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Zur Defektrelation
ganzer Funktionen endlicher Ordnung

Von A. PFLUGER, Ziirich

1. Die Defektrelation in der Theorie der meromorphen Funktionen
besagt, dafl eine in | z | <co meromorphe Funktion nur abzihlbar viele
defekte Werte haben kann und daBl die Summe ihrer Defekte hochstens
gleich 2 ist!). Kann man diese Aussage verschirfen, wenn die mero-
morphe Funktion von endlicher Ordnung ist? Hat eventuell die Anzahl
der defekten Werte eine endliche Schranke, die nur von der Ordnung
abhéngig ist? Fiir beliebige meromorphe Funktionen ist dies sicher nicht
der Fall 2). Dagegen ist die Frage fiir ganze Funktionen noch nicht ent-
schieden. Die Tatsache, daf} eine ganze Funktion von endlicher Ordnung p
hochstens 2p verschiedene endliche Zielwerte besitzt 3), it die Existenz
einer solchen Schranke vermuten. Denn bis jetzt sind keine defekten
Werte bekannt, die nicht zugleich Zielwerte wéren.

Zu dieser Frage mochte ich im folgenden einen kleinen Beitrag leisten,
indem ich solche ganze Funktionen von endlicher Ordnung ¢ untersuche,
deren Defektsumme den Betrag 2 erreicht ¢). Es 148t sich in diesem
Falle beweisen, daB es hochstens p + 1 defekte Werte (einschlieBlich oo)
gibt. Die Ordnung ist iiberdies positiv ganz und die Defekte sind (ganze)

Vielfache von 1 . Ich kann aber nicht zeigen, daf} jeder defekte Wert zu-
2
gleich ein Zielwert ist.

2. Es sei w(z) eine ganze Funktion. Wir bezeichnen mit = (r,a) die
Anzahl ihrer a-Stellen in |z | < r, setzen

r

N(r,a)=f"“’“)dt . r>1, (2.1)

l

1

1) vgl. die Originalarbeit ,,Zur Theorie der meromorphen Funktionen® in den
Acta math. 46 (1925) von R. Nevanlinna bzw. sein Buch ,,Le théoréme de Picard-
Borel et la théorie des fonctions méromorphes. Paris 1929. Letzteres wird im
folgenden mit R. N. bezeichnet. Zur Defektrelation vgl. R. N. p. 80.

%) R. N. p. 93.

3) L. Ahlfors, Uber die asymptotischen Werte der meromorphen Funktionen
endlicher Ordnung. Acta Acad. Aboensis. Math. et Phys. 6 (1932).

1) DaB ich gerade diesen extremen Fall betrachte, wird abgesehen vom Erfolgsstand-
punkt auch durch die folgende ,,Idee* motiviert: Wenn schon bei maximaler Defekt-
summe 2 die Zahl der defekten Werte durch die Ordnung beschriankt ist, so wird dies a
fortiori bei kleinerer Defektsumme zu erwarten sein.
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und

27
_1-/ lo L g i
5w ) 8 |w(revy —a|®? THEF
m(r, a) = ° (2.2)
1 o iv) | i
~2—nf log |w(r e?) | do fir @ = oo .
(]
T(r) = m(r,o0) (2.3)

ist die Charakteristik der ganzen Funktion w(z)%).

(@) = 1 — lim sup J—VZ,(,’;T;‘)

heif}t der Defekt des Wertes a. Nach dem ersten Hauptsatz gilt auch

. . om(r,a)
d(a) = lnrn_)lgf T (r)

und daher 0 £ d(a) <€ 1. Ist 6(a)>0, so heildt a ein defekter Wert. Die
ganze Funktion w(z) hat oo als defekten Wert mit dem maximalen De-
fekt 1. Nach der Defektrelation ist die Menge der defekten Werte abzéhl-
bar und die Summe ihrer Defekte ist hochstens gleich 2.Daf} die Defekt-
summe den Wert 2 erreicht, ist ein Sonderfall. Denn es gilt die schérfere
Relation

(2.4)

.. o IN(7)
o(a liminf= Y = 2 ; 2.5
3 () + liminf 701 < (2.5)
links wird iiber alle defekten Werte summiert, », (r) bezeichnet die Null-
stellenzahl der Ableitung w’(z) in |z| < r und es ist

r

N,(r) = fl%(ﬁdt . (2.1a)

1
Gilt fiir eine Zahl 1 bei hinreichend groBem r die Ungleichung 7' (r) <7,
so ist w(z) von endlicher Ordnung. Die untere Grenze p dieser Zahlen A4
ist die Ordnung der Funktion w(z).

