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Méthodes modernes en topologie algébrique

Par HENRI CARTAN, Paris?)

1. Limites projectives de groupes

Nous appelons limzite projective d’'une famille de groupes ce que Steen-
rod?) appelle ,jinverse homomorphism system‘; l’expression ,limite
projective‘‘ a donc ici un sens plus général que chez A. Weil3).

Soit I un ensemble ordonné filirant @ gauche, c’est-a-dire un ensemble
d’éléments «, §,... muni d’une relation d’ordre (partielle) notée x c j,
telle que, quels que soient « et 8, existe y satisfaisant & ycx et y c §.
Attachons & chaque « € I un groupe topologique abélien G, noté additi-
vement, et supposons donnée, pour tout couple (x, ) tel que « g,
une représentation continue ¢,z de G, dans Gg, de maniere que soit
satisfaite la condition de transitivité suivante: si o« cfcy, la repré-
sentation ¢,, est composée de g,g et @g, (ce que nous écrirons g, =
®By © Pog) . La lumite projective des groupes @ suivant les représentations
@.p est 'ensemble des systémes (z,).c; tels que, pour x cf, on ait
xg = @.p(x,), cet ensemble G étant muni de la structure de groupe
(y) + (¥y) = (x4 + y,) (G est donc sous-groupe du groupe-produit des
G,). Le groupe G sera muni de la topologie induite par celle du groupe-
produit?) des G; si les G, sont compacts®), il en est de méme de Q.

Soit, pour chaque «, un sous-groupe H, de G,, de maniére que, pour
x Cf, pup(H,) c Hg. On identifiera la limite projective des H, & un
sous-groupe de la limite projective des G,,.

Soit J un sous-ensemble filtrant (& gauche) de I, et soit G’ la limite
projective des G (x ¢ J) suivant les représentations ¢,g. Il existe une
représentation continue, dite canonique, de G dans G’, savoir celle qui,
a I'élément (z,),; de G, associe ’élément (x,), ., de G’. Lorsque J est
un sous-ensemble fondamental de I (pour tout « ¢ I existe un g eJ tel

1) Note de la rédaction: L’avant-propos de cet article a paru dans ,,Festschrift
Andreas Speiser®, Zurich 1945, p.246. Il y manque l'indication (1 bis):
Lefschetz: Topologie (Amer. Math. Soc. Colloq. vol. XII), Chap. II, § 5.

%) Steenrod, Amer. Journal of Math., t. 58, 1936, p. 661—701.
3) 4. Weil, L’intégration dans les groupes topologiques (Actualités, n°® 869,
1940, chez Hermann & Paris); voir pages 23 et suivantes.

4) Voir par ex. N. Bourbaki, Topologie générale, chap.IIl et IV (Actualités,
n° 916), p. 18.

5) Le mot ,,compact‘ est employé au sens de Bourbaki (bicompact au sens d’Alexandrofi-
Hopf).
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que B c ), la représentation canonique de G dans @’ est un isomorphisme
de @ sur G': on identifie alors G et G'.

Proposition 1.1. Attachons & chaque x ¢/ un sous-ensemble com-
pact non vide 4, de G, de maniére que, pour « Cf, @5 (4,) c4g.
Alors il existe un élément (x,) de la limite projective, tel que x, € 4,
pour tout «.

Proposition 1.2. Soient deux limites projectives relatives au méme
ensemble d’indices: G, lim. proj. de G, suivant des ¢,g, et G’, lim. proj.
de @, suivant des qaép. Soit, pour chaque «, une représentation continue
f de G, dans G,, de maniére que, pour & C 8, on ait fg o Pug = @gs © fo-
Alors il existe une représentation continue f et une seule de @ dans G’,
qui transforme 1'élément (x,) de G dans I'élément (f,(z,)) de @’; si
chaque f, est un isomorphisme de G, sur G, f est un isomorphisme de
@ sur G’. Dans tous les cas, l'ensemble des z= (z,) de G tels que
f(z) = 0 n’est autre que la limite projective des sous-groupes H, formés
des x, tels que f,(z,) =0; en outre, lorsque les G, sont compacts, le
groupe image f(G) n’est autre que la limite projective des sous-groupes
o).

Démontrons seulement la derniére partie de I’énoncé: soit (y,) un
élément de la lim. proj. des f,(@,); on veut trouver un élément (x,) de
G tel que f,(x,) =y, pour tout x. Pour cela, on considére, pour chaque
«, 'ensemble 4, des z,eQ@, tels que f (x,) =y,, et on applique la
proposition 1.1.

