Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 18 (1945-1946)

Artikel: Formula di Cauchy (n+1)- dimensionale per le funzioni analitiche di n
variabili complesse.

Autor: Martinelli, Enzo

DOl: https://doi.org/10.5169/seals-16891

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-16891
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Formula di Cauchy (n +1)-dimensionale per
le funzioni analitiche di n variabili complesse "

Ad Andreas Speiser

Di Exzo MarTINELLI, Roma o
nel suo 60° compleanno.

1. La teoria delle funzioni analitiche di una variabile complessa poggia
sopra due risultati fondamentali di Cauchy : il primo e il secondo teorema
integrale (o formula integrale). Che cosa puo dirsi circa I’estensione di
questi alle funzioni di piu variabili complesse?

E noto che, per n variabili, ’estensione del primo teorema da luogo ad
n teoremi integrali distinti, dove le varietd d’integrazione sono cicli di
dimensioni rispettive n,n -+ 1,n + 2,...,2%n — 1, appartenenti allo
S,, ove si rappresentano le variabili complesse z,,...,2,. Gli n teoremi
posson venir espressi compendiosamente cosi:

ff(zl""’zn) d(zl:"':zns Eals""zaz) =0 (l= 0,1,23"',”""‘1):

Va4l

essendo V, ., cicli (» 4 l)-dimensionali omologhi a zero?) nel campo di
olomorfismo della f(2;,...,2,), Z, complesso coniugato di z,, ed
&y, -« «» & UNna combinazione qualunque di classe ! degl’interi 1,...,n 3).
Ciascuno dei precedenti teoremi é altresi sufficiente a caratterizzare tra
le funzioni continue f(z,,...,2,), quelle che sono analitiche (estensione
dei teoremi di Morera e Severt).

E naturale la presunzione che, parallelamente agli n teoremi integrali,
sussistano altrettante formule integrali, estensioni della formula di
Cauchy, nelle quali compaiano integrazioni sopra cicli di dimensione
n,n-+1,n4+2,...,2n — 1. Per la dimensione 7 si tratta di un’esten-
sione gid da molto tempo nota in forma rudimentale, e di recente in
forma generale, ove la varieta d’integrazione é sottomessa soltanto a
condizioni topologiche?). La formula corrispondente alla dimensione

1) Anmerkung der Redaktion. Die vorliegende Arbeit war fiir die Festschrift Andreas
Speiser, Orell Fissli, 1945, berechnet. Wegen verspatetem Eintreffen konnte sie leider
nicht mehr in diese aufgenommen werden.

%) 1 lecito di riferirsi all’omologia con divisione, che nel seguito indicheremo col segno
~, riservando il segno ~ per 'omologia ordinaria.

3) Per I = 0 si tratta del classico risultato di Poincaré; per I = n — 1 cfr. W. Wirtinger,
»Monatshefte fiir Math. und Phys.* (1937), B. 45, pag. 418; per I qualunque e per i teo-
remi inversi cfr. un mio lavoro in ,,Memorie R. Acc. Italia‘‘ (1938), vol. IX, pag. 269,

4) Per n = 2 cfr. un mio lavoro in ,,Rend. R. Acc. Lincei‘‘ (1937), t. 25, pag. 33; per n
qualunque cfr. B. Segre, ,,Atti 1° Congresso Unione Mat. Ital. (1937), pag. 174, nonché
un mio lavoro in ,,Commentarii Math. Helvetici‘‘, t. 17 (1944), pag. 201.

30



2n — 1 appare nel mio lavoro citato in?). Restavano da determinare le
formule corrispondenti a tutte le dimensioni intermedie. Faccio ora un
altro passo verso la risoluzione completa della questione, presentando la
formula integrale corrispondente alla dimensione » -+ 1, mentre mi
riservo di trattare il caso generale in un prossimo lavoro.

