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Ein Existenzsatz ûber réelle definite Polynôme
Von Walter Habicht, Stans

Einleitung
1, Sei K der Kôrper der reellen Zahlen, Rn der n-dimensionale affine

Raum mit Koordinaten aus K und Q ein Vollwurfel des Rn, d. h. die
Menge der Punkte f ($t,..., |n) des Rn, fur welche die Ungleichungen
— m ^ Çt g m (me K ; * 1,...,») erfullt sind. Dann gilt der

Satz von der unteren Schranke.
Ist q>(xl3..., xn) eine in Q definierte, daselbst stetige und positive réelle
Funktion von n Variablen, so besitzt ç>(fi,..., fn) auf Q eine positive
untere Schranke.

Offenbar ist dieser Satz enthalten im WeierstraBschen

Satz vom Minimum.
Eine in Q definierte, daselbst stetige réelle Funktion <p (xx,..., xn) nimmt
in einem Punkt von Q ihr Minimum an.

2. Es entsteht nun die Frage, ob dièse beiden Sàtze ihre Gûltigkeit
behalten, wenn man anstatt K einen reell-abgeschlossenen Kôrper D1)
zugrunde legt und anstatt stetigen Funktionen Polynôme mit Koeffi-
zienten aus Q betrachtet.

Der genannte WeierstraBsche Satz hat topologischen Charakter; bei
seinem Beweis spielt die lokale Kompaktheit des Kôrpers der reellen
Zahlen eine wichtige Rolle. Nun existiert in jedem reell-abgeschlossenen
Kôrper Q eine bestimmte Anordnung und damit eine natûrliche Topo-
logie (in welcher die Intervalle die ,,Umgebungen" sind) ; der Koordinaten-
raum Rn tiber Q ist dann als Cartesisches Produkt von n Ràumen Q
ebenfalls topologisch. Daher liegt der Versuch nahe, den iibliehen Beweis
des WeierstraBschen Satzes folgendermaBen auf den Fall eines beliebigen
reell-abgeschlossenen Kôrpers Q zu iibertragen: man bette Q in einen

lokal-kompakten geordneten Kôrper Q ein, beweise den Satz in der
ûblichen Weise fiir den Raum ÎP* iiber H und zeige schlieBlich, daB fur
den Fall, wo die stetige Funktion q> ein Polynom iiber Q ist, die Koordinaten

eines Punktes, in dem q> den MinimaJwert annimmt, schon in Q

liegt. — Ein solcher Versuch muB aber scheitern; denn wie man leicht
sieht, ist die Anordnung eines lokal-kompakten geordneten Kôrpers Q

x) Vgl. dazu: B. L. v. d. Waerden, Moderne Algebra (Berlin 1940), Teil 1, Kapitel 10,

sowie Artin-Schreier, Algebraische Konstruktion reeller Kôrper, Hamb. Abh. 5

(1927) 85—99.
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notwendigerweise archimedisch ; also mu8 auch der Teilkôrper Q von û
archimedisch geordnet (und somit einem reellen Zahlkôrper stetig-iso-
morph) sein. Fur einen nicht-archimedisch angeordneten Kôrper Q fùhrt
also dieser Ansatz nicht zum Ziel.

3. Man muB deshalb nach einer andern Beweismethode suchen. Dem-
entsprechend wird in dieser Arbeit der Satz von der unteren Schranke ftir
Polynôme mit Koeffizienten ans einem reell-abgeschlossenen Kôrper Q (cf.
§ 5, 4., Satz 11) rein algebraisch bewiesen, d. h. es werden dabei nur
beniitzt :

1. Die Anordnungseigenschaften eines reell-abgeschlossenen Kôrpers ;

2. die Tatsache, daB ein reell-abgeschlossener Kôrper durch Adjunktion
von i algebraisch-abgesehlossen wird;

3. die spezifischen Eigenschaften von Polynomen uber Q.

Die ersten beiden Paragraphen enthalten einige vorbereitende Sâtze
und Definitionen ûber algebraische Mannigfaltigkeiten resp. Punkt-
mengen des w-dimensionalen affinen Koordinatenraum.es Rn tiber Q.

In § 3 wird die gleichmâBige Stetigkeit eines Polynômes in einem be-
schrânkten Bereich des Rn bewiesen. — Der eigentliche Beweis beginnt
mit Satz 9 (cf. § 4, 1.); es wird hier eine Reihe von Ungleichungen auf-
gestellt, welche in § 5 zum Beweis des Satzes 11 fiïhren.

Den Satz vom Minimum beabsichtige ich in einer spâteren Arbeit als

Spezialfall eines allgemeineren Satzes zu beweisen; zum Beweis des

letzteren wird dabei u. a. das Ergebnis der vorliegenden Arbeit beniitzt.

§ 1. Réelle algebraische Mannigfaltigkeiten.

1. Sei Q ein reell-abgeschlossener Kôrper und Rn der w-dimensionale
affine Raum uber Q, d. h. die Menge der w-tupel (fi,...,fn) (^eQ,
i 1?..., n). | Sn) ^eiJ3t ein Punkt des Rn.

Définition 1.

