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Eine Ungleichung der Potentialtheorie
und ihre Anwendung in der Theorie der
meromorphen Funktionen

Von HENRIK L. SELBERG, Gjovik (Norwegen)

Sei G ein einfach zusammenhingendes Gebiet der z-Ebene, g(z) eine
zu G gehorende Greensche Funktion und L ein geradliniger Querschnitt
von @. Dann ist

fo) | dz| < oflde] , 8)
L

wo ¢ eine feste, numerische Konstante bedeutet. Die Richtigkeit dieser
Ungleichung kann auf Grund des Koebeschen Verzerrungssatzes leicht
nachgewiesen werden.

Die Ungleichung (1) kommt in einer Arbeit von 7eichmiiller!) vor, wo
sie zur Aufstellung einer Umkehrung des zweiten Hauptsatzes der Wert-
verteilungslehre benutzt wird. In derselben Arbeit beweist Teichmiiller
auch eine Verschirfung der Collingwoodschen Abschéitzung von m(r; a) .

Der einfache Zusammenhang von G bedeutet eine erhebliche Ein-
schrinkung der Anwendbarkeit der von T'eichmiiller benutzten Methode.
Wir werden in der vorliegenden Arbeit zeigen, dafl diese Einschriankung
beseitigt werden kann. In § 1 schidtzen wir das Integral

fg(reiv)dp
q

ab, wenn @ aus den Bogen besteht, welche der Kreis | z | = r gemeinsam
mit @ hat. @ darf dabei ein beliebiges, einfach oder mehrfach zusammen-
hingendes Gebiet sein. In § 2 wenden wir das Resultat auf die von Teich-
miiller betrachteten Probleme an.

§1.

1. Wenn G ein Gebiet der z-Ebene ist, so bezeichnen wir im Folgenden
mit g(z; @, z,) die Greensche Funktion von @, die in 2, ihren Aufpunkt
hat, und mit k(z; @, z,) die zu ¢g(z; G, 2,) konjugierte Potentialfunktion.
Besteht die Begrenzung von f aus endlich vielen analytischen Kurven-
bogen, so ist g(z; @, 2, eindeutig durch folgende Eigenschaften be-
stimmt:

1) Q. Teichmiiller, Eine Umkehrung des zweiten Hauptsatzes der Wertver-
teilungslehre, Deutsche Mathematik, Bd. 2, 1937.
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Im Innern von G ist ¢(z; G, z,) eindeutig und iiberall harmonisch mit
Ausschlull des Punktes z,, wo

1
9(z; G, 2) — 1087‘;‘:';;'—

noch harmonisch bleibt. Am Rande von G ist g(z ; @, z,) stetig und gleich
Null.

Sei nun ¢ eine offene Punktmenge auf dem Kreise | z | = . Der Ein-
fachheit halber nehmen wir an, dal @ aus endlich vielen Bogen besteht,
von denen keine zwei aneinander grenzen. Die Gesamtlinge der Bogen @
setzen wir gleich 07. Mit @ bezeichnen wir die Komplementirmenge von
Q auf | z| = r und mit D das Gebiet der z-Vollebene, dessen Rand mit Q)

zusammenfillt.
Setzen wir fir |z | <7

1 0
o) == [ darg (¢ —2) — 35—,
Q

wobei { simtliche Bogen von @ in positiver Richtung durchlaufen soll,
Boist 0 < w(z) <1 fir [z] <r. Auf@ ist w(2) = 1 und in allen inneren
Punkten von @ ist w(z) = 0. Offenbar ist

0
F=9+ ry

i 1 % i 0
w(te“’)é-;z—- f d arg (re ——te"’)——% (t<r)

