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Sur les polyèdres à faces triangulaires

Par Félix Fiala, Neuchâtel

Parmi les principales notions qui jouent un rôle dans la géométrie
différentielle intrinsèque des surfaces, on trouve la longueur d'une
courbe, l'aire d'un domaine, la courbure totale et la courbure géodésique.
C'est elles qui interviennent en particulier dans la formule de Gauss-
Bonnet et dans certaines inégalités isopérimétriques.

On peut développer une théorie analogue pour les surfaces poly-
édrales à faces triangulaires, en prenant pour la longueur d'une courbe
le nombre d'arêtes dont elle se compose et pour l'aire d'un domaine le
nombre de faces dont il se compose, comme l'a montré M. Ch. Blanc,
en établissant quelques-unes de ces formules sous certaines hypothèses
assez restrictives1). Le but du présent travail est de généraliser ces
démonstrations. Pour cela nous aurons recours à une notion analogue à

celle de vraie parallèle, que nous avons définie et utilisée dans des
recherches antérieures2).

1. Définitions

Considérons une surface polyédrale à faces triangulaires, simplement
connexe et ouverte. Il s'agira soit d'un polyèdre ordinaire, soit, plus
généralement, d'un plan décomposé en triangles curvilignes.

Dans ce plan ^5, nous considérons un ensemble infini de points, sans
point d'accumulation à distance finie. Ce seront les sommets de notre
polyèdre.

Certains de ces sommets sont reliés entre eux par des arcs sans points
communs autres que leurs extrémités. Ce seront les arêtes de notre polyèdre.

Nous supposons qu'en chaque sommet P aboutissent A(P) arêtes, où

2< À(P)< oo.
Nous supposons encore que le plan se trouve ainsi décomposé en

triangles curvilignes, les faces de notre polyèdre.

*) Ch. Blanc, Les réseaux Riemanniens. Comm. Math. Helv. 13 (1940—41), p.54
à 67, en particulier §§5 et 7.

2) F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à
courbure positive. Comm. Math. Helv. 13 (1940—41), p. 293—346.

F. Fiala, Le problème des isopérimètres dans les plans de Riemann à
courbure de signe constant. Comm. Math. Helv. 15 (1942—43), p. 249—264.
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Une courbe est une suite d'arêtes

M) -ML •> -ML -*2 ' * ' * «-1 *n

telles que l'extrémité de chaque arête soit l'origine de la suivante. Le
nombre n des arêtes est la longueur de la courbe.

Une courbe (£ est simple, ou sans point double, si tous les sommets
Po, P±,..., Pn sont différents, sauf éventuellement Po et Pn ; si Po et Pn
coïncident, la courbe est simplement fermée ; elle divise le plan en deux
parties, l'intérieur de (f qui comprend un nombre fini de sommets,
d'arêtes et de faces, et l'extérieur qui en comprend une infinité.

Le nombre des faces situées à l'intérieur de & est Yaire limitée par (£.

Avec M. Blanc, nous appelons courbure au sommet P, le nombre

y(P) 6- HP). (1)

Soit une courbe simplement fermée passant par un sommet P. Nous
désignons par Aff(P) le nombre d'arêtes issues de P vers l'intérieur de
la courbe et nous appelons courbure géodésique, le nombre

*,(P) 2- Xg{P). (2)

II s'agit en fait d'une courbure géodésique intérieure et l'on pourrait
de même définir une courbure géodésique extérieure, la somme des deux
courbures géodésiques au point P étant d'ailleurs égale à la courbure
totale en ce point. Pour des courbes ouvertes on pourrait parler d'une
courbure géodésique à gauche et d'une courbure géodésique à droite.

2. Formule de Gauss-Bonnet

Considérons une courbe simplement fermée (£, de longueur L et d'aire
A, et désignons par 35 l'ensemble des sommets intérieurs à (£.

Soit s le nombre des sommets intérieurs à (£ et S le nombre des sommets
situés à l'intérieur et sur (E.

On a S s + L
Soit n le nombre des arêtes intérieures à (£ et N le nombre des arêtes

situées à l'intérieur et sur (£.

On a N n + L
La formule d'Euler pour les polyèdres nous apprend que

A - N + S 1 (3) d'où l'on tire A - n + s 1 (3)'
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On obtient une autre relation en considérant l'ensemble des arêtes.
Sur chaque face il y en a trois, mais en les comptant de cette manière
on compte deux fois les arêtes intérieures et une fois les arêtes situées

sur (£. D'où
3A 2N — L (4) et 3 A 2n + L (4)'

Des formules (3) et (4), on déduit facilement les formules

38 — N — L=3 (5) et 3s — n + L 3. (5)'

Nous sommes maintenant à même de démontrer une formule tout à

fait analogue à celle de Gauss-Bonnet, à savoir

Zy(P) + Zxg(P) G, (6)
3) g

où la première somme est à étendre à tous les sommets de î>, et la seconde
à tous les sommets de (£.