Unter einer (reellen affinen) Mannigfaltigkeit$R des Rn verstehen wir die

Menge der Punhte £ c Rn, in welchen ein System S= {pp} (q 1,.. r)
von r Polynomen pp(xl}..., xn) in n Variablen mit Koeffizienten aus Q
verschwindet. SU heifit die zu S zwgehorige Mannigfaltiglceit, S ein zu 901

gehoriges System.
Ist {pp} (g l,...,r) ein zu 501 gehoriges System, so wegen der

r
Realitàt von Q auch {p}, wo p Z p*. p heiBe ein zu 501 gehoriges

Polynom. e"x
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2. Sei A Q(i) der aus Q dureh Adjunktion von i j/— 1 ent-
stehende algebraisch-abgeschlossene Kôrper und Pn der w-dimensionale
affine Raum ûber A. Ç =- (£1?..., fn) (£t€^4, i=l,...,n) heiBt ein
Punkt von P71. Weiter verstehen wir unter dem projektiven Raum Sn
uber A die Menge der Klassen untereinander proportionaler n -f- 1-tupel
(Z0,Z1,.. .,Zn) (ZzeA, i 0 ,71, nicht aile Zt 0). Eine solche
Klasse heiBt ein Punkt des /S11 ; die Menge der Punkte des Sn mit Zo ^ 0

heiBt der eigentliche Teil En des $n. Die Punkte von i£n lassen sich durch
Z

die Zuordnung ff -^^ (i 1,..., n) eineindeutig auf Pn abbilden.

Dabei gehe eine Teilmenge N Q En iiber in N; g Pn.

Définition la
Unter einer (komplexen projektiven) Mannigfaltigkeit M des Sn

verstehen wir die Menge der PunJcte des Sn, in welchen ein System E {Pp}
(q 1,.. r) von r Formen Pp(XQ,..., Xn) in n + l Variablen mit
Koeffizienten aus A verschwindet. M heifie die zu Z gehôrige Mannigfaltig-
keit, U ein zu M gehôriges Formensystem, Liegen insbesondere die Koeffizienten

der Pp schon in Q, so heifie M eine Q-Mannigfaltigkeit des Sn.

Ist M eine I2-Mannigfaltigkeit des Sn, so ist offenbarSR (MnEn)'nRn
eine Mannigfaltigkeit des Rn. 30Î heiBe die zu M gehôrige Mannigfaltigkeit

des Rn, M eine zu 9JI gehôrige Q-Mannigfaltigkeit des Sn.

3. Satz 1. Zu jeder Mannigfaltigkeit 9ft des Rn gibt es eine (sogar
unendlich viele) zugehôrige Q-Mannigfaltigkeit des 8n.

Beweis : Sei S {pp} (q 1,..., r) ein zu93l gehôriges System, pp von
Grad lp2) und mp eine beliebige natiirliche Zahl ^ lp (ç l,...,r).
Bilden wir das Formensystem S {Pp}, wobei Pp(XOi..., Xn)

(X X \
-^r-, • • •, V5") (ff 1 »•••»»•)» 8Owie die zu Z gehôrige Mannig-

faltigkeit M, so gilt offenbar SW (Jf n En)r n Rn, q. e. d.

Satz 2. /^f eine Mannigfaltigkeit 9Jl2 ^^ ^n echte Teilmannigfaltigkeit

einer andern 93^, d. h. ist 2R2 c SDÎi, ^^d aiwd if2 ^^^- ^i zugehôrige

Q-Mannigfaltigkeiten des 8n, so ist M1f] M2 M% ebenfalls eine zu 9K2

gehôrige Q-Mannigfaltigkeit des Sn, und M* czM^^.

Beweis : a) Zunâchst ist Mx n M2 wieder eine JO-Mannigfaltigkeit des

8n. Ferner folgt aus der eineindeutigen Zuordnung En ^ Pn :

2) Der Grad von p ist der Grad des hôchsten homogenen Bestandteils.
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((Mt nM2)de*)' (M1 nE*yn(M2n E«y (i)
also weiter

b) Wâre ^ n Jf2 -^i > so hâtte mannach (l):SR8 (Jf1 n En)r [\Rn
$01!, was nicht der Fall ist.

Aus den Sàtzen 1 und 2 folgt unmittelbar

Satz 2 a. Ist eine Mannigfaltigkeit 9Jl2 ^ ^n ecAter TeiZ einer andern
tyJli, d. h. 2R2 c: 2Ri, 50 ^'6^ es zwei zugehôrige Q - Mannigfaltigheiten Ml,
M2 des Sn, so daji M2 c M1 ist.

4. Satz 3 (Kettensatz). Eine Folge von Mannigfaltigkeitenç$fi1 :> SOtjp---
des Rn, in der jedes 9Jlv+1 echter Teil von 30tv ist, mu/3 nach endlich vielen
Schnitten abbrechen.

Beweis. Nach Satz 3 gibt es eine Kette zugehôriger £?-Mannigfaltig-
keiten des Sn mit Mxz> Jf2z) • • •. Dièse bricht nach dem Kettensatz der
algebraischen Géométrie 3) nach endlich vielen Schritten ab ; also muB
dasselbe fur die Kette 50^ 3 SDÎ2 ^ • • • gelten.

§ 2. Réelle Punktmengen.

1. Wàhrend § 1 von algebraischen Mannigfaltigkeiten im Rn handelt,
beziehen sich die Sàtze dièses Paragraphen allgemeiner auf
Punktmengen 501 des Rn. Bekanntlich kann Q auf genau eine Weise ange-
ordnet werden, indem man aile diejenigen von Null verschiedenen
Elemente, welche sich in Q als Quadrate darstellen lassen, > 0 setzt.
Unter dem Betrag \ a | eines Elementes a ^ 0 verstehen wir sodann die
positive der beiden Zahlen a und —a. Wir gehen aus von einem Punkt
f0 (£},...,££) des Rn und einem Elément e > 0 aus 12.