]
G=p-— -5-

und folglich, wenn —a-a; die radiale Ableitung auf |z| = r bedeutet,

_—= cotg (2)

iberall auf Q.
Wir nehmen jetzt an, daBl der Aufpunkt 2z, von g(z; D, ?,) in |z| <7
liegt. Mit Hilfe der Greenschen Transformationsformel erhalten wir dann

d d
f (9_5%) — wa—z) ds = 2nw(2,) »

lzl=r

wo ds das Linienelement bedeutet, also

732 ds __f %9 ds + 2morle) - (3)
Q
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Um das Integral an der rechten Seite auszuwerten, setzen wir o (2)
durch Spiegelung iiber den Bogen @ fort und erhalten dadurch eine in D
eindeutige, zwischen 0 und 2 gelegene, harmonische Funktion. Wenn z
einem inneren Punkt von @ zustrebt, so ist der Grenzwert von w (z) Null
oder 2, je nachdem die Anniherung innerhalb oder aulerhalb des Kreises
|z| = r erfolgt. Da 2( ) somit das harmonische Mal3 der d&uBeren Ufer
des Randes @ in bezug auf D ist, erhalten wir?)

—fdh(z; zo~_~fagds.
Q

Wird dies in (3) eingesetzt, bekommt man

—gg—) ds = nw(z,)
Q
und hieraus wegen (2)
fg(re""’; D, z,) dp < n? tang ~Z . (4)

Q

Man iiberzeugt sich leicht, dafl diese Ungleichung auch richtig bleibt,
wenn |z, | = r ist.

2. Sei jetzt G ein einfach oder mehrfach zusammenhingendes Gebiet,
der z-Vollebene, und sei  die Punktmenge, welche der Kreis |2 | = r
gemeinsam mit dem Innern von G hat. Der Einfachheit halber nehmen
wir an, daB der Rand von G aus endlich vielen analytischen Kurven-
bogen besteht, so daB @ in endlich viele offene Intervalle zerfillt. Wie
oben bezeichnen wir mit @ die Komplementirmenge von Q auf |z| = r
und mit D das Gebiet, dessen Rand mit Q zusammenfillt. Da G entweder
mit D identisch ist oder ein Teilgebiet von D ist, erhalten wir

9(2;G,2) = 9g(2; D, z)
und somit wegen (4)

Satz 1. Sei G ein schlichtes Gebiet der z-Vollebene, z, ein innerer Punkt
von G und g(z; @, z,) die zu G gehorende Qreensche Funktion, die in z,
thren Aufpunkt hat. Sei ferner Q die Punktmenge, welche der Kreis |z|=r
gemeinsam mit dem Innern von G hat und 0r die QGesamtlinge der Bogen
von Q. Dann st 0
fg(re“’; G, zy) dp < n? tang-z . (5)
Q
%) R. Nevanlinna, Eindeutige analytische Funktionen, S.28-—33.
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Mitunter kann eine andere Abschitzung zu einem besseren Ergebnis
fithren.

Wir nehmen an, dafl z = 0 weder innerer Punkt noch Randpunkt von
@ ist, und lassen 7, den kleinsten Abstand von z = 0 zum Rande von G

bedeuten. Im Innern von G gilt dann (242, = | 2, |?)
2 —27, |
2;Q,2)<log| -2 "% |,
. g( 0) g 7‘0 (z — zo)
Nun ist
2w
rE — reiz, +
< _
log ro e — 2) dp < 2z log ,
und folglich -
. r
f g(re'?; G, z)) dop < 2x logT . (6)
0
]

§ 2.

3. Wir betrachten im folgenden eine Funktion f(z), die im Kreise
| 2| < R = oo meromorph ist. Mit W bezeichnen wir die iiber der w-Kugel
ausgebreitete Riemannsche Fliche, worauf die Kreisfliche | z | < R ver-
mittels w = f(z) umkehrbar eindeutig und konform abgebildet wird. Wie
iiblich denken wir uns, dafl die w-Kugel durch eine stereographische
Projektion der w-Ebene auf eine Kugelfliche K erhalten ist, welche die
w-Ebene in w = 0 beriihrt. Den Durchmesser von K wihlen wir gleich 1.
Mit I(w’, w”") bezeichnen wir den Abstand zweier Punkte w’ und w” der
w-Kugel gemessen mit der Metrik von K lings dem kiirzesten Grof8-
kreisbogen, der w’ und w” verbindet, und mit k(w’, w”) den chordalen
Abstand zwischen »’ und w”.