E opportuno premettere qualche convenzione. Supporremo intanto
che il punto O della regione di olomorfismo R,, (anche non univalente)
della funzione analitica f(z,,...,2,), nel quale si vuole esprimere il
valore della funzione stessa, coincida coll’origine delle coordinate dello
Son(@ys oo s Tpy Yryee s Y) =2, +1y;,7=1,...,n). Cio per ab-
breviare la scrittura, senza ledere la generalitd, poiché si passa al caso
di un punto O((,,...,{,) sostituendo 2, con z; — ;. Porremo inoltre:
2,2; = |z2;/*=8;. Infine conveniamo di indicare tra parentesi quadre
uno o piu valori, come [«], [«, ], ecc., che s’intenda di escludere nella
variabilitd di un indice nella successione degli interi 1,...,n. Cosl
p-es. si scrivera succintamente %, ;. %, in luogo d1 212t

Zatl - - -2n; 24,11, (e simili) per indicare rispett. simboli di somma e di
(] [a]
prodotto dove l'indice j pud percorrere gl'interi 1,...,n con esclusione

di «. In ogni altro simbolo di somma, come X,;, X', ecc., senza indica-
zione di valori da escludere, s’intende che l’'indice puo percorrere tutti
glinteri 1,...,n.

Cio posto, la formula che stabiliremo ¢é la seguente:

(1) (— 27i)n (Z,A,N,) (0, ...,0) =
ff(z 2n) 2o ? Zn 2 i Ao ?d(z 2 > 2a)
J 13¢5 #p o “l1,..[a]... Zn [ot]k 'Sa“l’sk gi(sk'*_sj) {Y]j(sa“}"sj)s 13°° 2 %n ) ~a)y
41 X

dove 4,,..., 4, sono parametri complessi arbitrari®), V, , é un ciclo
(n + 1)-dimensionale orientabile dello S,,, soddisfacente alle condizioni
topologiche che sono oltre precisate, insieme al significato degli interi
Ny,...,N,.

Si considerino gli (g) spazi caratteristici S,,_, uscenti dal punto O
in 8,,, di equazioni rispettive:
za-—-—zﬂzO (6, p=1,...,n; x #p).

5) L’introduzione dei parametri Aj & diretta a condensare in una sola formula simme-
trica un gruppo di n formule diverse, che rispondono al problema nel caso (n + 1)-dimen-
sionale; mentre nei casi n-dimensionale e (2n — 1)-dimensionale le formule relative sono
univocamente determinate.
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Indicato con T,, , I'insieme di questi spazi, le condizions cui deve soddis-
fare il ciclo V., per la validita della (1) sono le seguents :

Va1 ¢ By — Ty ; (I)
Vn+1 ~ 0 in (REn - T2n—4) + 0' (II)

Osserviamo fin d’ora che la (I) serve ad assicurare che la forma diffe-
renziale integranda a secondo membro della (1) sia regolare sopra V,_;.
Infatti, entro la regione R,, di olomorfismo della f(z,,...,2,) possono
presentarsi singolaritd della predetta forma integranda soltanto in cor-
rispondenza all’annullarsi di qualcuno dei denominatori del tipo s, + sg;
quindi per |[z,|* + [2g|* = 0, cioé 2z, =2g=0: vale a dire sopra
T 2n—4-

Per definire gl’interi N,, che sono caratteri topologici del ciclo V,_,
dipendenti dalla sua posizione rispetto a 7',, ,, o, pil precisamente,
dalla sua condizione d’allacciamento con 7',, ,, consideriamo in cias-
cun piano caratteristico coordinato z;(j = 1,...,n) dello §,, (di equa-
zioni 2z, = ;... =2,=0), una semiretta ¢, uscente dall’origine,
ed orientata nel verso che fa allontanare dall’origine stessa, p.es. il
semiasse reale orientato ordinariamente. Le n semirette individuano un
n-edro solido E,, che puo pensarsi (per concretarne piu facilmente
I’immagine) come proiezione da O di un (r — 1)-simplesso e,_,. Entro
e,_; si considerino gli » cicli (n — 3)-dimensionali &} ,(j =1,...,n)
che sono contorno delle singole facce del simplesso. Per proiezione da O
si ottengono altrettanti cicli (n — 2)-dimensionali H! ,, che appar-
tengono ad E, e, come si verifica subito, a 75, ,%). Supporremo i cicli
H! ,(j=1,...,n) ordinati in guisa che H}_, sia quello dei cicli che
non ha punti sul piano caratteristico z,. Per proiezione da O della faccia
k!_, di e, , che ha per contorno %}_,, si ottiene un (n — 1)-edro solido,
che indicheremo con K/ _,, il quale ha per contorno H)_,, ed ¢ indivi-
duato dalle semirette ¢, ;. t,. Supporremo fissata in K ,
I’orientazione determinata dall’(n — 1)-edro delle direzioni delle pre-
dette semirette orientate ed ordinate, quando j € dispari; 1’orientazione
opposta, quando j é pari. Con cio resta fissata un’orientazione altresi
sui cicli contorno H)_,, tenuto conto della quale si verifica subito che
Z,Hi_, = 0.