2. Groupe d’homologie d’un espace compact

Nous supposons connues les notions®) de complexe simplicial abstrait
(il s’agira seulement de complexes finis), de simplexe orienté, de chaine
(sur un complexe simplicial K et sur un groupe abélien g), de bord d’une
chaine (nous préférons le mot ,,bord‘‘ au mot ,,frontiére‘“ qui a un autre
sens en Topologie générale). Le groupe d’homologie (ou groupe de Betti)
du complexe K (pour un groupe de base g), que nous noterons G (K),
est le quotient du groupe des cycles (chaines dont le bord est nul) par le
sous-groupe des bords (le bord d’un bord est toujours nul); dans G,(K),
on distingue, pour chaque entier r > 0, le sous-groupe G (K) des cycles
de dimension r, et G,(K) est somme directe des sous-groupes G (K).

Plus généralement, le groupe d’homologie de K modulo H (H désignant
un sous-complexe de K), que nous noterons G,(K/H) (ou G(K/H) quand

8) Pour toutes les notions fondamentales, voir par ex. le Traité d’Alexandroff-Hopf.



il sera inutile de préciser le groupe de base g), est le quotient du groupe
des eycles-modulo H (chaines dont le bord est une chaine de H) par le
sous-groupe, somme des chaines de H et des bords de chaines de K. Ici
encore, on distingue le sous-groupe G(K/H) relatif & la dimension r.

Le groupe de base g sera toujours muni d’une topologie, ce qui donne
une topologie évidente sur G,(K/H); cette derniére topologie est séparée
si le groupe des bords est fermé dans le groupe des chaines: pour cela,
nous supposerons?) que g satisfait & la condition: pour tout entier n, le
sous-groupe des né (ou & parcourt g) est fermé dans g. Si g est discret,
" ou compact, cette condition est vérifide.

Rappelons enfin qu'une application simpliciale f de K dans un com-
plexe K', telle que f(H)c H' (H' sous-complexe de K'), definit une
représentation continue y, de G'(K/H) dans G(K'/H'), qui transforme
tout élément de GT(K/H) en un élément G7(K'/H’); et les représen-
tations ainsi associées aux applications simpliciales satisfont & une
évidente condition de transitivité.

Pour définir le groupe d’homologie d’un espace compact A modulo un

sous-espace fermé B, nous suivons la méthode de \C/ech. Pour chaque
recouvrement « de 4 par un nombre fini d’ensembles ouverts, on considére,
avec Alexandroff, le nerf K, du recouvrement: ¢’est un complexe sim-
plicial dont les ,,sommets“ sont les ensembles du recouvrement, une
famille de ,,sommets‘‘ constituant un ,,simplexe‘ si les ensembles corres-
pondants du recouvrement ont une intersection non vide. On définit le
sous-complexe H, suivant: un simplexe de K, appartient & H,  si ses
,,sommets‘‘ (qui sont des ensembles du recouvrement «) ont, sur B, des
traces dont l'intersection n’est pas vide. Pour chaque recouvrement «,
soit G, le groupe G, (K, H,). Dans l'ensemble I des recouvrements
ouverts finis, considérons la relation d’ordre: « — 8 si tout ensemble de
o est contenu dans au moins un ensemble de §; I est filtrant & gauche.
Pour &« c B, associons a chaque ensemble de x un ensemble de § le con-
tenant; on obtient une application simpliciale f,g de K, dans Kg, telle
que f.g(H,)c Hg; d’ol une représentation continue ¢,z de G, dans Gg.
On prouve que ¢,5 ne dépend pas de 'application particuliére f.g, et
que, pour xCfCy, on a @,, =@p, o P.g. Cela posé, le groupe
d’homologie de 4 modulo B, noté G,(A4/B), est par définition la limite
projective des groupes G,(K,/H,) suivant les représentations g.g; le
sous-groupe G (A4/B) relatif & la dimension 7 est la limite projective des
sous-groupes G7(K,/H,).

Si ’'espace A est de dimension brouwerienne < n (c’est-a-dire posséde
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des recouvrements ouverts finis arbitrairement fins dont le nerf est de
dimension < =), les groupes G"(4/B) sont nuls pour r > n.

Un cas important est celui out le groupe de base g est le groupe additif
des mombres réels modulo un, que nous noterons 7'; alors le groupe
Gp(A|B) est compact.

3. Représentation définie par une application continue

Soient deux espaces compacts 4 et 4’, f une application continue de
A dans A’, B un sous-espace fermé de A, B’ un sous-espace fermé de
A’ tel que f(B)c B’. Alors f définit une représentation continue ¢, de
G7(A/B) dans G7(4’/B’). Si f se déforme continfiment sans que f(B)
cesse d’étre contenu dans B’, la représentation ¢, reste invariable.

Si I'on a un troisiéme espace compact A”, une application continue
h de A4’ dans 4”7, un sous-espace fermé B” de A” tel que #(B’)c B”, la
représentation de G7(4/B) dans G7(A”/B”), définie par l'application
composée h o f, n’est autre que la composée ¢, o¢@,.

