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Répartition (mod 1)

des puissances successives des nombres réels
Par Charles Pisot, Bordeaux

Nous appellerons répartition {mod 1) d'une suite <p0, 9^,..., <pn9. de
nombres réels une suite \pQ, rp1,..., ipn,... obtenue en ramenant (mod 1)

chaque nombre <pn à un nombre xpn appartenant à un intervalle fixe de

longueur 1. En d'autres termes, à tout cpn on fait correspondre un nombre
ipn de l'intervalle fixe y ig \pn < y + 1, de sorte que

<Pn~V>n Un

soit un nombre entier.
On a déjà beaucoup étudié les répartitions (mod 1) des suites qui

dépendent de façon simple de n, en particulier celles où <pn est un
polynôme en n1). Une fonction qui s'est montrée particulièrement réfrac-
taire est la fonction exponentielle ; très peu de résultats sont connus sur
sa répartition (modl)2). J'ai donné dans un travail antérieur3) un
certain nombre de résultats pour cette fonction4). Dans cet article je
les compléterai et caractériserai une famille particulière de nombres
algébriques parmi l'ensemble des nombres réels par les propriétés de la
répartition (mod 1) de leurs puissances5).

Théorème I. L'ensemble des nombres réels oc>l et X tels que la répartition

{mod 1) delà suite <pn Xocn ait un nombre fini de valeurs limites est

dênombrable.

Théorème II. Soit oc un nombre algébrique réel supérieur à un et A un
nombre réel. La condition nécessaire et suffisante pour que la répartition
{mod 1) delà suite cpn Xocn ait un nombre fini de valeurs limites, c'est

que les deux conditions suivantes soient simultanément vérifiées :

1) Voir p. e. Koksma, Diophantische Approximationen, Ergebn. Math. IV, 4;
86—125.

2) Thue, Norske Vid. Selsk. Skr. (1912 — II), Nr. 20; 1—15.
Koksma, Compositio math. 2 (1935); 250—258.

3) Pisot, C. R. Acad. Sci. Paris 204 (1937); 312—314 et Ann. R. Se. Norm. Sup. Pisa,
Ser. II, 7 (1938); 205—248.

4) Ces résultats ont été retrouvés indépendamment par Vijagaragkavan, Proc. Ind. Ac.
Sci. A 12 (1940); Proc. Cambridge Phil. Soc. 37 (1941); 349—357; Journal London Math.
Soc. 17 (1942); 137—138.

5) La distribution de ces nombres algébriques a été récemment étudiée par Salem, Duke
math. j. 11 (1944); 103—108 et 12 (1945); 153—172 et par Siegel, Duke math. j. 11 (1944);
597—602. Ils forment un ensemble fermé.
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A. oc est un entier algébrique dont tous les conjugués sont en module
strictement inférieurs à un 6).

B. A est un nombre algébrique et appartient au corps de oc.

Théorème III. Soit oc un nombre réel supérieur à un et X un nombre réel

positif. Les conditions A et B du théorème II sont encore remplies si Von a
simultanément :

1. Le nombre des valeurs limites de la répartition (mod 1) de la suite

cpn Xocn est fini.
2. La convergence de la répartition vers ses valeurs limites est o j—^),

k étant le nombre des valeurs limites irrationnelles.

Nous allons d'abord démontrer quelques lemmes servant à la fois aux
démonstrations des trois théorèmes.

Remarque. Supposons qu'une répartition (mod 1) d'une suite
quelconque q?n ait un nombre fini de valeurs limites rationnelles. Il existe alors

un entier d tel que toute répartition (mod Y) de la suite dcpn ait pour seule

valeur limite rationnelle un entier.

Il est clair qu'il suffît de prendre pour d un dénominateur commun à

toutes les valeurs limites rationnelles. Nous supposerons dans la suite de la
démonstration avoir ainsi ramené toutes les valeurs limites rationnelles à un
entier.

