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Sur les polyédres a faces triangulaires
Par Firix Frara, Neuchatel

Parmi les principales notions qui jouent un réle dans la géométrie
différentielle intrinséque des surfaces, on trouve la longueur d’une
courbe, I'aire d’'un domaine, la courbure totale et la courbure géodésique.
C’est elles qui interviennent en particulier dans la formule de Gauss-
Bonnet et dans certaines inégalités isopérimétriques.

On peut développer une théorie analogue pour les surfaces poly-
édrales a faces triangulaires, en prenant pour la longueur d’une courbe
le nombre d’arétes dont elle se compose et pour I'aire d’un domaine le
nombre de faces dont il se compose, comme ’a montré M. Ch. Blang,
en établissant quelques-unes de ces formules sous certaines hypothéses
assez restrictives!). Le but du présent travail est de généraliser ces
démonstrations. Pour cela nous aurons recours a une notion analogue a
celle de vraie paralléle, que nous avons définie et utilisée dans des re-
cherches antérieures?).

1. Définitions

Considérons une surface polyédrale a faces triangulaires, simplement
connexe et ouverte. Il s’agira soit d’un polyedre ordinaire, soit, plus
généralement, d’un plan décomposé en triangles curvilignes.

Dans ce plan 3, nous considérons un ensemble infini de points, sans
point d’accumulation & distance finie. Ce seront les sommets de notre
polyédre.

Certains de ces sommets sont reliés entre eux par des arcs sans points
communs autres que leurs extrémités. Ce seront les arétes de notre poly-
édre.

Nous supposons qu’en chaque sommet P aboutissent A(P) arétes, ou
2= A(P)< oco.

Nous supposons encore que le plan se trouve ainsi décomposé en tri-
angles curvilignes, les faces de notre polyédre.

1) Ch. Blanc, Les réseaux Riemanniens. Comm. Math. Helv. 13 (1940—41), p. 54
& 67, en particulier §§ 5 et 7.

) F. Fiala, Le probléme des isopérimétres sur les surfaces ouvertes a
courbure positive. Comm. Math. Helv. 13 (1940—41), p. 293—346.

F. Fiala, Le probléme des isopérimétres dans les plans de Riemann &
courbure de signe constant. Comm. Math. Helv. 15 (1942—43), p. 249—264.
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Une courbe est une suite d’arétes

I

P:Ea P/l'\l)2’ e Pn—lp'n

telles que 'extrémité de chaque aréte soit l'origine de la suivante. Le
nombre n des arétes est la longueur de la courbe.

Une courbe € est simple, ou sans point double, si tous les sommets
Py, P,,..., P, sont différents, sauf éventuellement P, et P, ; si P, et P,
coincident, la courbe est simplement fermée; elle divise le plan en deux
parties, l'intérieur de € qui comprend un nombre fini de sommets,
d’arétes et de faces, et I’extérieur qui en comprend une infinité.

Le nombre des faces situées a l'intérieur de € est ’aire limitée par €.

Avec M. Blanc, nous appelons courbure au sommet P, le nombre

y(P) =6 — A(P). (1)

Soit une courbe simplement fermée passant par un sommet P. Nous
désignons par A (P) le nombre d’arétes issues de P vers l'intérieur de
la courbe et nous appelons courbure géodésique, le nombre

#,(P) =2 — 4,(P) . (2)

Il s’agit en fait d'une courbure géodésique intérieure et 1’on pourrait
de méme définir une courbure géodésique extérieure, la somme des deux
courbures géodésiques au point P étant d’ailleurs égale & la courbure
totale en ce point. Pour des courbes ouvertes on pourrait parler d’une
courbure géodésique & gauche et d’'une courbure géodésique a droite.

2. Formule de Gauss-Bonnet

Considérons une courbe simplement fermée €, de longueur L et d’aire
A, et désignons par D l'ensemble des sommets intérieurs a €.

Soit s le nombre des sommets intérieurs & € et S le nombre des sommets
situés a l'intérieur et sur ¢.

Ona S=s+ L.

Soit »n le nombre des arétes intérieures a € et N le nombre des arétes
situées & l'intérieur et sur §.

Ona N=mn-+L.

La formule d’Euler pour les polyédres nous apprend que

A—N+8=1 (3) doulontire 4 —n-+s=1. (3)
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On obtient une autre relation en considérant l’ensemble des arétes.
Sur chaque face il y en a trois, mais en les comptant de cette maniére
on compte deux fois les arétes intérieures et une fois les arétes situées
sur €. D’ou

3A=2N—L (4 e 3A=2n+0L. (4)’

Des formules (3) et (4), on déduit facilement les formules
38— N —-L=3 (5) et 3s—n-+L=3. (5)’

Nous sommes maintenant & méme de démontrer une formule tout &
fait analogue & celle de Gauss-Bonnet, & savoir

2y(P) + Xx,(P) =6, (6)
D c

ou la premiere somme est & étendre & tous les sommets de D, et la seconde
a tous les sommets de €.
En effet, le membre de gauche est égal, en vertu des définitions (1)
et (2), a
(6 — A(P) + Z(2 = 4,(P)

= 68+ 2L — 2n
= 6, & cause de la formule (5)’ .

