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Uber das Hauptnormalenbild einer Raumkurve

Von W. SCHERRER, Bern

»Das Hauptnormalenbild einer geschlossenen Raumkurve zerlegt die
Einheitskugel in zwei flichengleiche Teile.*

Diese Behauptung findet sich in der Literatur!)2)3), trifft aber nicht
fiir alle geschlossenen Kurven zu. Der zuerst von Jakobi bemerkte Zu-
sammenhang zwischen einer geschlossenen Kurve und ihrem Haupt-
normalenbild wird also durch die obige Formulierung nicht ausreichend
wiedergegeben.

Der Zweck dieser Zeilen ist, die notwendige Korrektur vorzunehmen.
Wie die Dinge in Wirklichkeit liegen, erfihrt man, wenn man sich die
Aufgabe stellt, diejenigen Raumkurven zu bestimmen, welche ein vor-
gegebenes Hauptnormalenbild besitzen. Diese auf den ersten Blick etwas
verwickelt erscheinende Aufgabe ist explicite losbar?). Wir beginnen
daher mit einer vereinfachten Rekapitulation dieser Losung (§ 1), ent-
wickeln anschlieBend einige Eigenschaften von Kugelkurven (§ 2), be-
weisen hierauf den modifizierten Satz von Jakobi (§ 3) und schlieBen
mit einem Beispiel (§ 4).

Die notwendigen Hilfsmittel sind die Grundformeln der Theorie der
Raumkurven und die Formel fiir die geoddtische Kriimmung einer
Flachenkurve. Zur Erleichterung des Lesers stellen wir diese Hilfsmittel
kurz zusammen.

Ist ¥ = x(t) (1)

eine auf einen beliebigen Parameter ¢ bezogene Raumkurve und bezeich-
net man die Ableitungen nach ¢ durch Punkte, so sind die Einheits-
vektoren des begleitenden Dreibeins, die Tangente t, die Hauptnormale n
und die Binormale b gegeben durch
X

t:_ﬂ, (2a)
[z, %1,%] b
HESIIBEN )

1) C. Q. J. Jakobi, 1842, Werke, Bd. 7, S. 39.

%) W. Blaschke, 1924, Vorlesungen tiber Differentialgeometrie, Bd. I, 2. Aufl.,
S. 34.

3) W. Scherrer, 1944, Eine Formel fur die geodéatische Krimmung, Commen-
tarii Math. Helv. 16, 1, S. 101.

‘) W. Rothe, 1937, Differentialgeometrie I, S. 42 (Sammlung Goschen).
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b_

[%,%]

_m . (2¢)

Die Bogenliange s, die Kriimmung » und die Torsion 7 berechnen sich

nach den Formeln

8:“&]dt , (3)
_ I[é,'x], (4a)
EIL
[,%]x (4h)
[, x1*

wobei wir der Bequemlichkeit halber dem Anfangspunkt den Parameter-
wert { = 0 zugeordnet haben.

Verwendet man die Bogenlinge s als Parameter und bezeichnet man
die Ableitungen nach s durch Striche, so erhilt man an Stelle der an-
gegebenen Formeln die Beziehungen

X =x(s) (5)
und
t =%, (6a)
xli
— 6b
m= (6Db)
_ ¥, ¥ do
b=150 (60)
sowie
(x| =1, (7)
x=1%"[, (8a)
x/, xll xlll
— L__{I%,_ (8b)
Hieran schlieBen sich nun die Formeln von Frenet
t = xn (9a)
n = — xt + b (9b)
b = —Tn , (9¢)
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die den Schliissel zur Differentialgeometrie der Raumkurven bilden.
Bekanntlich a8t sich die durch (9) definierte infinitesimale Bewegung
des Dreibeins darstellen als infinitesimale Drehung, deren Achse und
Winkelgeschwindigkeit gegeben sind durch Richtung und Betrag des
Darbouxschen Drehvektors,

dD=7tt+xDb, (10)

der also seinerseits in der durch t und b aufgespannten , rektifizierenden
Ebene“ der Raumkurve liegt.