Lemme 1. Supposons qu'une répartition (mod 1) d'une suite quelconque

<pn ait un nombre fini de valeurs limites, dont le irrationnelles. A tout entier
4 on peut alors faire correspondre un entier h^qk tel qu'une réparti-2,2tion ipn de la suite hcpn tombe dans l'intervalle <L\pn<^~ pour tout

indice n supérieur à n0.

Désignons par y±,..., yk les valeurs limites irrationnelles de la répartition

(mod 1) de la suite <pn, et par yQ l'entier auquel nous avons ramené,
grâce à la remarque, les valeurs limites rationnelles. Si la répartition yn
se trouve dans l'intervalle y<^ipn<y + 1 il en sera de même des

valeurs limites yQ, yx,..., yk. On aura alors

<Pn Un + 7k + en (l)

6) Le fait qu'aucun conjugué de a ne puisse avoir de module égal à un a été démontré

par Vt^agaraghavan, Proc. Cambridge Phil. Soc. 37 (1941); 349—357.
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où un désigne un entier, k l'un des indices 0,l,...,fc,eten une quantité

tendant vers 0 avec —
n

D'après un théorème d'approximation connu 7), quel que soit l'entier

q^ 1, on peut trouver un entier h^qk, tel que l'on ait \hyK — hK\ ^ -
à la fois pour x 1,..., Je, hK étant un entier. On peut donc écrire

hyK hK + r)K, avec \rjK\^- En multipliant la relation (1) par h,

il vient

h(pn hun + hyK + hen (hun + hK) + (rjK + hen) v!n + ipfn

hun -\- hK — v!n est un entier, d'autre part on a

(2)

^ 1

Démonstration du théorème I. Soit q un entier avec g>4(&+ l)2.
Si la suite cpn Àocn n'a qu'un nombre fini de valeurs limites, il
correspond, d'après le lemme 1, à q un entier h tel que l'on ait

Comme lim en 0, on peut trouver un indice n0, tel que qk \ en
n=oo

pour tout n^ n0, ce qui démontre le lemme.

avec - <

Or on a u'n+1 un+2 oc*un + oc2yn ~ tp'n+2 d'où

u,
/2
'n+1

^n+2

.2

V
La dernière expression tend vers un nombre strictement inférieur à \\
à partir d'un certain indice n^nl7 on a donc

La suite des entiers v!ni un+1,... est ainsi déterminée par la donnée des

entiers v!ni et v!ni+1. Comme une telle suite ne peut provenir de deux
nombres <x et A différents, ces derniers forment un ensemble dénombrable.

7) Voir p. e. p. 68—75.
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Lemine 2. Soient oc>l et A deux nombres réels, un un entier et tpn une
répartition (mod 1) de kocn telle que Xocn un -f y>n. Supposons qu'il
existe des entiers a0, a±,..., as non tous nuls tels que

a0Un + aiUn+l H !" asUn+s ° P0Ur tout n ^ n2 (3)

alors oc est un entier algébrique et A un nombre algébrique du corps de oc.

Posons Q(z) aozs + a^8'1 + • • • + as et considérons la série f(z)
u0 + uxz -)-...-}- unzn + • • • La récurrence (3) montre immédiatement

que le produit f(z)Q(z) — P(z) se réduit à un polynôme, et par
P(z)suite f(z) 777-v est une fraction rationnelle. Or un — Xocn — ipn, donc

Q{z)-\-ocz

Comme les %pn sont bornés, la série £ ipnzn converge dans le cercle
w=0

P(z)
z I < 1. Dans ce cercle la fraction rationnelle n a par suite le pôle

simple unique z - avec le résidu - est donc racine de Q (z) 0,
oc oc oc

c'est-à-dire oc est algébrique, et A j^~ appartient au corps de oc.

Q' -t.
Un théorème de Fatou8) nous apprend de plus que les inverses des pôles
d'une fraction rationnelle sont des entiers algébriques lorsque son
développement en série de Taylor a ses coefficients entiers rationnels.

