
variété (F,F,) contient tous les E"—2 d’intersection des espaces
1,2,..., (n + 2) pris trois a trois.

L’intersection de (F,F,) et de F, est une variété de dimension
(n — 2) et d’ordre x(2)-(n + 1); mais elle contient certains E"-3: les
espaces (1,2,3),..., {{n —1),n,(n 4+ 1)} ont la multiplicité 2 sur
F,; les espaces

(L2, (0 + 2)},..., {0, (0 + 1), (0 + 2)} .
{1,2,(n + 3)},..., {n, (n + 1), (n + 3)}

la multiplicité 1. Par conséquent, I'intersection de (¥, F,) et de F; contient
2(” —?}; 1) + 2("’ —; l) espaces £"-3 et l'ordre de l'intersection effective
de (¥, F,F,) est égal a

z(3) = z(2)-(n 4 1) — 32(”‘3F Byo("t l)g .

Généralement, soit z(k — 1) l'ordre de l’intersection effective de
#y,..., Fy_y), variété de dimension (n — &k + 1). Que vaut x(k)? L’in-
tersection totale de (#',,..., F,_,) et de F, est d’ordre (n + 1)-x(k — 1),
mais elle contient certains E*—*: les E** d’intersection de %k des espaces
1,...,n + 1 ont la multiplicité (¢ — 1) sur F, ; les E"—* d’intersection de
(k — g) des espaces 1,...,n + 1 et de j des espaces » + 2,...,n + k
sont contenus simplement dans (#,,...,F,_,) et ont la multiplicité
(k—97—1) dans F; (j =0,...,k — 1). Par conséquent, l'intersection
k-1

de (¥,,...,F,_,) et de F, contenant X (k —j — 1) (Z i 71) (k 7 1)
j=0

espaces E"* D'ordre de l'intersection effective (F,,...,F,) est égal &

(k) = (n41)- x(k~—1)-2(k——y-1) ("‘*‘;) ( —771) _

s () () + 2 ()
2(k) = (n+1) 2(k—1) — (n+1) ("",ﬁf_‘l“l) + ("}';") .
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Si z(k—1) = (”;:f"l“l) , x(k) = (";:k) . Or z(2) = ("‘2”) ;

cette formule vaut généralement par induction compléte. Par conséquent :

34. Le lieu des foyers des hyperquadriques de révolution par rapport a
un absolu Q et tangentes a (n + p + 1) hyperplans est une variété de dimen-

sion (n—p) et d’ordre (n —; p) contenant les (n ;_{T 1) espaces a

(n — p — 1) dvmensions, intersections de (p-+ 1) des (n+ p+ 1) hyper-
plans donnés.

En particulier, pour p = » et en remarquant qu’une hyperquadrique
de révolution a deux foyers principaux, (n > 2) nous obtenons le résultat
suivant :

35. 11 ewiste § (27) = (2" !

gentes a (2n + 1) hyperplans quelconques de Vespace a n dimensions
(n > 3).

) hyperquadriques de révolution tan-

Pour n = 2, comme une conique a six foyers, nous retrouvons

—%(;) = 1, conique unique tangente & cinq droites.

Il nous a semblé intéressant de donner encore une démonstration
directe d’un cas particulier de ce dernier théoréme: Dans l’espace a
trois dimensions, il existe dix quadriques de révolution par rapport & une
quadrique @ et tangentes a sept plans quelconques. Les trois variétés des
foyers relatives a cinq quelconques de ces plans se coupant en un point
au moins, nous pouvons supposer qu’il existe une telle quadrique I,.
Soient F, et F, ses foyers. Si le faisceau tangentiel déterminé par la qua-
drique dégénérée (I, F,) et une quadrique quelconque I, tangente aux
sept plans contient une autre quadrique dégénérée en deux points F; et
F,, ces deux points sont les foyers d’une quadrique de révolution I, tan-
gente aux sept plans. En effet, les faisceaux {Q,I,} et {(F;F,), I,}
ayant en commun la quadrique (F,F,), les faisceaux {Q, (F;F,)} et
{I,1,} ont aussi une quadrique commune I,.

Pour que le faisceau tangentiel déterminé par (F, F,) et par une qua-
drique I contienne une autre quadrique dégénérée (F, F,), il faut et il
suffit que F passe par les points F, et F,. En effet, si (¥, F,) et (F3 F,)
déterminent un faisceau, tout plan par une des droites F, F;, F, F,, F, F,,
F,F,, est tangent & toutes les quadriques du faisceau, qui contiennent
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done ces quatre points. Inversement, si I passe par F, et F,, les deux
génératrices de I par F, coupent les génératrices par F, en deux points
F, et F, qui appartiennent au faisceau.

Soient donc F, et F, les deux foyers d’une quadrique de révolution
inscrite aux sept plans donnés. Il y a neuf quadriques passant par ces
deux points et tangentes & ces sept plans. Par conséquent, il existe dix
quadriques de révolution tangentes a sept plans.

Dans ’espace & » dimensions, comme il existe (27&; 1) hyperquadri-

ques de révolution tangentes & (2» - 1) hyperplans, nous pouvons dire
de méme :

— 1

36. Soient F, et F, deux points quelconques. Il existe <2n - l)

hyperquadriques tangentes & (2n + 1) hyperplans et dont le faisceau tangen-
tiel déterminé avec Uhyperquadrique dégénérée (F, F,) contienne une autre
hyperquadrique dégénérée en deux points Fy et F,. En effet, nous pouvons
toujours considérer deux points quelconques F, et F, comme foyers prin-
cipaux d’une hyperquadrique tangente & (2» -+ 1) hyperplans et de révo-
lution par rapport & un certain absolu, hyperquadrique quelconque du
faisceau déterminé par F, et F, et ’hyperquadrique tangente.

§ 8. Variété des foyers des paraboloides de révolution tangents & (7 -+ p)
hyperplans

Une hyperquadrique de révolution étant déterminée par un foyer prin-
cipal et (» + 1) hyperplans tangents, la variété des foyers des parabo-
loides de révolution tangents & (n + p) hyperplans est égale a l’inter-
section de la variété des foyers des hyperquadriques de révolution tan-
gentes a ces (n + p) hyperplans et de la variété des foyers des para-
boloides de révolution tangents & (n 4+ 1) quelconques de ces hyperplans.
En reprenant les raisonnements du paragraphe précédent, nous voyons
que nous pouvons procéder exactement de la méme fagon. Nous trouvons
ainsi :

37. Le lieu des foyers des paraboloides de révolution tangents a (n + p)
hyperplans est une variété de dimension (n—p) et d’ordre (n ; p ) contenant
les espaces a (n — p — 1) dimensions, intersections des (n + p) hyperplans
pris (p+ 1) a (p + 1).
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En particulier, pour p = n:

38. 11 existe (2”'7;— 1) paraboloides de révolution tangents a 2 n hyper-
plans quelconques.

Il semble que la condition imposée & un paraboloide de révolution
d’étre tangent & l’espace polaire d’'un de ses foyers, est complétement
analogue du point de vue énumératif a la condition d’étre tangent a un
hyperplan fixe.

En répétant les mémes considérations pour le cas euclidien, ou les

variétés (F) sont & remplacer par les variétés (F') d’ordre », nous trou-
vons les résultats suivants :

39. Le lieu des foyers (situés dans le fint) des paraboloides de révolution
de Uespace euclidien tangents a (n + p) hyperplans est une variété de
dimension (n — p) et d’ordre (n +£ o 1) - (n = 3).

Remarquons que la section de ces variétés par 'hyperplan a 'infini est

P . . . .
une variété V(n+ rp—1) qui est le lieu des foyers des hyperquadriques
/4

tangentes & (» 4 p) hyperplans dans ’espace & (» — 1) dimensions, ce
qui coincide avec nos résultats précédents.

En particulier, pour p = n, un paraboloide n’ayant qu’un foyer dans
le fini:

40. 11 exuste (Zn?; 1)

paraboloides de révolution tangents a 2n
hyperplans (n > 3).

Pour n = 2, les points cycliques étant sur toutes les variétés (F'), ils
font aussi partie du lieu. Par conséquent, ily a (3) — 2 ==1 parabole

tangente a quatre droites.

