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Ûber eine Ungleichung der Potentialtheorie
Von Henrik L. Selberg, Gjôvik (Norwegen)

1. Sei G ein schliehtes Gebiet der z — x + iî/-Ebene. Wir bezeichnen
im folgenden mit g(z\G,z0) die Greensche Funktion von G, die in z0

ihren Aufpunkt hat.
Besteht die Begrenzung von G aus endlich vielen analytischen Kurven-

bogen, so ist g(z;O,z0) eindeutig durch folgende Eigenschaften be-
stimmt : Im Innern von G ist g (z ; G, z0) eindeutig und iiberall harmonisch
mit Ausschlufi des Punktes z0, wo

g{z\G,zQ) + log|z - zo|

noch harmonisch bleibt. Am Rande von G ist g(z ; <?, z0) stetig und gleich
NuU.

Ist die Begrenzung von mehx komplizierter Natur, so kann die Green-
sche Funktion durch einen GrenzprozeB definiert werden. Wir schôpfen
G durch eine Folge von Gebieten Gxc:G2 c... aus, wobei die Begrenzung

jedes Gv (v 1, 2,... aus endlich vielen analytischen Kurven-
bogen bestehen soll. Die entsprechenden Greenschen Funktionen bilden
eine monotone Folge g(z;Gx, z0) ^ g(z;G2, z0) ^.. .f deren Grenzfunk-
tion lim «7(2: ; Gv, z0) die zum Gebiete G gehôrende Greensche Funktion

V->00

g(z ; G, z0) ist. Entweder ist g(z;G, z0) eine in G eindeutige und uberall
mit Ausschlufi von z0 harmonische Funktion, oder es ist g(z ; 6?, z0) 00.
Da lim g(z;Gv, z0) unabhàngig von der gewâhlten Gebietsfolge ist, so ist

die Greensche Funktion g{z;G,z0) von G hierdurch eindeutig bestimmt.
Wir denken uns jetzt, daB das Gebiet G von einem Kreis | z | r

geschnitten wird, und lassen Q die Punktmenge bezeichnen, welche der
Kreis | z | r gemeinsam mit dem Innern von G hat. Die Gesamtlânge
der Bogen von Q setzen wir gleich Or. In einer Arbeit, die demnâchst
erscheinen wird, habe ich bewiesen, daB

Jg(re^;G, z0) d<p ^ n* tang-?- (1)

Q

Denken wir uns, daB G von der reellen Achse geschnitten wird, und
lassen wir S die Punktmenge bezeichnen, welche die réelle Achse gemeinsam

mit dem Innern von G hat, so erhalten wir durch einen Grenzûber-

gang aus (1) die Ungleichung
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wo L die Gesamtlânge der Segmente von 8 bezeichnet.
In der vorliegenden Arbeit soll die letzte Abschâtzung verbessert

werden. Die Ungleichungen, zu welchen wir gelangen, sind die best-
môglichen, indem sie ohne weitere Annahmen nicht verschârft werden
kônnen.

2. Wir nehmen im folgenden an, da6 die offene Punktmenge 8 aus
endlich vielen Intervallen besteht, von denen keine zwei aneinander
stoBen, und daB die Gesamtlânge L dieser Intervalle endlich ist. Die
Endpunkte der Intervalle bezeichnen wir mit x1<x2<- • •< x2n. Mit 8
bezeichnen wir die Komplementàrmenge von S auf der reellen Achse und
mit D das Schlitzgebiet, dessen Rand mit S zusammenfâllt.

Setzen wir g(z;D,zo)=Rf(z;D,zo) (R=Realteil), so kann f(z)D,z0)
in der Umgebung von z oo iiber der reellen Achse von der oberen
Halbebene in die untere analytisch fortgesetzt werden. f(z;D,z0) ist
folglich regulàr in z =oo, und wir erhalten somit in der oberen Halbebene

fur g (z ; D, zQ) eine Entwicklung

wo die Konstante y(z0) durch

y(zo) -lim »/'(»y)y« (3)

gegeben ist.
Wir nehmen nun an, daB Iz0 ^ 0 (/ Imaginarteil) ist. Durch An-

wendung des Caucht/schen Integralsatzes auf f(z; D,z0) nnden wir, daB

+ iy;D,zo)dx

unabhângig von y ist, so lange y ^ 0 ist. Um den Wert des Intégrales
zu berechnen, machen wir von der Entwicklung (2) Gebrauch, indem
wir y gegen +oo konvergieren lassen. Wir erhalten dadurch

