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Uber das Hauptnormalenbild einer Raumkurve

Von W. Scherrer, Bern

,,Das Hauptnormalenbild einer geschlossenen Raumkurve zerlegt die
Einheitskugel in zwei flâchengleiche Teile."

Dièse Behauptung findet sich in der Literatur1)2)3), trifft aber nicht
fur aile geschlossenen Kurven zu. Der zuerst von Jakobi bemerkte Zu-
sammenhang zwischen einer geschlossenen Kurve und ihrem
Hauptnormalenbild wird also durch die obige Formulierung nicht ausreichend
wiedergegeben.

Der Zweck dieser Zeilen ist, die notwendige Korrektur vorzunehmen.
Wie die Dinge in Wirklichkeit liegen, erfâhrt man, wenn man sich die
Aufgabe steJlt, diejenigen Raumkurven zu bestimmen, welche ein vor-
gegebenes Hauptnormalenbild besitzen. Dièse auf den ersten Blick etwas
verwickelt erscheinende Aufgabe ist explicite lôsbar4). Wir beginnen
daher mit einer vereinfachten Rekapitulation dieser Lôsung (§ 1), ent-
wickeln anschlieBend einige Eigenschaften von Kugelkurven (§2), be-
weisen hierauf den modifizierten Satz von Jakobi (§3) und schliefien
mit einem Beispiel (§4).

Die notwendigen Hilfsmittel sind die Grundformeln der Théorie der
Raumkurven und die Formel fur die geodâtische Kriïmmung einer
Flâchenkurve. Zur Erleichterung des Lesers stellen wir dièse Hilfsmittel
kurz zusammen.

I (1)

eine auf einen beliebigen Parameter t bezogene Raumkurve und bezeich-
net man die Ableitungen nach t durch Punkte, so sind die Einheits-
vektoren des begleitenden Dreibeins, die Tangente t, die Hauptnormale n
und die Binormale b gegeben durch

(2 a)

(2 b)
•

*) CG.J. Jakobi, 1842, Werke, Bd. 7, S. 39.
2) W. Blaschke, 1924, Vorlesungen uber Differentialgeometrie, Bd. I, 2. Aufl.,

S. 34.
3) W. Scherrer, 1944, Eine Formel fur die geodâtische Knimmung, Commen-

tarii Math. Helv. 16, 1, S. 101.
4) W. Rothe, 1937, Differentialgeometrie I, S. 42 (Sammlung Goschen).
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b [*,'*]
\ik,'i]\ (2 c)

Die Bogenlânge s, die Krùmmung x und die Torsion x berechnen sich
nach den Formeln

H

T

\[k,xl\

[s, s ] x

[k, x]2

(3)

(4 a)

(4 b)

wobei wir der Bequemlichkeit halber dem Anfangspunkt den Parameter-
wert t 0 zugeordnet haben.

Verwendet man die Bogenlânge s als Parameter und bezeichnet man
die Ableitungen nach s durch Striche, so erhàlt man an Stelle der an-
gegebenen Formeln die Beziehungen

und
x(s)

n

b
[x',x'r]

I ï" I"
sowie

r

(5)

(6 a)

(6b)

(6 c)

(7)

(8 a)

Hieran schlieBen sich nun die Formeln von Frenet

t'
n'
b'

-xi
xn

^
— Ttt

-rb

(8b)

(9a)
(9b)
(9 c)
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die den Schlussel zur Differentialgeometrie der Raumkurven bilden.
Bekanntlich lâBt sich die durch (9) definierte infinitésimale Bewegung
des Dreibeins darstellen als infinitésimale Drehung, deren Achse und
Wmkelgeschwindigkeit gegeben sind durch Richtung und Betrag des
Darbouxschen Drehvektors,

b- rt + xb (10)

der also seinerseits in der durch t und b aufgespannten ,,rektifizierenden
Ebene" der Raumkurve liegt.

