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Zur Defektrelation

ganzer Funktionen endlieher Ordnung

Von A. Pfluger, Zurich

1. Die Defektrelation in der Théorie der meromorphen Funktionen
besagt, daB eine in | z \ <oo meromorphe Funktion nur abzâhlbar viele
defekte Werte haben kann und daB die Summe ihrer Defekte hôchstens
gleich 2 ist1). Kann man dièse Aussage verschârfen, wenn die
meromorphe Funktion von endlieher Ordnung ist Hat eventuell die Anzahl
der defekten Werte eine endliche Schranke, die nur von der Ordnung
abhàngig ist Fur beliebige meromorphe Funktionen ist dies sicher nicht
der Fall2). Dagegen ist die Frage fur ganze Funktionen noch nicht ent-
schieden. Die Tatsache, daB eine ganze Funktion von endlieher Ordnung q
hoehstens 2q verschiedene endliche Zielwerte besitzt3), lâBt die Existenz
einer solchen Schranke vermuten. Denn bis jetzt sind keine defekten
Werte bekannt, die nicht zugleich Zielwerte wâren.

Zu dieser Frage mochte ich im folgenden einen kleinen Beitrag leisten,
indem ich solche ganze Funktionen von endlieher Ordnung q untersuche,
deren Defektsumme den Betrag 2 erreicht 4). Es lâBt sich in diesem
Falle beweisen, daB es hoehstens q + 1 defekte Werte (einschlieBlich oo)

gibt. Die Ordnung ist uberdies positiv ganz und die Defekte sind (ganze)

Vielfache von — Ich kann aber nicht zeigen, daB jeder defekte Wert

zugleich ein Zielwert ist.
2. Es sei w(z) eine ganze Funktion. Wir bezeichnen mit n(r, a) die

Anzahl ihrer a-Stellen in | z | < r, setzen

r>\ (2.1)

x) vgl. die Ongmalarbeit ,,Zur Théorie der meromorphen Funktionen" in den
Acta math. 46 (1925) von R. Nevanhnna bzw. sem Buch ,,Le théorème de Picard-
Borel et la théorie des fonctions méromorphes". Paris 1929. Letzteres wird un
folgenden mit R. N. bezeichnet. Zur Defektrelation vgl. R. N. p. 80.

2) R. N. p. 93.
3) L. Ahlfors, tJber die asymptotischen Werte der meromorphen Funktionen

endheher Ordnung. Acta Acad. Aboensis. Math, et Phys. 6 (1932).
4) Dafi ich gerade diesen extremen Fall betrachte, wird abgesehen vom Erfolgsstand-

punkt auch durch die folgende ,,Idee" motiviert: Wenn schon bei maximaler Defektsumme

2 die Zahl der defekten Werte durch die Ordnung beschrankt ist, so wird dies a
fortiori bei kleinerer Defektsumme zu erwarten sein.
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und

m(r, a)

2,71

1 C +

^ / log

w(rei(p) — a

d(p

d(p fur a ^ oo

fur a oo

T(r) m(r,oo)

ist die Charakteristik der ganzen Funktion w(z)5).

(2.2)

(2.3)

heiBt der Defekt des Wertes a. Nach dem ersten Hauptsatz gilt auch

ô(a) liminf
r->oo J- \f

a)
(2.4)

und daher 0 < ô (a) ^ 1. Ist d (a) > 0, so heiBt a ein defekter Wert. Die
ganze Funktion w(z) hat oo als defekten Wert mit dem maximalen
Defekt 1. Nach der Defektrelation ist die Menge der defekten Werte abzàhl-
bar und die Summe ihrerDefekte ist hôchstens gleich 2.DaB die Defekt-
summe den Wert 2 erreicht, ist ein Sonderfall. Denn es gilt die schârfere
Relation

2
(a)

(2.5)

links wird uber aile defekten Werte summiert, n^r) bezeichnet die Null-
stellenzahl der Ableitung w'(z) in \z \ ^ r und es ist

(2.1a)

