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Répartition (mod 1)
des puissances successives des nhombres réels

Par CrARLES Pisor, Bordeaux

Nous appellerons répartition (mod 1) d’une suite ¢,, ¢,,..., ¢,,... de
nombres réels une suite v, v;,..., ¥,,... obtenue en ramenant (mod 1)
chaque nombre @, & un nombre y, appartenant a un intervalle fixe de
longueur 1. En d’autres termes, a tout ¢, on fait correspondre un nombre
p, de 'intervalle fixe y <y, <y -+ 1, de sorte que

Prn — Y = U,
soit un nombre entier.

On a déja beaucoup étudié les répartitions (mod 1) des suites qui
dépendent de facon simple de n, en particulier celles ou ¢, est un poly-
nome en 7 !). Une fonection qui s’est montrée particulierement réfrac-
taire est la fonction exponentielle; trés peu de résultats sont connus sur
sa répartition (mod 1)?%). J’ai donné dans un travail antérieur?®) un
certain nombre de résultats pour cette fonction4). Dans cet article je
les compléterai et caractériserai une famille particuliére de nombres
algébriques parmi 1’ensemble des nombres réels par les propriétés de la
répartition (mod 1) de leurs puissances ).

Théoréme I. L’ensemble des nombres réels «>1 et A tels que la réparti-
tion (mod 1) de la suite @, = Ax™ ait un nombre fini de valeurs limites est
dénombrable.

Théoréme II. Soit x un nombre algébrique réel supérieur a un et A un
nombre réel. La condition nécessaire et suffisante pour que la répartition
(mmod 1) de la suite @, = Ax™ ait un nombre fint de valeurs limites, c’est
que les deux conditions suivantes soient simultanément vérifiées :

1) Voir p. e. Koksma, Diophantische Approximationen, Ergebn. Math. IV, 4;
86—125.

2) Thue, Norske Vid. Selsk. Skr. (1912 — II), Nr. 20; 1—15.

Koksma, Compositio math. 2 (1935); 250—258.

3) Pisot, C. R. Acad. Sci. Paris 204 (1937); 312—314 et Ann. R. Sc. Norm. Sup. Pisa,
Ser. II, 7 (1938); 205—248.

4) Ces résultats ont été retrouvés indépendamment par Vijagaraghavan, Proc. Ind. Ac.
Sci. A 12 (1940); Proc. Cambridge Phil. Soc. 37 (1941); 349—357; Journal London Math.
Soe. 17 (1942); 137—138.

%) La distribution de ces nombres algébriques a été récemment étudiée par Salem, Duke
math. j. 11 (1944); 103—108 et 12 (1945); 1563—172 et par Siegel, Duke math. j. 11 (1944);
597—602. Ils forment un ensemble fermsé.
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A. « est un entier algébrique dont tous les conjugués sont en module
strictement inférieurs a un ). ‘

B. 1 est un nombre algébrique et appartient aw corps de «.

Théoréme III. Soit x un nombre réel supérieur & un et A un nombre réel
positif. Les conditions A et B du théoréme 11 sont encore remplies si U'on a
stmultanément :

1. Le nombre des valeurs limites de la répartition (mod 1) de la suite
@, = Ax™ est fina.

, e .o 1
2. La convergence de la répartition vers ses valeurs limites est o (T’ '
nh+l
k étant le nombre des valeurs limites irrationnelles.

Nous allons d’abord démontrer quelques lemmes servant & la fois aux
démonstrations des trois théorémes.

Remarque. Supposons qu’une répartition (mod 1) d’ume suite quel-
conque @,, ait un nombre fini de valeurs limites rationnelles. Il existe alors
un entier d tel que toute répartition (mod 1) de la suite dp,, ait pour seule
valeur limite rationnelle un entier.

11 est clair qu’il suffit de prendre pour d un dénominateur commun a
toutes les valeurs limites rationnelles. Nous supposerons dans la suite de la
démonstration avorr ainst ramené toutes les valeurs limites rationnelles a un
entier.