Wir erinnern zunéchst an einige Grundbegriffe der Nevanlinnaschen
Wertverteilungstheorie ).

Wir bezeichnen mit n(r ; @) die Anzahl der a-Stellen von f(z) im Kreise
| z| < r unter Beriicksichtigung ihrer Multiplizitdt und setzen

dN(r;a)  n(r;a)
dr T r

27
1 1
0
mit den Anfangsbedingungen
lim (m(r;a) + N(r;a)) =0 .

r->0
3) Naheres hierzu bei R. Nevanlinna, Eindeutige analytische Funktionen.
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Um MiBverstéindnisse zu vermeiden, benutzen wir fiir m(r; co) und
N (r; oo) gelegentlich auch die Schreibweise m(r,f) und N (r,f) .

Setzen wir
T(r)=m(r;a) 4+ N(r;a) ,

so hingt 7'(r) nicht von @ ab. In der Hauptsache ist dies der Inhalt des
sogenannten ersten Hauptsatzes der Wertverteilungslehre.

Aus k(w,oo)z(l—l—lwlz)—% folgt, wenn |w|=1,k(w,o0) =

=

und, wenn |w|<1 ist, k(w, co) = -171—5 , also

L 1
V2 |w)
2n

1 + . —
m(r;o0) < —Eflog | f(re*?) | dp + log V2
0

und hieraus, wenn ¢ eine beliebige positive Zahl ist,

1 oy . + 1 =
m(r;o0) < »2~n—flog | & f(re*?) | dp + log 'y +log)'2. (7)
0

4. Wir gehen jetzt zur Anwendung der Ungleichung (5) iiber und
beginnen mit dem Beweis von?)

Satz 2. Liegen die Randpunkte von W alle auferhalb eines Kreises
l(w,a) <o, und zerfillt W iiber diesem Kreise tn lauter Flichenstiicke
mit beschrinkten Blattzahlen < p < oo, 8o 18t

m(r;a) = O(logr) +0(1) . (8)

Beweis. Der Einfachheit halber nehmen wir an, dal a = oo,
1< R< co. Wir betrachten die Flichenstiicke, worin W iiber dem

Kreise l(w, oo0) < —g— zerfillt. Diejenige unter ihnen, welche von der Bild-

kurve des Kreises | z | = » geschnitten werden, bezeichnen wir mit U,,
U,,...,U,. Die entsprechenden Gebiete in der z-Ebene bezeichnen
wir mit G,,G,,...,G,. Auf dem Rande jedes Gebietes @, ist
1 0
/@) | = = cotg £ . 9)

4) E.F. Collingwood, Sur les valeurs exceptionnelles des fonctions entiédres
d’ordre fini, C. R. 179; 0. Teichmiiller, loc. cit.; H. L. Selberg, Uber einen Satz von
Collingwood, Archiv for Math. og Naturv. B. 47, 1044, Nr. 9.
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Im Innern von G, ist f(z) meromorph mit héchsten p Polen; auBerdem
ist f(z) nullstellenfrei in @,. Folglich kann log | #f(2) | in jedem Gebiete
G, als Summe von hochstens p Greenschen Funktionen von G, dargestellt
werden. Bezeichnet ¢, die Bogen, welche der Kreis | 2 | = r gemeinsam
mit ¢, hat, und 0,r die Gesamtlinge der Bogen von @,, so erhalten wir

gemdll Satz 1
Jrog 1050
¢,

Nehmen wir an, da 6, = 0,= ...=0,,sowird 0, <m,v=2,3,...,n,
und X' 6, < 2x. Folglich ist
y=2

n 6 pn2 n pna
log | 8f(rei®) | 9¢p < pa® ¥ tang —- = 6,< —. (10
2 | log [9f(re') | by = pm 2‘. 1=, 2 0<s- (10