Ist speziell
x(s) = x{u(s), v(s)] (11)
eine auf der Fliache
¥ = x(u,v) (12)
mit der Normalen
(%4, %,]
=, 5] (13)

verlaufende Kurve, so ist die ,geoddtische Kriimmung* x», der Kurve
in bezug auf die Fliche definiert durch

x, = N2/, x"] . (14)

Das letzte Hilfsmittel, die Integralformel von Bonnet, wollen wir an
der Stelle besprechen, wo wir es benotigen. Diese Integralformel bildet
ndmlich einen kritischen Punkt beim Beweis des Satzes von Jakobi.

§ 1. Bestimmung aller Raumkurven, die ein vorgegebenes Hauptnor-
malenbild besitzen.

Statt das Hauptnormalenbild als Funktion der Bogenlinge s der ge-
suchten Raumkurve vorzugeben, empfiehlt es sich, die folgende dquiva-
lente Aufgabe zu losen :

Vorgegeben wird die Hauptnormale als Funktion ¢hrer Bogenlinge o

n = n(o) (15)

und unabhingig davon die Bogenlidnge s der gesuchten Raumkurve eben-
falls als Funktion von ¢ auf Grund der Festsetzungen

ds 1 (16)
do  w(o) ’
s $(0) =0 . (17)
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w (¢) und n(s) sind also willkiirliche Funktionen, von denen die erste
einmal stetig differenzierbar und nirgends Null, die zweite zweimal stetig
differenzierbar sein muB. Uberdies muB die zweite sinngemiB die
Identitdten

(n@)2r=1, (18)
dn\2
(zi;;) =1 49

erfiillen.
Gesucht werden diejenigen Raumkurven, welche die durch (15) vor-
gegebene Hauptnormale und die durch (16) und (17) vorgegebene Bogen-

linge besitzen.
Um zur Losung zu gelangen, unterwerfen wir die gesuchte Raumkurve

einer Analyse. Vorerst beachten wir, da8 gilt

n,:dn_dn.da
— ds  do ds

Nach (16) und (19) folgt daher
[n']| = w(o) . (20)
Nun wenden wir uns zu den Frenetschen Formeln (9). Aus (9b) und
(20) folgt
w? = x| 12 . (21)
Weiter ergibt sich durch leichte Rechnung
m,n]l=7t+xb=0d - (22)
und
N4+ 62+ n=—%t+1706. (23)
Aus den beiden letzten Gleichungen folgt

m,nIn"=%7v —vs

und hieraus wegen (16), (20) und (21)

3 dr : dx

. g

1, dn’]l d2n _ do do (24)
do | do? x® + 72
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In § 3 werden wir sehen, dall diese Beziehung den Schliisselpunkt zum
Satz von Jakobi bildet. Vorerst gibt sie uns in Verbindung mit (21)
Anla3, durch den Ansatz

% = W COS @ "
T= wsing (25)

den ,,Nutationswinkel
¢ = ¢(0) (26)

der Raumkurve einzufiihren. Er beschreibt die Drehung, die der Dar-
bouxsche Drehvektor b innerhalb der rektifizierenden Ebene ausfiihrt.
Die Achse dieser Drehung ist offenbar n, also senkrecht zu b, weshalb
man passend von einer Nutation sprechen kann. Setzt man (25) in (24)
ein, so folgt

[, 0] o

" do | do? do

und es ergibt sich

o

(o) =00 = [ [ 2] £

‘ (27)
Nun findet man aus (9b) und (22)
f —xn' 4+ 7[n, n’]
N »? + 72
resp.
n dn
s had it
v ®
oder schlieSlich
c an +sing|n itl
dx TP TP s
— . (28)
do ")

Hieraus ergibt sich in Verbindung mit (16), (17) und (27) die Losung
unserer Aufgabe in der Gestalt
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2 dn] d®*n
¢ (o) ——f [“’_“da]‘“doz do
0

! d . d
2(0) = — [ |oos p0) G + sinp0) | Go . m] {25 | 29)
s(0) = —&)%7.

0

Die Verifikation der Losung iiberlassen wir dem Leser. Sie besteht in
dem Nachweis, daBl aus (29) die Gleichungen

t__x/__gli._(_lg_——_ COS —dll——}—sin *—dn
T 4o ds T ¥ do Pldo ™
und

, dt do dt

t'= do ds ~ Pdg @ en

folgen. Dabei ist wohl zu beachten, daB fiir n(c) die Bedingungen (18)
und (19) bestehen.