En effet, le membre de gauche est égal, en vertu des définitions (1)
et (2), à

3) G

6s + 2L — 2n
6, à cause de la formule (5);.

Si l'on désigne par (£/ une courbe simplement fermée située à Tinté-
rieur de G, et par 35* l'ensemble des sommets situés à l'intérieur de (£

mais non à l'intérieur de G7, on a

2V(P) + Z*g(P) - Uxg(P) o (7)
3)* G G'

Interprétation de Z xg (P) :

G

A. Dans le cas où toutes les arêtes intérieures issues de (£ aboutissent
à une courbe simplement fermée (£/ de longueur L\ on a, en désignant
par a le nombre des faces situées entre G et G/,

a ZKg{P) 2L - Zxg{P) (8)
G G

a L + Lf. (9)
D'où l'on tire

Zxg(P) =L-L' (10)
G
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Dans cette formule, la courbure géodésique apparait comme la variation

de la longueur de la courbe par rapport à une courbe que l'on pourrait

appeler parallèle; c'est cette interprétation qui avait été utilisée dans

un cas particulier par M. Blanc3).
On peut établir directement ces formules ou les démontrer comme cas

particulier des formules suivantes.
B. Dans le cas général ces formules ne sont plus exactes, mais peuvent

être remplacées par des inégalités.
Considérons l'ensemble des arêtes intérieures à (£ et ayant au moins

un sommet sur (£. Leur nombre est égal à

n Zkg(P) -d=2L — Zxg(P) - d (11)
Ct G

où d désigne le nombre d'arêtes ayant leurs deux extrémités sur £.
Considérons aussi l'ensemble des faces intérieures à G et ayant au

moins un sommet sur (f. Soit a leur nombre.
Ces arêtes et ces faces (les sommets sont exclus) forment un complexe

connexe 5 5 s°i^ c son ordre de connexion. Comme les n arêtes décomposent

gêna faces, évidemment simplement connexes, on a

a n — (c — 2)

d'où l'on tire, en tenant compte de (11)

a Zkg{P) -d-c + 2 (12)

Dès que c ^ 2 on en déduit l'inégalité fondamentale

n <C V 1 (~P\ 9 T Y «y ~P\ HQ^\Àj —^ / • /Iq\1. I i^JU s f Jt* \ ' j • I lui

Si c — 1, le complexe g est simplement connexe et consiste en un polygone

décomposé en triangles par certaines de ses diagonales. Dans ce

cas, la formule (13) est encore valable, car en général d > 0, sauf si g
se réduit à un seul triangle.

Considérons maintenant l'ensemble des arêtes situées sur une face au
moins de $• Dy a

1. les L arêtes situées sur G,
2. les n arêtes appartenant à g, situées sur deux faces de (£,

3) Loc. cit. p. 64.
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3. e arêtes n'ayant aucune extrémité sur (£ et situées sur deux faces

de g (e peut être nul),
4. L' arêtes n'ayant aucune extrémité sur G et situées sur une seule

face de 3 ; elles forment avec (E la frontière de $ constituant un certain
nombre i de courbes simplement fermées, que nous appelons la parallèle
intérieure à G, et que nous désignons par (£/. (Il se peut que G/ n'existe

pas et que L' 0.)
Par exemple, dans notre figure on a:

L
P)

d

n

8

26
2

24

e 1

L'= 8

a — 22

c 4

i 2

Si nous comptons maintenant le nombre
total des arêtes, en les comptant autant
de fois qu'elles apparaissent sur une des

faces de $f> nous obtenons

3a L + Lr + 2n + 2e (14)

Des formules (12) et (14), on déduit facilement

0 L + Lf — n + 2e + 3(c — 2)

0 Lr — L + Zxg{P) + d + 2e + 3(c — 2)
et

d'où l'on tire, si c ^ 2, la seconde inégalité fondamentale

(15)

(16)

Si c 1, cette formule reste valable dès que d ^ 3, c'est-à-dire si G

est un polygone à 6 côtés au moins.

3. Inégalités isopérimétriques

Soit G une courbe simplement fermée située sur un polyèdre. Supposons

que pour toute courbe (£/ simplement fermée située à l'intérieur de
(E ((E comprise) on ait ^ ^ "^ k (17)

où k est une constante comprise entre 0 et 8.
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On peut démontrer alors qu'entre la longueur L de (£ et Faire A limitée
par (£ existe l'inégalité isopérimétrique

L2^kA. (18)

Pour la démonstration nous envisagerons trois cas possibles.

1. Êne contient aucun sommet intérieur et limite donc un polygone
décomposé en triangles par certaines de ses diagonales.