Ist speziell
x(s) x[u(s),v(s)] (11)

eine auf der Flàche
x x(u,v) (12)

mit der Normalen

I ïi x 11
I L*u> xvj I

verlaufende Kurve, so ist die ,,geodàtische Krûmmung" xg der Kurve
in bezug auf die Plâche definiert durch

xg W[x',x"] (14)

Das letzte Hilfsmittel, die Integralformel von Bonnet, wollen wir an
der Stelle besprechen, wo wir es benôtigen. Dièse Integralformel bildet
nàmlich einen kritischen Punkt beim Beweis des Satzes von Jakobi.

§ 1. Bcstimmung aller Raumkurven, die ein vorgegebenes Hauptnor-
malenbild besitzen.

Statt das Hauptnormalenbild als Funktion der Bogenlânge s der ge-
suchten Raumkurve vorzugeben, empfiehlt es sich, die folgende âquiva-
lente Aufgabe zu lôsen :

Vorgegeben wird die Hauptnormale als Funktion ihrer Bogenlânge a

n n(a) (15)

und unabhângig davon die Bogenlânge s der gesuchten Raumkurve eben-
falls als Funktion von a auf Grund der Festsetzungen

ds 1
(16)

do a) (a)
9

,(0) 0. (17)
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a) (a) und n(<x) sind also willkurliche Funktionen, von denen die erste
einmal stetig differenzierbar und nirgends Null, die zweite zweimal stetig
differenzierbar sein muB. tîberdies muB die zweite sinngemâB die
Identitaten

(n(a)f 1 (18)

erfûllen.
Gesuckt werden diejenigen Raumkurven, welche die durch (15) vor-

gegebene Hauptnormale und die durch (16) und (17) vorgegebene Bogen-
lànge besitzen.

Um zur Lôsung zu gelangen, unterwerfen wir die gesuchte Raumkurve
einer Analyse. Vorerst beachten wir, dafî gilt

__ dn _ dn da
do ds

Nach (16) und (19) folgt daher

\n'\ a>{o) (20)

Nun wenden wir uns zu den Frenetschen Formeln (9). Aus (9b) und
(20) folgt

co2 x2 + t2 (21)

Weiter ergibt sich durch leichte Rechnung

[n,n']= rï + xb
und

n"+(«2+ r2)n= -x'ï
Aus den beiden letzten Gleichungen folgt

(22)

(23)

und hieraus wegen (16), (20) und (21)
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In § 3 werden wir sehen, daB dièse Beziehung den Schlûsselpunkt zum
Satz von Jakobi bildet. Vorerst gibt sie uns in Verbindung mit (21)
Anlafi, durch den Ansatz

x co cos <p

x co sin <p

den ,,Nutationswinkelu
<P

(25)

(26)

der Raumkurve einzufûhren. Er beschreibt die Drehung, die der Dar-
bouxsche Drehvektor b innerhalb der rektifizierenden Ebene ausfûhrt.
Die Achse dieser Drehung ist offenbar n, also senkreeht zu b, weshalb
man passend von einer Nutation sprechen kann. Setzt man (25) in (24)
ein, so folgt

[dnl d2n

n'\
und es ergibt sich

(27)

Nun findet man aus (9b) und (22)

t

resp.

oder schlieBlich

— xnr + rfn, n']

dn

co

7dx
da

dn
cos œ -j h sin «

do
co

(28)

Hieraus ergibt sich in Verbindung mit (16), (17) und (27) die Lôsung
unserer Aufgabe in der Gestalt
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(29)

Die Verifikation der Lôsung ûberlassen wir dem Léser. Sie besteht in
dem Nachweis, da8 aus (29) die Gleichungen

dx da
da ds

und

dn dn

.# dt da dtt ~j y- 0)-j- (O COSÇ?-nda ds da

folgen. Dabei ist wohl zu beachten, daB fur n{a) die Bedingungen (18)
und (19) bestehen.

