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Uber eine Ungleichung der Potentialtheorie

Von HENRIK L. SELBERG, Gjovik (Norwegen)

1. Sei G ein schlichtes Gebiet der z = x 4 ¢ y-Ebene. Wir bezeichnen
im folgenden mit g(z; &, z,) die Greensche Funktion von @, die in z,
ihren Aufpunkt hat.

Besteht die Begrenzung von @ aus endlich vielen analytischen Kurven-
bogen, so ist g(z; (@, z,) eindeutig durch folgende Eigenschaften be-
stimmt: Im Innern von G ist g (2 ; G, z,) eindeutig und iiberall harmonisch
mit Ausschlul des Punktes z,, wo

g(z;G,2) + log |z — z |

noch harmonisch bleibt. Am Rande von G ist g(z ; G, 2,) stetig und gleich
Null.

Ist die Begrenzung von mehr komplizierter Natur, so kann die Green-
sche Funktion durch einen Grenzprozef definiert werden. Wir schopfen
G durch eine Folge von Gebieten ¢, c G, ... aus, wobei die Begren-
zung jedes G, (v =1, 2,...) aus endlich vielen analytischen Kurven-
bogen bestehen soll. Die entsprechenden Grreenschen Funktionen bilden
eine monotone Folge ¢(z; G, z,) < g(2;G,, 2,) =..., deren Grenzfunk-
tion limg(z;G,, 2,) die zum Gebiete G gehorende Greensche Funktion

V-> 0o

g(z; @, z,) ist. Entweder ist g(z; @, 2,) eine in G eindeutige und iiberall
mit Ausschlull von z, harmonische Funktion, oder es ist g(z; @, zy) = oo.
Da lim g(z; G,, z,) unabhingig von der gewihlten Gebietsfolge ist, so ist

V>0

die Greensche Funktion g(z; ¢, z,) von G hierdurch eindeutig bestimmt.

Wir denken uns jetzt, dafl das Gebiet G von einem Kreis |z | = r
geschnitten wird, und lassen ¢ die Punktmenge bezeichnen, welche der
Kreis |[z2| =7 gemeihsam mit dem Innern von G hat. Die Gesamtlinge
der Bogen von @ setzen wir gleich fr. In einer Arbeit, die demnéchst
erscheinen wird, habe ich bewiesen, da@

fg(reW;G,zo) do < n? tang—i— : (1)
Q

Denken wir uns, daBl G von der reellen Achse geschnitten wird, und
lassen wir S die Punktmenge bezeichnen, welche die reelle Achse gemein-
sam mit dem Innern von @ hat, so erhalten wir durch einen Grenziiber-

gang aus (1) die Ungleichung
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2
[9@:6,2)de<T L,
S

wo L die Gesamtlinge der Segmente von § bezeichnet.

In der vorliegenden Arbeit soll die letzte Abschédtzung verbessert
werden. Die Ungleichungen, zu welchen wir gelangen, sind die best-
moglichen, indem sie ohne weitere Annahmen nicht verschirft werden
kénnen.

2. Wir nehmen im folgenden an, daf3 die offene Punktmenge S aus
endlich vielen Intervallen besteht, von denen keine zwei aneinander
stolen, und dafl die Gesamtlinge L dieser Intervalle endlich ist. Die
Endpunkte der Intervalle bezeichnen wir mit =, <z, <---< 2,,. Mit S
bezeichnen wir die Komplementidrmenge von § auf der reellen Achse und
mit D das Schlitzgebiet, dessen Rand mit S zusammenfillt.

Setzen wir ¢g(z;D,z,)=Rf(2;D,z,) (R=Realteil), so kann f(z;D,z,)
in der Umgebung von 2z = oo iiber der reellen Achse von der oberen
Halbebene in die untere analytisch fortgesetzt werden. f(z; D, 2,) ist
folglich reguldr in z =oo, und wir erhalten somit in der oberen Halb-
ebene fiir g(z; D, z,) eine Entwicklung

. . Y(20) Y 1
g(z3D3z0)—x2+y2+0(lzI2)s (2)
wo die Konstante y(z,) durch
7(20) = — lim if'(vy)y* (3)
Y>> 4 o

gegeben ist.
Wir nehmen nun an, dafl 7z, < 0 (I = Imaginérteil) ist. Durch An-
wendung des Cauchyschen Integralsatzes auf f(z; D, 2,) finden wir, daf3
J9(x +iy; D, z)dx