Dans ce cas, on a
L A + 2

et
L2= (A + 2)2 SA + (A - 2)2

d'où l'on déduit la formule (18), car

£2^ SA^kA

2. (£ contient des sommets intérieurs, mais ne possède pas de parallèle

intérieure; c'est dire que Lr 0

Dans ce cas

c^ 2

et
A a

On déduit de (13) que

d'où

et la

l'on tire

formule (18)

A

kA

^2L

^2Lk

— 2*9i
a

-k2 L* -

IL

{L

-k

-k)2

kA ^ X2

3. (£ possède une parallèle intérieure (£/. Celle-ci se compose d'un
certain nombre i de courbes simplement fermées (£[, f$!2,... (££ de longueur
L[,L'29...L'% et d'aire Ar19A'^...A[.

Supposons que la formule (18) soit satisfaite pour chacune d'elles. On
en déduit

£'« (L[ + L'2 +¦¦¦ + L[)*
^L'^ +L? +--- + L?
^:kA/1 + kA'2+- ¦ ¦ + kA[
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où A1 représente le nombre des faces situées à l'intérieur de l'une
quelconque des courbes (£{, (f£

> • • • Q^ •

Puisque a représente le nombre des faces comprises entre G et (f;, on a

A Af + a

et l'on en tire, en tenant compte de (13) et de (17)

h A JcAf + lca

^ Z/2 +
ce que l'on peut aussi écrire

le A ^ £2 + i'2 - (L - Icf

En tenant compte des formules (16) et (17), on obtient bien la formule

Nous pouvons en déduire que si notre inégalité isopérimétrique (18)
n'était pas valable pour (£, il devrait exister au moins une courbe (£/

simplement fermée intérieure à (£ pour laquelle la formule (18) ne serait
pas non plus valable.

On pourrait alors répéter le même raisonnement et obtenir une suite
de courbes &, (£/, CE/',.. simplement fermées, chacune située à l'intérieur

de la précédente, et pour lesquelles la formule (18) ne serait pas
valable.

L'aire limitée par ces courbes décroissant, on rencontrera tôt ou tard
une courbe ne possédant pas de parallèle intérieure. Or, une telle courbe
appartient à l'un des cas traité sous 1. ou 2., où la validité de la formule
(18) a été dûment établie. En supposant que notre inégalité
isopérimétrique n'avait pas lieu, nous avons été conduits à une contradiction.

Applications.
I. Sur un polyèdre à courbure nulle, (A(P) 6), tel un plan décomposé

en triangles équilatéraux, la formule (6) nous donne pour toute
courbe simplement fermée

G

On peut donc prendre dans (17), le — 6, et énoncer l'inégalité
isopérimétrique T»^ » AL è 6A

C'est l'analogue de l'inégalité isopérimétrique classique.
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II. Sur un polyèdre à courbure non positive, (A(P)^6) on a
£xg(P) ^ 6, d'où l'on déduit aussi

L2 ^ 6 A

C'est l'analogue d'un résultat donné par Radô et Beckenbaeh pour les
surfaces à courbure non positive4).

III. Sur un polyèdre à courbure négative, (A(P)^7), on a, si la
courbe (£ contient au moins un sommet intérieur, Uxg(P) ^7 et l'on
en déduit l'inégalité isopérimétrique G

que nous avons déjà vérifiée lorsque (£ ne contient aucun sommet
intérieur.

IV. Sur un polyèdre à courbure inférieure ou égale à — 2 (A(P) ^ 8),
on démontre de même l'inégalité

£2è 8 A

V. Sur un polyèdre à courbure non négative, A(P) ^ 6), la formule
(7) nous donne

Z,9{P)^ Z,g{P)

On peut donc prendre dans (17) k £>cg(P) et énoncer l'inégalité

L*^k .A
C'est l'analogue d'une formule isopérimétrique valable pour les

surfaces à courbure non négative5).
Remarquons pour terminer que ces formules sont valables dès que les

hypothèses relatives à la courbure sont réalisées à l'intérieur de la courbe
(£ et sans supposer que celle-ci appartient à un polyèdre ouvert. La
dernière toutefois peut alors devenir triviale, car k peut être négatif; lorsque
Ton suppose que (£ appartient à un polyèdre ouvert à courbure jamais
négative on a k ^ 0, propriété analogue à celle établie par Cohn-Vossen

pour les surfaces ouvertes à courbure positive6) et dont la démonstration
peut être faite à l'aide des parallèles extérieures à la courbe (£.

(Reçu le 4 février 1946.)

4) Radô et Beckenbach, Trans. Amer. Math. Soc, 35 (1933).
5) Voir le premier travail cité dans la note 2), p. 297.
6) Cohn-Vossen, Kurzeste Wege und Totalkmmmung auf Flachen. Comp.

Math. 2 (1935), p. 79.
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