§ 2. Umlaufszahl und Flacheninlialt einer Kugelkurve.

Nach der Bedingung (18) kann das Hauptnormalenbild aufgefaBt
werden als Kurve

V) X)(a)=n(a) (30)
auf der Einheitskugel

l)2 1 (31)

Bezeichnet mandie geodâtische Krummung dieser Kugelkurve mit xyi
so liefert die Spezialisierung der Formel (14) den Wert

- 1 *1 ^llda ' do*]
(32)

Fur den Flâcheninhalt einer einfachen, geschlossenen und stetig ge-
krummten Kugelkurve gilt bekanntlich die klassische Formel

(33)
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wobei Q den positiv gerechneten Flâeheninhalt desjenigen Kugelteils
bedeutet, der von der Kurve in positivem Sinne umlaufen wird.

Falls die Kurve Ecken hat, tritt an Stelle von (33) die Formel

do + £ ôk 2n - Q (33a)
k

wo ôk denjenigen Winkel absolut kleiner n darstellt, um den sich der
Tangentenvektor bei Durchlaufung der fc-ten Ecke dreht.

Mit der Formel (33) sind wir an der kritischen Stelle fur den Beweis
des Satzes von Jakobi angelangt : Das Hauptnormalenbild einer
geschlossenen Raumkurve ist wohl immer geschlossen, braucht aber nicht ein~

fach zu sein. Dies werden wir in § 4 durch Beispiele belegen.
Die Formel (33) ist also nicht ausreichend. Was im Falle einer

geschlossenen, stetig gekrummten, aber nicht einfachen Kurve an ihre
Stelle zu treten hat, wollen wir uns nun anschaulich klar machen. Zu
dem Zweck mussen wir etwas weiter ausholen.

Définition 1. Eine stetige und geschlossene Kugelkurve F besitzt eine

,,Umlaufszahlii l, falls folgender Proze/i nach l Schritten zu Ende fûhrt :

1. Wàhle einen beliebigen Anfangspunkt Po auf F und durchlaufe von
Po ans F, bis zum erstenmal ein schon durchlaufener Punkt Px auftritt.
Nach Extinktion der entstandenen einfachen und geschlossenen Schlinge

verbleibt eine geschlossene Restkurve F1, die nach Schlieflung der Parameter-
lûcke ebenfalls eine stetige Kurve ist.

2. Wàhle auf Fx den Punkt Px als Anfangspunkt und fuhre die
Durchlaufung weiter bis zum erstenmal ein schon durchlaufener Punkt P2 von /\
auftritt. Nach Extinktion der entstandenen einfachen und geschlossenen Teil-
schlinge

von Ft verbleibt eine geschlossene Restkurve F2 von /\, die wiederum nach

Schlieflen der Parameterlûcke eine stetige Kurve ist usf.
Der Proze/i kann beim l-ten Schritt offenbar nur dann abbrechen, falls fur

den erstmalig auftretenden schon durchlaufenen Punkt Px von Fx_x gilt

P, Po
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Das Schéma der Aufteilung lautet dann :

r=rl +

Ùber dièse Umlaufszahl gilt nun

Satz 1. Die Umlaufszahl einer stetigen und geschlossenen Kurve ist un-
abhângig von Anfangspunkt und Umlaufsinn.

Der Beweis erfolgt durch vollstandige Induktion. Fur l 1, — die
einfache geschlossene Kurve— sind die Behauptungen évident. Bezeich-
nen wir nun abgekiirzt die Umlaufszahl von F mit U (F), so folgert man
ohne Schwierigkeit aus der Définition 1, da6

also

+ U(8t) (34)

gilt. Da nun naeh Induktionsvoraussetzung Satz 1 fur die Umlaufszahlen
1, 2,... Z — 1, gilt, kann man gestiitzt auf (34) zeigen, daB der Satz auch
fur l zutrifft.

