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Méthodes modernes en topologie algébrique

Par Henri Cartan, Paris1)

1. Limites projectives de groupes

Nous appelons limite projective d'une famille de groupes ce que Steen-
rod2) appelle ,,inverse homomorphism System"; l'expression ^limite
projective" a donc ici un sens plus général que chez A. Weil3).

Soit / un ensemble ordonné filtrant à gauche, c'est-à-dire un ensemble
d'éléments oc, /?,... muni d'une relation d'ordre (partielle) notée occ p,
telle que, quels que soient oc et fi, existe y satisfaisant kyaocetycip.
Attachons à chaque oc € I un groupe topologique abélien 6?a, noté additi-
vement, et supposons donnée, pour tout couple (a, /3) tel que #cj5,
une représentation continue (pap de Ga dans Gp, de manière que soit
satisfaite la condition de transitivité suivante : si oc cz(ï <zy, la
représentation 9?ay est composée de y^p et (ppy (ce que nous écrirons ç?ay

(ppy o ç?aj3). La limite projective des groupes G suivant les représentations
9?a0 est l'ensemble des systèmes (xoc)(X€l tels que, pour <%c/8, on ait
xp <pap(%0L), cet ensemble G étant muni de la structure de groupe
(#a) + (ya) (#a + Va) (^ es^ donc sous-groupe du groupe-produit des

C?a). Le groupe G sera muni de la topologie induite par celle du groupe-
produit4) des Ga; si les Ga sont compacts5), il en est de même de

Soit, pour chaque oc, un sous-groupe Ha de Ga, de manière que, pour
oc a fi, (p^HJ c Hp. On identifiera la limite projective des H^ à un
sous-groupe de la limite projective des Ga.

Soit J un sous-ensemble filtrant (à gauche) de /, et soit G! la limite
projective des GJ^oc e J) suivant les représentations (pap. Il existe une
représentation continue, dite canonique, de G dans G'', savoir celle qui,
à l'élément (xoc)OC€l de G, associe l'élément (#a)a€j de G'. Lorsque J est

un sous-ensemble fondamental de / (pour tout oc e I existe un (} e J tel

*) Note de la rédaction: L'avant-propos de cet article a paru dans ,,Festschrift
Andréas Speiser", Zurich 1945, p. 246. Il y manque l'indication (1 bis):
Lefschetz: Topologie (Amer. Math. Soc. Colloq. vol. XII), Chap. II, § 5.

2) Steenrod, Amer. Journal of Math., t. 58, 1936, p. 661—701.

3) A. Weil, L'intégration dans les groupes topologiques (Actualités, n° 869,
1940, chez Hermann à Paris); voir pages 23 et suivantes.

4) Voir par ex. N. Bourbaki, Topologie générale, chap. III et IV (Actualités,
n° 916), p. 18.

&) Le mot ,,eompact" est employé au sens de Bourbaki (bicompact au sens d'Alexandroff-
Hopf).
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que P c oc), la représentation canonique de G dans Gr est un isomorphisme
de G sur G': on identifie alors G et G1.

Proposition 1.1. Attachons à chaque oc € I un sous-ensemble compact

non vide Aa de 6ra, de manière que, pour occz/3, tp^p (Aa) czAp.
Alors il existe un élément (xa) de la limite projective, tel que #a e Aa
pour tout oc.

Proposition 1.2. Soient deux limites projectives relatives au même
ensemble d'indices: G, lim. proj. de Ga suivant des cp^, et G', lim. proj.
de Gra suivant des cp^. Soit, pour chaque oc, une représentation continue
/a de Ga dans Gfa, de manière que, pour oc c /?, on ait fp o 99^ <p'ap 0 /a.
Alors il existe une représentation continue / et une seule de G dans G',
qui transforme l'élément (#a) de G dans l'élément (/a(#a)) de ^'î s*

chaque /a est un isomorphisme de (?a sur â£, / est un isomorphisme de
G sur Gf. Dans tous les cas, l'ensemble des x=-(xa) de G tels que
/(#) ==0 n'est autre que la limite projective des sous-groupes Ha formés
des xa tels que /a(#a) 0 ; en outre, lorsque les Ga sont compacts, le

groupe image f(G) n'est autre que la limite projective des sous-groupes

Démontrons seulement la dernière partie de l'énoncé: soit (ya) un
élément de la lim. proj. des /a(Ga); on veut trouver un élément (xa) de
G tel que /a(#a) y^ pour tout oc. Pour cela, on considère, pour chaque
oc, l'ensemble Aa des xa€Ga tels que /a(#a) =t/a, et on applique la
proposition 1.1.