Si 'on désigne par €’ une courbe simplement fermée située & I'inté-
rieur de ¢, et par D* I’ensemble des sommets situés a l'intérieur de €
mais non & intérieur de €/, on a

2y (P) + Xun, (P) — Xn,(P)=0. (7)
D* c (O

Interprétation de X x,(P):
€

A. Dans le cas ou toutes les arétes intérieures issues de € aboutissent
& une courbe simplement fermée €’ de longueur L’, on a, en désignant
par a le nombre des faces situées entre € et €,

a=22(P)=2L— Xx,(P), (8)
c ¢
a=L-+L". (9)
D’ou l'on tire
2u,(P)=L—L". (10)
G
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Dans cette formule, la courbure géodésique apparait comme la varia-
tion de la longueur de la courbe par rapport & une courbe que 'on pour-
rait appeler paralléle; c’est cette interprétation qui avait été utilisée dans
un cas particulier par M. Blanc?).

On peut établir directement ces formules ou les démontrer comme cas
particulier des formules suivantes.

B. Dans le cas général ces formules ne sont plus exactes, mais peuvent
étre remplacées par des inégalités.

Considérons 'ensemble des arétes intérieures & € et ayant au moins
un sommet sur €. Leur nombre est égal a

n=22A(P)—d=2L— Yx,(P)—d (11)
(S ¢

ou d désigne le nombre d’arétes ayant leurs deux extrémités sur €.
Considérons aussi ’ensemble des faces intérieures & © et ayant au
moins un sommet sur €. Soit @ leur nombre.
Ces arétes et ces faces (les sommets sont exclus) forment un complexe
connexe & ; soit ¢ son ordre de connexion. Comme les n arétes décom-
posent & en a faces, évidemment simplement connexes, on a

a=mn—(c— 2)
d’ou 'on tire, en tenant compte de (11)

a=22,(P)—d—c+2. (12)
(O

Deés que ¢ = 2 on en déduit I'inégalité fondamentale
a< Xl (P)=2L— Xx,(P). (13)
€ c

Si ¢ =1, le complexe & est simplement connexe et consiste en un poly-
gone décomposé en triangles par certaines de ses diagonales. Dans ce
cas, la formule (13) est encore valable, car en général d > 0, sauf st &
se réduit a un seul triangle.

Considérons maintenant 1’ensemble des arétes situées sur une face au
moins de §. Ily a

1. les L arétes situées sur ¢,
2. les n arétes appartenant & {, situées sur deux faces de ¢,

3) Loc. cit. p. 64.
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3. e arétes n’ayant aucune extrémité sur € et situées sur deux faces
de § (e peut étre nul),

4. L’ arétes n’ayant aucune extrémité sur € et situées sur une seule
face de & ; elles forment avec € la frontiere de § constituant un certain
nombre ¢ de courbes simplement fermées, que nous appelons la parallele
intérieure ¢ €, et que nous désignons par €. (Il se peut que €’ n’existe
pas et que L' = 0.)

Par exemple, dans notre figure on a:
L=28 e=1
2 A,(P) =26 L' =38
¢ d=2 a = 22
n = 24 c=+4
¢ =2

Si nous comptons maintenant le nombre
total des arétes, en les comptant autant
de fois qu’elles apparaissent sur une des
faces de &, nous obtenons

3a=L+ L 4+ 2n+ 2e¢. (14)

Des formules (12) et (14), on déduit facilement

0=L+L —n-+ 2e+ 3(c— 2)
et
0=L — L+ 2»%,(P)+d-+ 2¢+ 3(c— 2) (15)
[\

d’ou 'on tire, si ¢ = 2, la seconde inégalité fondamentale
2u,(P)SL—L". (16)
C

Si ¢ = 1, cette formule reste valable dés que d = 3, c’est-a-dire si €
est un polygone a 6 cétés au moins.

3. Inégalités isopérimétriques

Soit € une courbe simplement fermée située sur un polyédre. Suppo-
sons que pour toute courbe €’ simplement fermée située & 'intérieur de

€ (€ comprise) on ait 5w (P) = k amn
GI

ou k est une constante comprise entre 0 et 8.
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On peut démontrer alors qu’entre la longueur L de € et l'aire 4 limitée
par € existe I'inégalité isopérimétrique

L2=kA . (18)

Pour la démonstration nous envisagerons trois cas possibles.