111

DROITES ASSOCIEES
§ 1. Lemme

Pour établir notre prochain théoréme, démontrons analytiquement une
propriété particuliére : Soient, dans un espace & n dimensions, (n + 1)
droites paralléles 1,...,n 4 1, perpendiculaires & ’espace des (n — 1)
premiéres coordonnées et soient al,...,al_, les (n — 1) premiéres coor-
données d’un point de la droite j, «7 la derniére. Considérons sur la droite j
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(n + 1) points Pj,...,P}, ., de n¢ coordonnée ,..., %, ,, jouissant
des propriétés suivantes : Les ponctuelles P},..., P, sont perspgctivqs
(G =1,...,n + 1), les points & l'infini se correspondant ; de plus, 2} = ..
Nous aurons nécessairement les relations :

xf = (Azxt — Aal + 1) (2t — 2}) 4 ¢,

c’est-a-dire z' = Axjax! + Bal + Bz} + C ou A, B, C sont des cons-

tantes. En effet, & cause de la perspectivité: 2! = a,2! 4 b,. Comme

¥ nous trouvons

, — 1 — 1
i SR Tl S

1 i .1
Tp—y X —

xs = 2}, o' = a,(a! — 1) + 2. Devant avoir z} =

a;(x} — a}) + 2% = a, (o} — z}) + ¥, c’est-a-dire
1 1

a,=A(x; —z;)+ 1.

Nous prétendons que: Les (n -+ 1) espaces a (n — 1) dimensions
(PeP;,...,PF L, pE . . PMY) (k=1,...,n + 1) se coupent en un

pont ; autrement dit, il existe une identité entre les déterminants

1 1
b @y assvvoaesnmun Ap_q Ty
k-1 E—1 k-1
| a, ; T
D, = Y1 o cvovononnns Yn1 Yn
1 a¥*t . ... ... aktl k1
n+1 n+1 n+1
1 a’l ooooooooooo an"l xk

y, étant les coordonnées d’un point courant. Soit D le déterminant

L &5 swsasssmacns Ap_1 %
Do |
1Lal*™ ..., al aptt
. n+1
et soient m} ses mineurs. 1l existe I'identité en y,: ¥ D, = 0. En effet,
n—1 =

D, = (Az;+ B) (m{ + Eyimi)ﬂyn—l?xi—é')m'i -
SD,=AFaximp+B3IXmi+ Xy [4 §ximz+3§mz]+
+ (Yo —C) S mi—B X x,m; .
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Or ¥ z; mj =0, étant égal & D ou I'on a remplacé la ¢ colonne par
%
la derniére; ¥ mj =0 (¢t =1,...,n), étant égal & D ou l'on a

remplacé la ¢ colonne par la premiére; ¥ m) =D; X xzm} = D;
donc ¥ D, =BD — BD = 0, identiquement en y,.

§ 2. Une propriété remarquable de la variété (F)

Nous nous proposons d’appliquer notre lemme pour trouver une pro-
priété intéressante de la variété (F'), lieu des foyers des paraboloides de
révolution inscrits & un simplexe. Nous nous appuierons sur le théoréme
25 du chapitre précédent.

41. Soient sur une droite d, n points de (#), P,,...,P,. Soient

@,,...,Q, les poles des podaires de P,,...,P, et nommons § l’espace &
(n — 1) dimensions (@,,...,Q,). L’intersection de d et de B est un point
de (F).

En effet, soit X un point variable de la droite d. Les hyperplans con-
jugés de X A; et passant par A; déterminent dans B un faisceau d’espaces
b passant par un espace B & (» — 3) dimensions ; le faisceau b et la ponc-
tuelle X sont projectifs. En particulier, aux points P,,...,P, correspon-
dent des espaces b,,...,b,, contenant les points @,,...,&,. Si nous
projetons le faisceau & & partir de P,, la ponctuelle X & partir de b,, nous
obtenons deux faisceaux perspectifs qui se coupent sur un hyperplan A,
passant par A; et par B. Cet espace est conjugué de la droite AP, P
étant l'intersection de d et de g.

L’espace h, contient le point d’intersection ¢ des n espaces

(‘Pin"°Q5—1Q5+1""Qn) (j“—:l,...,‘n) .
En effet, projetons les points @,,..., @, & partir de P, sur k,. Nous

obtenons des points @J,...,Q}, (j = 1,...,n). De méme, les espaces
by,...,b,, projetés i partir de P;, donnent dans k; des espaces b/,. .., b7 .
Remarquons que :

1) b =b%;

2) les points @;,..., Q% sont situés sur une droite passant par le
point d’intersection £ de d et de A,;

3) les ponctuelles Q},..., Q% sont perspectives (k= 1,...,n), le
point B se correspondant & lui-méme. D’aprés le lemme précédent,
Pespace h, contient Dintersection des espaces (Q],...,Qi_,Ql.,,...,@J)
(7 =1,...,n), c’est-a-dire l'intersection des hyperplans

(Pg‘Qly---:Qj—1Qj+1,---,Qn) (7———"— 1,..._%) .
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Cet espace h; contenant un point @ indépendant de ¢, les (n + 1) hyper-
plans %; se coupent en ce point. En vertu du théoréme 25 les points P
et ¢ sont deux podes, ce qui démontre notre théoréme.

Cette propriété peut s’énoncer de diverses fagons:

42. Soient P,,...,P,., les (n 4 1) points d’intersection d’une droite
d avec la variété (F'), @,,...,@,,, les inverses des points P,,..., P, ,
dans la correspondance des foyers: L’hyperplan (@,,. . .,@x—1 @ri1:- - - @r)
coupe la droite d en P,.

43. Soient (n -+ 1) points de (¥') sur une droite. Les espaces podaires
de n d’entre eux et Uespace polaire du dernier se coupent en un point.

Dualement :

Soient par un E"~2, (n + 1) espaces tangents a (7'), 4,,...,4,,, les
podes de ces podaires. Le pdle de ’espace (4,,..., 4, 1A;i1,-..s4n11)
est dans la podaire de A4,, c’est-a-dire

44. Le (n 4 1) espace tangent mené a (T') par un E™2 quelconque passe
par le pole de Uhyperplan déterminé par les podes des m premiers espaces
tangents.

C’est en particulier sous cette forme que nous allons employer notre
théoréme pour en déduire une propriété des hauteurs d’un simplexe.

§ 3. Droites associées

Définition : (n 4 1) droites de l’espace & n dimensions sont dites
associées si tout espace a (n — 2) dimensions qui en coupe n, coupe aussi
la (n + 1)e.

Dualement, (= + 1) £"~2 sont associés si toute droite qui en coupe =,
coupe le dernier.

45. Les (n + 1) hauteurs d’un simplexe sont associées.

En effet, soit d un espace & (n — 2) dimensions quelconque coupant »
hauteurs 4,4} (¢t = 1,...,n). n des espaces tangents menés & (7') par d
sont déterminés par les hauteurs 4, 4;. Les podes de ces podaires sont les
points 4, (¢ = 1,..., n). La (n + 1) podaire par d contenant le point A4,
péle de (4,,...,4,), contient toute la hauteur 4,4, d’aprés une pro-
priété établie précédemment (26). Cette hauteur coupe donc d.

Dualement, les (n 4 1) intersections des faces homologues a; et a; sont
associées.

Si nous prenons en particulier pour absolu une hyperquadrique inscrite
au simplexe, nous voyons que :
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46. Soient B, les points de contact d’une hyperquadrique Q inscrite au
simplexe (4,...A,). Les (n + 1) droites A, B, sont associées.

De plus, les droites A, B, sont conjuguées des faces a, par rapport a
oo™+l hyperquadriques. En effet, soient @,,...,@,,, (» + 1) hyper-
quadriques indépendantes admettant le simplexe pour simplexe polaire.
Les droites 4; B, étant conjuguées des faces a,; par rapport & @ et a toutes
les @,, elles le sont aussi par rapport au systéme linéaire tangentiel
Q+ =40

Réciproquement, si les droites A; B, sont conjuguées des faces a; par
rapport & une hyperquadrique @', il existe une et une seule hyperquadri-
que ¢ inscrite au simplexe aux points B,. En effet, les droites 4, B, sont
conjuguées des faces a;, par rapport & tout le systéme Q' + X 4,Q;.
Soient X b, u,u, = 0 I'équation de @', ui = 0 celle de @,; seule ’hy-
perquadrique correspondant aux valeurs A, = — b,, dans le systeme
> b uuy, + X Aui =0 est inscrite au simplexe. Les droite 4, B, étant
également conjuguées des faces a, par rapport a cette quadrique, les
points B, sont bien les points de contact.

Pour pouvoir traiter plus aisément ce qui suit, nous avons repris un
théoréme de Berzolari, qui contient d’ailleurs nos propositions précé-
dentes (6).