Nous examinerons trots cas particuliers importants:

1° celui ot A est un sous-espace de A’, f étant ’application identique
de 4 dans A/, et ou B = B’: d’ol une représentation de G"(4/B) dans
Gr(4'|B);

2° celui ou A’ est identique & 4, f étant ’application identique de 4
dans A, avec Bc B’; d’ol une représentation de G7(4/B) dans
G"(4/B’);

3° celui ou f est I’application ,,canonique‘‘’) de 4 dans I’espace-quotient
A’ obtenu en identifiant entre eux les points de B, et o B’ est le
sous-espace f(B) (réduit & un point); alors f est un homéomorphisme de
A — B sur A" — B’, et on démontre que ¢, est un isomorphisme de
G"(A|B) sur G (4’| B).

L’examen de ce dernier cas conduit & la nouvelle notion que voici:

4. Groupe de Lefschetz d’un espace localement compact

N\
Soit £ un espace localement compact; désignons par E 'espace E si
celui-ci est compact, sinon 1’espace compact obtenu par adjonction d’un

point & £ (Alexandroff)8). Soit I le sous-espace de E formé de ce point
si B n’est pas compact; si £ est compact, I désignera le sous-espace vide.

?) Bourbaki, Théorie des ensembles (fasc. de résultats) (Actualités, n° 846);

voir p. 29.
8) Voir Bourbaki, Topologie générale, chap. I et II (Actualités, n° 858), p. 65—617.



Par définition, le groupe de Lefschetz I';(K) est le groupe G, (E/'\/I ); il coin-
cide avec le groupe G (&) si E est compact. Dans tous les cas, le groupe
I'7(E) est compact.

Théoréme 4.1. Soient E un espace localement compact, 4 un espace
compact et B un sous-espace fermé de 4, f un homéomorphisme de
A — B sur E. Alors f définit un isomorphisme ¢, de G7(A/B) sur le
groupe de Lefschetz I"(K).

Bornons-nous en effet au cas ou Z n’est pas compact. Alors f se pro-
longe en une application continue f de 4 dans E, telle que f(B) = 1. Or
la représentation ¢; de G7(A4/B) dans G7(E/I) est un isomorphisme du
premier groupe sur le second (cf. 3 cas particulier du n° 3). Il suffit
donc de prendre pour ¢, I'isomorphisme ¢;.

En particulier, on identifiera le groupe G7(4/B) au groupe de Lefschetz
I'"(4 — B). ’

Théoréme 4.2. Soient E et E’ deux espaces localement compacts, f une
application continue de E dans E’, telle que I'image réciproque de tout
compact de E’ soit un compact de K. Alors f définit une représentation
continue ¢, de I'"(E) dans I'"(£’'). Si on a en outre une application con-
tinue kA de £’ dans un espace localement compact E”, telle que I'image
réciproque de tout compact soit un compact, la représentation de I'"(¥)
dans I'7(£”), définie par 'application composée & o f, est la représentation
composée ¢, op,. En particulier, si f est un homéomorphisme de £ sur
E’, ¢, est un isomorphisme de I'"(E) sur I"(E’).

Démonstration abrégée: f se prolonge en une application continue f\ de

£ dans 1/1]\’, telle que f\(I) cl’.

b. Les trois représentations fondamentales

Soit £ un espace localement compact, F' un sous-espace fermé de K,
U=F —F le complémentaire (ouvert) de F dans E. Pour un recou-

vrement ouvert fini x de & , soit K, le nerf de «x, H, le sous-complexe nerf

de &« en tant que recouvrement de F (ﬁ désigne 1’adhérence de F' dans 1/15),
et L, le sous-complexe nerf de « en tant que recouvrement de I (notation
du n° 4). Les groupes I'"(E), I'"(F) et I7(U) sont respectivement iden-
tifiées aux limites projectives des G"(K. /L,), G"(H,/L,) et G"(K /H,).

1° L’application simpliciale identique de H, dans K, définit une
représentation de G"(H,/L,) dans G"(K,/ L,); par passage & la limite
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projective (conformément & la proposition 1.2), on en déduit une repré-
sentation continue (dite canonique) de I'"(F) dans I'"(H); c’est aussi la
représentation définie par l'application identique de F' dans E (confor-
mément au théoreme 4.2).

2° L’application simpliciale identique de K, dans L, définit une
représentation de G"(K,/L,) dans G"(K, /H,); par passage & la limite
projective, on en déduit une représentation continue (dite canonique) de
I'"(B)dans I'"(U); c’est aussi la replesentatlonde G”(E/I ) dans G'(E/E U)

définie par 'application identique de E dans B (cf. n° 3, 2° cas parti-
culier).

3° A chaque élément de G"(K,/H ) faisons correspondre son bord, qui
est un cycle du complexe H ; il définit un cycle de H, modulo L ; d’ou
une représentation de G7(K /H,) dans G*-'(H,/L,). Par passage a la
limite projective, on en déduit une représentation continue (dite cano-
nique) de I'"(U) dans I'"™"1(F); I’élément de I"™1(F) qui correspond ainsi
& un élément de I'"(U) sera appelé le bord de cet élément.