Der zu beweisende Satz lautet nun

Satz A. Ist die ganze Funktion w(z) von endlicher Ordnung o und er-
reicht die Summe aller Defekte den Wert 2, so ist die Ordnung notwendig

5) Bei meromorphen Funktionen ist noch das Glied N(r, «) hinzuzufiigen.
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positiv ganz. Die Defekte sind (ganze) Vielfache von — . Es gibt also hoch-
stens o + 1 verschiedene defekte Werte. 2

3. Wir zeigen zunéchst, dal die Ordnung positiv ganz ist. Ein Spezial-
fall ist bekannt : Ganze Funktionen endlicher Ordnung mit einem Borel-
schen Ausnahmewert (s£00) sind von positiver ganzzahliger Ordnung.
Dasselbe gilt auch, wenn ein endlicher Wert den maximalen Defekt 1
erreicht. Dies stiitzt sich zur Hauptsache auf folgenden Satz®): Ist eine
nachtganze Zahl o >0 gegeben, so existiert dazu eine Zahl x(p) >0, so daf
fitr jede meromorphe Funktion der Ordnung o

Iiilis;lp N(r, a)T—!ZT)N(r, b)

fiir jedes Zahlenpaar a, b (einschliefflich oo) mit @ = b. Im Falle ganzer
Funktionen (b =oo) kann (3.1) durch die etwas schéirfere Ungleichung
(log M (r) = T'(r))

= %(0) (3.1)

(3.2)

ersetzt werden®). Hat also @ # oo den Defekt 1, so ist p ganz, der Fall
o = 0 nicht ausgeschlossen. Dies kann aber nicht eintreten, da eine ganze
Funktion der Ordnung ¢ <} keine endlichen defekten Werte besitzt 8).
Daraus folgt zugleich, daf} eine ganze Funktion mit der Defektsumme 2
notwendig von der Ordnung ¢ > 1 ist. Wir brauchen uns also fiirderhin
um den Fall ¢ = 0 nicht mehr zu kiimmern.

Es sei nun die Defektsumme gleich 2. Die Ungleichung (2.5) liefert

dann lim inf = Ny (r)
r>w  T(r)

gewonnen werden. Der zweite Hauptsatz ergibt jedoch fiir endliche Ord-
nungen eine schirfere Beziehung als (2.5). Sind némlich a,,a,,...,qa,
(g = 3) voneinander verschiedene Werte (einschliefllich o), so ist

— (. Aber daraus kann fiir unsere Zwecke nichts

S mr,a,)<2T(r) — Ny(r) + S(r)

v=1

und zufolge der endlichen Ordnung fiir alle >0

S(r)<O (logr) .

%) R. N. p. 51.

) Dies ergibt sich aus dem Beweis des vorangehenden Satzes (vgl. Note 6 hievor).
Das x(p) in (3.2) kann Kkleiner sein als in (3.1), ist aber noch positiv.

8) R. N. p. 55.
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Daraus folgt nun fiir positive Ordnung [logr = o (7'(r))]

q

lim inf 1‘,( ) i lim sup T1<(r)) <

v=1

fir jedes ¢ > 3 und somit wegen (2.4)

6a)—|—hmsupN r)<2 (3.3)
r>w  1(r)
(a)
wenn iiber alle defekten Werte summiert wird. Diese Summe erreicht
aber nach Voraussetzung den Wert 2 und es ist daher

limzl—(r—)

lim 18 =07 . (3.4)

Nun ist log M (r) = T'(r). Setzen wir M,(r) = Maz | w'(2) |, so folgt

j2|=17

durch Integration sofort M (r) — | w(0)| < r M,(r) und somit

log M,(r)>[1 + o(1)] log M(r) . (3.5)
Es ist also
Yim ) _
r > oo log M, (7)

Ein Vergleich mit (3.2) zeigt, daB die Ordnung von w’(z) und damit von
w(z) ganzzahlig und gemif einer frithern Bemerkung auch positiv sein
muBl. Damit ist der leichte Teil unserer Behauptung bewiesen. Die De-
fektsumme einer ganzen Funktion von nicht ganzer Ordnung ist also
immer < 2. Etwas schirfer gilt noch der folgende Satz : Ist eine nicht-
ganze Zahl o >0 gegeben, so existiert dazu eine Zahl x(o) >0, so daf die
Defektsumme jeder ganzen Funktion der Ordnung o die Ungleichung

(Z) d(a) Z 2 — x(o)

erfallt. Denn Funktion und Ableitung haben dieselbe Ordnung. Alles
iibrige ergibt sich aus (3.2), (3.3) und (3.5).