47.  Pour que les (n + 1) droites

To B F o T T o0, )
== = == S== - — ki LN S

27 122%5% 2273 A, k—1 A, k+1 A ,n

sotent associées, il faut et il suffit que

By = Gy (¢, k=0,...,n) .
Rappelons la démonstration duale : Pour que les (n 4 1) E" 2 «x,,. . .,x,
n
d’équations x; =0et ¥ a,,x,=0 (¢ = 0,..., n), soient associés, il faut
k=0
et il suffit que
Qi = Qs

En effet, nous pouvons tout d’abord supposer a,, = a,,. Par tout point
P de «, passe une droite coupant les » autres E"2, c’est-a-dire que les
n E"1 projetant «,,...,«, & partirde P se coupent en une droite ; il doit
exister une relation linéaire entre leurs équations.
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Soit P(p;) un point de «y, X agp, = Xa,p,=0. L'espace (Px,) a
n

pour équation ¥ a,,(p,x; — p;x;) = 0. Supposons tous les p, nuls, sauf
k=0

p, et p,. Les n hyperplans (P«x;) ont dés lors pour équations :

(airpr + a’isps) X; = 0, i #0,7r,s.

n
(a'rrpr + arsps) £y — PrkZ Arp Xy = 0,
;=0

(a’srp'r + assps)xs - PsE askxk = O *
k=0

Une relation linéaire ne peut exister entre ces équations que si les coeffi-

cients de z,, z, et z, sont proportionnels dans les deux derniéres, c’est-a-
dire que les deux relations

ArgPsZy — Prlpg&y — Prly Xy = 0
et

AerPrZs — PrlgTy — PsAsr Ty = 0
sont identiques. Comme

Aypo Py -+ AP = 0,
il vient nécessairement

Ay = Qg .

Réciproquement, si a,, = a,, on a l'identité

n n
Y Xau(prr; — pixy) =0,
i=1 k=0

quel que soit le point P dans «,, ce qui démontre le théoréme.

48. Soient A;B; (n + 1) droites associées. Il existe une et une seule

hyperquadrique inscrite au simplexe (4,,...,4,) aux points B;.

En effet, prenons le simplexe (4,,...,4,) pour simplexe de référence

et soient b, (k= 0,...,n, b;; = 0) les coordonnées du point B;. Les
droites 4,;B; ont pour équations

Lo

% ., . .
- # — l e e )
b by G, e ™)

comme elles sont associées, b;; = b,;
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L’hyperquadrique ¥ b,;u,u; = 0 est I’hyperquadrique cherchée.
En résumé, soient par les sommets d’un simplexe (4,,...,4,) (n + 1)
droites A4;B;, B, étant les traces dans les faces opposées a;.

49. Les propriétés suivantes sont équivalentes :

1. Les droites A;B, sont associées.

2. Les droites A; B; sont conjuguées des faces a, par rapport & une hyper-
quadrique (et par conséquent par rapport a tout un systéme linéaire a
(n 4+ 1) dimensions).

3. Il existe une hyperquadrique tangente au simplexe aux points B,.

4. Les droites A, B, joignent les sommets correspondants de deux sim-
plexes polaires réciproques par rapport a une certarne hyperquadrique.

§ 4. Exemples de droites associbes

1. Soient @ ’hyperquadrique absolue, @; sa projection sur a, & partir
de 4,, 8, sa trace dans a,. Ces deux quadriques sont tangentes le long
d’une variété quadratique située dans un espace a (n — 2) dimensions e;.
Soit B, le pole de e; par rapport a @; et & S;. (Si nous considérons @, (ou
8;) comme absolu de ’espace a;, E; est le centre de la sphére 8, (ou @,))

50. Les droites A,E; sont associées. Les espaces e; sont associés.

n
En effet, soit ¥ a;,u;u;, = 0 I’équation de @: @; a pour équation
0

n

2 apu;u, =0 (G, k #1)
0

et S n
S (@05 — a a,)uu;, = 0 (4, k #1) .
0

Toutes les hyperquadriques du faisceau tangentiel déterminé dans a, par
@, et S;, ayant pour équation

(@0 — @8 — A@p)u;u =0
nous trouvons pour A = a;:
X (@ ;u; =0

le centre B, a donc pour coordonnées dans a;: a,;.
Comme a,; = a,;;, les droites 4,E; sont associées.
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2. Si nous considérons S; comme absolu de la face a,, les centres des
sphéres de ’espace a; inscrites au simplexe (4,,...,4; ;,4,.,,...,4,)
sont les points doubles de la correspondance des foyers relative a ce
simplexe et & §;. Ils sont donnés par les relations

2
]

2

7 B

= Q;;a
En prenant les signes convenablement, nous voyons que f;; = f;;. En par-
ticulier, si le point F; a tous les signes positifs :

51. les droites A, F, sont associées.

Généralement, il y a dans chaque face 2"—! sphéres inscrites. Nous
pouvons classer les (n -+ 1)-2"1 centres en 2"~! groupes de (n -+ 1)
points qui déterminent avec les sommets opposés du simplexe, 271
groupes de droites associées.

3. Remarquons que (n + 1) droites concourantes sont associées. Si
nous prenons ¢, pour absolu de la face a,, les sphéres inscrites dans les
faces sont les projections des sphéres inscrites au simplexe. Les droites
joignant les sommets du simplexe aux centres des spheres correspondantes
inscrites dans les faces sont également associées, puisque concourantes.

4. Soient 4,0, (n + 1) droites associées. Considérons dans la face a;
la correspondance des foyers ayant S, pour absolu. Au point C, correspond
un point Cj.

52. Les droites A,C; sont associées.

En effet, soient ¢;; les coordonnées de C;. Par hypothése, c¢;; = c;,. Les
coordonnées de C étant

1 @y Ay — Q45 Ay

nous avons bien

5. Considérons également dans a, la correspondance des foyers ayant
Q, pour absolu. Au point C; correspond un point C;’ . Les droites 4,C.’
sont associées.

En effet, C; a pour coordonnées

o
%
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Comme nous I’avons vu, la correspondance des foyers dans 1’espace trans-
forme la droite 4,C; dans la droite 4,C;’. Par conséquent :

53. La correspondance des foyers transforme (n + 1) drottes associées
par les sommets du stmplexe en (n + 1) droites associées.

§ 6. Propriétés des droites associées

Soient d,,d,,. . .,d, (n+1) droites associées. Prenons sur la droite d, un
point A4, quelconque et soit B, la trace de d; dans ’espace (4,,...,4,_,,
Aiq,...,4,). Il existe une hyperquadrique H inscrite au simplexe
(4,,....4,) et tangente aux points B,. Projetons cette hyperquadrique
sur la face a; & partir de 4;. Nous obtenons une hyperquadrique inscrite
au simplexe (4,,...,4,_;,4;.4,-..,4,), tangente aux points B}, projec-
tions des points B,. Les droites 4,B; (i # j) sont donc associées dans
Pespace a;. Nous pouvons affirmer :

54. Soient (n + 1) drottes associées. Les projections de n de ces droites
sur un E"1 quelconque a partir d’un point de la (n + 1)¢ sont n drottes
associées.

Plus généralement, projetons I’hyperquadrique H & partir de ’espace
(dq,...,4,) sur P'espace (4,,,,...,4,). Comme nous obtenons de nou-
veau une quadrique inscrite au simplexe (4,.,,...,4,), tangente aux
projections des points B;, nous aurons le théoréme suivant :

55. Soient (n 4 1) droites associées, x un E* coupant les (k 4 1)
premiéres, f un E"~*-1 coupant les (n — k) dernieres. Les projections &
partir de « sur f§ des (n — k) derniéres droites sont (n — k) droites associées
dans B.

Remarquons qu’il existe oo"~2 E*-2 incidents & (n -+ 1) droites associées.
Dans £, il existe donc oo™ *-3 E"—%k-3 coupant les (n — k) droites asso-
ciées. Considérons 'un d’eux. Projeté & partir de «, il donne un E"-2
coupant les (n 4+ 1) droites primitives. Inversement, tout E"—2 par «
coupant les (n + 1) droites associées, a pour trace dans g un E"*-3 cou-
pant les (n — k) droites. Par conséquent :

56. Par tout E* incident a (k + 1) droites d’un groupe de (n + 1)
droites associées passent oo™ %3 E"2 incidents aux (n + 1) droites.

En particulier, pour ¥k =n — 3:
57. Par tout E"3 incident a (n — 2) droites d’un groupe de (n + 1)
droites associées passe un et un seul E™? coupant les (n + 1) droites.
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Soient n droites et un point P tel que les projections des droites a
partir de P sur un espace a (n — 1) dimensions soient associées dans cet
hyperplan.

58. Par P passe une et une seule droite formant avec les n droites un
groupe de (n + 1) droites associées.

En effet, soient 4,,...,4, les points d’intersection de I’hyperplan «
avec les droites données d, ; soit P, la trace de la projection de d, sur «
avec l'espace (4,,...,4, ;,4;,4,...,4,). D’aprés nos hypothéses, il
existe dans « une quadrique ¢ inscrite au simplexe (4,,...,4,) aux
points P;. Considérons le simplexe (P, 4,,...,4,) et soit P; la trace de
d; dans la face opposée & 4;. L’hyperplan (P,. .., P,) coupe le cone C de
sommet P et de base ¢ suivant une variété quadratique & (n — 2) dimen-
sions @’. Toute hyperquadrique tangente au coéne C le long de la qua-
drique @’ est tangente au simplexe (P, 4,,...,4,) aux points P;. Parmi
le faisceau de ces hyperquadriques, il en est une et une seule tangente &
I’hyperplan (4,,...,4,) en un point P’. Les (n + 1) droites d,,...,d,,
P P’ sont associées et par P ne passe que la droite P P’ qui jouisse de
cette propriété.