%) Si tratta di cicli relativi della varieta aperta T'2;-4. Se si chiude lo S2y euclideo col-
I'aggiunta di un punto all’infinito, il quale viene ad aggiungersi a T'2x-4 ed ai cicli H,’,_ ,

questi divengono cicli assolut: (n. 4). (Per i concetti di ciclo relativo e assoluto, cfr. p. es.
Lefschetz, Topology, New York, 1930, pag. 17.)
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Cio premesso, 'intero N; é definito come wndice d’allacciamento di
V,.1¢e Hi_, entro lo 8,, orientato mediante il 2n-edro delle direzioni posi-
tive degli assi ordinati ,,..., Z,, Y1, -5 Yp; cio€, in simboli:

'Na' = All (V'n+1 ’ Hf;-z) = [Vn+1 ’ Kz;—l] ’ (2)

dove con la parentesi quadra si simboleggia l'indice di Kronecker delle
varietd indicate’?). Giova avvertire che gl’interi NV, non sono fra loro in-
dipendenti, ma legati dalla relazione 2 N, = 0, la quale si deduce
subito osservando che XN, deve uguagliare I'indice d’allacciamento di
V,.1 col ciclo nullo X, H!_,.

Aggiungiamo che, affinché la formula (1) serva di fatto ad esprimere
il valore della f(z,,...,2,) nel punto O, occorre ancora, naturalmente,
sia soddisfatta la condizione:

Z, 0N, #0. (II1)

E sempre possibile soddisfare alla (III) con conveniente scelta dei para-
metri arbitrari 4,, purché non siano tutti nulli gl’interi N, (il che accade
soltanto allorché sia V, ., ~ 0 in 8,;, — Ty,_,; cfr. n. 5). D’altra parte
é facile costruire cicli soddisfacenti alle condizioni (I), (II), e con gl'interi
ad essi relativi non simultaneamente nulli (sono tali p. es. i cicli I'** di
cui nel n. 4).

Osserviamo infine che, mentre per n = 1 la formula (1) non si puo
scrivere, per n=2 essa riducesi alla formula (27 — 1)-dimensionale sopra
citata. In tal caso, infatti, 7}, _, =T, siriduce al punto O, V, ,=V;ad

una ipersuperficie chiusa di S;, N, = — N, al numero delle volte che
V, racchiude il punto O. Riferendosi per es. ad una ¥V, racchiudente
semplicemente O (N, = — N, = 1), la (1) diviene:

—1d(z1 ) 25 29 (2,2)) — 23d(24, 25, z,)

—4n2(4;,—-4;) (0, O)Z(}*l"‘lz)ff(zl » 22) : (2,2, + 2225)° ’
14

formula che, soppresso il fattore inessenziale A, — 1,, coincide colla
formula (27 — 1)-dimensionale per n = 2,

2. Otterremo la dimostrazione della (1) percorrendo la strada seguente,
che cominciamo coll’indicare per sommi capi. In primo luogo si provera
che la forma differenziale integranda a secondo membro della (1), che

7) Per la nozione e le proprietd degl’indici di Kronecker e d’allacciamento, cfr. p. es.
Alexandroff-Hopf, Topologie (Berlin 1935), cap. XI.
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chiameremo brevemente w, é non soltanto regolare in R,, — T, _,
(come gia osservato al n. 1) ma anche integrabile; vale a dire che si
annulla identicamente il differenziale di Cartan dw della forma stessa.
Cio assicura intanto che il secondo membro della (1) non si altera sosti-
tuendo V,,, con un qualunque ciclo omologo nel campo di regolarita
di w, cioé in R,, — T,, ;. Tenuto conto di questo, si sostituird poi
V.41 (0 un suo multiplo) con una somma di cicli di struttura nota e
comunque prossimi ad O, e si mostrera che, al tendere di questi cicli ad
O, la somma degl’integrali corrispondenti tende al valore che appare
nel primo membro della (1).