Définition 2. Unter der e-Umgebung U£(Ç°) des Punktes |° verstehen wir
die Menge der Punkte f des Rn, welche sâmtliche Ungleichungen

erfilllen; unter der e-Umgebung U£(SJl) einer Punktmenge 3JI des Rn die
Vereinigungsmenge {UB(£)}ç€m, erstreckt liber aile Punkte von$Jl, oder,

falls SOI leer ist, die leere Menge.

3) Vgl.: B. L. v. d. Waerden, Einfûhrung in die Algebraische Géométrie (Berlin,
Springer 1939), Kap. IV, § 28, p. 109.
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Aus 9T S 501 folgt also Ue(<mf) G Ue(m), aus 0<^g folgt C75(ÎR)

S UtW)-

Définition 3. t/wter cfem e-Komplement Kt($°) des Punktes f° verstehen
voir die Menge des Punkte £ des Rn, welche nicht sâmtliche Ungleichungen

erfilllen; unter dent e-Komplement K£(3Jl) einer Punktmenge3Jl des Rn den
Durchschnitt (K£(Ç) )^€m, erstreckt ilber aile Punkte von$R, oder, faits 501

leer ist, den ganzen Rn.

Aus9Ji'g2R folgt also KB(mr)^KM)> aus à < e

Aus 0<ef<e und |c C/£,(9K) folgt Çd{zKe$Jt); ist umgekehrt
S dp Ke(3Jl), so gibt es ein e' aus û mit 0 < er < e und f c f/fc,(9K)

Satz 4 a. Seien ô> s zwei Elemente von Q mit 0 < e < - und %, SB

zwei Punktmengen des Rn. Dann gilt

ue <$) n Ks(f8) c u, (ît n ^8/a(93) • (2)

Beweis. Ist 31 leer, so ist der Satz trivial. Sei 31 nicht leer; dann gibt
es zu £ct7t(9l)n jfir8(SB) einen Punkt f°c 31, so da8

Wâre f°c £78/2(5B)> so gâbe es |*c©, so daB

\S°-et\^Y (i=l,...,n) ;

also wâre

U, - l*| ^ |f, - f?| + II? - !f l< «5 (•' 1 n),

also | dp Ks(%), was nicht der Fall ist. Also ist |° c 31 fl ^j/
folglich |c Q

Satz 4b. Seien ô, e zwei Elemente von Q mit 0 < e < — imd 31, S

i Punktmengen des Rn. Dann gilt

Ke{% n K8jim n z8 (93) - Kt&) n jra(«) (3)
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Beweis. Jedenfalls ist Ke(% nZ8/2(93) )^Ke{%). Sei

aber Ça\zKe{%). Sei e'cfl mit 0<e'<e, so da8 fcï7e,(9l). Wâre

fc2T8(33), also |c J7e,(2l) nJr8(JB), so wâre nach Satz 4a:

also

Also kann nicht f c ifs(33) sein, woraus Satz 4b folgt.

2. Im folgenden sei eine der Koordinaten des Rn, etwa die erste,
ausgezeichnet. Dementspreehend bezeichnen wir die Punkte des Rn mit
(f, rj) (f, rj±i..., rjn_l). Wir betrachten nun neben dem Rn einen Rn~l
ûber i3.

Définition 4. Unter der Projektion eines Punktes (i, rj) des Rn verstehen

wir den Punkt rj des R71*1, unter der Projektion 90?* einer Punktmenge 9Jt

des Rn die Menge der Projektionen sàmtlicher Punkte von 3tR.

Unter Uf(M*) resp. Kf(3R*) verstehen wir die Mengen î7£(9Jt*) fi Rn~l

resp. KeCm^nR"-1.
Aus aK7 S SDÎ folgt 9K7* S 9W* ; fur zwei Mengen 2)^, 2R2 gilt deshalb

Définition 5a. Unter dem e-Supplement Se(£°, rj°) des Punktes (f°, ^°)
von Rn verstehen wir die Menge der Punkte (£, rj) des Rn mit

Vi V°i {i= 1,...,»- 1)

und

II - S° | ^ e

Die Punkte vonSOÎ, die dieselbe Projektion besitzen, seien zu Fasern g
zusammengefaBt.

Définition 56. D>&£er dem e-Supplement 8e(%) einer Foser % von9Jl
verstehen wir den Durchschnitt {Se\è) )|€^' erstreckt ûber aile Punkte von

5, unter dem e-Supplement Se(50î) vonWldieVereinigungsmenge {8e(i$)}%€m,
erstreckt ûber aile Fasern von 50i, oder, falls 2R leer ist, die leere Menge.

Danach ist also (££(2R) )* S 9K*
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*Satz 5. Ist 501 eine Punktmenge des Rn und 0 < à < e, so liegen aile
Punkte von if£(2R), deren Projektionen in ?7*(9K*) liegen, in

Beweis. Sei (i,rj) c Ke(m) und tj c *7?(9ft*). Dann gibt es
so daB

l*7< — rç?l â <$<e (i 1,..., n —
und

ist. Ist weiter (|°, rç°) ein beliebiger Punkt der Faser von 3R, auf der
(|°, rj°) liegt, so ist aueh | f — 1° | è e ; also gilt (f, rç°) c ASt(9Ji) ; also

wegen (|, c t/s ((£ ^°) : (f, ^?) c C/8 (5é (SK)

Danach gilt also ZC(9K) - % + %, % £ I78 (>Se (9M) «? S K$ (SR*).

3. Im folgenden sei 0 die Menge der Punkte (£, ^) von jR^, deren
erste Koordinaten zwischen zwei festen Sehranken liegen:

Eine Punktmenge G0, die aus lauter Fasern von 0 besteht, heiBe eine
zylindrische Punktmenge von 0. Fur zwei solche gilt ((£* D (££)*

(£f D G* (wobei wir zur Abkûrzung (£e* £* setzen).