Définition 2. Um den Flacheninhalt Q einer stetigen und geschlossenen

Kugelkurve F mit der Umlaufszahl l zu definieren, zerlegen wir F nach

Définition 1 in l einfache und geschlossene Schlingen gemafi

und treffen die Festsetzung

Q Q1 + Q2 H h Ql

wobei Q1 den FlacheninhaU von 8€ bedeutet.

Nun wenden wir uns wieder speziell zu den stetig gekrummten Kugel-
kurven. Hier gilt einmal

Satz 2. Jede stetig gekrilmmte und geschlossene Kugelkurve F besitzt
eine endliche Umlaufszahl L
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Es genùgt, den indirekt zu fuhrenden Beweis in knappen Zugen an-
zudeuten. Wie oben wollen wir den Parameter der Bogenlânge mit a
bezeichnen. Bedeutet nun A die totale Lange der einmal durchlaufenen
Kurve F, so ist xy als stetige Funktion im abgeschlossenen Bereich
0 5g a fg A beschrankt. Besitzt nun F keine endliche Umlaufszahl, so

ergibt die in Définition 1 beschriebene Konstruktion eine nicht abbre-
chende Série von Wiederkehrpunkten. Px, P2,..., Pk,... Dieselbe
hat mindestens einen Hâufungspunkt P* auf F. Wir umgeben P*
als Zentrum mit einem Kreis K *, dessen geodatische Krummung x *

groBer ist als das Maximum von | xy | auf F. Ist nun Pk ein Punkt
unserer Série, der im Inneren von K* liegt, so betrachten wir dasjenige
Teilstuck der Lange Xk auf der Kurve F, das man erhalt, wenn man auf
F von Pk aus nach beiden Seiten bis zur Peripherie von K * vorstoBt.
Infolge der Krummungsverhâltnisse ist ein derartiger Teilbogen Xk immer
vorhanden und aus denselben Grunden gehoren zu zwei verschiedenen

Teilbogen Xkl und Xk2 vollstandig getrennte Parameterintervalle. Nun
existiert eine nicht abbrechende Série von derartigen Teilbogen Afc, die
beliebig nahe an das Zentrum P* von JT* herankommen und deren

Lange daher nicht aufNull herabsinkenkann. Damit aber ergibt sich der
SchluB, daB die Lange von F keine obère Schranke hat, was ofEensicht-
lich der bekannten Tatsache widerspricht, daB eine stetig gekriimmte
geschlossene Kurve eine endliche Lange hat. Satz 2 muB also richtig sein,

w. z. b. w.
Nun sind wir in der Lage, die notwendige Verallgemeinerung der Formel

(33) vorzunehmen.

Satz 3. Jede stetig gekrummte und geschlossene Kugelkurve F besitzt

einen positiven Flacheninhalt Q, der sich berechnet nach der Formel

- Q (35)

wo l die Umlaufszahl von F ist.

Beweis. Da nach Satz 2 die Umlaufszahl l existiert, konnen wir im
Sinne von Définition 1 die Zerlegung

vornehmen. Fur den Flacheninhalt der i-ten Schlinge St erhalten wir
nach (33 a)

(£ xyda + E ôtk 2n — Qt

Si
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Fur Q selbst erhalten wir daher nach Définition 2

(f)>tydo + Z (Z àlk) 2ln - Q

r
Durch Betrachtung der sukzessive in den einzelnen Wiederkehrpunkten
paarweise auftretenden Ecken erkennt man aber leicht, daB aile Winkel
zusammen sich aufheben :

Z (Z àik) 0
t=l le

Somit ergibt sich die behauptete Formel (35). DaB Q immer positiv
ist, ergibt sich aus Définition 2 zusammen mit den bei (33) und (33a)
fur die einfachen Kurven getroffenen Festsetzungen, w. z. b. w.