Démonstration du théorème II. Soit oc > 1 un nombre algébrique,
aszS + * • * + ao 0 l'équation à coefficients entiers irréductible admettant

oc pour racine. Les autres racines #2,..., ocs de cette équation sont
les conjugués de oc, elles sont toutes simples.

Soit q un entier vérifiant q > 2 | a0 \ + • • • + | as I
• D'après le lemme 1

on peut faire correspondre à cet entier q un entier h tel que

2
hXocn u'n + \prn avec | %prn \ ^ - pour n ^ n0 (4)

8) Fatou, Acta math. 30 (1906); 368—369.
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En multipliant la relation aQ -)-...-(- asocs 0 par hXocn, il vient
«o(^ + Vn) H f" as«+* + y>n+i) °> c'est-à-dire

«0 < H !" G, <+, I I <*<0 V>« H \~as V>n+s

Comme à gauche nous avons un entier, ce dernier est nul pour n ^n0.
On peut par conséquent appliquer le lemme 2 avec v!n au lieu de un et
h X au lieu de A, ce qui nous démontre que oc est un entier algébrique et X

un nombre algébrique du corps de oc.

La décomposition en éléments simples de la fraction rationnelle
00

!n zn utilisée dans la démonstration du lemme 2 nous donne

où A2,..., Xs sont les conjugués de A dans les corps conjugués du corps
de oc, et R(z) un polynôme de degré inférieur à n0. En développant
chaque fraction simple en série, on obtient

urn hXocn + hXzoQ H [- hX8o% pour n^n0 (5)

Posons alors

zl (z) (z-oc)(z-oc2)...(z- oc^) z8-1 + <5S_2 z8-2 + • • + 0O

et formons la quantité urn+8__1 + ôs_2 ^+«-2 + • • • + <30^. En y substituant

pour v!n soit l'expression (4), soit l'expression (5), on obtient :

hXa» A (oc) - (^+s_1 + ôs_2 vi+,.a + • • • + ôoW'n)

hXocn A(oc) -{- hX2oc\ A(oc2) -| h hXso$ A(ocs)

Or A {oc) A («a) • • • A (ocs_x) 0 et A (ocs) ^ 0 donc

| Wn+s-l + $8-2 ¥n+s-2 H \~ àoVn\ \ *> ktf A (oc8) \

2
Mais \ipnl ^ - pour n ^ n0, par suite

\Xsoc«A(ocs)\ ^\hXsoci:A(ocs)\^(\ôQ\+.--+\ô8_2\ + l)

Une telle inégalité est impossible quand | oc8 \ ^ 1, si nous prenons q
assez grand. Tout conjugué ocQ de oc vérifie donc l'inégalité | oca \ < 1, et les
conditions A et B sont remplies.
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Réciproquement supposons remplies les conditions A et B. Soient

oc2,..., ocs les conjugués de oc, X2,..., Xs ceux de X dans les corps conjugués

du corps de oc. Soit l un entier rationnel tel que l X soit entier
algébrique. Le nombre wn lXocn + IX^oc^ + • • • + lXsoc™ est alors entier
rationnel. Comme | oc2 \ < 1,..., | oc81 < 1, on a wn lXocn — lipn ou

Xocn -y + y>n avec Km xpn — 0. Or -~ n'a (mod 1) qu'un nombre

fini de valeurs limites, d'ailleurs toutes rationnelles. Le théorème II est
ainsi complètement démontré.

Pour démontrer le théorème III où l'on ne suppose plus a priori que oc

est algébrique, nous allons d'abord établir le lemme suivant :

Lemme 3. Soient oc et À deux nombres réels supérieurs à 1, et posons

Xocn un + tpn. Supposons que pour tout n Jg: 0 on ait \ ipn\ ^ — avec

ip ^ 2eoc(oc -f- 1)(1 + In À), alors oc et X sont tous les deux algébriques.