Satz 6. Ist %e eine zylindrische Punktmenge von 0, so ist

Beweis. a) Sei (f, ly) c Jffc(3ld) H 0. Ist iy0 ein beliebiger Punkt von
SI*, so ist (f, r?0) c SI0. Es kônnen also nicht aile Ungleichungen
I Vi — rfi I <e (* 2

» • • • 'n ~ l) erftillt sein» also ist *n c -^f (^°) »

folglich rjczK*(%*).
b) Sei ij c *?(«?). Dann gilt (fx, ^) c JSTt(«^) n 0

Sehliefilich sei Q ein Vollquader des Rn, d. h. die Menge der Punkte
(f, rj) des iîn, welche n Ungleichungen

fié £^£2 (fi»£2»^i<»%^û; /K/.(O
î?ii ^Vi^V2i i 1,..., n — 1)

erfûllen. Sei 91° eine aus lauter Fasern des Rn bestehende Punktmenge,
91* ihre Projektion, ferner die Vereinigungsmengen 91° MKX(Q) 2t,
91* VJCf «??)=«?.

22 Commentaril Mathematid Helvetici



Satz 7. Fur eeQ mit 0 < e < 1 gilt

(JTe(9t))* *?(»

is. a) Sei (Ç,rj) <z Kt(W). Dann ist erstens tj € K* (K* (Q*) 9

zweitens rç€ Z£*(9i*), also rçe#f(»*).
b) Sei c iff (83*), ferner f ein beliebiges Elément von Q mit

liegt offenbar (|, rç) in Zt(3l).

§ 3. Eine Stetigkeitseigenschaft reeller Polynôme.

1. Wir bezeichnen die Koordinaten des Rn wieder gleichmâBig mit
(f3,. £n). Im Rn sei ein Vollquader Q gegeben durch die Ungleichungen

Ferner sei p(xl9..., xn) ein Polynom in ti Unbestimmten xx,..., xn mit
Koeffizienten aus Q.

Satz 8. Z^ jedem e > 0 az^ i3 griô^ e^ em (5 > 0 aus Q, so da/i fur
zwei beliebige Punkte | c Q, rj a Q mit \ ft — r\t \ g (5 (i= l,...,w):

wird.
Beweis. Ist yx,..., i/n eine neue Reihe von Unbestimmten, so gibt es

n Polynôme Al9..., An in den x und den y, so daB

n

P(yi>--,yn) — P(«i,...»«») =iM v{x,y)-(yv- xv) (6)
v=l

ist4) Ist dann Jfv eine obère Schranke fur | ^,,(1,^) \, £ ci Q, rja Q und

Jf max (Mv) 5), so setze man ô ~-, und (6) liefert ohne weiteres

die Behauptung.

Satz 8a. Verschwindet ein Polynom p(xl9..., xn) auf einer Punkt-
menge 501 Q Q so gibt es zu jedem s > 0 ein (5 > 0 aus Q, so dafl
auf

4) Beweis: p(2/)—p(«) 2 (p^,.. a?,^, yv,..., yn)—p(xlt.. .,xy,yv+1,.. .yyn))

5) Sei etwa Ay(x,y) — a1x1ljr • • • +«w2/nf tu^d. —m ^ft^m(m^l;ê= 1,...,
ein Q umschlieBender, n-dimensionaler Wurfel des En. Dann setze man
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Beweis. Wir bestimmen ô nach Satz 8. Ist dann £ c U8(3Jl) H Q, so
gibt es nach Définition 2 (cf. § 2, 1.) einen Punkt |° c 2R, so daB | ff — fj |

^ ô (i l,...,n), also ist |p(f)| - |p(f) ~p(f°)|^c, q. e. d.

Satz 8b. Besitzt \ p(xl9..., xn) \ auf SDÎ Q Q eine positive untere
Schranke d, so gibt es ein ô > 0 ans Q, so da/i auf U8 (501) n Q :

^ it
Beweis. Wir setzen e — nnd bestimmen ô nach Satz 8. Zu

I c Z7S (SB) fl Ç gibt es dann f> c 2R mit ||, - |? | ^ ô (i 1,..., n) ;

also ist | p(S) | à | p(f») | - | p(f) - p(f«) | S ~f q. e. d.

§ 4. Die Abstandsgleichungen.

1. Sei Q ein Vollquader des Rn. Wie in § 2, 2. ff. zeichnen wir die
ersta Koordinate aus. Ferner sei p(x,y) p(x,yu..., 2/n_a) ein Polynom
in ?i Variablen a;, y1,..., yn_x mit Koeffizienten aus Û.

Satz 9. Zu jedem Polynom p(xy y) gibt es eine Reihe von endlich
vielen Polynomen Hv(y) in den y allein, so dafi fur £ ci2, rj c Q* und

fur das erste im Punkte rj nicht verschwindende Polynom H8(y):

\p(i,ri)\^\H8(ri)\'\i-L\P8 • (7)

Dabei bedeutet £jt die | am nâchsten gelegene réelle Wurzel von p(x,rj) und

p8 die Anzahl der reellen Wurzeln von p(x,rj). Besitzt also p(x,rj) keine
réelle Wurzel, so vereinfacht sich (7) zu

Verschwinden aile Hv{y) im Punkte rj, so verschwindet p(x,rj) identisch.

Die Ungleichungen (7) môgen die Abstandsungleichungen heiBen. Wir
teilen den Beweis von Satz 9 in fûnf Abschnitte.