Nun folgt der fur spàter wichtige

Satz 4. Wird der Umlaufsinn einer stetig gekrummten und geschlossenen

Kugelkurve F umgekehrt, so geht ihr Flàcheninhalt Q liber in den durch die
Relation

_
Q + Q Un (36)

bestimmten Wert Q.

Beweis. Bezeichnen wir mit xyf T und Q die GrôBen, in welche xy, l
und Q bei Umkehrung des Umlaufsinnes ubergehen, so folgt aus dem

Begriff der geodâtischen Krûmmung

y y
und aus Satz 1

r=i.
Die der Gleichung (35) entsprechende Formel

ydo Un -~Q

zur Bestimmung von Q verwandelt sich daher in

— (£ Kydo 2ln — J)

und ihre Addition zu (35) liefert unmittelbar die Behauptung. w. z. b. w.
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Da nach Satz 3 auch Q positiv ist, ergibt sich alsFolgerung aus Satz 4

Satz 5. Der Flàcheninhalt Q einer stetig gekriimmten geschlossenen

Kugelkurve F genilgt der Ungleichung

0<Q<4tljt (37)

wo l die Umlaufszahl von F ist.

DaB dièse Grenzen exakt sind, erkennt man unmittelbar an Z-mal

durehlaufenen Kreisen.
Grundlegend ist naturlich noch

Satz 6. Die Umlaufszahl l einer stetig gekrûmmten geschlossenen Kugel-
kurve ist invariant gegenilber zweimal stetig differenzierbaren Transforma-
tionen der Kurve.

Beweis. Unter dem EinfluB einer solchen Transformation ândern
sich Q und xy stetig. Zufolge (35) ândert sich daher l nicht, w. z. b. w.

SchlieBlich erwâhne ich noch den anschaulich plausiblen

Satz 7. Besitzt die stetig gehrummte und geschlossene Kugelkurve F die
Umlaufszahl l, so lâfit sie sich unter Konstanthaltung ihres Flàcheninhaltes
Q stetig in einen l-mal durehlaufenen Kreis verwandeln.

Da der Satz zur Herleitung der spâteren Ergebnisse nicht nôtig ist,
begnûge ich mich, ihn als Vermutung hinzustellen.

§ 3. Der Flàcheninhalt des Hauptnormalenbildes.

Wir betrachten jetzt wiederum eine vierma] stetig differenzierbare und
geschlossene Raumkurve C :

* *(*) (5)

bezogen auf die Bogenlânge s als Parameter und daneben das zugehôrige
Hauptnormalenbild F

n^^rj, (6b)

das wir nun ebenfalls auf seine Bogenlânge

a i\n'\da (38)
0

beziehen :

n n((T) (15)
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Wir ûbernehmen damit wieder die Bezeichnungen von § 2 und fûhren
insbesondere noch folgende GrôBen ein :

L Totale Lange der einmal durchlaufenen Raumkurve C ;

A Totale Lange des — eventuell mehrfach durchlaufenen — entspre-
chenden Hauptnormalenbildes F, so da6 also gilt

L
A J | n' | ds (39)

o

oder — im Sinne von (20) und (16) —

A

r doL= —-j (40)
o

Um den Flàcheninhalt Q des Hauptnormalenbildes zu berechnen,
haben wir die Formeln (35), (32) und (24) resp. (27) zu verwenden und
erhalten sukzessive

Q 2ln — Q) Xy

Die zuletzt angeschriebene Differenz der «pWerte stellt nach § 1 die
totale Drehung dar, die der Darbouxsche Vektor bei einer vollen Durch-
laufung der Raumkurve innerhalb der rektifizierenden Ebene ausfuhrt.
Da nach den fruher getroffenen Voraussetzungen der Darbouxsche Vektor
nie verschwinden soll (co ^ 0), handelt es sich um ein vollkommen
bestimmtes ganzzahliges Multiplum von 2n :

<p(A) -<p(0) 2n7t (42)