§ 2. Umlaufszahl und Flicheninhalt einer Kugelkurve.

Nach der Bedingung (18) kann das Hauptnormalenbild aufgefaBt
werden als Kurve
y = (o) = n(o) (30)
auf der Einheitskugel
pi=1. (31)

Bezeichnet man die geoditische Kriimmung dieser Kugelkurve mit x,,,
so liefert die Spezialisierung der Formel (14) den Wert

dn  dn
w=nlg @ | 5

Fiir den Fliacheninhalt einer einfachen, geschlossenen und stetig ge-
kriimmten Kugelkurve gilt bekanntlich die klassische Formel

jxyda::%z——!)‘ (33)
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wobei £ den positiv gerechneten Fldcheninhalt desjenigen Kugelteils
bedeutet, der von der Kurve in positivem Sinne umlaufen wird.
Falls die Kurve Ecken hat, tritt an Stelle von (33) die Formel

¢37d0+26k=2n~!2, (33a)
k

wo 0, denjenigen Winkel absolut kleiner x darstellt, um den sich der
Tangentenvektor bei Durchlaufung der k-ten Ecke dreht.

Mit der Formel (33) sind wir an der kritischen Stelle fiir den Beweis
des Satzes von Jakobi angelangt: Das Hauptnormalenbild einer ge-
schlossenen Raumbkurve ist wohl tmmer geschlossen, braucht aber nicht ein-
fack zu sein. Dies werden wir in § 4 durch Beispiele belegen.

Die Formel (33) ist also nicht ausreichend. Was im Falle einer ge-
schlossenen, stetig gekriimmten, aber nicht einfachen Kurve an ihre
Stelle zu treten hat, wollen wir uns nun anschaulich klar machen. Zu
dem Zweck miissen wir etwas weiter ausholen.

Definition 1. Eine stetige und geschlossene Kugelkurve I' besitzt eine
s Umlaufszahl® 1, falls folgender Prozefl nach | Schritten zu Ende fihrt :

1. Wihle einen beliebigen Anfangspunkt Py auf I' und durchlaufe von
P, aus I', bis zum erstenmal etn schon durchlaufener Punkt P, auftritt.
Nach Eaxtinktion der entstandenen einfachen und geschlossenen Schlinge

N

P1P1:‘Sl

verbleibt exne geschlossene Restkurve Iy, die nach Schliefung der Parameter-
liicke ebenfalls eine stetige Kurve ist.

2. Wibhle auf I', den Punkt P, als Anfangspunkt und fihre die Durch-
laufung werter bis zum erstenmal ein schon durchlaufener Punkt P, von I’
auftritt. Nach Extinktion der entstandenen einfachen und geschlossenen Terl-
schlinge

P/;})z = Sz

von I'; verbleibt eine geschlossene Restkurve I'y von I'y, die wiederum nach
Schliefen der Parameterliicke eine stetige Kurve ist usf.

Der Prozef kann berm l-ten Schritt offenbar nur dann abbrechen, falls fir
den erstmalig auftretenden schon durchlaufenen Punkt P, von I',_; gilt

Pl:PO'
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Das Schema der Aufteilung lautet dann :

=", + 8,
I'=1TI,+8,
I',__2: z-—1+Sz—1

r_,==8,.

Uber diese Umlaufszahl gilt nun

Satz 1. Die Umlaufszahl einer stetigen und geschlossenen Kurve vst un-
abhdingig von Anfangspunkt und Umlaufsinn.

Der Beweis erfolgt durch vollstindige Induktion. Fir I =1, — die
einfache geschlossene Kurve — sind die Behauptungen evident. Bezeich-
nen wir nun abgekiirzt die Umlaufszahl von I" mit U (I'), so folgert man
ohne Schwierigkeit aus der Definition 1, daf

UM =14 Uy,
also
U = Uy + US,) (34)

gilt. Da nun nach Induktionsvoraussetzung Satz 1 fiir die Umlaufszahlen
1,2,...1 — 1, gilt, kann man gestiitzt auf (34) zeigen, dal der Satz auch
fiir [ zutrifft.