On a ainsi une cascade de représentations, dites canoniques, de chacun
des groupes de la suite

SITE), gy, o), r-v\ry, rvx), 1r—yu,...

dans le suivant; et ces représentations jouissent de la propriété fonda-
mentale suivante:

Théoréme 6.1. (Théoréme fondamental.) I, I',, I} désignant trois
groupes consécutifs quelconques de la suite précédente, ¢ désignant la
représentation canonique de Iy dans I',, et y la représentation canonique
de I', dans Iy, la représentation composée y o est nulle. En outre,
lorsque le groupe de base g est le groupe T, le sous-groupe de I', formé des
éléments dont I'image par y est nulle, est précisément U'image ¢ (I).

Démonstration: évidente & partir du cas simplicial, et en appliquant
la proposition 1.2.

Le théoréme précédent est la clef d’'un grand nombre de théorémes
importants en Topologie algébrique, comme nous allons le montrer sur
quelques exemples. Auparavant, examinons un cas particulier:

Proposition 6.1. Si F est un sous-ensemble & la fois ouvert et fermé de
E localement compact, la représentation canonique de I'"(F') dans I'"(E)
est un ¢somorphisme de I'"(F) sur un sous-groupe de I'"(E), auquel on
identifiera toujours I'7(F').
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Démonstration: évidente & partir du cas simplicial, par passage a la
limite projective conformément & la proposition 1.2.

Dans T’hypothése de la proposition précédente, I'"(E) est somme
directe de ses sous-groupes I"(F) et I'"(U) (U désigne toujours & — F).
Plus généralement :

Proposition 5.2. Si un espace localement compact E est réunion
(finie ou infinie) d’ensembles ouverts U, deux & deux sans point commun
(les U, sont donc aussi fermés), I'"(E) est somme topologique directe?) de
ses sous-groupes I"(U,).

Cette proposition peut se ramener a la précédente grice & une récur-
rence et au théoréme suivant, intéressant par lui-méme.

Théoréme 5.2. Soit £ un espace localement compact, réunion d’une
famille filtrante (croissante) de sous-ensembles ouverts E,. Les applica-
tions canoniques de I'(¥) dans les groupes I"(E,) définissent (conformé-
ment & la proposition 1.2) une représentation continue de I7(F) dans la
limite projective des I'7(E,); cette représentation est un isomorphisme de
I'"(E) sur cette limite projective, qu’on identifiera donc & I'"(E).

Ce théoréme résulte de la proposition suivante, facile & vérifier: Soit 4
compact, et soient B, des sous-ensembles fermés de 4 formant une
famille filtrante (décroissante) d’intersection B; les représentations
canoniques de G"(4/B) dans G7(4/B;) (cf. n°3, 2¢ cas particulier) défi-
nissent une représentation de G7(4/B) dans la limite projective des
G"(A|B,), qui est un isomorphisme de G™(A|B) sur cette limite projective.

6. Application a I’invariance du domaine

Dans ce numéro et les suivants, nous supposons que le groupe de base ¢
est le groupe T (groupe additif des nombres réels modulo 1), de maniére
& pouvoir nous servir du théoréme 5.1.

Proposition 6.1. Soit K un espace localement compact!®) de dimension
< n, F un sous-espace fermé de E, U le complémentaire de F' dans X.
Les trois conditions suivantes sont équivalentes:

%) Un groupe abélien topologique G est somme topologique directe de sous-groupe Q; si

tout élément z de G se met d’une maniére et d’'une seule sous la forme X z;, la famille
t

des x; € G; étant sommable (au sens de Bourbaki, loc. cit. en %), p. 34), et chaque z; étant
fonction continue de z.

10) Par définition, la dimension d’un espace localement compact est la borne supérieure
des dimensions de ses sous-espaces compacts.



a) le groupe I'"*(F') est nul;

b) I'image canonique de I'™*(¥') dans I'(E) est nulle;

c) la représentation qui, & chaque élément de I'*(E), fait corres-
pondre sa trace dans I'(U), est biunivoque'!) (les traces de deux éléments
distincts sont distinctes).

En effet, I'*+}(U) est nul, donc (théoréme 5.1) la représentation
canonique de I'(F') dans I'*(E) est biunivoque, ce qui prouve I'équiva-
lence des conditions a) et b). Or la condition b) équivaut a c), d’apres le
théoréme 5.1.

Proposition 6.2. Soit E localement compact de dimension < n, F et
F’ deux sous-ensembles fermés tels que F' c F. Si I'*(F) est nul, I'(F’)
est aussi nul.

C’est une conséquence immédiate de la proposition 6.1 appliquée &
F et & F’', compte tenu du fait que la représentation canonique de
I'(F') dans I'™(E) est composée des représentations canoniques de
I''(F') dans I'Y(F) et de I'"(F) dans I'(E).