2. Groupe d'homologie d'un espace compact

Nous supposons connues les notions6) de complexe simplicial abstrait
(il s'agira seulement de complexes finis), de simplexe orienté, de chaîne

(sur un complexe simplicial K et sur un groupe abélien g), de bord d'une
chaîne (nous préférons le mot ,,bord" au mot ,,frontière" qui a un autre
sens en Topologie générale). Le groupe d'homologie (ou groupe de Betti)
du complexe K (pour un groupe de base g), que nous noterons G0(K),
est le quotient du groupe des cycles (chaînes dont le bord est nul) par le

sous-groupe des bords (le bord d'un bord est toujours nul) ; dans Gg(K),
on distingue, pour chaque entier r > 0, le sous-groupe Grg(K) des cycles
de dimension r, et Gg(K) est somme directe des sous-groupes Grg{K).

Plus généralement, le groupe d'homologie de K modulo H (H désignant
un sous-complexe de K), que nous noterons Gg(K/H) (ou G(KjH) quand

e) Pour toutes les notions fondamentales, voir par ex. le Traité d'Alexandroff-Hopf.



il sera inutile de préciser le groupe de base g), est le quotient du groupe
des nycles-modulo H (chaînes dont le bord est une chaîne de H) par le
sous-groupe, somme des chaînes de H et des bords de chaînes de K. Ici
encore, on distingue le sous-groupe Grg(KjH) relatif à la dimension r.

Le groupe de base g sera toujours muni d'une topologie, ce qui donne
une topologie évidente sur Gg(KjH) ; cette dernière topologie est séparée
si le groupe des bords est fermé dans le groupe des chaînes: pour cela,
nous supposerons2) que g satisfait à la condition: pour tout entier n, le
sous-groupe des ni (où f parcourt g) est fermé dans g. Si g est discret,
ou compact, cette condition est vérifiée.

Rappelons enfin qu'une application simpliciale f de K dans un
complexe Kr, telle que f(H)(zHf (Hr sous-complexe de Kf), définit une
représentation continue ipf de O(KjH) dans G(K'jHf), qui transforme
tout élément de Gr{KjH) en un élément Gr(Kf\H')\ et les représentations

ainsi associées aux applications simpliciales satisfont à une
évidente condition de transitivité.

Pour définir le groupe d'homologie d'un espace comjvact A modulo un

sous-espace fermé B, nous suivons la méthode de Cech. Pour chaque
recouvrement oc de A par un nombre fini d'ensembles ouverts, on considère,
avec Alexandroff, le nerf Ka du recouvrement: c'est un complexe sim-
plicial dont les ,,sommets" sont les ensembles du recouvrement, une
famille de ,,sommets" constituant un ,,simplexe" si les ensembles
correspondants du recouvrement ont une intersection non vide. On définit le
sous-complexe Ha suivant: un simplexe de Ka appartient à £Ta si ses

,,sommets" (qui sont des ensembles du recouvrement oc) ont, sur B, des

traces dont l'intersection n'est pas vide. Pour chaque recouvrement <%,

soit Ga le groupe GgiKJH^). Dans l'ensemble / des recouvrements
ouverts finis, considérons la relation d'ordre : oc c /? si tout ensemble de
oc est contenu dans au moins un ensemble de /?; / est filtrant à gauche.
Pour ocaf}, associons à chaque ensemble de oc un ensemble de /? le
contenant; on obtient une application simpliciale fap de Ka dans Kp, telle
que fap(Ha) czHp; d'où une représentation continue ç?a^ de Ga dans Gp.
On prouve que <pap ne dépend pas de l'application particulière /a^, et
que, pour ocafïczy, on a ç?ay <ppy o ç?ajg. Cela posé, le groupe
d'homologie de A modulo B, noté Gg(A/B), est par définition la limite
projective des groupes Gg(KJHa) suivant les représentations cp^p; le

sous-groupe Grg(AjB) relatif à la dimension r est la limite projective des

sous-groupes Grg(KJHa).
Si l'espace A est de dimension brouwerienne < n (c'est-à-dire possède



des recouvrements ouverts finis arbitrairement fins dont le nerf est de

dimension ^ n), les groupes Or(AjB) sont nuls pour r > n.
Un cas important est celui où le groupe de base g est le groupe additif

des nombres réels modulo un, que nous noterons T\ alors le groupe
OT(AJB) est compact.

3. Représentation définie par une application continue

Soient deux espaces compacts A et A \ f une application continue de

A dans Af, B un sous-espace fermé de A, Bf un sous-espace fermé de

Af tel que f(B)c.Bf. Alors / définit une représentation continue q>f de

Gr(A/B) dans Gr(A'IBr). Si / se déforme continûment sans que f(B)
cesse d'être contenu dans B\ la représentation q>f reste invariable.

Si Ton a un troisième espace compact A", une application continue
h de A' dans A", un sous-espace fermé B" de A" tel que h(B') c jB7/, la
représentation de Or{AjB) dans Gr{AffjB")i définie par l'application
composée h o/, n'est autre que la composée (pn oq>f.

