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Sur une proposition de M''e S, Piccard
Par W. SIERPINSKI, Varsovie

Dans son livre Sur les ensembles de distances, Me Sophie Piccard a dé-
montré que st 2% = R,, il existe un ensemble linéaire E congruent a son
complémentaire qui m’est pas mesurable L, ne jouit pas de la propriété de
Baire et tel que Uensemble M de tous les nombres posiifs qui ne sont pas
égaux a une distance entre deux points de E est démombrable?).

Le but de cette Note est de démontrer cette proposition de Mlle Piccard
sans faire appel o Uhypothése du continu, en utilisant seulement l'axiome
du choix.

Soit X I'ensemble de tous les nombres réels z, tels que 0<x<2. Il
résulte du théoréeme de Zermelo qu’il existe une suite transfinie S =
{zg}s o formée de tous les nombres distincts de X et nous pouvons sup-
poser que ¢ est le plus petit nombre ordinal de puissance du continu et
que z; = 1. Or, la famille de tous les ensembles parfaits (non vides) c X
étant de puissance du continu, il existe aussiune suite transfinie {P}
de type ¢, formée de tous ces ensembles.

E étant un ensemble linéaire et @ un nombre réel, désignons par E(a)
la translation de E de longueur a (c.-a4-d. 'ensemble de tous les nombres
réels z, tels que x—a ¢F). Nous définirons maintenant par l'induction
transfinie trois suites transfinies {ag;_o, {bgd:co €t {cglsc, comme
il suit.

Posons a, = 0, b, = x, et soit ¢, le premier terme de la suite S qui
appartient & P, et est distinct des nombres 1, z, 4 1 et x, — 1. Soit
maintenant « un nombre ordinal donné, 1<« <<¢, et supposons que
nous avons déja défini tous les nombres a,, bg et cg pour § <«, et goit B,
leur ensemble. L’ensemble K, est évidlemment de puissance <2%, de
méme que l’ensemble

<@

H, = X[E,(1) + E(— 1) + E, (21,4 + 1) + B (x o — 1] . (1)

L’intervalle 0<x<2 — x,,, contient donc des nombres qui n’appar-
tiennent pas & H, : soit @, le premier de tels nombres de la suite S. Posons
by = @y + %, : nous aurons b,eX.

L’ensemble parfait P,, en tant que de puissance 2%, contient des
nombres n’appartenant pas & H, et autres que chacun des nombres

1) Sophie Piccard: Sur les ensembles de distances des ensembles de
points d’'un esp ace euclidien, Paris 1939, pp. 68—71 (Proposition 15).
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a,+1, a,—1, b, + 1, b, —1: soit ¢, le premier de tels nombres de
la suite S.

Les suites {ag;_p, {bg}ico €t {Cg}s, sont ainsi définies par
Pinduction transfinie.

Soit @ ’ensemble de tous les nombres ag, b, et c;, ol < et, en
désignant par J l'intervalle 0 < x<1, posons

R=Q+[J—(@Q+@Q(—1)] (2)
et
E = 33’ R(2k) . (3)
k= — o

Je dis que I'ensemble B satisfait & la proposition de MUe Piccard.
D’abord je démontrerai que CE =E(l), c.-a-d. que le complé-

mentaire de E (par rapport & la droite), CE , coincide avec la

translation de £ de longueur 1, autrement dit que les formules

zek (4)
et
x4+ 1ek (5)
sont équivalentes.
Soit donc = ¢ £ et admettons que z + 1 € E. D’apres (3) il existe des
nombres y et z de R et des entiers k et I, tels que

r=y+2k e x+4+1=2+4 21,

d’ot z—y =1+ 2(I —k). Or, d’aprés (2), et vu que Qc X, on trouve
0<y<2 et 0<<2<?2, dot |z—y|<2, ce qui donne, |z2—y|
étant un nombre impair, z —y =-+1.

D’aprés ye R et (2) on a soit yeQ, soit yeJ —[@ 4 Q(—1)] et
pareillement pour z. Distinguons 4 cas.