Lemme 1. Supposons qu’une répartition (mod 1) d’une suite quelconque
@, art un nombre fini de valeurs limites, dont k irrationnelles. A tout entier
q= 4 on peut alors faire correspondre un entier h< q* tel qu'une répart:-

. . . 2 2 .
tion v, de la suite ho, tombe dans Uintervalle — ” <y < p pour tout in-
dice m supérieur a n,.

Désignons par y,,..., y; les valeurs limites irrationnelles de la répar-
tition (mod 1) de la suite ¢,,, et par y, ’entier auquel nous avons ramensé,
grace & la remarque, les valeurs limites rationnelles. Si la répartition v,
se trouve dans lintervalle y< v, <<y + 1, il en sera de méme des
valeurs limites y,, ¥;,...,7x. On aura alors

Wn:un+yx+6n (1)

%) Le fait qu’aucun conjugué de a ne puisse avoir de module égal & un a été démontré
par Vijagaraghavan, Proc. Cambridge Phil. Soc. 37 (1941); 349—357.
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ou u, désigne un entier, « I'un des indices 0,1,...,%k, et ¢, une quantité
1
tendant vers 0 avec P

D’aprés un théoréme d’approximation connu ?), quel que soit I’entier
¢= 1, on peut trouver un entier 2 =< q*, tel que l'on ait |hy, — b, | < 1 :
a la fois pour » =1,...,k, h, étant un entier. On peut donc écriz'e
hy.=h,+ n., avec |n,] g% . En multipliant la relation (1) par 2,
il vient

hg, = hu, + by, + ke, = (hu, + h) + (o, + he,) = u,, + v, .

hu, -+ h, = u, est un entier, d’autre part on a

| 1
Yl =0t he =gt le] (2)

SR

Comme lim ¢, = 0, on peut trouver un indice n,, tel que ¢*|e¢,| <
n=oo
pour tout n=m,, ce qui démontre le lemme.

Démonstratvon du théoréme I. Soit ¢ un entier avec g>4(x + 1)2.
Si la suite ¢, = Aa™ n’a qu’un nombre fini de valeurs limites, il cor-
respond, d’aprés le lemme 1, & ¢ un entier A tel que l'on ait

2 1
N — o / ™y <L S
hio® =u, + vy, avec |y, |< PN TPy

r ’ ’ ’ I 2 2an’ ! ot
Or on a w,,, = au, + ap, — Pyiys Upp = &*u, + oy, —y,., dol

u, |
TH_"";»+2'=;“2"P;_20‘%”¢Iz+1+‘/’71+2+
n
P — Yhn)® | _ 2 s+ 17
U, q n

La derniére expression tend vers un nombre strictement inférieur & %—;
I2

. . . e Upy1
& partir d’un certain indice n =n,, on a donc |—5- — u, ,|<3%.
u
n
La suite des entiers u,,, u,,,,... est ainsi déterminée par la donnée des

entiers u, et u, .,. Comme une telle suite ne peut provenir de deux
1 1
nombres « et A différents, ces derniers forment un ensemble dénombrable.

7) Voir p. e. 1), p. 68—175.
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Lemme 2. Sotent «x>1 et A deux nombres réels, u, un entier et vy, une
répartition (mod 1) de Ax™ telle que Ao™ = w, + p,. Supposons qu’il
existe des entiers agy, a,,...,a, non tous nuls tels que

Ao, + A Upq +- -+ AU, ., =0  pour tout n = mn,, (3)
alors « est un entier algébrique et A un nombre algébrique du corps de .

Posons @ (z) = ay2* + a,2°"1 +- .-+ a, et considérons la série f(z) =
o + w2 ++- -+ u,2* +--- . La récurrence (3) montre immédiate-
ment que le produit f(2)Q(2) = P(z) se réduit & un polynome, et par
P(z)
Q(2)

suite f(z) =

est une fraction rationnelle. Or %, = 1a® — vy,,, done

P(z) 4
Q(Z) o 1 — X2 -—nno

=<}

Comme les y, sont bornés, la série ¥ u,z" converge dans le cercle

n=0
: A P .
|z|<1. Dans ce cercle la fraction rationnelle 6(%2 a par suite le podle
simple unique z = :: avec le résidu ——% : g; est donc racine de ¢ (z) = 0,

«P(3)
ot

Un théoréme de Fatou 8) nous apprend de plus que les inverses des poles
d’une fraction rationnelle sont des entiers algébriques lorsque son déve-
loppement en série de Taylor a ses coefficients entiers rationnels.

c’est-a-dire « est algébrique, et 1 = — appartient au corps de «.