Plus généralement, soit 8 un espace & (» — & — 1) dimensions coupant
(n — k) droites d, en des points P,,...,P,_,. Soit x« un E* projetant les
(n — k) droites sur gen (n — k) droites associées.

59. 11 existe au moins un groupe de (k + 1) drottes coupant x et formani
avec les (n — k) droites d; un groupe de (n + 1) droites associées.

En effet, soit y; = (x, Py,. .., Piy, Piyyse .., P,_;) = E™1; cet hyper-
plan coupe d; en @,. La projection de @, sur B & partir de « est un point
Q; de espace (Py,...,P,_;,P;,,...,P,_,). D’aprés nos hypothéses, les
droites P,Q; sont associées, il existe donc dans g une variété quadratique
inscrite au simplexe (P,,...,P,_,) et tangente aux points ;. Par consé-
quent, il existe dans l’espace (@,,. . .,@,_,) une variété quadratique tan-
gente aux espaces y; aux points @,, et par suite, il existe dans I’espace,
au moins une hyperquadrique H tangente aux hyperplans y, aux points
Q;. Menons par g (k 4+ 1) E»! indépendants, J,, tangents & H aux points
R,,...,R,.,. Ces hyperplans coupent « suivant un simplexe (S,,...,8:1),
S, étant I'intersection des espaces (x, d;,...,0;_4, 0;,4,...,0;,,). L’hyper-
quadrique H étant inscrite au simplexe (P,,...,P, ., 8;,...,8;4,) et
tangente aux points @,,...,@,_., R,,...,R,,,, les droites P, Q,; R,S;
forment un groupe associé.

Examinons du point de vue énumératif le théoréme précédent et cher-
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chons combien de groupes de (k¥ + 1) droites peuvent compléter (n — k)

droites données en un groupe associé.

n(n + 3)
2

Rappelons qu’une hyperquadrique dépend de parameétres ;

que se donner un hyperplan tangent et son point de contact, c’est se

donner n conditions pour une hyperquadrique ; que (n + 1) droites asso-

n(n—1)
2

la matrice de leurs coefficients soit égale & la somme d’une matrice dia-

gonale et d’'une matrice symétrique gauche (Th. 47)).

ciées doivent remplir conditions linéaires (il faut et il suffit que

1. 1l existe oo (k1) 2(k +2) hyperquadriques H. En effet, les
(n — k) hyperplans y, ayant pour traces dans I'espace (@,,...,@,_;) des
En-%k-2 tangents en Q,,...,Q,_, & une variété quadratique, les points

P,,...,P,_, et les hyperplans y, remplissent

m—k—1)(n—k-+2)
2

y=(n—~kmn—k—1) —

conditions. Se donner (n — k) hyperplans dont les points de contact
remplissent y conditions, c¢’est se donner n(n — k) — y conditions pour
Phyperquadrique, et par conséquent, il existe co® hyperquadriques tan-
gentes, & ces hyperplans en ces points,

2= 20D b gy EEDELD

2. Par un E**-1 on peut mener oo**-1 groupes de (k4 1) E»1 tan-
gents & une hyperquadrique. En effet, le E* conjugué du E"*-1 par
rapport & I’hyperquadrique la coupe en une variété VF¥-! ayant oo*-1
E*-1 tangents. Un E"-1 tangent par le E»%-1 est déterminé par un quel-
conque de ces E¥-1, Il y a donc oo+ (-1 oroupes de (k + 1) En-1
tangents.

Par conséquent, s’il existe un E* jouissant des propriétés de projection
éconcées, il existe oot groupes de (k 4 1) droites complétant les (n — k)

. ; 1
droites données en un groupe associé. u = —%—@2—1_'-—{ .
Supposons que (k + 1) droites d'un groupe associé puissent étre prises

n(n—1)

5 conditions du groupe associé sont remplies

quelconques. Les

par les (r — k) derniéres droites, donc (n — k)2 (n — 1) > ~ _(n2——— D ’
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n—k = —. S’il existe oo® groupes de (n — k) droites, nous avons exacte-

-~

ment (n—k)z(n—l)zl”_(—%‘i)_

peuvent étre complétées en un groupe associé, elles le sont de oo fagons,

+ x. Or si les (k4 1) droites

2B 0D done n—kp iy e BkD

4
c’est-a-dire k + 1 <

r =

2n+_f%_
3 .

Montrons que 'on a exactement £ 4 1 =
de (& + 1).

Quand (k£ + 1) droites d; peuvent-elles étre complétées par (n — k)
droites en un groupe de (n + 1) droites associées? Autrement dit, pour
quelles valeurs de k existe-t-il un E»—*-1 projetant les (k 4 1) droites sur
un E* qui leur est incident, en (¢ + 1) droites associées? Remarquons que
§’il existe un tel E»%*-1 il en existe oo™ ¥ au moins.

Soit B un E* fixe, coupant en P, les (k 4 1) droites d; données. Prenons
un systéme de coordonnées homogeénes ayant ces points P; pour sommets
du simplexe de référence. Soit R; un point quelconque de la droite d, et
soit R: de coordonnées r;;, (p=1,..., k+ 1), sa projection & partir d’un
En*-1 gur ’espace 8. Si les (k + 1) projections des droites d, sont asso-
ciées, nous avons les relations g"r; =P (s, p=1,...,k+ 1), quels
que soient les points R,. k de ces relations peuvent étre remplies par les

: . k(k—1
parameétres ¢f, nous pouvons donc n’en considérer que _*(_,5“_)* .

2n -+ 4
3

] pour le maximum

Le En~*-1 que nous cherchons dépend de (n — k)(k + 1) paramétres.

Pour qu’il existe un espace « et par conséquent oo™ %, il faut et il suffit
que les (k 4+ 1) (n — k) parameétres de cet espace remplissent—k—giz:-l)—

conditions de oco”* fagons, c’est-a-dire :

(n——k)(k—}—l)—ﬂlf—z—:—l«)—}n—k; 3(k+1)< 2n +4 .

Dés que cette inégalité a lieu, nous avons une solution, donc

max. (k+1)=[2n;—4] .

60. p droites quelconques de lespace a n dimensions peuvent étre
complétées par (n-+1—p) droites en un groupe de (n -+ 1) droites associées

pour tout p << [gﬁg——i] . Il est impossible de le faire pour un p plus

grand.
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Remarquons encore que les n 41— p =2 derniéres droites dépen-
n(n—1)
2
Nous pourrons donc compléter le groupe associé de oof fagons,

t=2(mn—1) (n-{—l——[—%‘#)- _73.(35—_1)_

2n -+ 4
3

dent de 22(n — 1) parametres et doivent remplir conditions.

Considérons en particulier le cas ol est un nombre entier

2r:m=3r—2.

Dans Uespace @ 3r — 2 dimenstons, 2r droites quelconques peuvent étre
complétées de oo¥ (u = 3 (r — 1)(r — 2)) fagons par (r — 1) droites en un
groupe de (3r — 1) droites associées.

Ce cas est particuliérement intéressant pour r = 2, n = 4

Dans Uespace a quatre dimensions, il existe une et une seule droite associée
a quatre droites quelconques (1). C’est la fameuse configuration étudiée par
Segre et qui prend un relief encore plus prononcé puisque nous pouvons
dire de plus que:

61. C’est uniquement dans Uespace @ quatre dimensions qu'un groupe
de droites détermine univoquement les droites qui les complétent en un groupe
associé. (Nous faisons abstraction de I’espace & une dimension, peu inté-
ressant.) Dans tous les autres espaces, il y a toujours une infinité de
possibilités de les compléter.

Terminons ces considérations énumératives par la remarque suivante :
n(n—1)
2
tions que doivent remplir (» + 1) droites pour étre associées, nous aurions
pu en charger les y dernieres et dire y > Z’ n+1—y= [:—3417']—}- 1%},

Si nous avions pu distribuer de fagon quelconque les condi-

ce qui n’est pas conforme & nos résultats. Nous pouvons donc énoncer le
théoréme général suivant :

62. St un groupe d’éléments géométriques est soumis a des conditions
linéaires, ces conditions ne peuvent pas étre distribuées de fagon quelconque
entre les éléments.

*) La borne supérieure 1 -+ ?-; a é6té indiquée par M. Longhi¢ en réponse & une

lettre de M. Kollros. (,,Sur les droites associées* Elemente der Mathematik, I, (1946) p. 5).
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IV.
ESPACES ASSOCIES

§ 1. Définitions et propriétés générales

Nous nous proposons de généraliser la notion de droites associées. Nous
dirons que (n — k + 2)E* de Uespace E™ sont associés st tout E™—*-1 qui en
coupe (n — k + 1) coupe encore le dernier (k = 1,...,n — 1). Pour k=1,
nous retrouvons les (n -+ 1) droites associées.