Qv

Nun liegt @,, sobald r gréBer als ein gewisses 7, < R ist, vollig im Innern
des Kreisringes 1 < |z| < R. Gemil (6) ist daher

dflog | 9 f(ret®) |dop < 2nplogr (r >1)) . (11)

1

Aus (7) erhalten wir jetzt

1 = + 1
m(r; o) < o Y | log | 9f(rei?) | dp + log—é— + log V2
T y=1

<

und hieraus wegen (9), (10) und (11)

-g--{—log V2 (r>r),

m(r; oo) <

pn
2V2
womit die Richtigkeit von Satz 2 dargetan ist.

b. Lassen wir a,, a,,...,a, ¢ voneinander verschiedene Werte be-
zeichnen, und setzen wir

S mir; a)+N( f,)—— (r f) + 2N(r, f) = 2T(r) + 8(r), (12)

v=1

so gentigt S(r) nachstehenden Ungleichungen:
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1. Im Falle R =
S(r) <O (log T(r)) (13)

auBer moglicherweise fiir eine Intervallfolge in r von endlicher Gesamt-
linge.
2. Im Falle R < oo

S(r) < log = + O (log T(r)) + O(1) (14)

R —
mit moglicher Ausnahme einer Intervallfolge in 7, auf welcher die Varia-

beschrankt ist.

: 1
tion von log -

R. Nevanlinna bezeichnet diesen Satz als zweiten Hauptsatz seiner
Theorie der meromorphen Funktionen.

Wir werden im folgenden zeigen, daf3 der zweite Hauptsatz durch eine
Abschitzung von S(r) nach unten erginzt werden kann, wenn die Rie-
mannsche Fliche W gewissen einfachen Bedingungen hinsichtlich der
Lage ihrer Rand- und Windungspunkte geniigt®). Um diese Bedingungen
einfach formulieren zu konnen, fithren wir auf W einen geeigneten Um-
gebungsbegriff ein. Wir definieren die p-Umgebung eines Punktes w, auf
W als die Gesamtheit aller Punkte w von W, die von w, aus lings Wegen
zu erreichen sind, die vollig im Innern des Kreises [(w, w,) < o liegen.
Den Punkt w, bezeichnen wir als Mittelpunkt, ¢ als Radius der Umge-
bung.

Es gilt nun folgende Umkehrung des zweiten Hauptsatzes:

Satz 3. Es sei D(t) stetig und = log (1+ &) > 0 fir ¢t = log %— . Die
Ableitung D' (t) sei stetig und = 0 fir t = log%—, und fur alle geniigend

grofe t sei ferner @"(t) < 0. Es set W so beschaffen, daf die nachstehenden
Bedingungen erfillt sind :

A) Eventuelle Randpunkte von W liegen alle diber a,, a,,. .., a, (g =0).
B) Bezeichnet A(w) den kleinsten Abstand l(w,a,) (v=1,2,...,9),

falls ¢ >0, und 12‘— falls ¢ =0, so hat die durch

o(w) = A(w)e T IEH (15)

5) Vgl. L. Ahlfors, Zur Theorie der Uberlagerungsflachen, Acta Math. Bd. 65,
1935, S. 184; O. Teichmiiller, loc. cit.; H. L. Selberg, Uber den zweiten Hauptsatz der
Wertverteilungslehre, Archiv for Math. og Naturv. B. 47, 1944, Nr. 10.
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definierte o (w)-Umgebung jedes auf W gelegenen Punktes w (#a,,a,,...,a,)
eine beschrinkte Blitteranzahl < p < oo .