Démonstration du théoréme II. Soit «>1 un nombre algébrique,
a,2* +-- -+ ay = 0 I'équation & coefficients entiers irréductible admet-
tant « pour racine. Les autres racines «,,...,«, de cette équation sont
les conjugués de «, elles sont toutes simples.

Soit g un entier vérifiant ¢>2(|a,| +---+ | a,|). D’apréslelemmel
on peut faire correspondre & cet entier ¢ un entier A4 tel que

hia® = ul + ¢, avec |1p,’,1§§- pour n =mn, . (4)

8) Fatou, Acta math. 30 (1906); 368—369.
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En multipliant la relation ay +-- -4 a,6* =0 par hAx?, il vient
ao(Uy + ¥h) +- -+ a (u,, + v,.,) =0, cest-a-dire

| Qo Uy + - F B Uy | =@, +- -+ @y, | <1 pour n =mn, .

Comme & gauche nous avons un entier, ce dernier est nul pour n = n,.
On peut par conséquent appliquer le lemme 2 avec u, au lieu de u, et
h 4 au lieu de 4, ce qui nous démontre que « est un entier algébrique et 1
un nombre algébrique du corps de «.

La décomposition en éléments simples de la fraction rationnelle

(==}
X u, 2" utilisée dans la démonstration du lemme 2 nous donne
n=0

N Iom . hA h 4, h A,
%ounz_— 1——zxz+1~—oc2z+“—I—vl—ocsz_{—R(z)’
ou 4,,..., 4, sont les conjugués de 1 dans les corps conjugués du corps

de «, et R(2) un polynome de degré inférieur & n,. En développant
chaque fraction simple en série, on obtient

u, = hAx™ + hlyo} +-- -+ hA,a" pour m =n, . (5)
Posons alors

A(z) = (Z ——-(X)(Z — 062). . (z - 0‘3—1) = z8—1 + 53_'2 »8—2 + . + 60

et formons la quantité w,,, , + 8, %, , » + -+ Sou,. En y substi-
tuant pour w, soit I’expression (4), soit I’expression (5), on obtient :

hao™ () — Wpramy + Oos Wogama -+ o+ So))
=hAoa" A(x) + hly oy A(xs) +- -+ hAy A(x,) .

Or A(w)=Ad(x) == Ad(x,_,) =0 et A(x,) %0, donc
| Whrsm1 + Ouca Prssme - So ¥ | = | B 207 A(x) |
Mais | ] | gg pour 7 = n,, par suite
| ol A | S| B2,08 AG) IS 2 (1 00| 4o+ | sl + 1) -
Une telle inégalité est impossible quand |o«,| = 1, si nous prenons ¢
assez grand. Tout conjugué «, de « vérifie donc I'inégalité |x,| <1, et les

conditions 4 et B sont remplies.
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Réciproquement supposons remplies les conditions A4 et B. Soient
&g,. .., %, les conjugués de «, 4,,..., 4, ceux de A dans les corps conju-
gués du corps de «. Soit I un entier rationnel tel que I soit entier algé-
brique. Le nombre w, = lAa™ + [d,05 +---+ A&} est alors entier
rationnel. Comme |, |<1,...,|x,|<1, on a w,=1Ax" — Iy, ou

n

Ax™ = K + v, avec hm p,=0. Or _’u;_ n’a (mod 1) qu’un nombre

fini de valeurs limites, d allleurs toutes rationnelles. Le théoréme II est
ainsi complétement démontré.

Pour démontrer le théoréme IIT ou I’on ne suppose plus a priori que «
est algébrique, nous allons d’abord établir le lemme suivant :

Lemme 3. Sotent « et A deux mombres réels supérieurs a 1, et posons

. 1
Ax® = u, 4+ v,,. Supposons que pour tout n =0 on ait |yp,| < p avec

p = 2ex(x + 1)(1 + In 4), alors « et A sont tous les deux algébriques.

s, s 1 s . ’
Désignons par — une borne supérieure de tous les | v, | et considérons
Y

s + 1 entiers a,,a,,...,a, tels que |a,| <a pour ¢ =20,1,...,s.
Posons v, =agu, + a,u, .y +-- -+ a,u,, ., .