9) Hieraus kann ich aber nicht etwa schlieBen, daB die Nullstellen der Ableitung w’
(auf welche sich N, bezieht) den Defekt 1 besitzen. Denn 7'(r) ist die Charakteristik von
w und es ist mir nicht bekannt, ob die Charakteristiken von w und w’ asymptotisch gleich
sind.
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4. Um die tieferwiegende Behauptung des Satzes A zu beweisen,
werden wir ausgiebig von (3.4) Gebrauch machen. (3.4) besagt, daf3
die Ableitung w’ verhiltnismidBig wenige Nullstellen besitzt. Der
Prototyp fiir diese Situation ist die Funktion

w(z) = fegedé‘ (4.1)

von der positiven Ordnung p, ein bekanntes Beispiel zur Defektrela-
tion ). Hier ist

log | w'(rei®) | = r%cospgp . (4.2)
In den Winkelrdumen

r, I
W 26 *

v

|<p—2vig|< y=20,1,...,0—1

1st cos g positiv, dagegen negativ in den Winkelrdumen

E
20 °

Wo: log—@v+1)5|<

1 4

y=0,1,...,0—1.
Es gilt nun innerhalb der

-WI

1 4
”

W,

oo, Zielwert oo

a, , endliche Zielwerte ).

lim w(re'®) =
700

Also nur die Winkelrdume W', liefern wesentliche Beitriige zur Charakte-
ristik 7'(r). Fiir die Defekte der a,, a,,. .., a,_, fallen dagegen nur die
W, in Betracht. Jeder Winkelraum W' liefert zum Defekt d(a,) einen
Beitrag von der Hohe %. Die Defektsumme erreicht also den Wert 2 und
es sind genau ¢ + 1 verschiedene defekte Werte vorhanden, co mit dem
Defekt 1, die iibrigen je mit dem Defekt %12).

Die betrachtete Funktion (4.1) ist das Standardbeispiel fiir unsern
Satz A sowohl in bezug auf die Behauptung als auch im Hinblick auf die
Beweismethode. Es wird fiir das Gelingen des Beweises ausschlaggebend
sein, dafl wir aus (3.4) eine hinreichend genaue Kenntnis iiber das asym-
ptotische Verhalten der Ableitung »’ gewinnen konnen, etwa ein Ana-
logon zu (4.2).

10) R. N. p. 90.

[* =]
2wy

'
11) Es ist av=eebfe dr, v=0,1,2,...,0—1.
12) Hier ist jeder defekte Wert zugleich Zielwert.
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Zur Charakterisierung dieses asymptotischen Verhaltens ist die Funk-
tion r¢ fiir unsere Zwecke zu grob. Es ist mir auch nicht gelungen, die
Charakteristik 7'(r) als Vergleichsfunktion heranzuziehen 13). Sie ent-
behrt gewisse Eigenschaften, die bei ¢ trivialerweise erfiillt sind. Hin-
reichend genaue und zugleich maniable Vergleichsfunktionen erhalten
wir mit Hilfe der prdzisen Wachstumsordnung**). Als solche bezeichnen
wir eine Funktion ¢(r), die im Intervall (0,c0) positiv ist, Rechts- und
Linksableitungen besitzt, die stiickweise iibereinstimmen, und welche
den Bedingungen

limo(r) =p>0, lim g’ (r)rlogr = 0 (4.3)

7 ->» oo 7 > 0

geniigt. Wir nennen
V(r) — pe(n)

eine Vergleichsfunktion. Fir hinreichend groBe » ist V(r) monoton wach-
send und

Vo) =t +om] (1) V() (oo (.4

fiir k= 'r £ ¢t < k r und ein beliebiges, aber festes k> 1. Dies ergibt sich
leicht aus (4.3).
Von nun an bezeichne w(z) immer eine ganze Funktion, die den Vor-
aussetzungen des Satzes A geniigt. Zu w existiert eine Funktion V(r) mit
log M (r)

Es ist dann w von der Ordnung g, der prizisen Ordnung p(r) und V(r)
heiBt eine Vergleichsfunktion zu w ®). Aus (3.4), (4.5), (2.1a) und
(4.4) folgt dann
ny(r) = o(V(r)) . (4.6)
Zur spitern Verwendung sei noch bemerkt, daBl V(r) zugleich fiir w’
eine Vergleichsfunktion ist und dafl insbesondere

13) Dies wire sehr vorteilhaft; es kénnte dann gezeigt werden, da8 unter den Voraus-
setzungen des Satzes A jeder defekte Wert zugleich Zielwert ist.