Gilt fur eine Zahl A bei hinreichend groBem r die Ungleichung T (r) < r\
so ist w(z) von endlicher Ordnung. Die untere Grenze q dieser Zahlen X

ist die Ordnung der Funktion w(z).
Der zu beweisende Satz lautet nun

Satz A. Ist die ganze Funktion w(z) von endlicher Ordnung q und
erreicht die Summe aller Defekte den Wert 2, so ist die Ordnung notwendig

5) Bei meromorphen Funktionen ist noch das Glied N(r, oo) hinzuzufûgen.
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positiv ganz. DieDefekte sind (ganze) Vielfache von — Es gibt also hôch-

stens g + 1 verschiedene defekte Werte.

3. Wir zeigen zunâchst, daB die Ordnung positiv ganz ist. Ein Spezial-
fall ist bekannt : Ganze Funktionen endlicher Ordnung mit einem Borel-
sehen Ausnahmewert (^oo) sind von positiver ganzzahliger Ordnung.
Dasselbe gilt auch, wenn ein endlicher Wert den maximalen Defekt 1

erreicht. Dies stutzt sich zur Hauptsache auf folgenden Satz6) : Ist eine

nichtganzeZahl q>0 gegeben, so existiert dazu eine Zahl x(q)>0, soda/3
fur jede meromorphe Funktion der Ordnung q

r N(r,a) + N{r,b) /Q 1Xhm sup — -Jjtt-1 > *fe) (3 • 1)

fu? jedes Zahlenpaar a, b (einschlie/ilich oo) mit a ^ 6. Im Falle ganzer
Funktionen (6 =oo) kann (3.1) durch die etwas schârfere Ungleichung
(log Jf(r)^r(r)) ^^ (3'2)

ersetzt werden1). Hat also a ^ oo den Defekt 1, so ist q ganz, der Fall
q 0 nicht ausgeschlossen.Dies kann aber nicht eintreten, da eine ganze
Funktion der Ordnung £<^ keine endlichen defekten Werte besitzt8).
Daraus folgt zugleich, daB eine ganze Funktion mit der Defektsumme 2

notwendig von der Ordnung q ^ ^ ist. Wir brauchen uns also furderhin
um den Fall q 0 nicht mehr zu kummern.

Es sei nun die Defektsumme gleich 2. Die Ungleichung (2.5) liefert
N (r)dann lim inf *

; 0. Aber daraus kann fur unsere Zwecke nichts
r^oo T(r)

gewonnen werden. Der zweite Hauptsatz ergibt jedoch fur endliche Ord-

nungen eine schârfere Beziehung als (2.5). Sind nâmlich al9 a2,..., ap
(q > 3) voneinander verschiedene Werte (einschlieBlich oo), so ist

1 m(r,av)<2T(r) - N^r) + S(r)
V 1

und zufolge der endlichen Ordnung fur aile r>0

S(r)<0(logr)
6) R. N. p. 51.
7) Dies ergibt sich aus dem Beweis des vorangehenden Satzes (vgl. Note 6 hievor).

Das x(q) in (3.2) kann kleiner sein als m (3.1), ist aber noch positiv.
8) R. N. p. 55.
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Daraus folgt nun fur positive Ordnung [log r o (T(r))]
g

2,
fur jedes q > 3 und somit wegen (2.4)

^<2 (3.3)
(a)

wenn liber aile defekten Werte summiert wird. Dièse Summe erreicht
aber nach Voraussetzung den Wert 2 und es ist daher

Nun ist log M(r) ^ T(r). Setzen wir M^r) — Max \ wr{z) \, so folgt

durch Intégration sofort M (r) — | w(0) \ ^ rM^r) und somit

log M1(r)> [1 +o(l)] log M (r) (3.5)
Es ist also

Ein Vergleich mit (3.2) zeigt, daB die Ordnung von wf{z) und damit von
w(z) ganzzahlig und gemâfî einer friihern Bemerkung auch positiv sein
mufi. Damit ist der leichte Teil unserer Behauptung bewiesen. Die De-
fektsumme einer ganzen Funktion von nicht ganzer Ordnung ist also
immer < 2. Etwas schàrfer gilt noch der folgende Satz : Ist eine nicht-
ganze Zahl q>0 gegeben, so existiert dazu eineZahl x(q}>0, so dafi die
Defektsumme jeder ganzen Funktion der Ordnung g die Ungleichung

E ô(a)^2-x(g)
(a)

erfuïU. Denn Funktion und Ableitung haben dieselbe Ordnung. Ailes
iibrige ergibt sich aus (3.2), (3.3) und (3.5).