Cominciamo dalla verifica del primo punto: dw = 0. Posto

W =121, c0s2,) 2aPu(ZrseeesZnsZrseeesZy) A(2eseens 2, %) s

ricordiamo®) che il calcolo di dw puod eseguirsi rispetto alle variabili

2;,2;(j =1,...,n) pensate come indipendenti e che, per I'analiticita
della f(z,,...,2,), risulta aa—gf =0(=1,...,n). Siha allora:
1
— 1)» oD 0D, -
do = =Y ‘”ﬂ( B_ a_z_ﬁ)d(l, i FaZe) s (@)
0Pg 0D, - - D 0D,
aga azﬂ =z [@f]...%n (¢ﬂ + " o aSB) (3)
Un facile calcolo da poi:
a¢3 }'k 876

Pt G o Gat o) Gat o) Lt

k]
A St ESH AB sB
[a, F(sut8) (Su+80) I (s,+8;) (57 (St p) (sg+ )H (3,8+35)

[a]

n Ao SB i Ag 8q
(St 88)% 11 (8, + 85) (8o + 8p)? IZj (sg+ ;) ’
[8i

[«]

espressione che risulta simmetrica rispetto agl’indici «, #, onde uguaglia

altresi @, + % Dalle (2), (3) segue pertanto dw = 0.

8) Cfr. alla pag. 273 del mio lavoro cit.: ,,Mem. R. Acc. It.* (1938), vol. IX.
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3. Passiamo alla seconda parte della dimostrazione. Secondo quanto si
é detto al n. 2, per calcolare il secondo membro della (1) pud sostituirsi
a V,., un qualunque ciclo omologo in R,, — T',,_,. Ora, in base all’ipo-
tesi (II) del n. 1, sappiamo che V, ,~ 0 in (RB,, — T,,_,) + O, cioé
che un conveniente multiplo mV, ., del ciclo V., (m intero non nullo) é
contorno di una varietd M, , di (B,, — T'y,_,) + O, la quale puod sempre
costruirsi passante per 0°®). Un intorno comunque piccolo di O sopra
M,,, ha per contorno un ciclo V, , ~mV,,, in R,, —T,, ,. Onde,
diviso per m il secondo membro della (1), & lecito sostituire a V,, il
nuovo ciclo V,_,, il quale potra supporsi contenuto in un n-cilindro C,,
di equazioni |z, <r,..., |2, <<r, con raggio r arbitrariamente pic-
colo, e che noi assumeremo tale che 1'n-cilindro appartenga per intero
alla regione R,,.

I1 calcolo del secondo membro della (1) é cosi ridotto al calcolo di
f @ e questo, quando si conosco la base rispetto all’omologia con
Vat1 .
divisione per i cicli (» 4 1)-dimensionali di C,, — T',,_,, potra ulte-
riormente ridursi al calcolo dell’integrale di w sopra i cicli base. B d’uopo
pertanto determinare la detta base, cio che & equivalente, come vedremo,
alla determinazione della base (n + 1)-dimensionale di 8,, — T5,_4;
alla ricerca della quale ci rivolgiamo percio nel n. seguente, estendendo
un procedimento usato da B. Segre nel lavoro citato da principio.

4. Si considerino in 8,, —T,, , le varietd (n -+ 1)-dimensionali
Al . G=1,...,n) definite dalle equazioni:

|z1|:...[n...=|zn|=7's |zl <r.