Definition 2. Um den Flicheninhalt 2 einer stetigen und geschlossenen
Kugelkurve I' mit der Umlaufszahl | zu definieren, zerlegen wir I" nach
Definition 1 in 1 einfache und geschlossene Schlingen gemdf

r=8,+8+4---+8,
und treffen die Festselzung

Q=0+ 2+ +8,,
wober 2, den Flicheninhalt von S, bedeutet.

Nun wenden wir uns wieder speziell zu den stetig gekriimmten Kugel-
kurven. Hier gilt einmal

Satz 2. Jede stetig gekriommte und geschlossene Kugelkurve I' besitzt
etne endliche Umlaufszahl 1.
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Es geniigt, den indirekt zu fithrenden Beweis in knappen Ziigen an-
zudeuten. Wie oben wollen wir den Parameter der Bogenlinge mit o
bezeichnen. Bedeutet nun A die totale Linge der einmal durchlaufenen
Kurve I', so ist x, als stetige Funktion im abgeschlossenen Bereich
0 <0 <A beschrinkt. Besitzt nun I" keine endliche Umlaufszahl, so
ergibt die in Definition 1 beschriebene Konstruktion eine nicht abbre-
chende Serie von Wiederkehrpunkten. P, P,,...,P;,... . Dieselbe
hat mindestens einen H&aufungspunkt P* auf I'. Wir umgeben P¥*
als Zentrum mit einem Kreis K*, dessen geoditische Kriimmung x;,"
groBer ist als das Maximum von |x,| auf I'. Ist nun P, ein Punkt
unserer Serie, der im Inneren von K * liegt, so betrachten wir dasjenige
Teilstiick der Liange 4, auf der Kurve I', das man erhélt, wenn man auf
I’ von P, aus nach beiden Seiten bis zur Peripherie von K* vorstoft.
Infolge der Kriitmmungsverhéltnisse ist ein derartiger Teilbogen 4, immer
vorhanden und aus denselben Griinden gehoren zu zwei verschiedenen
Teilbogen 4., und 4,, vollstindig getrennte Parameterintervalle. Nun
existiert eine nicht abbrechende Serie von derartigen Teilbogen 4,, die
beliebig nahe an das Zentrum P* von K* herankommen und deren
Lénge daher nicht auf Null herabsinken kann. Damit aber ergibt sich der
Schlu3, da die Linge von I' keine obere Schranke hat, was offensicht-
lich der bekannten Tatsache widerspricht, daf3 eine stetig gekriimmte
geschlossene Kurve eine endliche Liange hat. Satz 2 muf also richtig sein,
w. z. b. w.

Nun sind wir in der Lage, die notwendige Verallgemeinerung der For-
mel (33) vorzunehmen.

Satz 3. Jede stetig gekriimmte und geschlossene Kugelkurve I' besitzt
einen positiven Flicheninhalt Q, der sich berechnet nach der Formel

Prydo—2ix—2, (35)

wo | die Umlaufszahl von I' ist.

Beweis. Da nach Satz 2 die Umlaufszahl ! existiert, konnen wir im
Sinne von Definition 1 die Zerlegung

F=8+8++8,

vornehmen. Fiir den Flicheninhalt der i-ten Schlinge §; erhalten wir
nach (33a)
k

St
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Fir Q2 selbst erhalten wir daher nach Definition 2

!
ﬁx},dc + D (o) =2 — 2.

r

Durch Betrachtung der sukzessive in den einzelnen Wiederkehrpunkten
paarweise auftretenden Ecken erkennt man aber leicht, daB alle Winkel
zusammen sich aufheben :

2(“:5%):0'

i=1 %k

Somit ergibt sich die behauptete Formel (35). Dafl 2 immer positiv
ist, ergibt sich aus Definition 2 zusammen mit den bei (33) und (33a)
fiir die einfachen Kurven getroffenen Festsetzungen, w. z. b. w.

Nun folgt der fiir spidter wichtige

Satz 4. Wird der Umlaufsinn einer stetig gekriimmten und geschlossenen
Kugelkurve I' wmgekehrt, so geht thr Flicheninhalt 2 iber tn den durch die

Relation
Q4+ 0Q =4ln (36)
bestimmten Wert Q .