2' Sei
p(x,y) co(y)^l + '"+c1(y) (8)

wobei die cx(y) (A 0,..., Z) Polynôme in den y bedeuten. Wir setzen

zunâchst voraus, daB l è 2 sei. Seien êl9..., i&l die Wurzeln von p(x) in
einem algebraisch-abgeschlossenen Erweiterungskôrper von Q(y), also

co(y). II(z-âx) (8;)
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und P(x) das Polynom, dessen Wurzeln die Quadrate (ê\ — ^)2 sind:

X<" "
(9)

Dabei sind die CA symmetrische Polynôme der &x

CA=FA{^fi-,...,^¥!r)= ,^JA (A=1,...,L), (10)

wobei die GA(y) Polynôme in den y mit Koeffizienten aus Q und die rA

positive ganze Zahlen bedeuten. Wïr dehnen Formel (10) noch auf den
Index A 0 aus, indem wir setzen O0(y) 1, r0 — 0.

Sei nun rj ein beliebiger Punkt von Q*, in dem co(t]) nicht verschwindet,
und Gk(rj) (0 ^ k^ L) der letzte nicht verschwindende unter den Werten
GA(rj). Da (10) bei der Spezialisierung der y zu den r\ erhalten bleibt, so

gilt nach (9) Q

wobei links das Produkt der Quadrate der nichtverschwindenden Differenzen
der Wurzeln Çl9..., f, vow p(x,rj) steht.

3. Ci,..., Ci sin(i Elemente des algebraisch-abgeschlossenen Kôrpers
-4, der aus .Q durch Adjunktion von i entsteht. Verstehen wir unter dem
Betrag \ f | eines Eléments C von ^4 i?(i) die positive Quadratwurzel
aus seiner Norm bezûglich Q, so gelten fur die Betrâge zweier Elemente
C, C' von A die Gesetze

K-n m-K'i
und (12)

.|C+C'i^ ICi + K7!6)

Wir geben jetzt fur die Quadrate der Betràge der Wurzeldifferenzen
Ca ~~ CM euie obère Schranke an.

Wegen (12) ergibt sich aus (8) fur r\ c Q* und f €£?(*):

| ^ | c,(v) |. |f |' - | Cl(^) 1.1 f |*-i | c,fa) |

Wie leicht ersiehtlich, gibt es deshalb ein m > 0 aus i3, so daB fur

| C | > -j—7—r-, - unabhângig von der speziellen Wahl von r\ im Q* :
I co (y) I

6) Das letztere folgt aus der Cauchy-Schwarzschen. XJngleichung, und dièse gilt in be-

liebigen formal-reellen Korpern (vgl. a. a. O. FuBnote 1).
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•) | > 0 ist. Also gilt fur sàmtliche Wurzeln Cx von Pi
Yï)

I Ca I ^ -j—TTT- *st schlieBlich 4m2 M, so folgt nach (12):

Fur je zwei Wurzeln £x> ^ von P(x>v) (V c Q*) 9^

M

wobei M € Q von der speziellen Wahl von r\ in Q* nicht abhdngt.

4. Wir wollen jetzt fur die Quadrate der Betràge der nichtverschwin-
denden unter den Wurzeldifferenzen £a — C^ eine untere Schranke an-
geben. Sei Gk(rj) der letzte nichtverschwindende unter den Werten
@aW' Um die Schreibweise zu vereinfachen, lassen wir im folgenden den
Index k weg und fugen ihn am SchluB wieder hinzu.

Ist s die Gliederzahl des Produkts (11), so liefern die Formeln (11)
und (13) unter Benûtzung von (12) fur je zwei verschiedene Wurzeln

1^ M2S IWI koWI^8^
11 \Co(y)\r M8~X

Setzen wir noch 2(s — 1)— r q und
_x d, so folgt: Fur je

zwei verschiedene Wurzeln £^, C^ von p(x,rj) (rj <z Q*) gilt

•|cofo)|«; (H)

dabei ist d > 0 ein von der speziellen Wahl von rj in Q* unabhângiges
Elément von Q und q eine ganze Zahl, die ûbrigens immer ^ 0 gewâhlt
werden kann, indem eventuell eine geeignete Potenz einer oberen
Schranke von | co(rj) |, rjczQ*, in den Faktor d hineingezogen wird.

5. Wir teilen nun die Wurzeln fj ,...,£, in zwei Kategorien :

1. Die im Grundkôrper Q liegenden: £l9..., £P.

2. Die ûbrigen: f1?...,f2<?- Dièse sind paarweise konjugiert bezug-
lich Q:

(~\ çn\ -X- % \n\^ *\ TA > TA I (~\(n> ^a€^; a 1,...,?)
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Dabei ist tpx ^ 0, also fA — Cx+Q ¥= 0 (A 1,..., q). Ist nun f ein be-
liebiges Elément aus Q, so ist nach Définition des Betrages fur eine

beliebige Wurzel der 2. Kategorie:

||-fx, |è|nl IICà-Ca+J U'=A oder A + A= l,...,g)
also nach (14)

Ist ferner fw die f am nâchsten gelegene unter den Wurzeln der 1. Kategorie,

so ist

Aus (8;), (15) und (16) folgt also nach (12):

Setzen wir schlieBlich q qk, p pk, q-q + 1 Qk, (-7-) — Dk1 so

folgt
\^Dk.\ co(rj) \<t • | Gk(r,) |«* • || - fw |pfc (17)

Dabei ist Du€ Q mit Dk>0 und Qk, qk, pk nichtnegative ganze Zahlen,
und zwar insbesondere ^fc gleich der Anzahl der reellen Wurzeln von
p(x,ri). (17) gilt auch noch, wenn aile Wurzeln reell sind, da dann

qk o, Qk 1 ist; man setze in diesem Fall Dfc 1.