Le varietd A], ,, ciascuna delle quali & prodotto topologico di n — 1
circonferenze e di un cerchio, appartengono al contorno di C,,. Comin:
ciamo col dimostrare che S,, —7T,,_, pPuo contrarst omotopicamente
sopra la varietdh 2,47, ,. o

Sia P(z;,...,2,) un punto qualunque di 8,, —7T,, 4. Posto
z; = ;6% (j=1,...,n), sia g, il minore g, (ovvero, se il minimo dei
o; € raggiunto in corrispondenza a due o piut valori dell’indice 7, sia g,
uno dei p; minimi arbitrariamente scelto). S’indichi poi con g il valore

c

®) Da una varietd che non passi per O se ne ottiene subito un’altra che soddisfa a
questa condizione mediante I'aggiunta di un tubicino (n + 2)-dimensionale che conduca
ad O. D’altronde, se esiste una Mp42 non passante per O, vuol dire che Vp+1~ 0 in
R2n— T'2n—4, onde il secondo membro della (1) & nullo, ed & nullo anche il primo poiché

valgono zero tutti gl'indici d’allacciamento N; di Vu4+1 con i cicli H 77;_2 di T2n-4.

35



minimo di @, ;. ..0, Cio posto, consideriamo la trasformazione che
muta P nel punto P di coordinate:

20 = [o;, +t(r—o)]e® (G=1,...,[k,...,n)

2" = [ox + t(’%k —e] €%, (4)
essendo ¢ un parametro reale definito nell’intervallo 01— 1.

Non ¢ difficile riconoscere che questa trasformazione, per qualunque ¢
dell’intervallo detto, é univoca e continua al variare di Pin 8,, — T',,_,.
Basta tener conto delle seguenti osservazioni. In primo luogo é sempre
p # 0, poiché, essendo esclusi i punti di 7, ,, pud annullarsi uno
solo al pit dei g,, e quindi p,. Insecondo luogo, quando g, =0,
pur risultando @, indeterminato, non viene da cio indotta alcuna in-
determinazione nella posizione di P'?, giacché si ha allora 2z{) = 0 per
ogni ¢. Infine, quando per un dato punto P esistano pit g, minimi,
I'indeterminazione che ne consegue per le (4) in relazione alla scelta
di p,, & soltanto apparente, perché di fatto, essendo allora g, = p, le
(4) riduconsi alle

2= [o; +t(r—o)] €% (=1,...,n),

che sono indipendenti dall’indice k.
Si osservi ora che, per ¢t = 0 il punto P coincide con P, e per
t = 1 col punto di coordinate

20 =re (j=1,...,[k],...,n)

2N = r 2k ioy ,

Qk

il quale appartiene ad A% ,, in quanto |2{"|=r=* o < r. Inoltre, se

gid il punto P sta sopra X;Af ,, risulta g, = 0, onde P coincide
con P per ogni ¢. Si conclude dunque che, al variare di ¢ da 0 ad 1, la
trasformazione considerata definisce effettivamente una contrazione
omotopica di S,, — Ts,_, in X; Al ,;, secondo desideravasi.
L’esistenza di siffatta contrazione, assicura che ogni ciclo assoluto
(cioé tutto al finito) di S,, — 7',,_, puo ridursi omotopicamente sopra
Z,A; ., e quindi che ha un suo omologo su tal varieta. D’altra parte, se
un ciclo I' di 2,4} ., é ~0in 8,, —T,,,, vuol dire che esiste una
varietd L, , di 83, —7,_, che ha per contorno I'; onde applicando ad
L,,_H la contrazione omotopica, L, , si trasforma in una varietd (sin-
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golare) L, ,di 2,4}, che ha ancora per contorno I', e quindi I" é altresi
~ 0 sopra X, A} . Da cio si trae che come base per i cicli al finito di
Sgn — Ty, 4, di qualunque dimensione (e a noi interessa la dimensione
n -+ 1), puo prendersi una base per i cicli della stessa dimensione sopra
54

La determinazione di una base di dimensione n + 1 sopra X, 4], , é
d’altronde immediata. Si osservi invero che le varietd 4}, s’incontrano
goltanto nei punti del comune contorno costituito dall’z-toro (prodotto
di » circonferenze) di equazioni |2, =..:-=|2,] = 7. Supponiamo le
varietd A, orientate in guisa che il loro comune contorno risulti orien-
tato allo stesso modo per qualunque j. Si soddisfa a tale requisito p. es.
orientando A7, mediante 1’ (n 4 1)-edro di direzioni uscenti dal punto