Pour arriver aux conditions nécessaires et suffisantes pour que des
espaces soient associés, rappelons d’abord quelques propriétés de géo-
métrie réglée.

Soient p; ... ;. les coordonnées radiales d’un £* = « de l'espace &
n dimensions, c’est-a-dire les déterminants formés par les colonnes
Ty,- - -5 5 de la matrice & (k 4 1) lignes et (n + 1) colonnes déterminée
par les coordonnées homogénes de (k + 1) points indépendants du E*.
Soient pfor--/in-k-1 les coordonnées axiales de ce méme espace (ob-
tenues de fagon analogue en considérant (n — k) E»-! indépendants par
le E¥). 11 existe les relations

pio.”ik: (0, 1, -.. ... . o n ) pjo..,jn_k_l ,

oo ido Ju—r—

., oy ) O.......... , . .
les j, étant différents des 1,, ( . " ) désignant le signe
Yo---Jo -+ In-ka
de la permutation des nombres O,...,n dans les nombres i,,..., 7,,

Jose s Fmem1-
Soit d’autre part ¢; ., les coordonnées radiales d'un E"*-1=8

et ¢’ - 7r ses coordonnées axiales. Si les deux espaces x et f ont un
point commun, il existe la relation

=0

la somme s’étendant sur tous les groupes différents d’indices 1,,. . ., ¢,

c’est-a-dire
B0 ik __
Zpi.,...z-,,q" =0

Ceci est la condition nécessaire et suffisante pour que les espaces « et 8
aient un point commun. Considérons les coordonnées p; ..., comme les

AR

coordonnées homogénes d’un point de ’espace ™ & m = (

198



dimensions. Les £* et les £»%-1 de l’espace & n dimensions sont repré-

sentés dans cet espace par une variété grassmannienne V de dimension
(k + 1)(n — k) et d’ordre

1120 kI [(k+1) (0 — k)]

!
T m— kLl — (Détermination de Schubert) (9).

Soit &« un E* fixe et considérons tous les E**-1 qui le coupent. Ils
seront représentés par les points de la section de V par 1’hyperplan
Di, ... q** - * = 0, les ¢ étant maintenant des variables. Cet hyperplan
est ’hyperplan polaire du point P(p;, . ;) par rapport a 'hyperquadrique
= xgo...ik =0.

Nous pouvons considérer 2 E* quelconques représentés dans E™ par
les h points Pi(pl ), (j=1,..., k). Tous les E»~*-1 qui coupent ces
h E* sont représentés par les points de V qui se trouvent dans I'intersec-
tion des k hyperplans polaires des points P?. Si tous ces E*~*-1 doivent
encore couper p autres E%, il faut et il suffit que les hyperplans polaires

des points @1,.. ., QP représentant ces espaces passent par ’'intersection
des h premiers hyperplans. Par conséquent, tous les points P?,..., P"
Q1,..., Q" sont dans un méme E*1,

En particulier, dans notre cas:

63. Pour que (n — k + 2)E* soient associés, il faut et il suffit que les

(n — k + 2) points qui les représentent dans Uespace a (ZI }) — 1 dimen-

stons soient dans un espace a (n — k) dimensions.

64. Autrement dit, pour que (n — k + 2)E* soient associés dans E™,
il faut et il suffit qu’il existe des nombres A7 tels que

n—k+2

> ppgo,...,ik = 0

j=1

pour tout groupe d’indices.

Remarquons que les 2/ sont univoquement déterminés si les espaces E*
sont en position générale.

Nous aurions pu donner une définition plus générale des espaces asso-
ciés, mais nous nous bornerons & celle que nous avons choisie qui nous
permettra de trouver quelques propriétés en rapport avec celles des
droites associées (10).
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§ 2. Section des espaces associés

Rappelons une propriété de géométrie réglée. Soit « un E* de coordon-
nées radiales p; . et soit B un E"P quelconque de coordonnées
axiales ¢’ -*?-1 . Les coordonnées radiales du E*—? intersection de «
et de 8, sont données par

n+1

. —_— 80...8p-1
pio,...,zk_p —s}§1 q pso...Sp_l To...th-p

65. La section de (n — k + 2)E* associés o; de B™ par un E*? quel-
conque se compose de (n — k + 2)E¥*—P associés dans ce EnP,

Par hypothése, nous avons

n—k+2
)Y Pi,..q = 0 pour tout (i,..., %)
=1

et par conséquent

n—k+2 n—k+2 n+l

7' 7 — 7. 8g...8p—1 7 —
7.21 A Pig..itp = '21 21 Mg P Psg.. apsie. .. ik —
= ?=

8i=

n—k+2
—_ 8g.-.8p-1 - —
- E q o P 2 )' pso...é‘p_l to.--tk—-p 0.
8 j=1

Soit P, un point quelconque de «; (+ = 1,...,n — k + 2). L’espace
(Py,..., P, ys) = E™ %41 coupe o; en une droite y; (¢ =1,...,n —k+ 2).
Les (n — k + 2) droites y, sont associées. Par conséquent, en nous ba-
sant sur le théoréme 55, nous pouvons dire que:

Soient « un E* coupant (b + 1)E* d’un groupe de (n — k + 2)E*
associés et f un E"*—* coupant les (n — k — h + 1) derniers.

66. Les projections des (n — k — h + 1) derniers E* a partir de « sur
sont (n — k — h 4+ 1) drottes associées dans ce E»*-* (h = 0,...,n — k).

§ 3. Une condition nécessaire et suffisante

67. Pour que (n — k + 2)E* en position générale soient associés, il faut
et il suffit que chacune des sections de ces E* par (n + 1) E"-1 indépendants
de E* se compose de (n — k + 2)E*-1 associés (k > 2).

Cette condition nécessaire est suffisante. En effet, soient pl . les
coordonnées radiales du j¢ E*. Les coordonnées de la trace 8, de cet espace
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dans I’hyperplan z, =0 sont p} . .. Ces (n—k+ 2)E*! étant
associés par hypothése, il existe une relation

> W) Dy n =0, (1)
7

pour toute combinaison d’indices.
De méme, en considérant les traces ' dans I’hyperplan z, = 0, il
existe une relation

X WO P, e =0 (2)
7

Or la section des espaces f3; par ’espace x, = x, = 0 étant composée de
(n — k + 2)E¥*2 associés, nous avons

S VP e =0, (3)
7

et cette relation est la méme si ’on considére la trace des 7’ dans I'espace
x, = x, = 0. Mais les £* étant généraux, la relation (3) est univoque.
Comme les relations (1) et (2) sont valables également pour les groupes
d’indices (i,..., %9, 7, ), ON a
pir)=uws)=a.
Pour que (n — k 4 2)E* soient associés, il faut et il suffit que la relation
> /’ljp,{:o_”ik = 0 soit vérifiée pour tout groupe d’indices et l’on peut
7
obtenir tous ces indices en faisant varier ¢, de 1 & (n + 1).

Par conséquent :

68. Pour que (n — k + 2)E* soient associés, il faut et il suffit que les
sections de ces (n — k + 2)E* par chacun des Emk+1 d’un simplexe géné-
ral de Uespace E™ se composent de (n — k + 2) droites associées.

Remarquons ici que, puisque ’'on peut donner arbitrairement au plus

2n' + 4 . . .
[“‘n—3i“] droites d’un groupe de (=’ + 1) droites associées de I'espace &
n’ dimensions,

69. On ne peut donner arbitrairement que [2n — gk + 6] E* au plus

d’un groupe de (n — k + 2)E* associés.

Notons qu’il s’agit ici d’une borne supérieure, et non d’une limite.
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§ 4. Projection des espaces associés

Soient p; ;. les coordonnées radiales d'un E*; gq; . celles d'un
E"; 7y, . spine, celles delespace E¥+h+1 déterminé par ces deux espaces.