Es bleiben noch die Fâlle, daB p(x,y) in x linear oder unabhàngig von
x ist. Im ersten Fall hat man fur cQ(rj) =£ 0:

I p(S,ri) I I oo(rj) • S + Clfo) | | co(rj) \ • | f - ^ | (170

im zweiten v /iw//v
I p(f,i?) | | co(ij) | (17")

Dièse Fàlle sind in (17) enthalten, wenn man beidemal D 1 setzt.

6. In jedem Punkt rj c Q*, in dem co(rj) ^ 0 ist, gilt eirie Ungleichung
(17) (resp. (170, (!7")) mit 0fc(rç) ^ 0. Sei nun in einem Punkt rjcQ*:
co(rj) 0. Sollten aUe Ausdriicke c^rj) verschwinden, so verschwindet
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p(x,rj) auf der zum Punkt rj gehorigen Faser der Rn identisch. Ist dies
nicht der Fall und c,(y) der erste Koeffizient von (8) mit c,(t]) =£ 0, so
stimmt im Punkte r\ das Polynom p(x,y) uberein mit dem Polynom

Wiederholen wir aile oben gemachten Schlusse fur pr{x,y) und setzen
naehtraglich wieder p(x,rj) p'(x,rj), so finden wir eine Ungleiehung

| p&rj) | â D,k • | c,(V) \*>* • | G,k{fi) \«>* || - £, |'i*

Fur 7 Z — 1 setze man D,_1 1, ebenso fur 7" Z : 2), 1. Setzt
man schlieBlich

und denkt sich die Polynôme Hik(y) erstens nach 7*, zweitens naeh k
lexikographisch geordnet (7 0,..., l\ h \(l — j)(l — j — 1),..., 0,

resp. & 0 fur j l — 1,1), so ergibt sich aus der Bedeutung von
ci(y)und Ojk(y) unmittelbar Satz 9.

§ 5. Der Satz von der unteren Sehranke.

1. Wie im vorhergehenden Paragraphen bezeichnen wir die Punkte
des Rn mit (£,rç) (f ,*h,..., rçw) • ^r betrachten in einem Vollquader
Q des Rn mit den Ungleichungen (5') (cf. § 2, 3.) ein Polynom
p(x,y) p(x,yx, yn) mit Koeffizienten aus Q und beweisen den

grundlegenden

Satz 10. Sei p(x,y) ein Polynom ûber Q und$Jl die zu p gehôrige
Mannigfaltigkeit des Rn. Dann gibt es zu jedem e e Q mit e > 0 ein
d € Q mit d > 0, so dafi in #£(9Jt) H Q : \p\^d gilt.

Q kann dabei beliebig gewablt werden. Ist SOI leer, so besagt der
Satz, daB | p(S9rj) | in Q eine positive untere Sehranke besitzt. Wir
beweisen den Satz durch Induktion nach n. Wir maehen also die

Hauptinduktionsvoraussetzung (HIV), daB der Satz fur n — 1 Variable
schon bewiesen sei.

Sei © die durch die Ungleichungen (5) definierte Punktmenge des

Rn (cf. §2, 3.). Dann beweisen wir zuerst:
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Hilfssatz. Sei ô> 0 und%5* eine Punktmenge des R71"1, so dafi fur
beliebiges A > 0 das Polynom p(x,rj) fur rj c(£* =K%($}*) définit ist.
Gibt es dann einen Quader Q* des R71"1, so daji fur beliebiges A > 0 :

£*C Q* ist, so besitzt | p(i,rj) | auf der zylindrischen Punktmenge (£f

von 0, deren Projektion (£* ist, eine positive untere Schranke D.

Beweis. Ist (£ * leer fur beliebiges A > 0, so ist nichts zu beweisen.
Ist G* fur A < Ao nicht leer, so ist p(x,rj) fur ^ c (£* définit, also
verschwinden fur y rj nicht aile der in Satz 9 (cf § 4, 1.) ge-
nannten Polynôme Hv(y). Sei i/(1) das erste nicht identisch ver-
schwindende unter den Polynomen Hv und allgemein H{k+1) das erste
auf Hik) folgende, das nicht in allen gemeinsamen reellen Nullstellen
von H{1),.. H(k) verschwindet. Ist H{1) das letzte Polynom der so

gebildeten Kette, so kônnen H(1),. H{1) demnach keine gemein-
same réelle Nullstelle haben. Seien 9Kf 3 9JI* 3 9ftf 0 die
im R"-1 zu den Systemen {#(1)}, {iï(1), #(2)},. .,{fir(1)J..., #U)}
gehôrigen Mannigfaltigkeiten und 3JI* E71"1, ferner 3Jlf (fc=0,..
i ~ 1) die zylindrische Punktmenge von 0 mit der Projektion SOÎ*.

Sei schon bewiesen: | #> | besitzt auf SPîf H (£j, I A' — —^-1 eine

positive untere Schranke Dfc. Wir behaupten: \p\ besitzt auf

50lf _x HÊj I A — -nfriî) eine positive untere Schranke Dk_1.

Nach Voraussetzung liegen (£j,(£j, in Q$. Nach Satz 8b (cf. § 3) gibt

es also ein ô > 0 aus 42, so daB in 178(9ft£ n (£^) n (£^ : | p \ ^ -^ > 0.