Théoréme 6.1. B, désignant la boule ouverte de 1’espace numérique de
dimension 7, le groupe I'*(¥’) est nul pour tout vrai sous-ensemble
fermé F' de B,,.

En effet, soit ¥V lintérieur d'une boule fermée contenue dans B, et
sans point commun avec F’, et soit F le complémentaire de V dans B,,.
Le groupe I"™(F) est nul, car F peut étre continiment déformé en la
frontiére de B, ; donc I™(F’) est nul, d’aprés la proposition 6.2.

Théoréme 6.2. Soit U un sous-ensemble ouvert non vide de la boule
ouverte B, ; la représentation canonique de I'*(B,) dans I'*(U) est biuni-
voque, et, en particulier, I'™(U) n’est pas nul!?).

En effet, I'*(B, — U) est nul d’aprés le théoréme 6.1; il suffit alors
d’appliquer le théoréme 5.1.

L’ensemble des théorémes 6.1 et 6.2 fournit ce qu’il est convenu
d’appeler le théoréeme de ,,I’invariance du domaine‘: soit 4 un sous-
espace localement compact de la boule ouverte B, ; la propriété, pour un
point a de 4, d’étre intérieur a A (propriété qui, a priori, est relative a
I’espace ambiant B,), peut étre caractérisée intrinséquement & l’espace
topologique A4 : il faut et il suffit que, pour tout voisinage ouvert U suffi-
samment petit de a dans 4, le groupe I'™(U) ne soit pas nul.

11y Nous employons le mot biunivoque au sens de Bourbaki (loc. cit. en 7), p. 10, n° 8).
13) Nous admettons que le groupe I";.(Bn) est isomorphe au groupe de base 7', ce qui

serait du reste facile & démortrer par récurrence sur n, en utilisant le théoréme fonda-
mental 5.1.

8



On peut compléter le théoréme 6.2:

Théoréme 6.3. Soit U un sous-ensemble ouvert, homéomorphe & B,,
de la boule ouverte B,. La représentation canonique de I™(B,) dans
I'"(U) est un isomorphisme du premier groupe sur le second.

Démonstration: d’apres le théoreme 6.2, il suffit de montrer que cette
représentation ¢ est une représentation de I'"(B,) sur I (U). Or soit
a eU, et soit V l'intérieur d’une boule fermée de centre a contenue
dans U. Le groupe I™ (B, —V) est nul, donc (théoreme 5.1) la
représentation canonique de I'™(B,) dans I'"(V) est une représentation
sur I'"(V), et comme elle est composée de ¢ et de la représentation cano-
nique y de I'"(U) dans I'(V) (représentation y qui est biunivoque
d’apres le théoréme 6.2), il s’ensuit que ¢ est une représentation sur

r~(U). C. Q. F.D.

7. Le groupe de Lefschetz, pour la dimension n, d’une variété de
dimension n

Nous appelons variété de dimension n un espace topologique (connexe
ou non) dont chaque point possede un voisinage ouvert homéomorphe
a une boule ouverte de dimension n. Nous laissons ici de c6té les généra-
lisations possibles de la notion de variété combinatoire!s).

Une boule ouverte B, de dimension n est une variété de dimension %.
Par définition, orienter B, , c’est choisir I'un des deux isomorphismes
possibles du groupe I'7(B,) sur le groupe de base 7'. Une orientation de
B, induit une orientation pour tout sous-ensemble ouvert U de B,
homéomorphe & B,, d’aprés le théoréme 6.3.

Par définition, orienter une variété E de dimension 7, c’est orienter
chaque sous-ensemble ouvert de £ homéomorphe & B,, de maniére que
si U et V sont deux tels sous-ensembles satisfaisant & U c V, ’orien-
tation de U soit induite par celle de V. Dans le cas ou £ est précisément
une boule B,, cette définition de I'orientation est d’accord avec la pré-
cédente.

Une variété E de dimension » est orientable s’il est possible de 1’orienter,
dans le sens qui vient d’étre défini. Pour cela, il faut et il suffit que chaque
composante connexe de K soit orientable, et alors il y a deux orientations
possibles (opposées) pour chaque composante connexe de £.

Théoréme 7.1. Pour une variété E de dimension n, le groupe de Lef-
schetz I'y(E) est somme topologique directe des sous-groupes I'7(H))

18) Voir par ex. le deuxiéme des mémoires de Cech : Ann. of Math., t. 34, 1933,
p. 621—730.



relatifs aux composantes connexes E; de E; chaque groupe I';(E;) est
isomorphe & 7' si B, est orientable, isomorphe au groupe Z, (groupe
additif des entiers modulo 2) si £, n’est pas orientable.