00

J g(% + iy;D,zo)dx 7iy(z0)
— oo

m. a. W.
f g(x; D, zo)dx n y(z0) (4)
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Um y(zQ) abzuschàtzen, bemerken wir, daB f(z;D,z0) ein Intégral
dritter Gattung ist. Wir nehmen voriibergehend an, daB z0 ein Punkt oc

auf der reellen Achse ist. Die analytische Fortsetzung von /(z;D,<%)
durch Spiegelung gibt fur die Ableitung f(z;D,oc) die Darstellung

J (z-a)VU(z)
wo

17(2) (2 — Xt)(z — X2). .{Z — X2J

und P(z) ein Polynom (n — l)-ten Grades ist, dessen Nullstellen mit
den n — 1 Maxima (^ a) von g(x; D,oc) auf S zusammenfallen. Lassen

wir |v die Nullstelle von -=— g(x; D,oc) im Intervalle x2v-i<a'<a'2v be-
dxdx

zeichnen, und bestimmen wir m, so daB x2m_1 < oc < x2tn, so erhalten wir
unter Berlicksichtigung von (3)

P(z) (z-Ç1).-.(z- Ç^Uz - |m+1)- • • (z - IJ

Nun hat/'(2: ; D, a) ein Pol erster Ordnung mit dem Residuum 1 in z ot.

Also ist

(5)l1/Lassen wir Z(a) das GesamtmaB des Teiles von 8 bezeichnen, wo x<oc
ist, so ist die rechte Seite von (5) nicht grôBer als

yi(oc)(L-l(oc)) ;

wir erhalten somit

y (oc) g l/TMl^"11^)! • (6)

Hiermit ist der Wert des Intégrales (4) abgeschâtzt, wenn z0 auf S liegt.
Wir nehmen jetzt an, daB z0 ein beliebiger Punkt der unteren Halb-

ebene Iz < 0 ist. Lassen wir z0 gegen S konvergieren, so strebt das

Intégral (4), wie man leicht nachweist, gegen den Grenzwert Null. Da
das Intégral (4) eine in Iz < 0 harmonische Funktion des Parameters z0

ist, so erhalten wir unter Berueksichtigung der Ungleichung (6)
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j g (x ; D, z0) dx Çy(x) d arg (x — z0)

s s

^ t \X) yJJ — l \Xj J Q, cirg \X — Zq)

und hieraus ^ .„.
(8)

Wir bemerken, daB das Gleichheitszeichen in (7) dann und nur dann
gilt, wenn S aus einem einzigen Intervall besteht.

3. Da das in Nr. 1 betrachtete Gebiet G entweder mit D identisch
ist oder ein Teilgebiet von D ist, so erhalten wir

und hiermit wegen (7) und (8)

Satz. 8ei G ein schlichtes Gebiet der z x + iy-Ebene, z0 ein innerer
Punkt von G und g(z',G, z0) die zu G gehôrende Greensche Funktion, die in
z0 ihren Aufpunkt hat. 8ei ferner S die Punktmenge, welche die réelle Achse

gemeinsam mit dem Innern von G hat, L das Gesamtmafi von 8 und l(x)
das Gesamtmafi der Teilmenge von S, wo die Abszisse < x ist. Dann ist

^ [ Vl(x)(L~l(x)) d arg (x - z0)

und

!¦¦

Der Satz ist zunâchst nur unter der Voraussetzung bewiesen worden,
daB 8 in endlieh viele Intervalle zerfàllt, von denen keine zwei aneinander
stofien. Dièse Einschrânkung kann indes durch einen Grenziibergang
leicht behoben werden, so daB der Satz fur beliebige schlichte Grebiete G

gûltig bleibt.

(Eingegangen den 1. November 1945.)

330


	Über eine Ungleichung der Potentialtheorie.