Nous examinerons trois cas particuliers importants:
1° celui où A est un sous-espace de Af, f étant l'application identique

de A dans Af, et où B Bf: d'où une représentation de Gr(A/B) dans

Gr(A'lB)\
2° celui où -4' est identique à A, f étant l'application identique de A

dans A, avec B<zBf; d'où une représentation de Gr(A/B) dans

3° celui où / est l'application ,,canonique"7) de A dans l'espace-quotient
A1 obtenu en identifiant entre eux les points de jB, et où B! est le

sous-espace f(B) (réduit à un point); alors / est un homéomorphisme de

A ¦— B sur A1 — B', et on démontre que <pf est un isomorphisme de

Gr(A/B) sur Gr(Ar/Br).

L'examen de ce dernier cas conduit à la nouvelle notion que voici :

4, Groupe de Lefschetz d'un espace localement compact

Soit E un espace localement compact ; désignons par E l'espace E si
celui-ci est compact, sinon l'espace compact obtenu par adjonction d'un

point à E (Alexandroff)8). Soit / le sous-espace de E formé de ce point
si E n'est pas compact; si E est compact, / désignera le sous-espace vide.

7) Bourbaki, Théorie des ensembles (fasc. de résultats) (Actualités, n° 846);
voir p. 29.

8) Voir Bourbaki, Topologie générale, chap. I et II (Actualités, n° 858), p. 65—67.



Par définition, le groupe de Lefschetz Frg(E) est le groupe Org(É/I) ; il coïncide

avec le groupe Org(E) si E est compact. Dans tous les cas, le groupe
F}(E) est compact.

Théorème 4.1. Soient E un espace localement compact, A un espace
compact et B un sous-espace fermé de A, f un homéomorphisme de

A — jB sur E. Alors / définit un isomorphisme cpf de Or(AjB) sur le

groupe de Lefschetz Fr(E).
Bornons-nous en effet au cas où E n'est pas compact. Alors / se pro-

s\ y\ /\
longe en une application continue / de A dans E, telle que f(B) =/. Or

la représentation <pf de Gr{AjB) dans Or{EjI) est un isomorphisme du
premier groupe sur le second (cf. 3e cas particulier du n° 3). Il suffit
donc de prendre pour cpf l'isomorphisme ç?^.

En particulier, on identifiera le groupe Gr(AjB) au groupe de Lefschetz

P-(A-B).
Théorème 4.2. Soient E et E! deux espaces localement compacts, / une

application continue de E dans E1\ telle que l'image réciproque de tout
compact de Er soit un compact de E. Alors / définit une représentation
continue <pf de Fr(E) dans rr(Er). Si on a en outre une application
continue h de Ef dans un espace localement compact En, telle que l'image
réciproque de tout compact soit un compact, la représentation de Fr(E)
dans Fr(E/f), définie par l'application composée h o /, est la représentation
composée <p h oyf. En particulier, si / est un homéomorphisme de E sur
E\ <pf est un isomorphisme de Fr(E) sur Fr{Er).

Démonstration abrégée : / se prolonge en une application continue / de

E dans Ê', telle que f\l) ai'.

5. Les trois représentations fondamentales

Soit E un espace localement compact, F un sous-espace fermé de E,
U =E — F le complémentaire (ouvert) de F dans E. Pour un recou-

vrement ouvert fini oc de E, soit Ka le nerf de oc, H^ le sous-complexe nerf
de ^ en tant que recouvrement de F (F désigne l'adhérence de F dans E),
et La le sous-complexe nerf de oc en tant que recouvrement de / (notation
du n° 4). Les groupes Fr(E), F*(F) et 1^(11) sont respectivement
identifiées aux limites projectives des G^KJL^), Gr(HJLa) et Gr(KJHa).

1° L'application simpliciale identique de Ha dans K^ définit une
représentation de Gr(HJLa) dans Gr(KJLa); par passage à la limite



projective (conformément à la proposition 1.2), on en déduit une
représentation continue (dite canonique) de Fr{F) dans Fr(E); c'est aussi la
représentation définie par l'application identique de F dans E
(conformément au théorème 4.2).

2° L'application simpliciale identique de Ka dans La définit une
représentation de Gr(KJLa) dans Gr(KJH(x) ; par passage à la limite
projective, on en déduit une représentation continue (dite canonique) de

Fr(E) dans Fr(U) ; c'est aussi la représentation de Gr{ÊjI) dans Gr(Ê/E- U)

définie par l'application identique de E dans E (cf. n° 3, 2e cas
particulier).

3° A chaque élément de Gr(KJHa) faisons correspondre son bord, qui
est un cycle du complexe I/a; il définit un cycle de Ha modulo La; d'où
une représentation de Gr(KJH0C) dans Gr~l(HajLa). Par passage à la
limite projective, on en déduit une représentation continue (dite
canonique) de Fr(U) dans Fr~1(F); l'élément de Fr~1(F) qui correspond ainsi
à un élément de Fr(U) sera appelé le bord de cet élément.