La premiere partie de I’énoncé résulte immédiatement de la propo-
sition 5.2. La deuxiéme partie résultera d’un théoreme général relatif
au groupe I'; (&) dun espace localement compact E de dimension < n:

Théoréme 7.2. Soit K localement compact de dimension < n. Soient
des ensembles ouverts non vides U,, formant une base de la topologie de
E; et soit, pour chaque U,;, un élément y, du groupe I'7(U,). Pour que
les y, soient respectivement les traces, sur les U,;, d’'un méme élément y
de I';(E), il faut et il suffit que, pour tout couple (U;, U,) tel que
U,cU,, y,;soit la trace de y,. (Nous dirons alors que les y, forment un
systéme cohérent.) L’élément y est alors unique.

Admettons ce théoréme pour un instant. 1l prouve que la détermina-
tion du groupe I';(E) revient a celle des systémes cohérents; si E est
une variété connexe de dimension 7, les U, étant les sous-ensembles
ouverts homéomorphes a la boule B, , le groupe des systémes cohérents
est isomorphe au groupe I'; de I'un des U, si F est orientable, sinon il est
isomorphe au sous-groupe de I'z(U,;) formé des éléments égaux a leur
opposé. Et ceci achéve la démonstration du théoreme 7.1.

L’intérét du théoreme 7.1 est qu’il ne fait intervenir aucune hypothése
de triangulabilité ni, au cours de la démonstration, aucun procédé
rappelant de prés ou de loin un pavage de la variété.

Reste & démontrer le théoréme 7.2; il résultera des deux théorémes
qui vont suivre.

8. Deux théordmes sur le groupe de Lefschetz'?) de la réunion de deux
ensembles ouverts

Théoréme 8.1. Soit E localement compact, réunion de deux sous-
ensembles ouverts U, et U,, d’intersection V. Pour qu’un élément y, de
I'"(U,) et un élément y, de I'"(U,) soient respectivement les traces d’un
méme élément y de I'7(E), il faut et il suffit que 9, et y, aient méme
trace dans I (V).

Théoréme 8.2. Soit E localement compa.bt, réunion de deux sous-
ensembles ouverts U, et U,, d’intersection V. Le sous-groupe de I (E)
formé des éléments dont la trace dans I'"(U,) et la trace dans I'"(U,)

M) 11 est entendu que jusqu’a la fin de ce travail il s’agit uniquement des groupes de
Lefschetz par rapport au groupe de base T.
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sont nulles, est isomorphe au quotient de I7+'(V) par le sous-groupe
engendré par les traces (dans I7+1(V)) des éléments de I'+1(U,) et de
I—+(U,).

Ces deux théorémes se démontrent uniquement par application répétée
du théoreme fondamental 5.1. Donnons & titre d’exemple la démons-
tration du théoreme 8.1. La condition de l’énoncé est évidemment
nécessaire; reste & montrer qu’elle est suffisante. Soit donc J la trace
commune de y, et de y, dans I"(V); et soit & montrer I’existence d’un
élément y de I'"(E), ayant pour trace y, dans I'"(U,) et y, dans I'"(U,).

La suite des groupes I7(U,), I"(V), I"*(U; — V) montre que 6 a
un bord nul dans I'™-1(U; — V). De méme, le bord de é dans I (U,—V)
est nul. Comme £ — V est réunion des sous-ensembles ouverts U, — V
et U, —V sans point commun, "™ (F — V) est somme directe de
I~y (U, —V)et 'Y (U, — V), et par suite le bord de 6 dans I'"* (£ — V)
est nul. La suite des groupes I (E), I"(V), I'"™*(£ — V) montre alors
que 6 est la trace d’un élément ¢ de I (E). Soient ¢, et ¢, les traces de ¢
dans I'"(U,) et I"(U,) respectivement. L’élément y, — ¢ de I'"(U,) a
une trace nulle dans I'7(V); la suite des groupes I'"(U, — V), I''(U,),
I'"(V) prouve que y; — & est l'image canonique d’un élément 6, de
I"(U, — V). De méme, I'élément y, — ¢, de I'"(U,) est I'image cano-
nique d’'un élément &, de I (U, — V).

Dans le groupe I (&), soit y la somme de ¢ et des images canoniques
de &, el"(U;, —V) et de 0, e I"(U, — V). Cherchons la trace de y.
dans I'7(U,): c’est la somme des traces de ¢ et de l'image canonique
¥, — & de §;; c’est donc ;. De méme, y a pour trace y, dans I'"(U,).
Et ceci achéve la démonstration du théoréme.