Beweis. Bezeichnen wir mit x,,, I und 2 die GroBen, in welche x.,, I
und 2 bei Umkehrung des Umlaufsinnes iibergehen, so folgt aus dem
Begriff der geodétischen Kriimmung

Hy = T %y

und aus Satz 1
1=1.

Die der Gleichung (35) entsprechende Formel

Pwydo—2Ta -0

zur Bestimmung von £ verwandelt sich daher in

—'¢1xyd0=2ln——?§ 3

und ihre Addition zu (35) liefert unmittelbar die Behauptung. w. z. b. w.
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Da nach Satz 3 auch 2 positiv ist, ergibt sich als Folgerung aus Satz 4

Satz 5. Der Flicheninhalt Q einer stetig gekriimmiten geschlossenen
Kugelkurve I' geniigt der Ungleichung

0<Q<dlz , (37)
wo | die Umlaufszahl von I ist.

Dafl diese Grenzen exakt sind, erkennt man unmittelbar an l-mal
durchlaufenen Kreisen.
Grundlegend ist natiirlich noch

Satz 6. Die Umlaufszahl l einer stetig gekriimmten geschlossenen Kugel-
kurve st invariant gegeniiber zweimal stetig differenzierbaren Transforma-
tionen der Kurve.

Beweis. Unter dem Einflu einer solchen Transformation &éndern
sich Q und #x, stetig. Zufolge (35) dndert sich daher I nicht, w. z. b. w.
Schlielich erwdhne ich noch den anschaulich plausiblen

Satz 7. Besitzt die stetig gekrivmmte und geschlossene Kugelkurve I' die
Umlaufszahl 1, so lift sie sich unter Konstanthaltung ihres Flicheninhaltes
Q stetig in etmen l-mal durchlaufenen Kreis verwandeln.

Da der Satz zur Herleitung der spédteren Ergebnisse nicht notig ist,
begniige ich mich, ihn als Vermutung hinzustellen.

§ 3. Der Flicheninhalt des Hauptnormalenbildes.

Wir betrachten jetzt wiederum eine viermal stetig differenzierbare und

geschlossene Raumkurve C :
x=x(s) (5)

bezogen auf die Bogenlinge s als Parameter und daneben das zugehorige
Hauptnormalenbild I

x /4

n= l x” " ’ (Gb)
das wir nun ebenfalls auf seine Bogenlinge
o={|n'|ds (38)
0
beziehen :
n=n(o) . (15)
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Wir iibernehmen damit wieder die Bezeichnungen von § 2 und fiihren
insbesondere noch folgende GroBien ein:

L = Totale Linge der einmal durchlaufenen Raumkurve C ;
A = Totale Liange des — eventuell mehrfach durchlaufenen — entspre-
chenden Hauptnormalenbildes I', so daB3 also gilt

L
A={|n'|ds, (39)
0

oder — im Sinne von (20) und (16) —

o do
L:OJ e (40)

Um den Flicheninhalt 2 des Hauptnormalenbildes zu berechnen,
haben wir die Formeln (35), (32) und (24) resp. (27) zu verwenden und

erhalten sukzessive
Q= 2ln — ‘¢ %, do

A
' dn’]l d®n
0

= 2lx — [p(4) — @(0)] .

Die zuletzt angeschriebene Differenz der ¢-Werte stellt nach § 1 die
totale Drehung dar, die der Darbouxsche Vektor bei einer vollen Durch-
laufung der Raumkurve innerhalb der rektifizierenden Ebene ausfiihrt.
Da nach den friiher getroffenen Voraussetzungen der Darbouxsche Vektor
nie verschwinden soll (w # 0), handelt es sich um ein vollkommen
bestimmtes ganzzahliges Multiplum von 2x:

(4) — ¢(0) = 207 . (42)

In § 1 haben wir fiir ¢ die Bezeichnung ,,Nutationswinkel“ eingefiihrt.
Entsprechend treffen wir nun

Definition 3. Die ,,Nutationszahl“ n einer geschlossenen Raum-
kurve C st die relative Anzahl der Volldrehungen, die der Darbouxsche
Vektor bei einer Durchlaufung von C innerhalb der rektifizierenden Ebene
ausfithrt.
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Durch Einsetzen von (42) in (41) erhalten wir nun den endgiiltigen
Ausdruck fiir den gesuchten Flicheninhalt :

Q=2(1—n)n (43)

und damit

Satz 8. Der Flicheninhalt Q des Hauptnormalenbildes I' etner ge-
schlossenen Raumkurve C st etn natiirliches Vielfaches der halben Ober-

fliche der Einheitskugel.