Xy =+ =2,=7r, y=---=y, =0, delle quali la prima é paral-
lela ed equiversa al semiasse positivo delle x;, e le rimanenti ordinata-
mente ai semiassi positivi delle y,,..., y,. (Tale orientazione é la stessa

o 'opposta, a seconda della parita o disparita di 7, di quella che si otter-
rebbe assumendo orientazioni destrorse per le n —1 circonferenze e per
il cerchio di cui 4,, é prodotto topologico, quando questo si pensi

eseguito considerando i piani coordinati 2,,...,2, nell’ordine natu-

rale). In queste condizioni le (g) varieta

I — Ak — 4k, (k,h=1,...,n; k#h)

sono dunque cicli orientati (n 4 1)-dimensionali della varietd 2,4}, ,.
Di questi gli m —1 cicli I'®, I'® ., I'*, per ogni k fissato,
formano evidentemente wna base sopra la varietd stessa, e quindi in
S 2n Tzn—4'

Prima di passare ad applicare il risultato ottenuto al calcolo dell’in-
tegrale di cui al n. 3, osserviamo quanto segue. Coll’aggiunta di un
punto all’infinito, possiamo pensare lo S,, euclideo come uno spazto
sferico S,,. L’aggiunta del punto stesso a T,,_,, muta T,, , in una va-
rietd chiusa T,,_,, e risulta S,, — Ts, 4 = S, — T'2,.4. I teoremi con-
cernenti la dualita di Alexandroff'?), ci assicurano allora l’esistenza in
T, . di una base di dimensione n — 2 duale della base di dimensione
n + 1 determinata in S,, — 7, ,, siffatta che i mutui coefficienti
d’allacciamento dei cicli fondamentali delle due basi diano luogo ad una
matrice unitaria. Ebbene, dico che una base duale della I'i},

sy

10) Cfr. p. es. il trattato di Alexandroff-Hopf, cap. XI.
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I¥t,, & costituita dai cici Hy_,, Hi_, 4. H' , di T,,_,,

definiti al n. 1. Si tratta di valutare gl’indici d’allacciamento:
Al (F::il ’ Hﬁ—z) = [PZET-I’ Kﬁ-—-l] = [Ak, KB] — [4%, KB] >

per x =1,...(k]...,nm e B=1,...[k]...,n, essendo K’ ,—>H’_,
secondo si & detto al n. 1. Risulta in ogni caso [4% KF] = 0, e altresi
[A*, KB] = 0 per « # . Ricordata l'orientazione fissata per S,, e per
K®?_. al n. 1, risulta inoltre [A% K*] = —1; onde si ha in definitiva:

1 per =g

0 per (X#:ﬂ (“’/9:1,--.,[]0],...,7’&), (5)

Al (F:& ’ Hﬁ—z) =

il che prova I’asserto.

5. Ritorniamo al ciclo V., di Cp, — 75,4, di cui al principio del
n. 3. Se si tien conto che la contrazione costruita nel n. precedente con-
serva ogni punto di C,, su cui agisce entro C,, stesso, si trae senz’altro
che la base (n -+ 1)-dimensionale determinata sopra 2,47, ,, é base pei
cicli di quella dimensione sia in 8,, — 7', che in Oy, — Ty, ,. Puo
scriversi allora:

! kx :
I/;¢+1 s E o Cra Pn+1 n OZn - T2n—4 ’ (6)
%]

con k arbitrariamente fissato e c,, convenienti interi. Per determinare i
coefficienti ¢, , si osservi che la (6) stessa é valida a maggior ragione in
\ / . . .

8;, — T,,_4, dove é anche V, , ~mV, ,,; quindi risulta

Q ko .
m V.n+1 ~ za cka Fn+1 ln Sz,n i Tzn_4 .
i . [%]

E‘y ‘qué,st’ulti‘ma, a sua volta, sussiste a maggior ragione in §,, — Hf;_z
B=1,...[k]...,n), onde si ha:

m Al (Vy,y, HS_,) = % « Cra AW (T, Hi )

Tenuto conto delle (5) e del significato degli interi N, (n. 1), se ne dedu-
cono le relazioni:

ka= m All (Vn+1’ H‘i__z) = mNB (ﬂ= 1,...[’6]...,%) ’ (7)
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che determinano i coefficienti ¢,g (6 mostrano ch’essi sono indipendenti
dall’indice k).