Rappelons qu’il existe les relations:

k+htr (4 ;
, . ( PO -

tg...th+h+1 ) Ds .8k Qt ve il *
0 ti8i=i0 800..8kt00.0th 0 0 h

70. Si Uon projette p E* associés a partir d'un E* quelconque, on obtient
p Er+k+1 qggociés.

En effet, par hypothése, 3, 4’ p] , = 0 et par conséquent, & cause
j

de la relation précédente :
2 s r’{o---ik+h+1 =0
7

Nous obtenons ainsi des exemples de E* associés, mais non ’exemple le
plus général. En particulier :

71. Soient P,,...,P, ... (n —k + 2) points quelconques de E" et
soient a,,. .., a,_;,, leurs hyperplans polaires par rapport & une hyper-
quadrique @ . Soit encore d, le E¥—1 d’intersection des (n — k 4 2) espaces
(@rse e s Biys Bypyye vy Qp_prs). Les (n — k + 2)E¥* (P,d,) sont associés
(k=1,...,n — 1). En effet, nous pouvons les obtenir en projetant a par-
tir du E*-2 polaire réciproque de 1’espace (P,,..., P,_..s), les (n — k + 2)
droites associées joignant les sommets des deux simplexes (P,,..., P,_;.2)
et (Py,...,P,_;.,), polaires réciproques par rapport & la section de @
par ’espace (Py,...,P, 1 0)-

§ 6. Expression analytique des conditions nécessaires et suffisantes

Soient «;,...,&,_ ., (® — k + 2)E* associés de I'espace & n dimen-
sions. Choisissons le simplexe de référence (4,,...,4,,,) de fagon sui-
vante : Le point 4, est un point quelconquedex, ¢z =1,...,n — k 4+ 1);
les points A4, ;.,,... A,,, sont quelconques dans «,_,,,. Nommons
pl,. ..y les coordonnées radiales de ;. Pour que les espaces o,. ..,
&,_r+2 SOieNnt associés, il faut et il suffit qu'il existe des valeurs A ...,
An-k+2 telles que:

n—k+2 .
Yy A Pl,...ixz = 0 pour tout groupe d’'indices (2, . . ., 1) . (1)
j=1
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En particulier, remarquons que :

a) Pr A%, . .41 sont les seules coordonnées de a"~*+2 qui ne soient pas
nulles.

b) pl . 4 =0, si aucun des indices ¢, n’est égal & j; en particulier
Phoa—kre,...mi1 =0, 4 #7. Done, si nous considérons les indices
(j,m—k+2,...,n+ 1), nous voyons qu’il faut nécessairement que

W n—k+2  n—k+2 .
l pﬁn—k+2“.”n+1-F A pﬂn—k+2“.”n+l““ 0

En posant Ank+2 = — 1,

—k+2
2 — P; n—k+2,...,n+1

py,n—k+2, emtl

72. Les conditions nécessaires et suffisantes pour que les (n—k-+2)E¥*
sotent associées peuvent s’écrire:

n—k+1 n—Kk+-2

— p; n—k+2,...,n4+1 n— k+2
> - Diy...ix = Py,
j=1 pﬁn—k+2“.”n+1
ou encore
% n—k4-2
2 pij,”—k+2,...,n+1 i} . ﬂ~k+2 2
; Pig...ir. = Piy.. ik (2)

zl
- j
i=0 Pi; a—k+2,...,n+1

pour tout groupe d’indices (iy,. .., %;).

§ 6. Droites associées

En reprenant les résultats généraux précédemment établis, démon-
trons de nouveau le théoréme de Berzolari (théoréme 47).

Etant données (n + 1) droites associées, prenons le simplexe de réfé-
rence (4,,...,4,,,) inscrit & ces droites et soit B; la trace de la droite j
dans l’espace opposé de ce simplexe, (b],. .., b7 ;) étant les coordonnées
de ce point. Deés lors

Ple=10, & k#j; ph=—pi="0.
Les relations nécessaires et suffisantes (2) deviennent
b”+1 bn+1

20 — 11
bl = L b}

bn+1 bn+1
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En posant b{*' =b,, ,, comme il est permis, nous trouvons bien
b‘" = b‘1 pour tout ¢,¢,, comme conditions nécessaires et suffisantes pour
que (n + 1) droites soient associées.

§ 7. Plans associés

Soient «,,...,«, nk? associés de E". Choisissons notre simplexe de
référence comme nous ’avons proposé, 4, étant dansw, (2 = 1,...,n—1),
A, et 4, dans «,. Soient B; (b)) la trace de «; dans l'espace (4,,...,
A, 1, Apyyeo s 4,4, 4,); C; () la trace de «; dans (4,,..., 4;,,
A,,..., 4,4, 4,,) G=1,...,.n—1); B,=0C,,, W=c"") la
trace de «, dans (4,,...,4,_,). Les droites 4,B; (j = 1,..., n) étant
associées dans (4,,...,4,), il existe une quadrique @, inscrite dans le
simplexe (4,,...,4,) et tangente en B;, son équation tangentielle étant
biuu; =0, b =0b%; bi=0; bj,, = 0. De méme, il existe une qua-
drique @, inscrite au simplexe (4,,...4,_,,4,,,), tangente en C; et
d’équation clu;u; = 0, ¢} = 0, ¢/ = 0. D’autre part, remarquons qu’il
existe une quadrique ¢ inscrite au simplexe (4,,...,4,_;) et tangente en
D;, D, étant sur la droite 4;B, (j =1,...,n — 1); elle a pour équation

b b u,u; = 0; by=0b,,,=0.
L’espace «,, = (B,A,4,,;) a pour coordonnées radiales :
p?oilz’g =0 on,n n+1 = bﬂ
celles de ’espace «; = (4, , B, , C; ) étant:

1 )
byt b3

pzo 2y ’&2 - C:;: C:E:
En particulier :
1:0 l b:"‘O O 'lo 2 2
pionn-}-l:l iy = (b)? = (b} ) .
0 ¢y

Les équations nécessaires et suffisantes deviennent :

1 |ble bl 1 | b2t 1 | be bl

' 12 _ %o 12 + %0 (3% — O
n ) T n 1 T n T 1)
by, | e o A I by, | ¢t ¢

c’est-a-dire
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| bR by b bR BT b

| Lo

i i i —
by b b | =0
G Ciy Ci
pour tout groupe d’indices %y, %,, %5 (; = 1,...,» — 1). Or si nous con-

sidérons les coniques

I

n n n n n n
bio b@-1 u;, Uy, b@-1 bi2 U Uy, + I'Ji2 bio w;, %, = 0

i i i
b U;, Uy, b U, Uy, + bii U, i,

Il

Il
S

%o iy 2
Ci) Uy, uil—l— Cir Uy, uig—}— Coo Uy, Uy,

nous voyons que:

73. Pour que n E? soient associés, il faut et il suffit que les projections
des quadriques @, @5, Q sur chaque E? du simplexe (A,,...,A,_,) a partir
de Uespace opposé dwu simplexe (A4,,...,4,.,) soient trois coniques du
méme faisceau tangentiel.

Autrement dit:

Que par tout E™5 du ssmplexe (4,,...,4,_,) passe, outre les trois B3
du simplexe, un E"3 tangent aux trois hyperquadriques @, Q. , @;, @ et
@, étant les projections de @, et de @, sur (4,,...,4,_,) & partir de
(AnAn+1)'

§ 8. KEspaces associés

Soient «,,. .., &, _r.s(n — k + 2) E¥ associés de l’espacelEn, A, un point
quelconque de «; (j=1,..., n —k+ 1), 4, 4,s,..., 4,,, k points
de x,_p.q, P sa trace dans 'espace « = (4,,...,4,_ 1) = E™*. L’espace
(4 ,_pi14n> ) coupant les (n — k + 2) E* en (n — k + 2) droites asso-
ciées, ces droites définissent une hyperquadrique Q; projetée a partir de
A, 4145 SUr & en une hyperquadrique @, (h =1,.. ., k), inscrite au sim-
plexe. Au point P correspond de méme une hyperquadrique ¢, . Les points
de contact des hyperquadriques @,,..., ¢, avec la face (4,,...,4,,,
A;.,... 4, ,,;) déterminent un espace & k£ dimensions qui n’est autre
que P'intersection avec cette face de I’espace déterminé par «,_,,, et «;,
donc en général un E?+1, Si 'on projette les (k + 1) quadriques @ &
partir d’un E? du simplexe (4,,...,4,_;,,) sur I'espace opposé, (4,,...,
4,_._,) par exemple, I’espace déterminé par les points de contact des pro-
jections des quadriques avec la face (4,,..., 4,3, 4,4, ., An_z_p)
n’est autre que l’'intersection avec cet espace de 1’espace déterminé par
&, 0%, rpo €6 les points 4, . ,..,..., A, 4, donc un E*+»+2 L’inter-
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section est en général un E*. Maissi » — k — p — 1<k, les (k + 1)
points de contact seront dépendants linéairement et par conséquent,
les hyperquadriques également. Nous pourrons donc dire que:

74. Pour que (n — k + 2) E* soient associés, il faut que les projections
des (k + 1) hyperquadriques Q,,...,Q, sur tous les E¥1 du simplexe
(Ay ... A,_y1) sSotent (k + 1) hyperquadriques d’un méme systéme tangen-
tiel linéaire a (k — j — 1) dimensions (j = 1,...,k — 2).

Nous prétendons que ces conditions sont suffisantes.