9) Hieraus kann ich aber nicht etwa schliefien, dafi die Nullstellen der Ableitung w'
(auf welche sich Nt bezieht) den Defekt 1 besitzen. Denn T(r) ist die Charakteristik von
w und es ist mir nicht bekannt, ob die Charakteristiken von w und w' asymptotisch gleich
sind.
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4. Um die tieferwiegende Behauptung des Satzes A zu beweisen,
werden wir ausgiebig von (3.4) Gebrauch machen. (3.4) besagt, dafi
die Ableitung w' verhàltnismâBig wenige Nullstellen besitzt. Der
Prototyp fur dièse Situation ist die Funktion

w (z) J e?dÇ (4.1)
o

von der positiven Ordnung g, ein bekanntes Beispiel zur Defektrela-
tion10). Hier ist

log | wr(rei<p) | rQ cos qy (4.2)
In den Winkelrâumen

W'v: |ç,_2rf|<g, v 0,1,...,q-1
ist cos q <p positiv, dagegen negativ in den Winkelrâumen

W'v: |9,-(2V+I)f l<g, v 0,l,...,e-l
Es gilt nun innerhalb der

K
w: r iqf oo Zielwert oo

«„ endliche Zielwerte 11)

Also nur die Winkelrâume TF^ liefern wesentliche Beitràge zur Charakte-
ristik T(r). Fiir die Defekte der a0, ax,..., aç_x fallen dagegen nur die
W"v in Betracht. Jeder Winkelraum W"v liefert zum Defekt ô(av) einen

Beitrag von der Hôhe i. Die Defektsumme erreicht also den Wert 2 und
es sind genau q + 1 verschiedene defekte Werte vorhanden, oo mit dem
Defekt 1, die ûbrigen je mit dem Defekt - 12).

Die betrachtete Funktion (4.1) ist das Standardbeispiel fiir unsern
Satz A sowohl in bezug auf die Behauptung als auch im Hinblick auf die
Beweismethode. Es wird fiir das Gelingen des Beweises ausschlaggebend
sein, daB wir aus (3.4) eine hinreiehend genaue Kenntnis iiber das asym-
ptotische Verhalten der Ableitung wr gewinnen kônnen, etwa ein Ana-
logon zu (4.2).

10) R. N. p. 90.
oo

u) Es ist av e Q J e dr v 0, 1, 2,..., q — 1

12) Hier ist jeder defekte Wert zugleich Zielwert.
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Zur Charakterisierung dièses asymptotischen Verhaltens ist die Funk-
tion rQ fur unsere Zwecke zu grob. Es ist mir auch nicht gelungen, die
Charakteristik T(r) als Vergleichsfunktion heranzuziehen13). Sie ent-
behrt gewisse Eigenschaften, die bei rQ trivialerweise erfùllt sind. Hin-
reichend genaue und zugleich maniable Vergleichsfunktionen erhalten
wir mit Hilfe der prâzisen Wachstumsordnung1*). Als solche bezeichnen
wir eine Funktion q(t), die im Intervall (0,oo) positiv ist, Rechts- und
Linksableitungen besitzt, die stùckweise ûbereinstimmen, und welche
den Bedingungen

UmQ(r) q>0 \\mqf{r)rlogr 0 (4.3)

genûgt. Wir nennen
V(r) rQ(r)

eine Vergleichsfunktion. Fur hinreiehend groBe r ist V(r) monoton wach-
send und

^y (r^cx>) (4.4)

fur k~xr ^t ^. k r und ein beliebiges, aber festes k > 1. Dies ergibt sich
leicht aus (4.3).