Dieses Vielfache st gleich der Differenz zwischen der Umlaufszahl | des
Hauptnormalenbildes und der Nutationszahl n der Raumkurve.

Verbindet man dieses Ergebnis (43) mit der Ungleichung (37) von
Satz 5, so erhdlt man miihelos als wichtige Folgerung

—l<n<l (44)

und damit

Satz 9. Die Nutationszahl einer geschlossenen Raumkurve ist tmmer
absolut kleiner als die Umlaufszahl des zugehorigen Hauptnormalenbildes.

Verbindet man weiter (43) mit (36) von Satz 4, so erhidlt man weiter

Satz 10. Dreht man den Umlaufssinn einer geschlossenen Raumkurve
um, so wechselt thre Nutationszahl das Vorzeichen.

SchlieBlich ist noch von Bedeutung

Satz 11. Die Nutationszahl n einer geschlossenen Raumkurve und die
Umlaufszahl 1 des zugehirigen Hauptnormalenbildes sind tnvariant gegen-
iber viermal stetig differenzierbaren Transformationen der Raumkurve.

Beweis. Die Behauptung iiber [ folgt leicht aus Satz 6. Die Behaup-
tung iiber n beweist man hierauf mit Hilfe der Gleichung (43) nach dem
Muster des Beweises von Satz 6.

Nun wollen wir den Satz von Jakobi zu Satz 8 in Beziehung setzen.
Damit der Satz von Jakobi, so wie er in der Einleitung formuliert wurde,
richtig ist, sind offenbar zwei Dinge notig. Evnmal mufl nach (43)

2(l —n)m = 2=n (45)
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sein. Aupferdem aber muBl das Hauptnormalenbild den von ihm bedeckten
Kugelteil schlicht bedecken, damit man den Schlul auf eine Restfliche
gleich 27 machen darf. Dies aber bedeutet, dall

b= (45a)
gein muB und die ersté Bedingung verwandelt sich in
n=20. (45b)

Mit dieser Bemerkung ist aber die Allgemeingiiltigkeit des Satzes von
Jakobi noch nicht widerlegt. Es wire ja denkbar, daBl unter allen mog-
lichen Fillen (44) nur der Fall (45) wirklich vorkommt. Es ist daher not-
wendig, an konkreten Beispielen zu zeigen, daf} alle Fille (44) realisiert
werden koénnen. Dies soll im nichsten Paragraphen geschehen.

§ 4. Ein Beispiel.

Um die Frage zu entscheiden, ob das Hauptnormalenbild jeder ge-
schlossenen Raumkurve die Einheitskugel in zwei flichengleiche Teile
zerlegt, ergibt sich nun zwangsldufig folgender Weg : Man gibt sich als
Hauptnormalenbilder die einfachsten Kugelkurven vor, die die Einheits-
kugel nicht halbieren und kontrolliert, ob die zugehérigen Raumkurven
simtlich ungeschlossen sind.

Wir legen daher die Einheitskugel in den Ursprung eines orthogonalen
Koordinatensystems mit den Basisvektoren

e, ¢, €3
und geben als Hauptnormalenbild vor die Kurve

g

o .
cos(sinﬁ) el—f—sun(sima)ezs—l-cosﬁ-e3 , (46)

n=sind-

d. h. also den Parallelkreis mit der Poldistanz .