Désignons par— une borne supérieure de tous les | tpn \ et considérons

s + 1 entiers a0, a±,..., as tels que \aa\ ^ a pour o 0, 1,..., 5.
Posons vn aoun + axun+1 -\ (- a8un+s

1. Si tp>(s + l)(oc + l)a et si v0 0, aZors vn 0 pour tout
n 2> 0. En effet on a

l " Vn+2) H h M
^ (5+ 1)(<% + l)a- <1

De vn 0, on déduit donc que l'entier | vn+1 | <1 est aussi nul.

2. Si y) > (s -\- l) (oc -\- l)a, on peut trouver, quel que soit Ventier s ^ 1,
i

des entiers a^,ax,..., as tels que vo 0, dès que a ^ 2ocX^ — 1.

Formons en effet toutes les expressions v'o a'o \uo\ + a[ | % | + • • • + as \ us \

où les a'a pour a 0, 1,..., s sont des entiers avec 0 ^afa^a. Ilya
(a -f l)s+1 telles expressions. La valeur de chacune d'elles est un entier
positif vérifiant

v'Q ^ (s + l)a(Xocs + -) < (s + 1) aXoc8 + —p-j <(« + l) (a+1)Xocs-l.

Sl donc
(a + i).+i ^ (5 + i) (a + i)A^ (6)
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deux expressions v;0 différentes auront la même valeur numérique, leur
différence est donc un nombre v0 ayant la valeur 0. Or l'inégalité (6)

1 i. *
s'écrit a + l^;(s-j- l)s À8 oc, elle est vérifiée si a + 1 ^2ocKs

i
3. Soit s Ventier défini par s — l <*ln. À<s, alors (s -f- 1) ?J

Considérons en effet la droite y1 f- ln(l + s) et la courbe y2
s

1 + In (1 + x), elles se coupent pour x s. Pour x s — 1, on a

yt<y2; donc en vertu de la concavité de la courbe y2, l'inégalité yx<y2
a lieu pour tout x avec s — 1 ^ x<s, en particulier pour x In X.

Soient alors s l'entier défini par s — l^lnA<<s et ensuite a par
i

a <2ocÀs ^ a + 1. On a donc d'après 3

i
f ^ 2eot(ot+ 1)(1 +lnÀ)>2oc(oc+ l)(s + l)fc>(s + l)(oc + 1) a

D'après 1 et 2 on peut par suite trouver des entiers a0, ax,..., as tels que

vn= 0 pour tout n ^ 0. En vertu du lemme 2, a et A sont donc

algébriques, ce qui démontre le lemme 3 (le degré de oc ne dépasse pas 1 +ln X).

Démonstration du théorème III. Supposons qu'une répartition (mod 1

de la suite Xocn n'ait que les valeurs limites irrationnelles yl9*. .,yk et
éventuellement la valeur limite y0 entière. Posons Xocn un + yK -f- sn,

k 0, 1,.. .,k, alors en o(—j-^) d'après la condition 2 du théo-
\n ]

rème III. Posons encore jS 2eoc{oc + 1) In a et soit b un entier supérieur
à 4/î. Soit n0 un indice tel que l'on ait à la fois Xr Àocn° > 1 et ocn° > e A,

et que pour tout n ^ n0 on ait | en | g jr—r^rr • Nous appliquerons

alors le lemme 1 avec le nombre q bn0; il correspond à ce nombre q

un entier ht=iqk, tel qu'en posant hXoc11 un-\- iprn, on ait en vertu
1 o

de (2) : | xpfn \ ^ - + qk | en \ c'est-à-dire | ^ I ^ 7— Pour n^n0. On

a donc en posant tp ——-

t^ ^ 2/3%= 2e a (a + l)(27ioln^)
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Comme otn°>e k, on a w0 In oc > 1 -}- In A et par suite

y> ^2eot(ot+ 1)(1 + In l + nolii(x) 2eoc(oc+ 1)(1 + In A7)

Or 1' A#w° > 1, ce qui permet d'appliquer le lemme 3 avec XT au lieu
de X et il en résulte que oc est algébrique. On est ainsi ramené au
théorème II qui montre que les conditions A et B sont vérifiées.

(Reçu le 11 avril 1946.)
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