14) vgl. G. Valiron, Lectures on the general theory of integral functions.
Toulouse 1923, p. 46.

18) @. Valiron hat bewiesen, da zu jeder ganzen Funktion positiver endlicher Ordnung
eine prazise Ordnung gehort. Vgl. Note 14 hievor.
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lim sup log M, (r)

msup — =1 (4.7)

Denn aus der Cauchyschen Integralformel fir w’ (aus w) folgt M,(r)
Z M(r+1) und daraus wegen (4.4) und (4.5) log M,(r) <[1+o(1)] V()
Der Rest ergibt sich aus (3.5).

5. Das asymptotische Verhalten von w’ und w. Den notigen Aufschluf3
iiber das Verhalten von w’ gewinnen wir aus dem nachfolgenden Satz B,
der in einer frithern Arbeit bewiesen wurde und von dem wir nur einen
besonders einfachen Spezialfall beniitzen werden 6).

Satz B. Die Ordnung der ganzen Funktion G (z) sei positiv und ganz.
Die (von null verschiedenen) Nullstellen z,,z,,... seien mefbar beziglich
etnem V(r) (von der Ordnung o) und N (p) sei thre Maffunktion. Dann vst

log | G(rei®) | 1 reT(r)] ,
Vo =M+ [0 ) +‘“V‘(?)]W+E(’" 7
wobei
2z 21
h((p):——jﬁsingﬁ-dN(tp+0), j et?9d N (0) ,
0 0
Co+ X 'z'v“&’ (Geschlecht )
oT (r) = : V*I
> oz, (Geschlecht o — 1)

|Zv|>’r

gesetzt wird und fir r —oo die Ungleichungen

e(r, p)<o(l) gleichmdpig vm ganzen Intervall 0 < ¢ < 27 und
e(r, ) >o0(l) auf Teilmengen, die von r abhingen, deren Maf} aber beliebig
nahe bei 2n liegt, giltig sind.

Es sei nun G(z) = w'(2) und V(r) die zu w gehorige Vergleichsfunk-
tion. Wegen (4.6) ist N (¢) = 0 und daher auch A(p) =0 und C = 0.
Wir setzen

reT (r)

Vir) °
H(r, p) = (P——

16) Uber ganze Funktionen ganzer Ordnung. Comm. Math. Helv. 18 (1946),
p.- 177—203; insbesondere Satz 3, p. 197. Der oben beniitzte Spezialfall konnte auf we-
nigen Seiten bewiesen werden. Den Spezialfall g(r) = konst. bewies M. L. Cartwright
(Proc. London Math. Soc. (2) 33 (1932), p. 209—224).

P(r) = | P(r)| =A(r) , arg P(r)=u«(r), (5.1)

w"’) = A (r) cos(pp — x(r)) . (5.2)
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Dann folgt aus Satz B

log | w'(rei®) | < (H(r,p) + e(*))V(r), lime(r)=0 (5.3)
und log M, (r) =(A(r) + o(1))V(r). Letzteres ergibt in Verbindung mit
(4.7) limsupA(r) = 1. Die Schwankungen von H(r,¢p) werden bei

7> 00
festem @ und r—oo sehr klein. Um dies zu zeigen, wihlen wir ein festes

k>1und r <t < kr. Dann ist wegen (5.1) und (5.2)

|H(t,9) — H(r,p)| =R (P(t) — P(r)) eie? | < | P(t) — P(r) |

< (v =) 70| + v 70— 70
Gemif3 (4.4) ist t( 7 ;(i) 0(1) 55— V ( j aus der Definition von 7'(r)
(Satz B) und aus (4.6) folgt 7'(t) — T'(r) =% ﬂﬂz@ und daher