- o0

unabhingig von y ist, so lange ¥y = 0 ist. Um den Wert des Integrales
zu berechnen, machen wir von der Entwicklung (2) Gebrauch, indem
wir y gegen oo konvergieren lassen. Wir erhalten dadurch

fg@+iy; D, z)de = my(z)

;g(w;D,zo)dfv=nY(zo) : (4)
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Um y(z) abzuschdtzen, bemerken wir, daB f(z; D, 2z,) ein Integral
dritter Gattung ist. Wir nehmen voriibergehend an, daB z, ein Punkt «
auf der reellen Achse ist. Die analytische Fortsetzung von f(z; D, «)
durch Spiegelung gibt fiir die Ableitung f’(z; D, «) die Darstellung

— 1y (x) P(2)

fl(z;D,n)= ) VT&

wWo
UR)=(—x)(— 2,)...(2 — ,,)

und P (z) ein Polynom (n — 1)-ten Grades ist, dessen Nullstellen mit
den n — 1 Maxima (# «) von g(«; D, «) auf S zusammenfallen. Lassen

wir &, die Nullstelle von E% g(z; D, «) im Intervalle #,, , <z <w,, be-

zeichnen, und bestimmen wir m, so daB z,,_, < x < «,,,, so erhalten wir
unter Beriicksichtigung von (3)

P(Z) = (z_ El) : '(Z - gm—-l)(z - 5m+1)' ) (z - fn) .

Nun hat f'(z; D, «) ein Pol erster Ordnung mit dem Residuum 1in z = «.
Also ist

K_“(‘;)’ V— (2, —0) (2, — ). . . (%, — &)
(x— &)ev il — &) (G — &) - (&, — &)

X Loy — &

< T Fn —* ) B — &
=\ & — ) (xzn—*“)v[!l 7

xzv — X v=m x2v+1 - “

Lassen wir I(x) das Gesamtmal des Teiles von S bezeichnen, wo x <«
ist, so ist die rechte Seite von (5) nicht grofler als

V l(x) (L —lx)) ;
wir erhalten somit
Y=V i) (L— 1) - (6)

Hiermit ist der Wert des Integrales (4) abgeschitzt, wenn z, auf S liegt.

Wir nehmen jetzt an, dal 2, ein beliebiger Punkt der unteren Halb-
ebene Iz < 0 ist. Lassen wir z, gegen § konvergieren, so strebt das
Integral (4), wie man leicht nachweist, gegen den Grenzwert Null. Da
das Integral (4) eine in Iz < 0 barmonische Funktion des Parameters z,
ist, so erhalten wir unter Beriicksichtigung der Ungleichung (6)
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fg(x;D,z@dx:!y(x)darg(x—zo)

S

(7)

< [VIe) (T =T@) darg (z — 2,)
S

und hieraus -
[g(x;D,zo)dxg —Q—L . (8)

S

Wir bemerken, dafl das Gleichheitszeichen in (7) dann und nur dann
gilt, wenn § aus einem einzigen Intervall besteht.

3. Da das in Nr.1 betrachtete Gebiet G entweder mit D identisch
ist oder ein Teilgebiet von D ist, so erhalten wir

9(z; G, 20) = g(z; D, 2p)
und hiermit wegen (7) und (8)

Satz. Sei G ein schlichtes Gebiet der z = x + 1 y-Ebene, 2z, ein innerer
Punkt von G und g(2; @, 2,) die zu G gehorende Greensche Funktion, die in
2, thren Aufpunkt hat. Sei ferner 8 die Punktmenge, welche die reelle Achse
gemeinsam mit dem Innern von G hat, L das Gesamimaf von S und l(x)
das Gesamtmaf der Teilmenge von S, wo die Abszisse < x ist. Dann ist

(926, 20dz < (V@) (L — =) darg (= — 2)
s S

und
Jg(x ; @, z0)dx < —g—L .

Der Satz ist zundchst nur unter der Voraussetzung bewiesen worden,
daB S in endlich viele Intervalle zerfillt, von denen keine zwei aneinander
stofen. Diese Einschrinkung kann indes durch einen Grenziibergang
leicht behoben werden, so dafl der Satz fiir beliebige schlichte Gebiete G
giiltig bleibt.

(Eingegangen den 1. November 1945.)
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