On a ainsi une cascade de représentations, dites canoniques, de chacun
des groupes de la suite

...tFr(F), F'(E), F'(U), Fr-i(F), Fr-i(E)y F^U),...
dans le suivant; et ces représentations jouissent de la propriété
fondamentale suivante:

Théorème 5.1. (Théorème fondamental.) Fl9 F2, F3 désignant trois
groupes consécutifs quelconques de la suite précédente, y désignant la
représentation canonique de F1 dans F2, et ip la représentation canonique
de F2 dans JP3, la représentation composée ip o<p est nulle. En outre,
lorsque le groupe de base g est le groupe T, le sous-groupe de F2 formé des
éléments dont l'image par y) est nulle, est précisément Vimage cp (Fx).

Démonstration: évidente à partir du cas simplicial, et en appliquant
la proposition 1.2.

Le théorème précédent est la clef d'un grand nombre de théorèmes
importants en Topologie algébrique, comme nous allons le montrer sur
quelques exemples. Auparavant, examinons un cas particulier:

Proposition 5.1. Si F est un sous-ensemble à la fois ouvert et fermé de
E localement compact, la représentation caijonique de Fr(F) dans Fr(E)
est un isomorphisme de Fr(F) sur un sous-groupe de Fr(E)i auquel on
identifiera toujours Fr(F).



Démonstration: évidente à partir du cas simplicial, par passage à la
limite projective conformément à la proposition 1.2.

Dans l'hypothèse de la proposition précédente, Fr(E) est somme
directe de ses sous-groupes Fr(F) et rr(U) (U désigne toujours E — F).
Plus généralement:

Proposition 5.2. Si un espace localement compact E est réunion
(finie ou infinie) d'ensembles ouverts V\ deux à deux sans point commun
(les Ut sont donc aussi fermés), Fr(E) est somme topologique directe9) de

ses sous-groupes Fr(Ut).
Cette proposition peut se ramener à la précédente grâce à une récurrence

et au théorème suivant, intéressant par lui-même.

Théorème 5.2. Soit E un espace localement compact, réunion d'une
famille filtrante (croissante) de sous-ensembles ouverts Et. Les applications

canoniques de Fr(E) dans les groupes Fr(Et) définissent (conformément

à la proposition 1.2) une représentation continue de Fr(E) dans la
limite projective des Fr(Et); cette représentation est un isomorphisme de

Fr(E) sur cette limite projective, qu'on identifiera donc à Fr(E).
Ce théorème résulte de la proposition suivante, facile à vérifier: Soit A

compact, et soient B% des sous-ensembles fermés de A formant une
famille filtrante (décroissante) d'intersection B\ les représentations
canoniques de Gr{AjB) dans Gr(AjBt) (cf. n° 3, 2e cas particulier)
définissent une représentation de Gr(AjB) dans la limite projective des

Gr(AjBt), qui est un isomorphisme de Gr(AjB) sur cette limite projective.

6. Application à F invariance du domaine

Dans ce numéro et les suivants, nous supposons que le groupe de base g
est le groupe T (groupe additif des nombres réels modulo 1), de manière
à pouvoir nous servir du théorème 5.1.

Proposition 6.1. Soit E un espace localement compact10) de dimension

^ n, F un sous-espace fermé de E, U le complémentaire de F dans E.
Les trois conditions suivantes sont équivalentes:

9) Un groupe abélien topologique 0 est somme topologique directe de sous-groupe Ot si
tout élément x de G se met d'une manière et d'une seule sous la forme 2xz, la famille

i
des x$ e Oi étant sommable (au sens de Bourbaki, loc. cit. en 4), p. 34), et chaque xt étant
fonction continue de x.

10) Par définition, la dimension d'un espace localement compact est la borne supérieure
des dimensions de ses sous-espaces compacts.



a) le groupe Fn(F) est nul;
b) l'image canonique de Fn(F) dans Fn(E) est nulle ;

c) la représentation qui, à chaque élément de Fn(E), fait
correspondre sa trace dans Fn(U), est biunivoque11) (les traces de deux éléments
distincts sont distinctes).

En effet, Fn+1(U) est nul, donc (théorème 5.1) la représentation
canonique de Fn(F) dans Fn(E) est biunivoque, ce qui prouve l'équivalence

des conditions a) et b). Or la condition b) équivaut à c), d'après le
théorème 5.1.

Proposition 6.2. Soit E localement compact de dimension ^ n, F et
Fr deux sous-ensembles fermés tels que F' czF. Si Fn(F) est nul, Fn(Ff)
est aussi nul.