Von nun an bezeichne zv(z) immer eine ganze Funktion, die den Vor-
aussetzungen des Satzes A genugt. Zu w existiert eine Funktion V(r) mit

(4.5)

Es ist dann w von der Ordnung q, der prâzisen Ordnung g(r) und V(r)
heiBt eine Vergleichsfunktion zu w15). Aus (3.4), (4.5), (2.1a) und

(4.4) folgt dann

nt(r) o(V(r)) (4.6)

Zur spâtern Verwendung sei noch bemerkt, daB V(r) zugleich fur wr

eine Vergleichsfunktion ist und daB insbesondere

13) Dies wàre sehr vorteilhaft; es konnte dann gezeigt werden, daû unter den Voraus-
setzungen des Satzes A jeder defekte Wert zugleich Zielwert ist.

14) vgl. G. Valiron, Lectures on the gênerai theory of intégral functions.
Toulouse 1923, p. 46.

15) G. Valiron hat bewiesen, daB zu jeder ganzen Funktion positiver endlicher Ordnung
eine prâzise Ordnung gehôrt. Vgl. Note 14 hievor.
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1 • (4.7)

Demi aus der Cauchyschen Integralformel fur wf (aus w) folgt Mx(r)
< M(r+l) und daraus wegen (4.4) und (4.5) logMx(r)<[l-\-o(l)]V(r).
Der Rest ergibt sich aus (3.5).

5. Das asymptotische Verhalten von w' und w. Den notigen AufschluB
uber das Verhalten von w' gewinnen wir aus dem naehfolgenden Satz B,
der in einer fruhern Arbeit bewiesen wurde und von dem wir nur emen
besonders einfachen Spezialfall benutzen werden16).

Satz B. Die Ordnung der ganzen Funktion G(z) sei positiv und ganz.
Die (von null verschiedenen) Nullstellen zx, z2,... seien mefibar bezuglich
einem V(r) (von der Ordnung g) und N((p) sei ihre Majifunktion. Dann ist

h(cp) + 91 Cirai \ + -j~>
\e%w + e(r, q>)

V(r)
wobei

2^
h(<p) =- — J 6 sin g 6 • dN(<p + 6) C f

0

+ £ zv~~ô (Geschlecht g)

\~Q (Geschleeht g ~ 1)

gesetzt wird und fur r ->oo die Ungleichungen

s(r,q>)<o(l) gleichmajiig im ganzen Intervall 0 < 99 ^ 2n und
s (r, <p) >o (1) auf Teilmengen, die von r abhangen, deren Mafi aber beliebig
nahe bei 2n liegt, gùltig sind.

Es sei nun G(z) — wf (z) und V(r) die zu w gehorige Vergleichsfunk-
tion. Wegen (4.6) ist N(q>) 0 und daher auch h(cp) ~ 0 und 0 0.
Wir setzen

P(r) -y^1 | P(r) | =A(r) arg P(r) <x(r) (5.1)

oc(r)) (5.2)

16) Ùber ganze Funktionen ganzer Ordnung. Comm. Math Helv. 18 (1946),
p. 177 — 203; insbesondere Satz 3, p. 197. Der oben benutzte Spezialfall konnte auf we-
nigen Seiten bewiesen werden. Den Spezialfall g(r) konst. bewies M.L Cartwright
(Proc. London Math. Soc. (2) 33 (1932), p. 209—224).

Q7
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folgt ans Satz B

log | w'{ré*) | < (H(r, q>) + e(r)) V(r) Km e(r) 0 (5.3)

und log Mx(r) (A (r) + o(l))V(r). Letzteres ergibt in Verbindung mit
(4.7) limsup-4(r)= 1. Die Schwankungen von H(r,<p) werden bei

festem y und r->oo sehr klein. Um dies zu zeigen, wâhlen wir ein festes

k>l und r <; t ^ kr. Dann ist wegen (5.1) und (5.2)

H(t, H(r, V) \=

V(t)

: | P(t) - P(r) |

T(t) - T(r)

aus der Définition von T(r)