X
P(t)— P(r)=o0(1) (A(r) —|~~2~ ) =o(l). Es ist also |H (¢, ¢) — H(r,¢) |
<n(r,k) fir k~'r<Z¢< kr mit lim5(r, k) = 0 bei beliebigem, aber

7> 0

festem k> 0. SchlieBlich kann man durch kleine Abdnderungen von
A(r), ohne dadurch (5.3) zu stoéren, immer erreichen, daB fiir » > 0
auch A4 (r)>0 ist. Zusammenfassend erhalten wir

Lemma 1. Zs st

log | w'(rei®) | <(H(r, @) + e(r))V(r) , lime(r) =0,

7 <> o

wober H (r, @) den folgenden 3 Bedingungen geniigt
1. H(r,p) = A(r)cos(op —«(r)) , A(r)>0,
2. limsupdA(r)=1,

7 > 00
|H(t,9) — H(r, ) |<n(r,k) fur vk~ £t=Z kr mit
lim n(r, k) = 0 bei festem k>1.
7> 0
Aus dem vorangehenden Lemma ergibt sich sofort eine Majorante
fir |w|. Durch Integration folgt zunidchst fiir ein positives 4 <1

98



|w(ret?) | < M(Ar) -}—jl w'(tei®) | dt . (5.4)
Bei festem A ergeben (4.4) und (4.5)
log M(Ar)<(A® + e(r, A))V(r) ¥7) . (5.5)

Anderseits ist V(r) monoton wachsend fiir hinreichend grofle » und daher
nach Lemma 1 (insbesondere Bedingung 3 mit k = 4-1)

log | w(te?) |[<(H(r,¢) + n(r,27") +e(r, ))V(E)  (5.6)

fur Ar £t < r. Nun lassen wir mit » auch k£ = A-! hinreichend lang-
sam gegen oo gehen, so daBl noch ri-—>oco0, aber #(r,A')—>0 und
e(r, A)—>0 gehen. Beachten wir ferner, daB8 logr = o(V(r)), so wird
wegen (5.5) und (5.6) aus (5.4)

I w(rei(p) I<ee<r) V) + e(H(r,¢)+£<r))V(r)

oder

+
log | w(ret®) | <(H(r, ¢) + e(r))V(r), r>0 .
Daraus folgt

Lemma 2. Fiir jede Konstante a gilt
+
log |w(re’®) —a|<(H(r,p) + e(r,a))V(r) mit lime(r,a)=0.

6. Berechnung der Charakteristik.

Hiefiir bietet Lemma 2 einen Ansatz. Wir bendtigen aber noch eine
Abschiitzung in der andern Richtung. Aus (4.6) und der Jensenschen
Formel folgt

2
§ log | w'(ret®) | dp = o(V(r))
0

und daraus in Verbindung mit Lemma 1

}gloglw'(re""”)ldwl— [ 9I%H(Mp)dw+0(1)] Vi), r>0, (6.1)
¥ ?1

17) ¢(r) und &(r,A) bezeichnen im folgenden immer Gré8en, die nur von r bzw. r und 4
abhiangen und die mit r — o (bei festem 1) gegen Null streben. Neu auftretende GréBen
dieser Art werden nicht durch besondere Bezeichnung von den alten unterschieden.
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fiir 2 beliebige Winkel ¢, und ¢,. Der Satz iiber die logarithmische Ab-
leitung (2. Hauptsatz) speziell bei endlicher Ordnung!®) liefert bei be-
liebiger Konstante a die Abschitzung

2T
+
f log
0

+
Hieraus folgt wegen (6.1) und log

w'(ret?) |
w(re®) —a dp<O(logr) , r>0.

/

w# T .
w_aploglwl log | w—a|

Lemma 3. Fir jede Konstante a und fir irgend 2 Winkel ¢, und ¢,
(>¢1) gult

P2 P2
| log | w(rei®) —a|dp>[ { Hr,p)dp —o(1)]V(r), 7>0.
?1 P

Nun zerlegen wir das Intervall 0 £ ¢ < 2z in Teilintervalle oder,
was fiir unsere Zwecke geeigneter ist, wir zerlegen die Peripherie des
Einheitskreises (z = €!?) in Teilbogen. Die Zerlegung ist von r abhingig.
Zufolge (5.2) gibt es ndmlich fiir jedes » genau ¢ getrennte Kreisbogen

X}, &g 5.5 0q, J© vOn der Léinge;l, auf welchen H(r, ¢) < 0, und

analog o Kreisbogen f7,6;....,8,, auf denen H(r, ) > 0 ist. Die
Reihenfolge der Bogen o7 bzw. f] spielt noch keine Rolle.