Il nous reste & montrer comment le théoréme 7.2 peut se déduire des
théorémes 8.1 et 8.2. Soit donec, avec les notations du théoréme 7.2,
un systéme cohérent d’éléments y,; montrons d’abord qu’il existe au
plus un élément y de I'™(E) ayant pour trace y, dans I™(U,), et ceci
pour tout 2. Autrement dit: si un élément 6 de I'"(E) a une trace nulle
dans chacun des I'(U,), il est nul; cela, moyennant la seule hypothese
que £ est un espace localement compact de dimension < n. Et en
effet, grace au théoréme 8.2, on voit de proche en proche que la trace
de § est nulle dans tout groupe I'*(W), W désignant une réunion finie
d’ensembles U,;. D’autre part, I™(Z) est limite projective des I (W)
(théoréme 5.2); donc & est bien nul.

Pour achever de démontrer le théoréme 7.2, il reste & prouver Uexistence
d’'un élément y de I'*(E) ayant pour trace y; dans chaque I'"(U,). 1l
suffira de prouver que, pour chaque réunion finie W d’ensembles U,
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existe un élément &, de I'™(W) ayant pour trace y; dans chacun des
I'y(U,) relatifs aux U, dont se compose W; car, en vertu de l'unicité
de chacun des dy, les dy sont les traces mutuelles les uns des autres
(d’une fagon précise: si W, c W,, 8y, est la trace de 6y, dans I'™(W,),
et par suite définissent un élément y de la limite projective I™(E).
Quant & l'existence de 1’élément d, elle se prouve par récurrence sur
le nombre des U, dont W est la réunion. Supposons-la en effet démontrée
pour un certain W, et soit W' la réunion de W et d’un certain U,. Les
éléments O, e '(W) et y, e I'™(U,) ont méme trace dans I'"(W~U,),
car ils ont méme trace dans chacun des I'*(U,) relatifs aux U, contenus
dans WA~ U,. Donc, en vertu du théoréme 8.1, il existe un élément
Oy de I'"(W') ayant pour trace oy dans I'(W) et y, dans I'Y(U,).
C.Q.F.D.

Ceci achéve la démonstration du théoréme 7.2 et, par 1a, celle du
théoreme 7.1.

9. Le théoréme de Jordan-Brouwer

Sous sa forme la plus générale, il se déduit facilement des résultats
précédents.

Tout d’abord, les théoremes 6.1 et 6.2 se généralisent de la maniére
suivante:

Théoréme 9.1. Soit E une variété connexe de dimension n. Pour tout
sous-ensemble ouvert non vide U de £, la représentation canonique de
I'YE) dans I'™(U) est biunivoque. Pour tout vrai sous-ensemble fermé
F de E, le groupe I'"(F) est nul.

Démonstration: la deuxiéme partie de 1’énoncé se déduit de la pre-
miére, d’aprés la proposition 6.1. Il reste seulement & prouver que si
un élément y de I'™(Z) a une trace nulle dans I'Y(U), il est nul. Or soit
V, un sous-ensemble ouvert de U, homéomorphe & la boule B,; ¥ a une
trace nulle dans I'" (V,), done, de proche en proche, dans tous les I'* (V)
(quel que soit le sous-ensemble ouvert ¥V homéomorphe & B,); par
suite y est nul.

Théoréme 9.2. Soit E une variété comnexe de dimension n, F un
sous-ensemble fermé tel que I'™~(F) soit nul. Alors la représentation
canonique de I''(K) dans I'"(E — F) est un isomorphisme du premier
groupe sur le second; par suite £ — F' est une variété connexe, orien-
table si £ est orientable, non-orientable si £ est non-orientable. C’est
en particulier le cas si F' est de dimension <n — 2.
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Démonstration: on applique le théoréme 5.1 & la suite des groupes
r«r), r«g), '\ — F), I'~(F'), dont le premier et le dernier sont
nuls.

Théoréme 9.3. Soit E une variété connexe orientable de dimension 7,
telle que I'"*~'(E) soit nul (par exemple, ’espace numérique de dimen-
sion »). Si F est un sous-ensemble fermé de E, le groupe I'"*~(F') est
un produit de groupes isomorphes & 7', en nombre égal au nombre des
composantes connexes de ' — F diminué d’une unité.

En effet, d’apres le théoréme fondamental 5.1, I"~1(F) est isomorphe
au quotient de I'*(¥ — F) par le sous-groupe, image canonique de
I'* (&), sous-groupe qui est isomorphe au groupe I (&) (lui-méme iso-
morphe au groupe de base 7') puisque la représentation canonique de
I''(E) dans I"™(E — F) est biunivoque (théoreme 9.1). Or le groupe
I'" de la variété orientable £ — F' est fourni par le théoreme 7.1. D’ou
le résultat.

Pour obtenir le théoréme de Jordan-Brouwer, il suffit, dans les hypo-
théses du théoréeme 9.3, de supposer en outre que F est une variété de
dimension n — 1 (sans oublier que F est supposé fermé dans E). En
appliquant le théoréme 7.1 & la variété F, on voit que F est orientable,
et que le nombre de ses composantes connexes est égal au nombre des com-
posantes connexes de B — F diminué d’une unité. Si en outre F' est sup-
posé connexe, B — F a deuxr composantes connexes; et, pour tout vrai
sous-ensemble fermé F’ de F, E — F’ est connexe (car I Y(F') est
nul en vertu du théoréme 9.1).