(Satz B) und aus (4.6) folgt T(t) - T(r) —
Q

P{t) - P(r) \
r

und dalier

(r) + — I =o(l). Es istalso \H(t,<p) — H(r,<p) \

<rj(r, k) fur k~rr ^ t^kr mit lim r)(r, k) 0 bei beliebigem, aber

festem A > 0. SchlieBlich kann man durch kleine Abânderungen von
A (r), ohne dadurch (5.3) zu stôren, immer erreichen, daB fur r > 0
auch A(r)>0 ist. Zusammenfassend erhalten wir

Lemma 1. Es ist

log | w'ire**) | < (H(r, y) + fi(r)) F(r) lim e(r) 0

i H(r ,(p) den folgenden S Bedingungen genugt

2. lim sup -4 (r) 1

r-> oo

3. \H(t,(p)—H(r,<p)\<ri(r,k) fur
lim rj(r,k) 0 bei festem k>l.

mit

Aus dem vorangehenden Lemma ergibt sich sofort eine Majorante
fur | w |. Durch Intégration folgt zunàchst fur ein positives X < 1
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| u>(re**) | < M(Àr) + J| w'tye**) \ dt (5.4)

Bei festem A ergeben (4.4) und (4.5)

7) (5.5)

Anderseits ist V(r) monoton wachsend fur hinreichend groBe r und daher
nach Lemma 1 (insbesondere Bedingung 3 mit k A"1)

log | wf(te^)\<(H(r, <p) + rj(r, A"1) + e(r, X))V(r) (5.6)

fur Ar < t ^ r. Nun lassen wir mit r auch fc A"1 hinreichend lang-
sam gegen oo gehen, so da8 noch rX~>oo7 aber r](r, A"1) ->0 und
e(r5 A)->0 gehen. Beachten wir ferner, da8 log r o(F(r)), so wird
wegen (5.5) und (5.6) aus (5.4)

I w(reiq>) I <et(r^F(r) ' g^
oder

r>0

Daraus folgt

Lemma 2. Fur jede Konstante a gilt

log | w(rei<p) — a \ < (H(r, 99) + e(r, a)) V(r) mit Km s(r, a) 0
/-> 00

6. Berechnung der Charakteristik.

Hiefur bietet Lemma 2 einen Ansatz. Wir benôtigen aber noch eine

Abschàtzung in der andern Richtung. Aus (4.6) und der Jensemchen
Formel folgt

In
log I wr{rei(p) | dcp o(V(r))

In

0

und daraus inVerbindung mit Lemma 1

J log | w'(re») | dq> [ J H(r, cp) dcp + o(l)] V(r) r>0 (6.1)
<Pi <Pt

17) e{r) und f(r,A) bezeichnen im folgenden immer Grôfien, die nur von r bzw. r und A

abhàngen und die mit r ¦->? oo (bei festem A) gegen Null streben. Neu auftretende Grôfîen
dieser Art werden nicht durch besondere Bezeichnung von den alten unterscbieden.
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fur 2 beliebige Winkel cpt und <p2. Der Satz liber die logarithmische Ab-
leitung (2. Hauptsatz) speziell bei endlicher Ordnung18) liefert bei be-

liebiger Konstante a die Abschâtzung

27T

dcp< O(logr)
w(rei<p) — a

Hieraus folgt wegen (6.1) und log
w — a

log | w' | — log | w — a |

Lemma 3. Fur jede Konstante a und fur irgend 2 Winkel (px und (p2

<P2 <P2

J log | w{rei<p) — a \ dy> [ J H{r, <p) dcp — o(l)] V(r)

Nun zerlegen wir das Intervall 0 ^ cp < 2n in Teilintervalle oder,
was fiir unsere Zwecke geeigneter ist, wir zerlegen die Peripherie des

Einheitskreises (z ei(p) in Teilbogen. Die Zerlegung ist von r abhàngig.
Zufolge (5.2) gibt es nâmlich fiir jedes r genau q getrennte Kreisbogen

oc[, ocr2 <Xq, je von der Lange - auf welehen H(r, y) ^ 0, und

analog q Kreisbogen ft[, Pl<- • -, PI > auf denen H(r,<p) ^0 ist. Die
Reihenfolge der Bogen oJv bzw. prv spielt noeh keine Rolle.