Gemif Lemma 2 gilt
+ .
log | w(rei®) —a | =o(V(r)) (6.2)

auf den Bogen «). Diese liefern also keinen wesentlichen Beitrag zur
Charakteristik. Anderseits folgt aus Lemma 2 und Lemma 3 fiir die
Bogen g,

_flog | w(ret®) —a | dp = j'lgg | w(relp) —a|dp + o(V(r))
B, B,

=[J B9 do + o]V () = |
6]

Dies liefert zunéichst

24 (r)

+ o(l)]V(r) . (6.3)

18) R. N. p. 63.
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flog|w(rei®) —a|dp=0o(V(r))|, r>0,»r=1,2,...,0. (6.4)
BT
Wird in (6.3) @ = 0 gesetzt und iiber alle Bogen g} summiert, so folgt in
Verbindung mit (2.3)

A(r)

T (r) :[ 74 o(l)]V(r) , >0 . (6.5)

T

7. Berechnung der Defekte.

co hat den Defekt 1. Wenn nicht ausdriicklich das Gegenteil bemerkt
wird, sollen sich im folgenden die Defekte immer nur auf endliche Werte
beziehen. Gemaf3 der Bedingung 2 des Lemmas 1 wihlen wir eine feste
Folge O0<ri<ry<<--.,r,—>oco0, auf der A(r) groBer ist als eine feste

positive Zahl, z. B.
A@r)>%, n=1,2,... . (7.1)

Die zu r, gehorigen Bogen «, und B, bezeichnen wir jetzt mit «® und
™ (v = 1,2,...,0). Nun ist nach (7.1), (6.5) und (6.4)

b
flog} -------- ?«:#Ed(p::o(T(rn)), v=1,2,...,0. (7.2)

Es wird sich nachtriglich herausstellen, worauf (7.2) schon hinweist,
daB niimlich die Bogen g™ fiir die Berechnung der Defekte belanglos
sind. Setzen wir

1 1 + 1 | p=1,2,,..;0
Y — e % — o — e ! b b b ) 7 .
D, T(r, 2=n f 10glw(rne""’) ——-a|d<p or=1,2,... , (7.3)

)

]

so ist nach (2.2), (2.4), und (7.2)

0
liminf ¥ D} > d(a) . (7.4)

n>ow v=1

Zur gewihlten Folge {r,} geben wir nun ein Verfahren an, das zu
jedem defekten Wert ¢ eindeutig eine ganze Zahl k(1< k< g) und fir
jedes n eindeutig eine Gruppe von k Bogen &' zuordnet. Wir nennen
k die Multiplizitdt des defekten Wertes @ und bezeichnen die zu @ und n
gehorige Gruppe der o™ mit A%, 4%,..., A% . Es wird sich zeigen, dal}
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sowohl die Multiplizitdt k¥ wie auch die Folge der Gruppen (4}, 453,...,

%) zum Defekt des Wertes a in engster Beziehung steht.

Nun zur Konstruktion. Es sei a ein defekter Wert, also d(a)>0. Fur
jedes » ordnen wir die D) der Grofle nach an — das grofite an erster
Stelle — und numerieren um, wenn es notig ist auch die Bogen a™.
Es gelte also fiir jedes n

zx(f’ , cx(;") y e oc(:,')
Dr=Dr>...>Dt >0, (7.5)

wobei entsprechende Elemente in gleicher Kolonne stehen. Wir setzen

lim inf D} = d, und erhalten
n > oo

dy>dy>>d, >0. (7.6)

e

Wegen (7.4) ist sicher d, >0. Die Nummer der letzten nicht verschwin-
denden Zahl in der Folge (7.6) bezeichnen wir mit k(d,>0,d,,, = 0).
Dies ist die Multiplizitit des defekten Wertes . (a®,aP,...,a®™) ist
die zu @ und » gehorige Gruppe, die wir mit (4%, 43,..., A%) bezeichnet
haben.