Wir wàhlen ^ auBerdem kleiner als A'. Nun ist 9K^_1 nŒ® 51? + 9^,
9î? s ut ml n «g,) n œs, 5Zf s ^«(amf n 03,) n c^. Auf 51? giit

I p | â ^ ; fur 51* gilt wegen Œ* Z*(»*), (£*, Z*, (»•) und

A' -— nach den Sâtzen 6 (cf. §2, 3.) und 4b (cf. §2, 1.):
2

f n O n <£*)* K
n a* kîwî) n e* s zJOM?) n q*

k
Nun ist 2R* die zu dem Polynom in n — 1 Variablen H £ (H(K))2

K l
gehôrige Mannigfaltigkeit des i?71"1 Nach HIV besitzt also H auf
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Z*(9K*)nQ0* eine positive untere Schranke Dk2 (Dk c i2, Dk > 0).
D'k ist auch untere Schranke fur H auf der Teilmenge 91*. Da aber
51* Q 9K*_X, so verschwinden auf 5i* aile Hv bis zu #<*>, und #<*>
besitzt demnach auf 31* die untere Schranke Dfk. Da p(x,r]) fur 97 c 5t*
£ G* nach Voraussetzung définit ist, gilt deshalb nach Satz 9 (§ 4, 1.)
fur (f,i7)c9£:

Setzen wir schlieBlich Dk_x min. I—~^, Z>H so besitzt | p | auf

3W*-i n^j =9Ç + 9*2 die positive untere Schranke D*_l5 q. e. d.
1

Fur & Z fàllt 9t® weg und es ist H Z (H{X))2 in JS*-1 définit,

besitzt also in Q* und a fortiori in £* eine positive untere Schranke
Di-i> und dièse ist in 9Kf_! H £^ untere Schranke fur \p\. Fiir fc 1

liefert der InduktionschluB wegen 9Jl^ D d§ (£g die Behauptung
des Hilfssatzes.

2. Nun sei die zu p(x,y) gehôrige Mannigfaltigkeit 3JI des Rn nicht
leer. Wir setzen zunàchst voraus, daB auf 9W* nicht aile zu p(x,y)
gehôrigen Polynôme Hv(y) verschwinden. Sei H8 — H das erste Poly-
nom Hv, das nicht auf ganz 9JÎ* verschwindet, 51* die zu H gehôrige
Mannigfaltigkeit des Rn, 31° die Menge aller Punkte des Rn, deren

Projektionen auf 51* liegen. Dann ist 50^ SU H 31° c SCR eine echte

Teilmannigfaltigkeit von $R (die auch leer sein kann) mit dem zu-
gehôrigen Polynom pt p2 + H2. Denken wir uns dîese ganze Kon-
struktion wieder auf px und çH3ll ausgeûbt und das Verfahren fort-
gesetzt, so erhalten wir nach Satz 3 (cf. § 1, 4.) eine endliche Kette
501 9K0 => 9Ki => • • • ==> 50îo> ° und eine Kette zugehôriger
Polynôme p p09 pl9. ..,pœ, wobei pp+1 p2Q + H\ (q 0,. co—1).

Satz 10 sei schon bewiesen fiir pp+1 ; behauptet wird er fiir pp. Da

p +1 aus ^ auf analoge Weise entsteht wie 2?i aus ^? kônnen wir den

Index q weglassen. Sei also schon bewiesen: es gibt dx> 0 aus Q, so

daB in ^(2^) fl Ç : px=p2 + H2 ^ 2tf Dies gilt a fortiori in JfJSR) n Ç.

Nach Satz 8 a (cf. §3) gibt es ô e Q mit 0<(5<l, so daB in

U$W*) n #*, also auch in U8&1°) nQ:H2^<%. Dann ist K£(m) H Q=

^ + #2j wobei auf ili KE(m) fl C7S(5R°) n ©•' I P I ^ ^i ist, wâhrend

n (2 (18)
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Sei nun Qo U^Q), 51 9i° V ^(Ç), 33* 91* V K*(Q*). Dann gilt
wegen ô < 1 die Inklusion ^(91°) H G £ -#s(9ï) c Ço> also wegen (18)

RZQ Kt(m)nKBW) (180

Da 91* die Mannigfaltigkeit von H in jR71"1 ist, so besitzt \H\ auf
^S/t(9l*) n Q* also a fortiori auf Z*/2(93*), naeh HIV eine untere
Schranke d2> 0 Ist nun (f ,rç) c &f(3R), so gilt nach den Defînitionen
5 a, b (cf. § 2, 2,) fur die £ am nâchsten gelegene réelle Wurzel fw von
p(a?,rç) : | S — fw I ^ fi. Weiter gilt nach Satz 7 (cf. § 3, 4.) :

(8bW) n #S/2(3T))* S 9K* n (^5/2W)* 9K* H Z8*/2(93*) (19)

Da aber auf 9JI* aile Hv bis zu H verschwinden, so folgt aus Satz 9

(cf. § 4, 1.) fur (£,,) c £t(3K) H JT5/i(9t) :

• |f - £, p â rf2 • ^ d3 > 0

n Ki(%(%) liegt in Qo. Also gibt es nach Satz 8b (cf. § 3) ein
ôr> 0, das wir aufierdem < <5/2, < e und < 1 wâhlen, sodafi auf

C7s,(/Sf£(9K)niT8/2(3t))nQ0: |p| ==A >0 ist. Nun ist aber nach

Satz 4 a wegen Kh(%) c Qo:

n q0

also besitzt | p | auf J78, (/St(aM)) H K^ty) die untere Schranke ^> 0.