GemâB Lemma 2 gilt

+
log | w(rei{P) — a \ =o(V(r)) (6.2)

auf den Bogen ocrv. Dièse liefern also keinen wesentliehen Beitrag zur
Charakteristik. Anderseits folgt aus Lemma 2 und Lemma 3 fur die
Bogen PI

Jlog | w(r ei<f>) — a \ dcp Jlog | w(r el<p) — a \ dy + o(V{r))

(6.3)

Dies liefert zunâchst

18) R. N. p. 63.
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J log | w(rë*) -a\dy o(V(r))\ r>0, v=1,2,...,q (6.4)
K

Wird in (6.3) a 0 gesetzt und liber aile Bogen j8J summiert, so folgt in
Verbindung mit (2.3)

T{r) \^^ + o(l)]F(r) r>0 (6.5)

7. Berechnung der Defekte.

oo hat den Defekt 1. Wenn nicht ausdriicklich das Gegenteil bemerkt
wird, sollen sich im folgenden die Defekte immer nur auf endliche Werte
beziehen. GemaB der Bedingung 2 des Lemmas 1 wâhlen wir eine feste

Folge 0<fj <r2<- • •, rn->oo, auf der A(r) grôBer ist als eine feste

positive Zahl, z. B.

A{rn)>\, »=1,2,... (7.1)

Die zu rn gehôrigen Bogen «„ und (}v bezeichnen wir jetzt mit a'™' und
fi? (v=- 1,2,..., q). Nun ist nach (7.1), (6.5) und (6.4)

>>. ^=l,2,...,e. (7.2)

Es wird sich nachtràglich herausstellen, worauf (7.2) schon hinweist,
da6 nàmlich die Bogen frf fur die Berechnung der Defekte belanglos
sind. Setzen wir

LI ^ \ k \f ; : 1 ; '•; ::e: <7 •L

so ist nach (2.2), (2.4), und (7.2)

liminf V Dnv > à (a) (7.4)
n->- oo v 1

Zur gewâhlten Folge {rn} geben wir nun ein Verfahren an, das zu
jedem defekten Wert a eindeutig eine ganze Zahl k(l^k^g) und fur
jedes n eindeutig eine Gruppe von k Bogen oc^ zuordnet. Wir nennen
k die Multiplizitàt des defekten Wertes a und bezeichnen die zu a und n
gehôrige Gruppe der a{1^ mit A\, An2,..., A\ Es wird sich zeigen, daB
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sowohl die Multiplizitàt k wie auch die Folge der Gruppen (A\, A\,...,
Al) zum Defekt des Wertes a in engster Beziehung steht.

Nun zur Konstruktion. Es sei a ein defekter Wert, also ô (a) > 0. Fiir
jedes n ordnen wir die D™ der GrôBe naeh an — das grôBte an erster
Stelle — und numerieren um, wenn es nôtig ist auch die Bogen ofi?.
Es gelte also fur jedes n

J<n) (n)
(X 2 j • • • j Oit q

(7.5)

wobei entspreehende Elemente in gleieher Kolonne stehen. Wir setzen
lim inf D" dv und erhalten

n->oo

dx >d2 >">dQ ^0 (7.6)

Wegen (7.4) ist sicher d1>0. Die Nummer der letzten nicht verschwin-
denden Zahl in der Folge (7.6) bezeichnen wir mit k(dk>0, dk+1 0).
Dies ist die Multiplizitàt des defekten Wertes a (oc^, ct^,..., ofi£) ist
die zu a und n gehôrige Gruppe, die wir mit (A\, A\,..., AI) bezeichnet
haben.