C'est une conséquence immédiate de la proposition 6.1 appliquée à

F et à F\ compte tenu du fait que la représentation canonique de

Fn(Ff) dans Fn(E) est composée des représentations canoniques de

Fn{Fr) dans r*(F) et de Fn{F) dans Fn(E).

Théorème 6.1. Bn désignant la boule ouverte de l'espace numérique de

dimension n, le groupe Fn(Ff) est nul pour tout vrai sous-ensemble
fermé JT de Bn.

En effet, soit V l'intérieur d'une boule fermée contenue dans Bn et
sans point commun avec F\ et soit F le complémentaire de V dans Bn.
Le groupe Fn(F) est nul, car F peut être continûment déformé en la
frontière de Bn; donc Fn(F;) est nul, d'après la proposition 6.2.

Théorème 6.2. Soit U un sous-ensemble ouvert non vide de la boule
ouverte Bn\ la représentation canonique de Fn(Bn) dans Fn(U) est biunivoque,

et, en particulier, Fn(U) n'est pas nul12).
En effet, Fn(Bn — U) est nul d'après le théorème 6.1; il suffit alors

d'appliquer le théorème 5.1.
L'ensemble des théorèmes 6.1 et 6.2 fournit ce qu'il est convenu

d'appeler le théorème de ,,1'invariance du domaine": soit A un sous-

espace localement compact de la boule ouverte Bn ; la propriété, pour un
point a de A, d'être intérieur à A (propriété qui, a priori, est relative à

l'espace ambiant Bn), peut être caractérisée intrinsèquement à l'espace
topologique A : il faut et il suffit que, pour tout voisinage ouvert U
suffisamment petit de a dans A, le groupe Fn(U) ne soit pas nul.

u) Nous employons le mot biunivoque au sens de Bourbaki (loc. cit. en 7), p. 10, n° 8).
12) Nous admettons que le groupe r^,(Bn) est isomorphe au groupe de base T, ce qui

serait du reste facile à démortrer par récurrence sur n, en utilisant le théorème
fondamental 5.1.
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On peut compléter le théorème 6.2:

Théorème 6.3. Soit U un sous-ensemble ouvert, homéomorphe à jBn,
de la boule ouverte Bn. La représentation canonique de rn(Bn) dans

rn(U) est un isomorphisme du premier groupe sur le second.
Démonstration : d'après le théorème 6.2, il suffit de montrer que cette

représentation <p est une représentation de Fn(Bn) sur rn(U). Or soit
a eU, et soit F l'intérieur d'une boule fermée de centre a contenue
dans U. Le groupe Fn~1(Bn — F) est nul, donc (théorème 5.1) la
représentation canonique de Fn(Bn) dans Fn(V) est une représentation
sur Fn(V), et comme elle est composée de q? et de la représentation
canonique xp de rn(U) dans Fn(V) (représentation y qui est biunivoque
d'après le théorème 6.2), il s'ensuit que y est une représentation sur
Fn(U). C. Q. F. D.

7. Le groupe de Lefschetz, pour la dimension n, d'une variété de

dimension n
Nous appelons variété de dimension n un espace topologique (connexe

ou non) dont chaque point possède un voisinage ouvert homéomorphe
à une boule ouverte de dimension n. Nous laissons ici de côté les
généralisations possibles de la notion de variété combinatoire13).

Une boule ouverte Bn de dimension n est une variété de dimension n.
Par définition, orienter Bn, c'est choisir l'un des deux isomorphismes
possibles du groupe F^(Bn) sur le groupe de base T. Une orientation de

Bn induit une orientation pour tout sous-ensemble ouvert U de Bn
homéomorphe à Bn, d'après le théorème 6.3.

Par définition, orienter une variété E de dimension n, c'est orienter
chaque sous-ensemble ouvert de E homéomorphe à Bn, de manière que
si U et F sont deux tels sous-ensembles satisfaisant à U c F, l'orientation

de U soit induite par celle de F. Dans le cas où E est précisément
une boule J5W, cette définition de l'orientation est d'accord avec la
précédente.

Une variété E de dimension n est orientable s'il est possible de l'orienter,
dans le sens qui vient d'être défini. Pour cela, il faut et il suffit que chaque
composante connexe de E soit orientable, et alors il y a deux orientations
possibles (opposées) pour chaque composante connexe de E.

Théorème 7.1. Pour une variété E de dimension n, le groupe de Lef-
schetz F%(E) est somme topologique directe des sous-groupes F%(Ei)

18) Voir par ex. le deuxième des mémoires de Cech : Ann. of Math., t. 34, 1933,

p. 621—730.



relatifs aux composantes connexes E% de E; chaque groupe 7\£(i7t.) est
isomorphe à T si E{ est orientable, isomorphe au groupe Z2 (groupe
additif des entiers modulo 2) si E{ n'est pas orientable.