Nous procéderons par induction. Ces conditions étant nécessaires et
suffisantes pour £ = 2 dans un espace quelconque, nous les supposerons
nécessaires et suffisantes pour (¢ — 1). Posons nos hypotheses dans un
espace & (n — 1) dimensions:

Si les projections des k& hyperquadriques @,,. .., @,_, sur tous les E¥-7
du simplexe (4,,...,4,_;,;) font partie d’'un systéme tangentiel linéaire
a (k — 7 — 1) dimensions, les (n — k 4+ 2)E*1 sont associés dans l’es-
pace En1,

Nous supposons que:

Les projections des (¢ + 1) hyperquadriques ¢,,. . ., @, sur chacun des
E*-i du simplexe (4,,...,4,_;,,) font partie d'un systéme tangentiel
linéaire a (K — 5 — 1) dimensions.

Les (n — k + 2)E* sont associés dans E™.

Considérons la section des (n — k -+ 2)E* par l'espace x,,,_ ., = 0;
h=1,...,k); les (n — k + 2)E*! sont associés dans cet espace. En
effet, les £ quadriques (Q,,..., @1 @1i15- - -» @) remplissent les condi-
tions nécessaires et suffisantes postulées. Par conséquent, si nous dési-
gnons par p les coordonnées radiales des espaces a (k — 1) dimensions
de la section par z,,,=0; par p; les coordonnées du point P, nous
avons donc

. —~i; —n—k+2
E )k —2 ::,...,ik_. = p e ooy thka (l)
pour tout groupe d’indice {¢y,..., ¢4}, 2, =1,...,n.
n—k+1
Soient ¥ a” u;u; =0 Déquation de @,(h=1,...,k) et
£,j=1

n—k+1
Y pip;u;u; =0 celle de @,. L’équation de @ étant
i7=1
n—k+1 n—k+1
2 a ; Uy U + )l Pi Uy Uy i1 = 0

t,f=1
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le point de contact B} de @; avec la face x; = 0 a pour coordonnées
B, G=1,...,n —k+1),0,2, 411, =p;,0} .

L’espace «; est déterminé par les points {4,B% (b = 1,..., k)}, il existe
donc les relations

k

V) — 8k =i
Piy...ix, = Y (—1 Qjig Piy. . gy t41.. .05
§=0

] _— oY)
Piy...ikey n+1 = P Piy. . ipey -+

L’espace o, ., étant donné par les points (P, 4, _j.4,...,4,.), On 2

aussi

n—k-+2 _ =n—k+2
Piy. . ika,n+1 = Py ipey = 0

n—k+2 = n—k+2 _
Pin—k+e,....,n41= Pj n—kte,....0 = Pj -

Nous prétendons que les (n — k + 2)E* de E™: oy,..., &, j.s, SODb
associés, donc remplissent les conditions

1 T — an—k+2
2 (pi.)k# pi:...ik — pio...ik
J

pour tout groupe d’indices.

Supposons qu’un des indices soit égal a (n + 1). Alors, d’aprés les
égalités (1)

1 1 —

——1 Py, =2
(o1 Vit ™ B

5 p?j _“'ﬁn—k+2 =p

%0...2‘]{.—1 io...ik..l

n—k+42

De méme si un des indices était égal & un des nombres n — k + 2,...,
n -+ 1.

Nous pourrons donc supposer maintenant que tous les indices ¢,,. . .,%,
sont compris dans la suite 1,..., » — k 4+ 1. Exprimons analytiquement
nos hypotheses sur les hyperquadriques @,: Il existe des nombres
Aok tels que

k ik
To. ..tk ot tg. ..tk _
Y X A aju;u, + X A% PP %y, =0
t=1 i,h=i, ik
pour tout groupe d’indices i,,..., 1.
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k k k 1
> i —1)*a* Py =
A et Pl ™ B B e VOGP
= e—— > <\ ]. sat- ; —Z;Oj -
o WPE
AR * s=0j§0t=1 (P“) ! EARRIRL S U BN
1 ! (—1)
— = T T ¢ :
k—
N
Or
1
S 0
=
(p",) olg—1 Yg+1.--2k
3 - —
2 (— 1) '7’ N P FER ) 0,

étant égal au déterminant p:i " dont la premiére ligne est remplacée

[ EICICEY

par la k¢. Par conséquent

k 1

1:7' n—k42
j=o (P; )k—l p%-nik pio--.ik ’
= 7

les (n — k + 2)E* sont donc associés.

§ 9. Condition géométrique

Afin de donner une autre forme aux conditions nécessaires et suffi-
santes que nous venons d’établir, nous ferons d’abord quelques remarques
sur les systémes linéaires de quadriques.

n hyperquadriques générales de I’espace & » dimensions ont 2" points

n(n -+ 3)
2

communs. Une hyperquadrique est déterminée par points.

1‘.@;_31 —(n—1) =
points pris parmi les 2 points d’intersection de » hyper-

Considérons une hyperquadrique passant par
n:+n-+2
2
quadriques données. Cette hyperquadrique fait partie du systéme ponc-
tuel linéaire déterminé par les » hyperquadriques et par conséquent
passe par les 2" points d’intersection.
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n24n+2

2
hyperquadriques de Uespace @ n dimenstons passent par les 2" points d’inter-
section.

Toute hyperquadrique passant par points d’intersection de n

n:+4+n-+ 2
2
communs, elles en ont au moins 2" et font partie d’un systéme ponctuel

linéaire & (n — 1) dimensions au plus.
Il va sans dire que nous avons les mémes résultats duaux pour les
systémes linéaires tangentiels.

Par conséquent, si (n 4 k) hyperquadriques ont points

Nous pouvons des lors exprimer ainsi les conditions trouvées:

75. Pour que les (n — k + 2)E* sotent associés, il faut et il suffit que
par tout E*%-3 du simplexe S** = (4,,...,4,_,.1) passe, outre les faces
du simplexe, un E™ %1 tangent aux (k + 1) hyperquadriques Q,,. . .,Q;.

Ces conditions sont nécessaires puisque les projections de @,,..., @,
sur tous les £? du simplexe, font partie du méme faisceau tangentiel qui
a quatre tangentes.

Ces conditions sont suffisantes, c’est-a-dire que, si elles sont remplies,
les projections de @,,. .., @, sur chaque E*-! sont (k + 1) variétés d’un
méme systéme linéaire & (¢ — j — 1) dimensions.

En effet, soit un E»—2%+i-1 du simplexe 8**, opposé & un E*-7. Par cet
espace passent (k o :73+ 1) E»—%-3 du simplexe et (k — j 4+ 1) faces du
simplexe. Done, dans ’espace E*—7, les (k- 1) projections des variétés
@, .., Q, ont (k _’ %+ l) + (k — 7 + 1) E*—7-1 tangents. D’aprés notre
remarque, ces (k + 1) variétés font partie d’un systeme linéaire tangentiel
a (k —j — 1) dimensions au plus. En effet,

(k-i?’;_*-l)%— (k—j+1) > b — ) +2(k—j)+2 pour k—j>2.

§ 10. Une propriété des espaces associés

Soient de nouveau «,...,&%, ;.5 (m —k + 2)E*¥ associés de E",
4,,...,4,_,,, des points de «,,. .., &,_,.,. Nommons f I'espace (4,,...,
4,_,.1). Les projections sur § des (n — k + 1) espaces o,,..., %, g1y

sont (n — k + 1) droites associées dans fi, qui déterminent donc une
hyperquadrique @ (P) inscrite au simplexe (4,,...,4,_;.,)-
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76. Toutes les hyperquadriques @ (P) font partie d’un systéme linéaire
tungentiel a k dimensions, inscrit au simplexe (A,,. .., A,_.,) €t tel que par
tout Enk-1 du simplexe passe un E" %1 tangent & toutes les hyper-
quadriques du systéme (outre les faces du simplexe).

En effet, soient P,y,...,P, (k + 1) points indépendants de «,_;,,,
@, - -, @, les hyperquadriques correspondantes. Soit encore C,;(P) le
point de contact de @ (P) avec la face (4,,...,4;, ,4,.1,. .., 4,_x11)
C,(P) n’est autre que le point commun & cette face et & 1’espace (P«;).
Nommons encore C;(0),..., C;(k) les points correspondant & P,,...,P,.

Tout point P pouvant se mettre sous la forme P= ¥ A*P,, on a de méme
!

C;(P) = X 2 C;()
et par suite

Q(P)=2}~in‘ .

Toute quadrique @ (P) fait partie du systéme tangentiel @,,.. ., @, qui
jouit des propriétés énoncées.

V. CAS PARTICULIER:
ESPACE A DEUX DIMENSIONS

§ 1. Cas non-euclidien

Spécialisons nos résultats généraux dans le cas du plan ol nous pour-
rons donner encore quelques propriétés particuliéres.

Soient ¢ la conique absolue, 4 BC un triangle quelconque (a, b, ¢ étant
les cOtés opposés & 4, B, C); A’ B’C’ son triangle polaire réciproque par
rapport & Q.