On remarquera que notre démonstration du théoréme de Jordan-
Brouwer ne fait & aucun moment intervenir des considérations de trian-
gulation ou de pavage, tant pour la variété E que pour la sous-variété F'.
Elle repose uniquement sur I'usage répété du théoréeme fondamental 5. 1.
J’ignore si une méthode analogue pourrait conduire simplement au
théoréme général de dualité d’Alexander-Pontrjagin, sans hypotheése
de triangulabilité.

10. Le groupe de Lefschetz d’un complexe cellulaire

Nous appelons complexe cellulaire un espace localement compact &
muni de la donnée de sous-espaces fermés E, appelés cellules, en nombre
fini ou infini, tels que tout sous-ensemble compact n’en rencontre qu'un
nombre fini, et qui satisfont aux conditions suivantes:

1° Pintersection de deux cellules est vide ou est une réunion de cellules;
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2° si d’une cellule Z; on enléve la réunion des cellules incidentes & B,
(c’est-a-dire contenues dans E, et autres que E,), il reste un ensemble
E}, ouvert dans E,, appelé le noyau de E,. On suppose que, pour chaque
noyau, les groupes I'y (E;) sont nuls pour toutes les valeurs de r sauf
une au plus; si I';(E;) n’est pas nul, r s’appellera la pseudo-dimension
du noyau E; (ou de la cellule E;); la pseudo-dimension de E’ sera — 1
si I'% (E;) est nul pour tout r > 0;

3° siune cellule E, est incidente & une cellule £, sa pseudo-dimension
est strictement plus petite que celle de X ;.

Par exemple, les hypothéses précédentes sont vérifiées si chaque
noyau est réduit & un point ou homéomorphe & une boule ouverte de
dimension quelconque; la dimension du noyau coincide alors avec sa
pseudo-dimension.

L’application répétée du théoréme fondamental 5.1 permet de déter-
miner entiérement le groupe de Lefschetz I'7(E) dun tel complexe
cellulaire, et cela pour toute dimension n. Sans entrer dans le détail,
voici 'essentiel des idées et des résultats:

Soit 4, la réunion des cellules de pseudo-dimension << n; A4, est
fermé. L’ensemble B, , =A4,,, — A, est la réunion des noyaux de
pseudo-dimension » + 1; B, ,, est ouvert dans 4,_,. Le groupe I'" (B, ;)
est nul pour r £ n 4+ 1. On voit alors par récurrence sur n que I"(4,)
est nul pour r > n. Le groupe I'"*'(4,.,) peut étre identifié & un sous-
groupe de I'"+(B,.,), savoir celui des éléments dont le bord (élément
de I'"(4,)) est nul. Mais comme tout élément de I'*(4,) peut étre & son
tour identifié & un élément de I'*(B,), le bord d’un élément de I'*+3(B,, ;)
peut étre identifié ¢ un élément de I'"(B,). D’ailleurs I'*(B,) est somme
topologique directe des groupes I'* des noyaux de pseudo-dimension n.

Ensuite, I'*(4,,,,) est isomorphe au quotient de I'"(4,) par le sous-
groupe des bords des éléments de I'*+Y(B, ,); I'™(4,,;) peut donc étre
identifié au quotient d’un sous-growpe de I'*(B,) (savoir celui des éléments
dont le bord est nul) par le sous-groupe des bords des éléments de
F n+1(B n+1) *

Enfin, on montre que I'*(¥) est isomorphe & I'*(4,.,), auquel on
Iidentifie. Bref, lorsqu’on connait le bord de chaque élément de chaque
groupe I'* de chaque noyau (n désignant la pseudo-dimension de ce
noyau), bord qui est identifié & une somme (finie ou infinie) d’éléments
des groupes I'™~! des noyaux des cellules incidentes, on sait déterminer
les groupes de Lefschetz, de toutes dimensions, du complexe cellulaire £.
Tout revient ainsi & déterminer, pour chaque couple d’une cellule £, de
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pseudo-dimension n et d’'une cellule £, incidente & E,, de dimension
n —1 , une représentation continue du groupe I'* du noyau de E, dans
le groupe I'*~! du noyau de E,. Lorsque tous les noyaux sont homéo-
morphes & des boules ouvertes (ou réduits & un point), supposées orien-
tées (d’'une maniére arbitraire), chacune de ces représentations est
définie par une représentation du groupe de base 7' dans 7, c’est-a-dire,
en fin de compte, par un nombre entier, positif, négatif ou nul. La con-
naissance de ces entiers détermine le groupe de Lefschetz pour toute
dimension.

Ce résultat vaut sans aucune hypothése de triangulabilité relative
aux cellules.

(Regu le 1°r mai 1945.)
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