1. € ne contient aucun sommet intérieur et limite donc un polygone
décomposé en triangles par certaines de ses diagonales.
Dans ce cas, on a
L=4+2
et
L2 = (4 4+ 2)2 =84 + (A — 2)?

d’ou 'on déduit la formule (18), car
L*=84=FkA.

2. € contient des sommets intérieurs, mais ne possede pas de paral-
léle intérieure; c’est dire que L' = 0.
Dans ce cas
c=2

et
A=a.
On déduit de (13) que
A=<2L — XYn,(P)<2L —k
c
d’ou 'on tire
kA <2Lk — k? = L2 — (L — k)2

et la formule (18)
kd < L2 .

3. € posséde une parallele intérieure €’. Celle-ci se compose d’un cer-
tain nombre ¢ de courbes simplement fermées §;,C;,... €, de longueur
L, L;,... L, et d’aire A], A,,... A} .

Supposons que la formule (18) soit satisfaite pour chacune d’elles. On
en déduit

L®=(Ly + Ly, +---+ Ly
=L + L +- -+ LY
= BA] + kAL + - - + kA
= kA’
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ou A’ représente le nombre des faces situées & l'intérieur de I'une quel-

/
conque des courbes ¢,C;,...CE; .
Puisque a représente le nombre des faces comprises entre € et €/, on a

A=A4"+a
et 'on en tire, en tenant compte de (13) et de (17)

kA =kA' + ka
< L'24 2kL — k2

ce que 'on peut aussi écrire
kA < L*+ L' — (L — k)2
En tenant compte des formules (16) et (17), on obtient bien la formule
(18) kA < L¢ .

Nous pouvons en déduire que si notre inégalité isopérimétrique (18)
n’était pas valable pour €, il devrait exister au moins une courbe ¢’
simplement fermée intérieure a € pour laquelle la formule (18) ne serait
pas non plus valable.

On pourrait alors répéter le méme raisonnement et obtenir une suite
de courbes €, €/, €”,..., simplement fermées, chacune située & l'inté-
rieur de la précédente, et pour lesquelles la formule (18) ne serait pas

valable.
L’aire limitée par ces courbes décroissant, on rencontrera t6t ou tard

une courbe ne possédant pas de parallele intérieure. Or, une telle courbe
appartient a I'un des cas traité sous 1. ou 2., ou la validité de la formule
(18) a été diment établie. En supposant que notre inégalité isopéri-
métrique n’avait pas lieu, nous avons été conduits & une contradiction.

Applications.

I. Sur un polyedre & courbure nulle, (A(P) = 6), tel un plan décom-
posé en triangles équilatéraux, la formule (6) nous donne pour toute
courbe simplement fermée

Zu,(P)=6.
C
On peut done prendre dans (17), £ = 6, et énoncer I'inégalité isopéri-
meétrique L= 64 .

C’est I'analogue de I'inégalité isopérimétrique classique.
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II. Sur un polyédre & courbure non positive, (A(P)=6), on a
2'%,(P) = 6, d’oti on déduit aussi
c

L>2=64.

C’est 'analogue d’un résultat donné par Radé et Beckenbach pour les
surfaces & courbure non positive?).

ITI. Sur un polyédre & courbure négative, (1(P)=7), on a, si la
courbe € contient au moins un sommet intérieur, 2'»,(P) =7 et 'on
en déduit I'inégalité isopérimétrique ¢

L*=174

que nous avons déja vérifiée lorsque € ne contient aucun sommet inté-
rieur.

IV. Sur un polyédre & courbure inférieure ou égale & — 2, (1(P) = 8),
on démontre de méme l'inégalité

12=84.
V. Sur un polyedre & courbure non négative, (4(P) < 6), la formule

(7) nous donne S, (P)= Zn,(P) .
¢’ €

On peut donc prendre dans (17) k= X'»,(P) et énoncer 'inégalité
c
L2=Fk.A.

C’est ’analogue d’'une formule isopérimétrique valable pour les sur-
faces & courbure non négative®).

Remarquons pour terminer que ces formules sont valables dés que les
hypothéses relatives a la courbure sont réalisées a I'intérieur de la courbe
€ et sans supposer que celle-ci appartient & un polyedre ouvert. La der-
niere toutefois peut alors devenir triviale, car k£ peut étre négatif; lorsque
I'on suppose que € appartient & un polyedre ouvert a courbure jamais
négative on a k= 0, propriété analogue a celle établie par Cohn-Vossen
pour les surfaces ouvertes a courbure positive?) et dont la démonstration
peut étre faite a ’aide des paralléles extérieures a la courbe €.

(Regu le 4 février 1946.)

4) Radé et Beckenbach, Trans. Amer. Math. Soc., 35 (1933).
5) Voir le premier travail cité dans la note 2), p. 297.
%) Cohn-Vossen, Kiirzeste Wege und Totalkrimmung auf Flachen. Comp.

Math. 2 (1935), p. 79.
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