GemiB (7.3), (7.5), (7.6), (6.5), (6.2) und (7.1) gilt nun offenbar fiir

v=1,2,...,k

J log | w(r,e®) —a|dp<—(2nd, — o(1))T(r,) < —(d — o(1)) V(r,) ,
An

¥ d,>0 . (7.7)

Daraus folgt, daBl innerhalb der Bogen A} w(r,e?) gegen a strebt fiir
n—>oo; insbesondere gilt

limw(r,e®s) =a, v=1,2, ..k, (7.8)

n-» oo

wenn wir mit ¢! die Mitte des Bogens A bezeichnen. Zufolge Lemma 3
ist ndmlich fiir jedes ¢ und >0

P+

j log | w(rei®) —a|dp>—n(A(r) + (@) V(r) .
P
A" bezeichne den Teilbogen

()] /f_____ : _Z_t_ Ei.’i
lp =V 1< 5, — 0<17<Mm(49, 4),

dann wird aus (7.7)
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Jlog|w(r,e’?) —a|dp< —(}d, —o(1)) V(r,) .

4,

Also existiert in A% ein @ mit

limw(r,e®)=a, »=1,2,... k. (7.9)
7 >

Anderseits ist

@
w(ret®) — w(re'®) =i fw'(re®)re®do
(]

und daher gemi#B Lemma 1 und (7.1) auf 4"

- %dlc + 0(1)) V(rn) .

lw(r,e'?) — w(r,e'®)| < % or- e(

Da die rechte Seite gegen Null strebt, folgt aus (7.9) die Behauptung(7.8).

Wir sehen also, daf3 zu jedem defekten Wert @ und jedem n eine Gruppe
4y, A%,. .., A%) der Bogen ™ existiert, auf deren Mitten ¢ die Be-
ziehung (7.8) erfiillt ist. Es sei nun b irgendein anderer defekter Wert
(b # a), 1 seine Multiplizitdt und (B}, Bj,..., B}) die zu b und =
gehorige Gruppe der o™ . Dann haben die beiden Gruppen (4%, 4%,...,
A%) und (B}, By,..., B}) fiir alle n von einem gewissen n, an keinen
Bogen gemeinsam. Denn sonst miiite a = b sein, weil fiir die Mitten der
B} eine zu (7.8) entsprechende Beziehung mit & an Stelle von a gilt. Es
seien nun

a, a, az, ... die defekten Werte,
ky, ks, ky, ... ihre Multiplizititen und
(A3), (43)e, (AD);, ... die zugehorigen Gruppen der a.

Irgend zwei Gruppen (4}); und (4%); (¢ # j) haben fiir alle hinreichend
groBen n kein gemeinsames Element. Die Anzahl der a/® ist aber fiir jedes
n gleich p und deshalb die Anzahl der defekten Werte (3oc0) hochstens
gleich o. Bezeichnet p ihre genaue Anzahl, so gilt

ky+ky+---+k, o . (7.10)

Weiter erfiillt jeder defekte Wert a mit der Multiplizitit & die Un-
gleichung

a(a)<—’;- . (7.11)
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Denn es folgt aus Lemma 3 und (6.2)

+
flOggw(rne"'l"’)—~a'd¢<[_ f H(rn,(p)d(p——}—o(l)]V(Tn)
a(:»)

o™

und somit aus (7.3) wegen (6.5) und (7.1)

limsupDz,‘ézl)— v=1,2,...,p0 . (7.12)

Wir diirfen annehmen, daBl k<p ist. Denn fir k =p folgt (7.11)

unmittelbar aus (7.12) und (7.4). Dann existiert eine Teilfolge {n,},

so daB lim DY= 0 fir » =k 4+ 1 und somit wegen (7.5) auch fiir
j>oo

v=Fk+4+ 2, k+3,...,0. Esist also

e N
.I‘L> hmsupD J > lim inf ; ij = 0(a) .
0 e j> o0 j=> o0 év:

Allein aus der Bedingung (4.6) (und endliche Ordnung) haben wir
zeigen konnen, dafl fiir alle defekten Werte ihre Multiplizitdten und
Defekte den Ungleichungen (7.10) und (7.11) geniigen. Nun beniitzen
wir noch einmal, daB8 die Summe aller Defekte den Wert 2 erreicht bzw.
die Defektsumme aller a 400 gleich 1 ist. Dies liefert ndamlich in Ver-
bindung mit (7.10) und (7.11) die Bedingung

- 3 e hthth

welche nur moglich ist, wenn sowohl

6(0’1'):%3 7:31:2,-”,27
als auch

R e A

ist. Damit ist Satz A bewiesen.

(Eingegangen den 12. Mérz 1946.)
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