La première partie de l'énoncé résulte immédiatement de la proposition

5.2. La deuxième partie résultera d'un théorème général relatif
au groupe F^(E) d'un espace localement compact E de dimension ^.n:

Théorème 7.2. Soit E localement compact de dimension < n. Soient
des ensembles ouverts non vides Ut, formant une base de la topologie de

E; et soit, pour chaque £/,, un élément yt du groupe F^Ui). Pour que
les yt soient respectivement les traces, sur les Ut, d'un même élément y
de F£(E), il faut et il suffit que, pour tout couple (E/,., U$) tel que
Ui czUjy y{ soit la trace de yj. (Nous dirons alors que les y{ forment un
système cohérent.) L'élément y est alors unique.

Admettons ce théorème pour un instant. Il prouve que la détermination

du groupe F%{E) revient à celle des systèmes cohérents; si E est

une variété connexe de dimension n, les Ui étant les sous-ensembles

ouverts homéomorphes à la boule Bn, le groupe des systèmes cohérents
est isomorphe au groupe F% de l'un des Ut si E est orientable, sinon il est

isomorphe au sous-groupe de F^(U^ formé des éléments égaux à leur
opposé. Et ceci achève la démonstration du théorème 7.1.

L'intérêt du théorème 7.1 est qu'il ne fait intervenir aucune hypothèse
de triangulabilité ni, au cours de la démonstration, aucun procédé
rappelant de près ou de loin un pavage de la variété.

Reste à démontrer le théorème 7.2; il résultera des deux théorèmes

qui vont suivre.

8. Deux théorèmes sur le groupe de Lefschetz14) de la réunion de deux
ensembles ouverts

Théorème 8.1. Soit E localement compact, réunion de deux sous-
ensembles ouverts U1 et U2i d'intersection F. Pour qu'un élément yx de

Fr(U1) et un élément y2 de Fr(U2) soient respectivement les traces d'un
même élément y de Fr(E), il faut et il suffit que y1 et y2 aient même
trace dans

Théorème 8.2. Soit E localement compact, réunion de deux sous-
ensembles ouverts U1 et U2, d'intersection F. Le sous-groupe de Fr(E)
formé des éléments dont la trace dans Fr(U1) et la trace dans

M) II est entendu que jusqu'à la fin de ce travail il s'agit uniquement des groupes de
Lefschetz par rapport au groupe de base T.
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sont nulles, est isomorphe au quotient de Fr+1(V) par le sous-groupe
engendré par les traces (dans Fr+1(V)) des éléments de Fr+1(U1) et de

Ces deux théorèmes se démontrent uniquement par application répétée
du théorème fondamental 5.1. Donnons à titre d'exemple la démonstration

du théorème 8.1. La condition de l'énoncé est évidemment
nécessaire; reste à montrer qu'elle est suffisante. Soit donc <5 la trace
commune de y1 et de y2 dans Fr(V); et soit à montrer l'existence d'un
élément y de Fr(E), ayant pour trace yx dans Fr{U1) et y2 dans Fr(U2).

La suite des groupes Fr(U1)i Fr(V), Fr~1(U1 — F) montre que ô a

un bord nul dans F1'-1 (U1 — V). De même, le bord de ô dans P-1 (U2 — F)
est nul. Comme E — F est réunion des sous-ensembles ouverts U1 — F
et U2 — V sans point commun, Fr~1(E — F) est somme directe de

Fr~x(U1 — V) et P*-1 J7a — F), et par suite le bord de à dans F'-1 {E - F)
est nul. La suite des groupes Fr(E), Fr(V)> Fr~1{E — F) montre alors

que ô est la trace d'un élément e de Fr (E). Soient ex et e2 les traces de e

dans jTr(?71) et Fr(U2) respectivement. L'élément yx — ex de J^t/j) a

une trace nulle dans Fr(V); la suite des groupes Fr(U1 ~V)9 Fr(U1)}
Fr(V) prouve que yx — sx est l'image canonique d'un élément ô± de

Fr(U1 — F). De même, l'élément y2 — s2 de Fr(U2) est l'image
canonique d'un élément ô2 de Fr(U2 — F).

Dans le groupe Fr(E), soit y la somme de e et des images canoniques
de d1€Jrr(U1 — V) et de ô2€Fr(U2 — V). Cherchons la trace de y
dans Fr(U1): c'est la somme des traces de e et de l'image canonique
yx — ex de Ô1; c'est donc yx. De même, y a pour trace y2 dans Fr(U2).
Et ceci achève la démonstration du théorème.