Offenbar ist o die Bogenlidnge dieser Kurve, wie es unseren Verab-
redungen von § 2 entspricht. Nun haben wir noch im Sinne der Fest-
setzungen (16) und (17) daselbst die Bogenlidnge s der zu bestimmenden
Raumkurve als Funktion von ¢ vorzugeben. Wir treffen zu dem Zweck
die einfachste Annahme, niamlich

o = (o) = konstant. (47)
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Die Losung, d. h. die zugehorige Raumkurve, ergibt sich nun nach der
Tafel (29) durch elementare Integrationen. Das Resultat lautet, nach
Unterdriickung eines additiven konstanten Vektors

p(0) = ocotgd . (48a)
sind —-
x(O') = T T Q4 SCOS(G Cotg 39;) ¢, -I-— Sin(o' cotg}_’_ eaa
? | 2 YA
W COS —
2
cos® —
— g CO8 (‘7 tg “2;) e, + Sin( o tgg—) e; : (48)
w sin —
2
sin? ¢
T oos cos (o cotg 3) - e, .
o
s(o) = - . (48b)

Die Kurve stellt die Superposition zweier Kreishewegungen in der
Horizontalebene (e,, ¢,) mit einer vertikalen Cosinusschwingung dar.
Wir fragen nun, ob es Winkel ¥ gibt, fiir welche die Kurve sich schliet.
Wie man sich leicht klar macht, sind dazu notwendig und hinreichend
die Bedingungen

Acotg—g— = 2k, 7 , (49a)
)

A tg 5 = 2k, (49D)

A cotg 9 = 2k, (49¢)

wobei k,, k,, k, ganze Zahlen ohne gemeinsamen Teiler sind und A die
der Grundlinge L der Raumkurve im Sinne der Gleichungen (39) und
(40) entsprechende Léinge des Hauptnormalenbildes ist :

A=w-L. (50)
Die Zahlen k,, k,, k; erfiillen infolge der Identitit
1 ) )
cotg ¥ = 3 (cotg—2—~ — tg 2') (51)
die Gleichung
ky, = ky 2—10— ‘ (52)
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Die Grundlinge A des Hauptnormalenbildes, von der A ein ganz-
zahliges Multiplum sein muB, ist natiirlich die Linge des Kreises (46)
und somit gegeben durch

A
sindg 2m
oder
A=2xsind . (53)
Infolge der Identitdt
1 1 s s
sind —2 (""tg o T8 “2—) (54)
erhalten wir aus (49a) und (49b)
24
sindg 2(ky + ko) =
oder
A= (k; + ky)msind . (55)
Aus (53) und (55) folgt somit
A _ btk
T - (56)

Nach Definition 1, § 2, ist dieses Verhiltnis die Umlaufszahl des Haupt-
normalenbildes. Daf} sie ganz ist, ersicht man aus (51), denn nach dieser
Gleichung sind %, und k, entweder gleichzeitig gerade oder gleichzeitig

ungerade.

Wir haben also
kot g (57)

Die durch Definition 3, § 3 erklirte Nutationszahl erhalten wir nun nach
(42), wenn wir A fiir ¢ in (48a) einsetzen :

2nn = A cotg ¥ . (58)

Nach (49¢) und (51) folgt daher

—_ kl—.kz —
= 5 = . (59)

ks

Wir kénnen nun die Zahlen k,, k,, k; durch ! und »n ausdricken und
erhalten an Stelle von (49) als vollstindige Bedingung fiir die Geschlossen-
heit der Kurve
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A cotg-g- =2(l+n)n, (60a)

Atg—g—z?..(l——n)n , (60Db)

Acotgd =2n- -7z , (60¢)

wo [ und » ganze Zahlen ohne gemeinsamen Teiler sind und die erste
wegen O0<d¥ <z immer positiv ist.

Damit diese Gleichungen fiir vorgegebenes ¢ l16sbar sind, ist notwendig,
dafl die zwischen ihren linken Seiten bestehenden Abhingigkeiten auch
fiir die rechten Seiten gelten. Bei der Relation (51) ist dies der Fall. Die
Relation (54) aber ergibt fiir die rechten Seiten von (60) die Bedingung

lcosd =n .