In § 1 haben wir fur cp die Bezeichnung ,,Nutationswinkel" eingefuhrt.
Entsprechend treffen wir nun

Définition 3. Dit ,,Nutationszahl" n einer geschlossenen Raumkurve

C ist die relative Anzahl der Volldrehungen, die der Darbouxsche
Vektor bei einer Durchlaufung von C innerhalb der rektifizierenden Ebene

ausfuhrt.
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Durch Einsetzen von (42) in (41) erhalten wir nun den endgûltigen
Ausdruck fur den gesuchten Flâcheninhalt :

2(1 -n)n (43)

und damit

Satz 8. Der Flâcheninhalt Q des Hauptnormalenbildes F einer
geschlossenen Raumkurve C ist ein natûrliches Vielfaches der halben Ober-

flache der Einheitskugel.

Dièses Vielfache ist gleich der Differenz zwischen der Umlaufszahl l des

Hauptnormalenbildes und der Nutationszahl n der Raumkurve.

Verbindet man dièses Ergebnis (43) mit der Ungleichung (37) von
Satz 5, so erhâlt man muhelos als wichtige Folgerung

- l < n < l (44)

und damit

Satz 9, Die Nutationszahl einer geschlossenen Raumkurve ist immer
absolut kleiner als die Umlaufszahl des zugehôrigen Hauptnormalenbildes.

Verbindet man weiter (43) mit (36) von Satz 4, so erhâlt man weiter

Satz 10. Dreht man den Umlaufssinn einer geschlossenen Raumkurve

um, so wechselt ihre Nutationszahl das Vorzeichen.

SchlieBlich ist noch von Bedeutung

Satz 11. Die Nutationszahl n einer geschlossenen Raumkurve und die
Umlaufszahl l des zugehôrigen Hauptnormalenbildes sind invariant gegen-
ûber viermal stetig differenzierbaren Transformationen der Raumkurve.

Beweis. Die Behauptung ùber l folgt leicht aus Satz 6. Die Behaup-
tung iiber n beweist man hierauf mit Hilfe der Gleichung (43) nach dem
Muster des Beweises von Satz 6.

Nun wollen wir den Satz von Jakobi zu Satz 8 in Beziehung setzen.
Damit der Satz von Jakobi, so wie er in der Einleitung formuliert wurde,
richtig ist, sind offenbar zwei Dinge nôtig. Einmal muB nach (43)

2(1 — n)n 2n (45)
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sein. Aufierdem aber muB das Hauptnormalenbild den von ihm bedeckten
Kugelteil schlicht bedecken, damit man den SchluB auf eine Restflâche
gleich 2n machen darf. Dies aber bedeutet, daO

l 1 (45a)

sein muB und die ersté Bedingung verwandelt sich in

n 0 (45b)

Mit dieser Bemerkung ist aber die Allgemeingûltigkeit des Satzes von
Jakobi noch nicht widerlegt. Es ware ja denkbar, daB unter allen môg-
lichen Fâllen (44) nur der Fall (45) wirklich vorkommt. Es ist daher not-
wendig, an konkreten Beispielen zu zeigen, daB aile Fâlle (44) realisiert
werden kônnen. Dies soll im nâchsten Paragraphen geschehen.

§ 4. Ein Beispiel.

Um die Frage zu entscheiden, ob das Hauptnormalenbild jeder ge-
schlossenen Raumkurve die Einheitskugel in zwei flâchengleiche Teile
zerlegt, ergibt sich nun zwangslâufig folgender Weg : Man gibt sich als

Hauptnormalenbilder die einfachsten Kugelkurven vor, die die Einheitskugel

nicht halbieren und kontrolliert, ob die zugehôrigen Raumkurven
sâmtlich ungeschlossen sind.