Il nous reste à montrer comment le théorème 7.2 peut se déduire des

théorèmes 8.1 et 8.2. Soit donc, avec les notations du théorème 7.2,
un système cohérent d'éléments yt\ montrons d'abord qu'il existe au
plus un élément y de Fn(E) ayant pour trace y% dans Fn(Ut), et ceci

pour tout i. Autrement dit: si un élément ô de Fn(E) a une trace nulle
dans chacun des Fn(Ut), il est nul; cela, moyennant la seule hypothèse
que E est un espace localement compact de dimension =$C n. Et en
effet, grâce au théorème 8.2, on voit de proche en proche que la trace
de ô est nulle dans tout groupe Fn(W), W désignant une réunion finie
d'ensembles Ut. D'autre part, Fn(E) est limite projective des Fn(W)
(théorème 5.2); donc ô est bien nul.

Pour achever de démontrer le théorème 7.2, il reste à prouver Vexistence

d'un élément y de Fn(E) ayant pour trace yt dans chaque Fn(Ut). Il
suffira de prouver que, pour chaque réunion finie W d'ensembles Ut,

11



existe un élément ôw de Fn(W) ayant pour trace yi dans chacun des

Fn(VJ relatifs aux U{ dont se compose W; car, en vertu de l'unicité
de chacun des ôWi les ôw sont les traces mutuelles les uns des autres
(d'une façon précise: si W1c W2, ôWi est la trace de ôWz dans Fn(W1)9
et par suite définissent un élément y de la limite projeetive Fn(E).
Quant à l'existence de l'élément ôw, elle se prouve par récurrence sur
le nombre des U{ dont W est la réunion. Supposons-la en effet démontrée

pour un certain W, et soit Wf la réunion de W et d'un certain U{. Les
éléments ôW€Fn(W) et yi€Fn(Ui) ont même trace dans Fn(Wr,Ui),
car ils ont même trace dans chacun des rn{Uj) relatifs aux Z7, contenus
dans Wr^Ui. Donc, en vertu du théorème 8.1, il existe un élément
ôw, de Fn(Wf) ayant pour trace ôw dans rn(W) et yt dans Fn{JJ^).
C. Q. F. D.

Ceci achève la démonstration du théorème 7.2 et, par là, celle du
théorème 7.1.

9. Le théorème de Jordan-Brouwer

Sous sa forme la plus générale, il se déduit facilement des résultats
précédents.

Tout d'abord, les théorèmes 6.1 et 6.2 se généralisent de la manière
suivante :

Théorème 9.1. Soit E une variété connexe de dimension n. Pour tout
sous-ensemble ouvert non vide U de E, la représentation canonique de

F7i(E) dans Fn(U) est biunivoque. Pour tout vrai sous-ensemble fermé
F de E, le groupe Fn(F) est nul.

Démonstration: la deuxième partie de l'énoncé se déduit de la
première, d'après la proposition 6.1. Il reste seulement à prouver que si

un élément y de Fn(E) a une trace nulle dans Fn(U), il est nul. Or soit
Fo un sous-ensemble ouvert de U, homéomorphe à la boule Bn; y a, une
trace nulle dans Fn(V0), donc, de proche en proche, dans tous les Fn(V)
(quel que soit le sous-ensemble ouvert F homéomorphe à Bn); par
suite y est nul.

Théorème 9.2. Soit E une variété connexe de dimension n, F un
sous-ensemble fermé tel que .F71-1^) soit nul. Alors la représentation
canonique de Fn(E) dans Fn(E — F) est un isomorphisme du premier
groupe sur le second; par suite E — F est une variété connexe, orientable

si E est orientable, non-orientable si E est non-orientable. C'est
en particulier le cas si F est de dimension < n — 2.

12



Démonstration: on applique le théorème 5.1 à la suite des groupes
rn(F), Fn(E), Fn(E -F), F"1-1 {F), dontle premier et le dernier sont
nuls.

Théorème 9.3. Soit E une variété connexe orientable de dimension nf
telle que Fri~1(E) soit nul (par exemple, l'espace numérique de dimension

n). Si F est un sous-ensemble fermé de E, le groupe Fn~1(F) est
un produit de groupes isomorphes à T, en nombre égal au nombre des

composantes connexes de E — F diminué d'une unité.
En effet, d'après le théorème fondamental 5.1, Fn~l(F) est isomorphe

au quotient de Fn(E — F) par le sous-groupe, image canonique de

rn(E), sous-groupe qui est isomorphe au groupe Fn(E) (lui-même
isomorphe au groupe de base T) puisque la représentation canonique de

Fn(E) dans Fn(E —F) est biunivoque (théorème 9.1). Or le groupe
Fn de la variété orientable E — F est fourni par le théorème 7.1. D'où
le résultat.

Pour obtenir le théorème de Jordan-Brouwer, il suffit, dans les
hypothèses du théorème 9.3, de supposer en outre que F est une variété de

dimension n — 1 (sans oublier que F est supposé fermé dans E). En
appliquant le théorème 7.1 à la variété F, on voit que F est orientable,
et que le nombre de ses composantes connexes est égal au nombre des

composantes connexes de E — F diminué d'une unité. Si en outre F est
supposé connexe, E — F a deux composantes connexes ; et, pour tout vrai
sous-ensemble fermé Fr de F, E — F' est connexe (car rn~x(Fr) est
nul en vertu du théorème 9.1).