1) ye@, zeQ. D’aprés la définition de l'’ensemble @ il existe des
nombres ordinaux <@, « et f, tels que y est un des nombres a,, b,,
¢, et z est un des nombres ag, bﬁ, cg- Or, comme 0<z,,,# 1, ona
b, = @y + %;,, # ay + 1 et, comme c, #a,41 et c, #b,+1, et vu
que z— y =+1, on conclut sans peine qu’il ne peut pas étre « = f.
On a donc « # B, soit «>pB. Alors, vu la définition de a,, b, et c,, on
aayb,, c,eB,(1)+E,(—1),donc yeE,(1)4 E, (—1). Or, on a ag,

[« S 24

bﬂ, cﬁeEa, d’olt apg+l, bgt1, cgt1 eB, (1) + E,(—1): comme y =
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z1t1 et z est un des nombres ag, by, cg, on aurait donc yeE, (1)
+ E,(—1), ce qui est impossible. Le cas 1) est donc impossible.

2) yeQ, z¢J—[Q@+Q(—1)]. On a donc z=y+1eQ(l)+
Q@(—1), ce qui est impossible, puisque zeJ, zeQ(—1) et J-Q(1)=0.

3) yed —[Q + Q(—1)], 2¢Q. Ce cas se traite comme le cas 2).

1) yed —[Q+Q(—1)], zeJ—[Q+ @(—1)]. On a dans ce cas y,
zed, donc 0<Ly<l, 0<<2<1l et |y—z]|<1, contrairement &
y—z=+1.

Nous avons donc démontré que la formule (4) entraine la formule (5).

Soit maintenant x¢ E et distinguons deux cas:

1) Exz =2k (ol Ex désigne l'entier le plus grand <{z). On a donc
2k <x<2k +1, do zeJ(2k). Vuque z<k, on a, d’aprés (3),
xe R(2k), donc, d’aprés (2), x<Q(2k) et =zeJ(2k)—[Q(2k) +
Q(2k —1)], ce qui donne tout de suite z eQ(2k—1) et x4 1 eQ(2k)
CcR(2k)c E, donc z+1e¢kE.

2) Ex=2k—1. Onadonc 2k—1<oe<2k et =+ 1eJ(2k).
S’il était  + 1€ E, on aurait «+ 1€ R(2k), donc = + 1@ (2k) et
x+ 1eJ(2k) —[Q(2k) + Q(2k —1)], ce qui donne = + 1 €Q(2k—1)
et we@Q(2k —2)c R(2k — 2)c E, contrairement & I’hypothése que
xekE. On a donc z+ 1¢kE.

Nous avons ainsi démontré que la formule (5) entraine la formule (4).

L’équivalence des formules (4) et (5) est ainsi établie et on a CE=E(1).

11 résulte de la définition de I’ensemble £ que £ a au moins un point
commun avec tout ensemble parfait contenu dans 'intervalle (0, 2). Il en
résulte, comme on sait, que ¥ est dans (0, 2) de mesure extérieure =2 et
de deuxiéme catégorie dans toute portion de l'intervalle (0, 2). Or,
comme CE= E (1), I’ensemble CE est dans l'intervalle (1, 2) de mesure
extérieure = 1 et de deuxiéme catégorie dans toute portion de (1, 2). Il
s’en suit tout de suite que & n’est pas mesurable L et ne jouit pas de la
propriété de Baire.

Or, soit M l’ensemble de tous les nombres impairs. Je dis que pour
quun nombre réel positif d soit une distance entre deux points de £,
il faut et il suffit qu'on ait de M.

En effet, si x¢E et d =2k+ 1, ou k est un entier, on a z-+4d
e B(2k+1). Or,d’aprés (3)ona E(2k)=E, donc E(2k+1)=E(1)=CE.
On a donc z + d < E. Cela prouve qu’il n’existe aucun couple de points
de E entre lesquels la distance serait = d.

361



D’autre part, si de M, d>0, on a 6=d—2E~§—#1 et, comme

0<d———2E—g~ <2, ona 0<d<2. Sid=0, on a d=2E»g— et, si

xoel, on a xo—l—deE(2Eg):E, c-a-d. zy+dekE. Sid#0, ona
0<6<2, d#1, et il existe un nombre ordinal x <¢, tel que 6==2,,,,
d’olt ba=aa—l—6=aa+d—2E«g— et, comme ay kB, byeE, b, +
2EgeE<2E-~62—l—)==E, a, et b, + QE% sont deux points de E entre

lesquels la distance est = d.
L’ensemble E satisfait donc & la proposition de M!e Piccard, qui se
trouve ainsi démontrée.

(Regu le 1°f mars 1946.)
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