Da weiter wegen ôf < e die Projektionen aller Punkte von iT£(90î), die
nicht in UB, (8e(Wl)) liegen, nach Satz 5 (cf. § 2, 2.) in Z*,(9Jt*) liegen,
so ist 5Ï2 £x + £2, wobei | ^p | auf fi2 - C78, (8tm))n K8(S&) die

untere Schranke -£ besitzt, wâhrend fi* Q K&(W) H Ç*. Ist schliefi-

licb 93O* 9K* V -ïfW*), so gilt a fortiori fi* Q KM*) c (30* AuBer-
dem gilt fi2c Q, also liegt fi2 auf der zylindrischen Punktmenge fi8,

von 0 mit der Projektion (£*, K*,0B*). Da aber 9JÏ die
Mannigfaltigkeit von p ist, so ist p(x,r)) fur beliebiges A > 0 und î]cG*
définit, also besitzt | p \ auf (£8, und a fortiori auf fl2 nach dem HS eine

untere Schranke D > 0. Setzen wir schlieBlich d min. id1,-~-, D\

so ist also auf K£(3R) CiQ:\p\^d> 0, q. e. d.
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Ist schon 93?! leer, so ist px p2 + H2 im Rn définit, besitzt also
nach dem HS. in Kt{W) HQQQ eine untere Schranke 2d\ (man setzt
im HS: 23* K^Q*); dann ist Çc(£g). Mit dieser Bemerkung ist die
Nebeninduktion verankert, sobald wir noch den Fall behandelt haben,
daB auf ganz StR* aile Polynôme Hv versehwinden.

3. Dies ist nach Satz 9 (cf. § 4, 1.) nur so moglich, daB fur aile
Punkte 7j c SDÎ* das Polynom p(x,rj) identisch in x verschwindet.
S0Î besteht deshalb aus allen Punkten des Rny deren Projektion auf 9K*
liegt, also gilt:

- Zf(S0l*) und (KeW) fl Q)* K?W*) fl Ç*

Ist nun 6€ûmit0<(5<l und ô <e und 93* 9PÎ* V K?(Q), so gilt
weiter ?£nç* s ^8*(»o*) Œî

Ist (£f die zylindrische Punktmenge von 0 mit der Projektion (£*, so
ist also K^yjl) flÇgKj. Nach Définition von 93* ist aber p(x,rj) fur
r) c £* (A beliebig > 0) définit, woraus wieder nach dem HS. die
Behauptung folgt.

Damit ist Satz 10 unter der HIV bewiesen. Um noch die Haupt-
induktion zu verankern, bemerken wir, daB sich im Fall n 1 Satz 10
auf die Formel (7) resp. (lf) des Satzes 9 (cf. § 4,1.) reduziert (wobei
die Hv gewisse Konstante bedeuten). Damit ist Satz 10 vollstandig
bewiesen.

4. Wir bezeichnen die Punkte des Rn wieder mit f (£l5..., fn)
und fassen die Variablen xx,.. xn unter der Sammelbezeichnung x
zusammen. Sei Q ein durch die Ungleichungen (5") (cf. § 3, 1.) defi-
nierter Quader des Rn und p(x) ein in Q definites Polynom uber Q
Ist p(x) in einemPunkt f° c Q positiv, so ist es auf ganz Q positiv7).
Ein in Q definites Polynom ist also daselbst entweder positiv oder
negativ définit.

Satz 11 (Satz von der unteren Schranke). p(x) sei auf Q positiv
définit; dann gibt es ein d> 0 aus Q, so da/3 fur £ a Q : p(Ç)^d ist.

7) Ware p m £* C Q negativ, so gabe es auf der m Q hegenden Verbindungsstrecke der
Punkte |°, I1 nach dem Satz von Bolzano (der in behebigen reell-abgeschlossenen Korpern
gilt; vgl. a a O. FuÛnote 1) einen Punkt £, in dem p versehwinden wurde.
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Beweis. Der Satz sei schon bewiesen fur n — 1 Variable. Unter dem
Rand R(Q) verstehen wir die Menge der Punkte von Q, fur welche in
mindestens einer der Ungleichungen (5") links oder rechts das Gleieh-
heitszeichen steht. R(Q) làBt sich als Vereinigungsmenge von 2n
(n — l)-dimensionalen Quadern Q* (A 1,..., 2ri) darstellen, und
nach Induktionsvoraussetzung besitzt p auf jeden von diesen, also
auch auf R(Q), eine untere Schranke; letztere sei d0 > 0. Nun ist fur
0<e<l: U£(R(Q)) cz Q^UAQ), ^Iso U£(R(Q)) U£(R(Q)) n Qo.
Nach Satz 8b (cf. § 3), angewandt auf R(Q) und Qo, gibt es also ein

s e Q mit 0 < e < 1, so daB auf U£(R(Q) : p ^ -^ ist. Nun enthàlt

Ue(Q) keine anderen Punkte als solche von Q und von UE(R(Q)), also

ist p sogar auf Ue(Q) définit.
U£ (Q) ist ein Quader. Bezeichnen wir sein ÂuBeres samt Rand mit

S, so ist, wie leicht ersichtlich, Q K£(%5). Da p auf U£(Q) définit ist,
liegt seine zugehôrige Mannigfaltigkeit 501 ganz in S: 501 c 33, also ist
Ze(2R)2if£(33) =Q, d. h. K£(<m) n Q Q. Also besitzt |p| nach
Satz 10 in Q eine untere Schranke d > 0; da p in allen Punkten von Q

positiv ist, so ist d auch untere Schranke fur p in Q, q. e. d.
Da der Satz fur u 0 trivialerweise richtig ist, so folgt er damit fur

beliebiges n.

(Eingegangen den 24. Januar 1946.)
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