On remarquera que notre démonstration du théorème de Jordan-
Brouwer ne fait à aucun moment intervenir des considérations de

triangulation ou de pavage, tant pour la variété E que pour la sous-variété F.
Elle repose uniquement sur l'usage répété du théorème fondamental 5.1.
J'ignore si une méthode analogue pourrait conduire simplement au
théorème général de dualité d'Alexander-Pontrjagin, sans hypothèse
de triangulabilité.

10. Le groupe de Lefschetz d'un complexe cellulaire

Nous appelons complexe cellulaire un espace localement compact E
muni de la donnée de sous-espaces fermés Et appelés cellules, en nombre
fini ou infini, tels que tout sous-ensemble compact n'en rencontre qu'un
nombre fini, et qui satisfont aux conditions suivantes :

1° l'intersection de deux cellules est vide ou est une réunion de cellules;
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2° si d'une cellule Et on enlève la réunion des cellules incidentes à Et
(c'est-à-dire contenues dans Et et autres que Et), il reste un ensemble

E[, ouvert dans Et, appelé le noyau de Et. On suppose que, pour chaque

noyau, les groupes FrT{E[) sont nuls pour toutes les valeurs de r sauf
une au plus; si FrT{E'l) n'est pas nul, r s'appellera la pseudo-dimension
du noyau E[ (ou de la cellule Et); la pseudo-dimension de E[ sera — 1

si FrT{E[) est nul pour tout r > 0;

3° si une cellule E3 est incidente à une cellule Et, sa pseudo-dimension
est strictement plus petite que celle de Et.

Par exemple, les hypothèses précédentes sont vérifiées si chaque

noyau est réduit à un point ou homéomorphe à une boule ouverte de

dimension quelconque; la dimension du noyau coïncide alors avec sa

pseudo-dimension.
L'application répétée du théorème fondamental 5.1 permet de

déterminer entièrement le groupe de Lefschetz F$(E) d'un tel complexe
cellulaire, et cela pour toute dimension n. Sans entrer dans le détail,
voici l'essentiel des idées et des résultats:

Soit An la réunion des cellules de pseudo-dimension <w; An est

fermé. L'ensemble Bn+1 An+1 — An est la réunion des noyaux de

pseudo-dimension n + 1 ; Bn+1 est ouvert dans An+l. Le groupe rr(Bn+l)
est nul pour r ^ n + 1. On voit alors par récurrence sur n que Fr(An)
est nul pour r > n. Le groupe Fn+1(An+1) peut être identifié à un sous-

groupe de Jnn+1(jBn+1), savoir celui des éléments dont le bord (élément
de jTn(^in)) est nul. Mais comme tout élément de rn(An) peut être à son
tour identifié à un élément de rn(Bn), le bord d'un élément de Fn+1(Bn+1)

peut être identifié à un élément de Fn(Bn). D'ailleurs Fn(Bn) est somme
topologique directe des groupes Fn des noyaux de pseudo-dimension n.

Ensuite, Fn(An+1) est isomorphe au quotient de Fn(An) par le sous-

groupe des bords des éléments de Fn+1(Bn+1); Fn(An+1) peut donc être
identifié au quotient d'un sous-groupe de Fn(Bn) (savoir celui des éléments
dont le bord est nul) par le sous-groupe des bords des éléments de

rn+l(Bn+1).
Enfin, on montre que Fn(E) est isomorphe à Fn(An+1), auquel on

l'identifie. Bref, lorsqu'on connaît le bord de chaque élément de chaque

groupe Fn de chaque noyau (n désignant la pseudo-dimension de ce

noyau), bord qui est identifié à une somme (finie ou infinie) d'éléments
des groupes Fn~x des noyaux des cellules incidentes, on sait déterminer
les groupes de Lefschetz, de toutes dimensions, du complexe cellulaire E.
Tout revient ainsi à déterminer, pour chaque couple d'une cellule E% de
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pseudo-dimension n et d'une cellule Eiy incidente à Eiy de dimension
n — 1 une représentation continue du groupe Fn du noyau de E{ dans
le groupe jT**-1 du noyau de Er Lorsque tous les noyaux sont homéo-
morphes à des boules ouvertes (ou réduits à un point), supposées orientées

(d'une manière arbitraire), chacune de ces représentations est
définie par une représentation du groupe de base T dans T, c'est-à-dire,
en fin de compte, par un nombre entier, positif, négatif ou nul. La
connaissance de ces entiers détermine le groupe de Lefschetz pour toute
dimension.

Ce résultat vaut sans aucune hypothèse de triangulabilité relative
aux cellules.

(Recule 1er mai 1945.)
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