Als Hauptergebnis unserer Analyse erhalten wir somit

Satz 12. Ist das Hauptnormalenbild I' esner Raumkurve C ein Parallel-
kreis mit der Poldistanz & und sind auferdem die Bogenlingen von C und
I’ proportional, so ist die Raumkurve C dann und nur dann geschlossen,
wenn die Poldistang & die Relation

cos ¥ = 1;

erfullt, wober 1 eine natirliche und n eine ganze Zahl ist.
Besitzen | und n keinen echten gemeinsamen Teiler, so ist I die Umlaufs-
zahl von I' und n die Nutationszahl von C.

Wir konnen nun leicht die Sétze 8 und 9 resp. die Beziehungen (43) und
(44) des vorausgehenden Paragraphen bestdtigen. Der sphérische Flidchen-
inhalt des einfach durchlaufenen Parallelkreises ist natiirlich gegeben
durch

2, =2a(1 —cos?) .

Fiir den Flicheninhalt des Hauptnormalenbildes — also des I-mal durch-
laufenen Parallelkreises — folgt somit

2 =10,
= 2x( —lcosd) ,
also wegen (61)
Q=2(—n)n ,
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d. h. (43). Weiter gilt wegen 0<d<n

— l<ecosd <l ,

b

was in Verbindung mit (61) auf

—l<n<l,
d. h. (44) fiihrt.

Zusammenfassend kann man also feststellen, dal die Raumkurve
durch die Forderung der Geschlossenheit eine Art ,,Quantisierung“ er-
fihrt, die suBerlich der Quantisierung des Drehimpulses im Magnetfeld
entspricht. Die gemeinsame Wurzel ist natiirlich die Kugelsymmetrie.

Die geschlossenen Raumkurven zerfallen im Sinne von Satz 11 in ge-
trennte Klassen, von denen jede einzelne durch ein Zahlenpaar (I, »)
charakterisiert wird. Den ersten Schritt zum Nachweis dafiir, daB3 inner-
halb einer einzelnen Klasse die Raumkurven untereinander stetig zu-
sammenhingen, wiirde dann Satz 7 bilden.

Zum SchluB8 wollen wir noch kurz die Frage nach den Doppelpunkten
der Kurve (48) erortern. Wie man unschwer feststellt, hat die Kurve
dann und nur dann mehrfache Punkte, wenn ihre Horizontalprojektion
mehrfache Punkte hat.

Setzen wir zur Abkiirzung

sin"'—g— cos3-§~
c ?«:A ; wsin—:B

w 032 2

) 9
cotg 5 =& ; g5 =48,

und bezeichnen wir die beiden einem Doppelpunkt entsprechenden Para-
meterwerte mit ¢, und o,, so erhalten wir aus der Bedingungsgleichung

x(0y) — x(0y) = 0
das System

A [cos(xo,) — cos(xoy)] + B[cos(Bay) — cos(fay)] = 0
A [sin(x0;) — sin(xe,)] + B[sin(fa,) — sin(fo))] =0,

und hieraus ergibt sich durch elementare Rechnung als vollstindige Be-
dingung fiir das Auftreten eines Doppelpunktes das System
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o, + oy =mk-tgd

sin (u cot m)
2 €3 _, (1 + cosd)\2 (62)
- (_ l)k ) I L et
sin (2= 91 ¢ K 1 — cos ¥
2 By

wobel k eine ganze Zahl sein mufl.
Macht man hier die Variabelntransformation

g = lpsind (63)

so geht (62) mit Riicksicht auf (61) iber in

(e t+o)n=m=n-k
sinl—g—z—;lgi(l-{—n)]

sin[—g?%—ei (I — n]

— (= 1 (l + n)2 (64)

l—n

Aus diesen Gleichungen kann man entnehmen, dafl z. B. im Falle
maximaler Nutationszahl n =1 — 1 kein Doppelpunkt auftritt. Es
handelt sich dann also um eine einfache geschlossene Raumkurve, die
beim Grenziibergang l—>oco, also #->0 und bei der Normierung

in 2 — 1
wsm2

beliebig wenig vom Einheitskreis in der Horizontalebene abweicht. Ge-
nauer gesagt, windet sich die Kurve (! — 1)-mal um den Kreis vom
Radius cosﬁ*—;Z herum in Form einer senkrecht zur Horizontalebene
plattgedriickten Schraubenlinie.

(Eingegangen den 15. Mirz 1946.)
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