Wir legen daher die Einheitskugel in den Ursprung eines orthogonalen
Koordinatensystems mit den Basisvektoren

Ci> ^2 y ^3

und geben als Hauptnormalenbild vor die Kurve

008i-^nr ci + sinh^TÂK\ + cosê-t3 (46)n sin ê

d. h. also den Parallelkreis mit der Poldistanz #.
Offenbar ist a die Bogenlânge dieser Kurve, wie es unseren Verab-

redungen von § 2 entspricht. Nun haben wir noch im Sinne der Fest-
setzungen (16) und (17) daselbst die Bogenlânge s der zu bestimmenden
Raumkurve als Funktion von a vorzugeben. Wir treffen zu dem Zweck
die einfachste Annahme, nâmlich

co co(a) konstant. (47)
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Die Losung, d. h. die zugehôrige Raumkurve, ergibt sîch Hun nach der
Tafel (29) durch elementare Integrationen. Das Résultat lautet, nach

Unterdriickung eines additiven konstanten Vektors

(p (a) — a cotg ê
-î-|-»3

j( cotg —j d + sin(o cotg —j c2 j

a> cos -jr

cos3 —

w

jcos

•(".4)coslcrtg--) d + sinj crtg---

ft> COS1?
COS (cr cotg ^) • e3

cr
s (a) —

(48a)

(48)

(48 b)

Die Kurve stellt die Superposition zweier Kreisbewegungen in der
Horizontalebene (d, e2) mit einer vertikalen Cosinusschwingung dar.
Wir fragen nun, ob es Winkel # gibt, fur welche die Kurve sich sehlieBt.
Wie man sich leicht klar macht, sind dazu notwendig und hinreichend
die Bedingungen ^^ 2kxn (49a)

2k2n (49b)

2ks7t (49c)

wobei kx, k2, Jc3 ganze Zahlen ohne gemeinsamen Teiler sind und A die
der Grundlânge L der Raumkurve im Sinne der Gleichungen (39) und
(40) entsprechende Lange des Hauptnormalenbildes ist :

A co-L (50)

Die Zahlen kl9 k2, kB erfûllen infolge der Identitât

die Gleichung h — b
k2 ^ (52)
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Die Grundlange A des Hauptnormalenbildes, von der A ein ganz-
zahliges Multiplum sein muB, ist natûrlich die Lange des Kreises (46)
und somit gegeben durch

oder
A 2nsinê (53)

Infolge der Identitât

erhalten wir aus (49 a) und (49 b)

oder
A (kt + k2)7zsin& (55)

Aus (53) und (55) folgt somit

Nach Définition 1, § 2, ist dièses Verhâltnis die Umlaufszahl des Haupt-
normalenbildes. Da8 sie ganz ist, ersieht man aus (51), denn nach dieser
Gleichung sind kx und k2 entweder gleichzeitig gerade oder gleichzeitig
ungerade.

Wir haben also

-=^P- l ¦ (57)

Die durch Définition 3, § 3 erklàrte Nutationszahl erhalten wir nun nach
(42), wenn wir A fur cr in (48a) einsetzen:

2jzn ==^lcotg# (58)

Nach (49 c) und (51) folgt daher

h ^^ n (59)

Wir kônnen nun die Zahlen kx, k2, k3 durch l und n ausdrucken und
erhalten an SteUe von (49) als vollstândige Bedingung fur die Geschlossen-
heit der Kurve
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A cotg — 2(1 + n) n (60a)

Atg~ 2(l-n)7i (60b)

2n-n (60c)

wo l und n ganze Zahlen ohne gemeinsamen Teiler sind und die erste

wegen 0<#<jz immer positiv ist.
Damit dièse Gleichungen fur vorgegebenes & lôsbar sind, ist notwendig,

daB die zwischen ihren linken Seiten bestehenden Àbhangigkeiten auch
fur die rechten Seiten gelten. Bei der Relation (51) ist dies der Fall. Die
Relation (54) aber ergibt fur die rechten Seiten von (60) die Bedingung

l cos # n

Als Hauptergebnis unserer Analyse erhalten wir somit

Satz 12. Ist das Hauptnormalenbild F einer Baumkurve C ein Parallél-
Icreis mit der Poldistanz $ und sind aufierdem die Bogenlàngen von C und
F projwrtional, so ist die Baumkurve C dann und nur dann geschlossen,

wenn die Poldistanz ê die Relation

cos â -y-

erfûllt, wohei l eine natûrliche und n eine ganze Zahl ist.
Besitzen l und n keinen echten gemeinsamen Teiler, so ist l die Umlaufs-

zahl von F und n die Nutationszahl von C.