GemâB (7.3), (7.5), (7.6), (6.5), (6.2) und (7.1) gilt nun offenbar fur
*=l,2,...,fc
J log | w(rne**) - a | d<p<-{2ndk - o(l))T(rn)<-(dk - o(l))F(rJ
A*

dk>0 (7.7)

Daraus folgt, daB innerhalb der Bogen Anv w(rnei<f>) gegen a strebt fur
n->oo; insbesondere gilt

limw(rneiv{kV) a v=l,2,...,fc, (7.8)

wenn wir mit ç)^5 die Mitte des Bogens A" bezeiehnen. Zufolge Lemma 3

ist nâmlich fur jedes <p und rj>0

log | w(rei<p) — a | d<p> — f](A(r) + e(r))V(r)

A" bezeichne den Teilbogen

I v - <p{V

dann wird aus (7.7)
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J' log | w(rné*) - a | d<p< -Qdt - o(l))F(rn)

Also existiert in 4J ein 0™ mit

limw{rnei9v) a v 1, 2,..., À? (7.9)
n->- oo

Anderseits ist

w(rei<p) — w(rei0) i $w'(rei9)rei9d0
0

und daher gemâB Lemma 1 und (7.1) auf Anv

\w(rne**) - w{rné<) \ < ^ ¦ r ¦ e<~ %d* +

Da die rechte Seite gegen Null strebt, folgt aus (7.9) die Behauptung (7.8).
Wir sehen also, daB zu jedem defekten Wert a und jedem n eine Grappe

(A™, A\,..., ^4]J) der Bogen oFp existiert, auf deren Mitten ç?(^ die Be-
ziehung (7.8) erfullt ist. Es sei nun b irgendein "knderer defekter Wert
(6^ a), l seine Multiplizitât und (El, El,..., B\) die zu b und n
gehôrige Gruppe der oty. Dann haben die beiden Gruppen (A™, A™,...,
A^) und (E^, B%,..., JS^) fur aile w von einem gewissen n0 an keinen
Bogen gemeinsam. Denn sonst miiBte a b sein, weil fur die Mitten der
E% eine zu (7.8) entsprechende Beziehung mit b an Stelle von a gilt. Es
seien nun

ax a2 a3 die defekten Werte,
kx k2 k3 ihre Multiplizitâten und

{Al)l9 (Al)2, (Aï)3, die zugehôrigen Gruppen der ot™.

Irgend zwei Gruppen (^*)t und (^4y); (i ^ j) haben fur aile hinreichend
groBen n kein gemeinsames Elément. Die Anzahl der oc^ ist aber fur jedes
n gleich g und deshalb die Anzahl der defekten Werte (7^00) hôchstens
gleich q, Bezeichnet p ihre genaue Anzahl, so gilt

Weiter erfullt jeder defekte Wert a mit der Multiplizitât k die Un-
gleichung
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Denn es folgt aus Lemma 3 und (6.2)

[- f B{ru,v)d9+o(l)\viru)

und somit aus (7.3) wegen (6.5) und (7.1)

1

o

v=1,2,...,q. (7.12)
n->oo Q

Wir durfen annehmen, daB k<g ist. Denn fur Je g folgt (7 11)
unmittelbar aus (7.12) und (7.4). Dann existiert eine Teilfolge {wj,
so daB lim DnJ= 0 fur v — k + 1 und somit wegen (7.5) auch fur

v z= h -f 2, k + 3,..., q Es ist also

(3(a)

Allein aus der Bedingung (4.6) (und endliche Ordnung) haben wir
zeigen kônnen, daB fur aile defekten Werte ihre Multiplizitâten und
Defekte den Ungleichungen (7.10) und (7.11) genugen. Nun benutzen
wir noch einmal, daB die Summe aller Defekte den Wert 2 erreicht bzw.
die Defektsumme aller a^oo gleich 1 ist. Dies liefert nâmlich in Ver-
bindung mit (7.10) und (7.11) die Bedingung

p

c/ \ / *i T *2 T " ' T *j / i

t l
welche nur moglich ist, wenn sowohl

g
als auch

«t'i "f A/2 I I ftp — (J!

ist. Damit ist Satz A bewiesen.

(Eingegangen den 12. Marz 1946.)
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