1. 8¢ py>(+ 1)(o+ 1)a et st vy=0, alors v, =0 pour tout
n = 0. En effet on a
l vn+1 — &V, [

= [ @ (xPp — Pni1) T G (EP0i1 — Prye) T -+ C(OWPis — Yoysr) |
< (s+ 1)(x + l)a%) <1.

De v, =0, on déduit donc que 'entier |v,,,|<<1 est aussi nul.

2. 8t y>(s+ 1)(x+ 1)a, on peut trouver, quel que soit l’entier s=1,

des entiers agy, a,,...,a, tels que vy =0, des que a = 2<xls — l For-
mons en effet toutes les expressions v, = a,|u,| + ay|u,| +- -+ as |u,| »
ou les a,, pour ¢ =0, 1,...,s sont des entiers avec 0 <a.<a. Ilya

(@ + 1)*+* telles expressions. La valeur de chacune d’elles est un entier
positif vérifiant

ve S (s + l)a(zaw%) <(s+1)ada g <G+1) (a+1) de— 1.

Si done @+ 1) = (s + 1) (@ + 1) Aa (6)
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deux expressions vj, différentes auront la méme valeur numérique, leur

différence est donc un nombre v, ayant la valeur 0. Or l'inégalité (6)

1 1 1
séerit @ + 1= (s+ 1)s As «, elle est vérifiée si a +1 =2xls .

1
3. Soit s Uentier défini par s—1=Ini<s, alors (s+1)As
< e(l+Ini).

Considérons en effet la droite y, = —ﬁ-——]— In(1 4 8) et la courbe y, =

1+ 1In(1 -+ z), elles se coupent pour x =s. Pour x=s—1, on a
Y, <Yy, ; donc en vertu de la concavité de la courbe y,, 'inégalité y, <y,
a lieu pour tout x avec s — 1 < x<<s, en particulier pour x = In 4.

Soient alors s l'entier défini par s — 1 < In A<s et ensuite a par
1

a<2xAs<a-+ 1. On a donc d’aprés 3

p = 2ex(e+ 1)1 +1In2)>2x(x + 1)(s + 1)11?>(8 + 1)+ 1)a .

D’aprés 1 et 2 on peut par suite trouver des entiers a,, a,,. .., a, tels que
v, = 0 pour tout n = 0. En vertu du lemme 2, x et A sont donc algé-
briques, ce qui démontre le lemme 3 (le degré de x ne dépasse pas 14In k).

Démonstration du théoréme I11. Supposons qu’une répartition (mod 1)
de la suite Ax™ n’ait que les valeurs limites irrationnelles y,,..., 7, et
éventuellement la valeur limite y, entiére. Posons A«™ = u, + y, + ¢,,

k=20,1,...,k, alors ¢, = O(ﬁflﬁ> d’apres la condition 2 du théo-

réme III. Posons encore f = 2ex(x + 1) In x et soit b un entier supérieur
a 4B. Soit n, un indice tel que ’on ait & la fois A’ = Aa™>1 et a" >el,

et que pour tout » =n, on ait |e¢,| Nous appliquerons

S 55— .
= (bno)k+l

alors le lemme 1 avec le nombre g = b n,; il correspond & ce nombre g
un entier h< g%, tel qu'en posant hAa™ = u, -+ v,, on ait en vertu

de (2): ], | gé——i—q"]anl, c’est-a-dire |zp;]§—6%—pour n =n,. On
0

adonc en posant p = —(%n—“

w=28ny=2ex(x+ 1)2nyIn«x) .
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Comme a™>el, on a nylna>1-+1In 1 et par suite
p=2ex(c+ 1)1 +hni+nna)=2ex(x+1)(14+mIi).
Or 2 = Aa™>1, ce qui permet d’appliquer le lemme 3 avec A’ au lieu

de 1 et il en résulte que & est algébrique. On est ainsi ramené au
théoréme II qui montre que les conditions A et B sont vérifides.

(Regu le 11 avril 1946.)
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