Ricordato che (n.3) la sostituzione di V,,, con ¥V, , nel secondo
membro della (1) é lecita previa divisione per 'intero m, e tenuto conto
delle (6), (7), risulta che il secondo membro della (1) equivale a

J o e=3.0,[ o=

ZcxNosza k] Fka
%] n+1 (8)
[fa)———fw] EQN[fw——f
n+1

Finalmente, poiché 2, N, = 0 (n. 1), si ha per il secondo membro della
(1) P'espressione:

— 3, [ . (9)

o
An—l—l

6. Siamo ormai all’ultimo passo: la valutazione della somma d’inte-
grali (9).

Fruiamo della seguente rappresentazione parametrica di 4 ,:

z; =1re%  (j=1,...[x]...,n), z,=op,6"%%, 10)
J 7 Qa

ove i parametri sono: 0,,..., 6, variabili da 0 a 2%, e g, variabile da 0
ad r. Tenuto conto delle (10) e delle altre che se ne deducono:

E.:Te—'iej - 1,...[0&]...,%) 5 _z-a——__- e-—iecx 5 1]_
j ] Qu

risulta sopra 47, :

d(z;,2;) = d(rei%, re %)= —1r2d(f,;, 0 =0 perj#« (12)
d (2, 2,) = d(0a6°%%, 0 €71%%) = — 210, d(0y, 0s) -
Pertanto, tutte le » forme differenziali monomie nelle quali si spezza
@ =f(21,...52,) 2;D;d(21,...,2,,2;), si annullano identicamente so-
pra A%, allinfuori di f(zy,...,2,) Pud(21,...,2,,2,). Llespressione
(9) si riduce cosi a
— S No [ flaseesz) ud(nyeens2n,7) - (13)
An
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Ora osserviamo che, se si fa tendere r a zero, variano nella (13) le
varietd d’integrazione 47, ,, ma non varia il valore della (13) stessa.
Infatti, la variazione di r produce in sostanza una variazione omotopica
entro C,, — T,,_, del ciclo 2 N, I'¥, al quale & esteso l'integrale (8),

integrale che, come si é v1sto equivale a (13). E poiché la sostituzione
del ciclo d’integrazione con altro omologo nel campo di regolarita della
forma integranda w, non altera il valore dell’integrale (n. 2), si conclude
come si & asserito. Tenuto conto di cid e della continuita della f(z,,..., 2,),
la (13) pud sostituirsi con:

— £, ) BNy lim [ Bd(ase s 20, 7) - (14)

r->0 o
Aﬂ+1

In base alle (10), (11), (12) si ha poi su A%, :

A "
(02473 (272 (p24+r)" Y’

¢2 — rﬂ'— “1(91"}‘ +9n) k )
[aE] ea+r )

A(ZysererZpy2y) = 2(—1)" r" Lt @1t 6m) 5 F(o . 6,,...,0,); 1)

da cui: _
f@ad(zl,...,zn,za)=

Sede L d ]
Y S\ 42N —2 [«] Qa . —
= (—2xiyr [(2#)”‘2 f T (n—1) A, f (Qa+r2)n

S A
= (— 2m')"["'k k ——ﬂ.a],

gn-1

che coincide col suo limite per » — 0, dato che risulta indipendente da 7.

11) Si badi che, data l’orientazione fissata al n. 4 per An 110 49y 01 50y) risulta
positivo su tale varieta. Pertanto il successivo calcolo dell’integrale sopra A: 4p 81 fa
trasformando l'integrale stesso in un integrale multiplo ordinario mediante la semplice

sostituzione delle espressioni ottenute per Do © d(2y,...,2,, 24).
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Sostituendo nella (14) si ha:
. 1
-——f(O, . -:O) ('—" 27”’)7&[_2"___{ Zk}“k EaNa_' EalaNa] ’

e, tenendo ancora una volta conto che 2, N, = 0, si ottiene finalmente

f(O0,...,0)(—2mi)» ¥ 4, Ny

che non differisce dal primo membro della (1). La formula stessa é per-
tanto dimostrata.

(Regu le 24 mai 1945.)
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