77. Le lieu des foyers des paraboles inscrites au triangle A BC est une
courbe de trotsiéme ordre circonscrite au triangle ; cette courbe est aussi le
lieu des foyers des paraboles inscrites au triangle A’ B'C’.

En effet, soit /' le foyer d’une parabole, tangente a a, b, ¢, a la polaire
f de F par rapport a @ et aux deux tangentes a ¢ menées par F', D et £
étant leurs points de contact avec ¢ . Une polarité par rapport a ¢ montre
qu’il existe une conique passant par les six points A/, B/, C’, F, D et E
et par conséquent qu’il existe une conique inscrite aux triangles A’ B’ C’,
FDE. F est donc aussi le foyer d’une parabole inscrite & 4’ B’ C”’,
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Nommons podaires (1) les podaires relatives au triangle 4 BC; po-
daires (2) les podaires relatives & A’ B’ C'/ (parlons de méme de podes (1)
et podes (2)); F’', deuxiéme foyer de la parabole de foyer F inscrite au
triangle 4 BC, est le pole de la podaire (1) de F et aussi le pode (1) de la
polaire de F'; F”, pole de la podaire (2), est aussi le pode (2) de la polaire
de F'. Soit F'* le pole de la podaire (2) de F/; c’est aussi le p6le de la po-
daire (1) de F” et le pode (1) de la podaire (2) de F. Etant donné uu foyer
F, nous pouvons donc lui faire correspondre trois points F'/, F” et F*,
Si nous considérons une droite quelconque coupant la courbe (F) aux
trois points F,, F, et F,, nous avons quatre groupes de points F,, F;,
F), F¥. D’aprés le théoréme général 41, la droite F, F, passe par le
point F';. Ce théoreme étant également valable pour les podaires (2), on
voit que ;

78. Les quatre droites F, F,, F F,, F!' F), F¥ F¥ passent par un
méme point F; (de méme pour toute permutation des indices).

79. Les droites F, F,', F, F), F, F) se coupent en un point.

En effet, soit E le point d’intersection des droites Fj F; et F, F,
et considérons la collinéation de centre E et d’axe F, F, dont F; et Fy’
sont deux points correspondants. Les points F; et F, sont deux points
correspondants (intersection des droites F;, F, et F, F, d’une part,
F'F, et F, F, d’autre part). La droite F, F,’ passe par E. On montre
de méme que les droites F;FY et F; F¥ se coupent en un point.

Donnons encore une application plus intéressante du théoréme général
et de la propriété ci-dessus.

Soit ¢ la tangente en un point 1 = 2 de la courbe (#), 3 étant le dernier
point d’intersection de ¢ avec la courbe. Soient 1/ = 2/,3"; 17 = 2",3";
1* = 2% 3* les points correspondants, t’, t”, t* les tangentes & (¥) en 1/,
17 et 1%,

80. Les quatre tangentes t, t’, t”, t* se coupent en un point 3 de la
courbe (F).

81. La courbe (I') est de sixiéme classe.

En considérant les groupes de trois points alignés 1, 2, 3; 1%, 2%, 3;
17,27 3; 1, 2%, 3% et en prenant les poles des podaires (1) ou (2), nous
voyons que :

Les droites 22’ et 2” 2* se coupent en 3’; les droites 22” et 2/ 2* se
coupent en 3”; les droites 22* et 2/ 2” se coupent en 3*. Par conséquent :
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82. St d’un point P de la courbe (F'), on méne les quatre tangentes, les
quatre points de contact sont les foyers de deux paraboles inscrites au triangle
A BC et les foyers de deux paraboles inscrites au triangle A’ B'C’. Ces
quatre points déterminent un quadrangle complet dont les trots intersections
des diagonales sont les trois points correspondants de P.

Inversement, les tangentes & la courbe (#') en deux points inverses 1 et
1’/ se coupent en un point 3’ qui est I'inverse de l'intersection 3 de la
droite 11/ avec (¥). En effet, supposons que la droite 3’ 1 coupe (F) en 4.
La droite 31" = 11’ coupe 3" 1 en 1. Donc 4 = 1: La droite 3’ 1 est bien
tangente & (F') en 1. Le point 3 étant sur la droite 1”7 1%, les tangentes en
1”7 et 1* se coupent en 3’.

Ou encore :

83. Les trois points diagonaux 3, 3”7, 3* du quadrangle complet déter-
minés par quatre points correspondants 1, 1/, 17 1* ont pour quatriéme
point correspondant le point de concours des tangentes & la courbe (F') en 1,
1/, 17, 1*,

Nous pouvons spécialiser encore en prenant P en un point d’inflexion
et nous obtenons le théoréeme :

84. Les points de contact des trois tangentes & la courbe (F') menées par un
point d’inflexion de cette courbe sont sur une droite.

Rappelons que nous nommons points correspondants :

P le foyer d’'une parabole inscrite au triangle 4 BC ;

P’ le deuxiéme foyer ;

P” le deuxiéme foyer de la parabole de foyer P inscrite au triangle
A'B'C’;

P* le deuxiéme foyer de la parabole de foyer P’ inscrite au triangle
A’ B'C’,

Disons que les quatre polaires de ces points sont correspondantes et
nous pourrons énoncer la propriété duale suivante :

85. Soit p une tangente quelconque de (T') et soient 1, 2, 3, 4 ses quatre
autres points d’intersection avec (T'). Les quatre tangentes en 1, 2, 3, 4
(différentes de p) forment un quadrilatére complet dont les trovs diagonales
sont les correspondantes de p.

86. La tangente en un point de rebroussement de la courbe (T') coupe
cette courbe en trois autres points; les tangentes en ces points sont concou-
rantes.
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§ 2. Cas euclidien

Spécialisons encore et prenons pour absolu une conique dégénérée en
deux points R et S sur une droite . La courbe (¥') se compose de la droite ¢
et d’une conique (F’). Cette conique passe par les points R et S. Suppo-
sons au contraire que (¥ ') coupe ¢ en deux points R’ et S’ différents de R
et de §. Ces deux points sont deux foyers correspondants, c’est-a-dire
foyers d’une méme conique inscrite au triangle; cette conique devrait
étre tangente & ¢ en R’ et en S’, ce qui est exclu. Si R’ = Ret 8’ £ S,
cette conique, tangente & ¢ en S’, aurait pour foyers l'intersection des
tangentes issues de S et de R, dont un n’est pas sur la droite . Donc:

87. Le lieu des foyers des paraboles inscrites a un triangle est la conique
circonscrite a ce triangle et passant par les deux points absolus, complétée par
la droste de ces points.

Dualement, d’aprés le théoréme général :

88. L’enveloppe (T') des podaires est tangente a © aux points R et S, ces
points étant leurs propres conjugués par rapport & l’absolu.

Remarquons que la coube (7') se compose de ’enveloppe (7'') et de la
droite ¢ comptée doublement ; la courbe (T'') est de quatriéme ordre, comme
on le voit en reprenant nos raisonnements généraux.

Dans le cas spécial ou les points R et S sont les points cycliques, le lieu
des foyers des paraboles inscrites devient le cercle circonscrit complété par
la droite a P'infini. L’enveloppe des podaires est alors I’hypocycloide étu-
diée directement par STEINER (3). Cette étude fait ressortir de nombreuses
propriétés métriques que nous n’avons pas abordées, mais elle ignore les
propriétés symétriques qui apparaissent d’elles-mémes si ’absolu n’est
pas dégénéré. Nous pouvons dire par exemple que I’hypocycloide (com-
plétée par la droite & l'infini) est la courbe polaire réciproque du cercle
circonscrit 4 un triangle et de la droite & I'infini, propriété qu’il est im-
possible d’établir directement et qui n’est vraie que comme limite, si nous
appelons polaire d’un point & l’infini la polaire particuliére qui est la
podaire de son inverse dans la correspondance des foyers. Nous renoncons
aussi & spécialiser nos résultats généraux et nous n’énoncerons dans le cas
euclidien, que le théoréme 41 sur lequel nous nous sommes essentiellement
basés :

89. Soit d une drotte quelconque coupant le cercle circonscrit & un triangle
en deux points 1 et 2 ; soitent a et b les axes des paraboles inscrites au triangle
et de foyers 1 et 2 ; soit 3 le foyer de la parabole inscrite au triangle et d’axe
paralléle a d: La droite 13 est paralléle a Uaxe a ; la droite 23 est paralléle
alaxe b.
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Donnons encore une autre forme de cette propriété :

90. Soient 1 et a, 2 et b, les foyers et les axes de deux paraboles in-

scrites a un triangle. Menons par 1 une paralléle a b, par 2 une paralléle a
a et soit 3 leur point d’intersection. 3 est le foyer d’une parabole inscrite au
triangle et d’axe paralléle a 12.
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