Wir kônnen nun leicht die Sâtze 8 und 9 resp. die Beziehungen (43) und
(44) des vorausgehenden Paragraphen bestâtigen. Der sphârische Flâchen-
inhalt des einfach durchlaufenen Parallelkreises ist natûrlich gegeben
durch

QQ 2ti(1 -cos0)

Pur den Flâcheninhalt des Hauptnormalenbildes — also des Z-mal
durchlaufenen Parallelkreises — folgt somit

2n(l — lœsê)
also wegen (61)

Q 2(1 - n)n

131



d. h. (43). Weiter gili wegen 0<&<n

was in Verbindung mit (61) auf

d. h. (44) fùhrt.
Zusammenfassend kann man also feststellen, daB die Raumkurve

durch die Forderung der Geschlossenheit eine Art ,,Quantisierung" er-
fàhrt, die àuBerlich der Quantisierung des Drehimpulses im Magnetfeld
entspricht. Die gemeinsame Wurzel ist natùriich die Kugelsymmetrie.

Die geschlossenen Raumkurven zerfallen im Sinne von Satz 11 in ge-
trennte Klassen, von denen jede einzelne durch ein Zahlenpaar (l, n)
charakterisiert wird. Den ersten Schritt zum Nachweis dafur, daB inner-
halb einer einzelnen Klasse die Raumkurven untereinander stetig zu-
sammenhângen, wûrde dann Satz 7 bilden.

Zum SchluB wollen wir noch kurz die Frage nach den Doppelpunkten
der Kurve (48) erôrtern. Wie man unschwer feststellt, hat die Kurve
dann und nur dann mehrfache Punkte, wenn ihre Horizontalprojektion
mehrfache Punkte hat.

Setzen wir zur Abkûrzung

ê o ê
cos3 —

A r>

wcos— cosm—-

cotg — oc ; tg ~ p

und bezeichnen wir die beiden einem Doppelpunkt entsprechenden Para-
meterwerte mit ax und a2, so erhalten wir aus der Bedingungsgleichung

das System

A[cos(<xa2) — cos^o^)] + B[cos(f}a2) — 008(^0"!)] 0

A [sin(oca2) ~ sin(aal)] + JS[sin(^<72) — sin(/Sor1)] 0

und hieraus ergibt sich durch elementare Rechnung als vollstândige Be-

dingung fur das Aufbreten eines Doppelpunktes das System
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sin

sin

a1 — nk •

__ / i\fc—i / '
v ' \i-cos#;

(62)

wobei & eine ganze Zahl sein muB.
Macht man hier die Variabelntransformation

o Iq sin#

so geht (62) mit Rucksicht auf (61) ûber in

(63)

(64)

Aus diesen Gleichungen kann man entnehmen, daB z. B. im Falle
maximaler Nutationszahl n l — 1 kein Doppelpunkt auftritt. Es
handelt sich dann also uni eine einfache geschlossene Raumkurve, die
beim Grenzûbergang Z->oo, also #->0 und bei der Normierung

co sm • 1

beliebig wenig vom Einheitskreis in der Horizontalebene abweicht. Ge-

nauer gesagt, windet sich die Kurve (l — l)-mal um den Kreis vom

Radius cos3— herum in Form einer genkrecht zur Horizontalebene

plattgedruckten Schraubenlinie.

(Eingegangen den 15. Màrz 1946.)
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