Dann genigt die durch (12) definierte Grofe S(r) nachstehenden Un-
gleichungen :

1. Falls R =00
S(r) > — @ (qT(r)) — O(log r) (16)
2. Falls R< oo

S(r) > log

o — B(gT() — O(1) . (1)

6. Wir beweisen zunichst den
Hilfssatz. Sei 0<yp(t) < —1—-_-1*_—; <1 firo<t=st, = —Z~ und y(t) stetig

fir 0=t=<1t,. Ferner sei

. y(®)
lim v = 1, (18)

wenn gleichzeitig t— 0 und—;— — 1. Es st dann moglich, die punktierte

Kreisfliche 0 <l(w, 0) < t, der w-Kugel durch ein System von Kreisen
w,«,) < 6(,) =21x,,0)y((x,,0)), »=1,2,..., (19)

wo l(x,, 0)<t,, vollstindig zu iiberdecken, und zwar so, daf3 folgende
Bedingung erfullt ist:

Es gibt eine endliche Zahl h so, daf3 das durch Verdoppelung der Radien
0 (x,) erhaltene Kreissystem

Hw,«,) < 26(x,), v=1,2,..., (20)

keinen Punkt der w-Kugel mehr als h-mal iberdeckt.
Beweis. Indem [z] wie iiblich die groBte ganze Zahl < z bedeutet,
setzen wir

tn tn—l }i'tn—-l W(tn-—l) (n - 1: 2’° . ‘) (21)

27 sin 2¢
— — L - 2,...) . (22
o_,=0, o, 0n-1+[ i () ]—l—l (n=0,1,2,...) (22)

Auf jedem Kreis [(w, 0) = ¢, verteilen wir nun die ¢, — o,_, Punkte
Ko, , 415 Xa, 425 - +» &g, 80, daB sie ein regulires (o, — 0,_,)-Eck bilden.
Wir behaupten, daf3 die Kreissysteme (19) und (20) mit dieser Wahl der
Mittelpunkte «, die verlangten Eigenschaften besitzen.

Wir bemerken zunéchst, daB die Linge der Kreisperipherie I (w, 0)=t,
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gleich = sin 2¢,, wihrend die Anzahl der auf diesem Kreise gelegenen
Mittelpunkte «, gleich

o i
Gn—an—lz[ 7zs1n2tn]+ 1

tatp(tn)
ist. Die Kreise l(w,«,) < 6(x,), v =0,,+ 1, ..., 0,, iiberdecken daher
den Kreisring ¢, < l(w, 0) < t,,, vollstindig. Wegen lim ¢, = 0 folgt

hieraus, da das Kreissystem (19) den punktierten Kreis 0 < I(w, 0) < ¢,
liickenlos iiberdeckt.
Fiir das weitere unterscheiden wir zwei Fille, je nachdem lim o (f)=0

t->0
oder lim ¢ (f) > 0 ist. Im ersten Falle erhalten wir gemif3 (21)
t->0
lim 241 — 1
und folglich gemdf3 (18)
. tpi1)
hm 1/)( n+l/ __ 1
n>w Y(t)
also
s 6(0‘07,4.1) 1 tn+1 '/)(tn+1) _
A e e Lyl L a8}
Nun ist
0 (xo,
by = bppr = —— 9 )“
also

by — tpyo = %;‘fiv‘o 5(0‘0,,+,-)

und somit wegen (23)

n— tnpe > 20(xg,) + 20(x,,,,)

fiir alle hinreichend groBe n. Hiernach kann eine Kreisfldche

lw, x,) < 28(%,), Opey <V 0, (24)

4

keinen Punkt gemeinsam mit einer Kreisfliche
Hw, x,)<26(x,) , vV > 0,5 ,

haben, sobald n = n, ist. Daraus schlieBt man weiter, da eine Kreis-
fliche (24) keinen Punkt gemeinsam mit

l(w7 OC,,) < 26(0‘1') ’ 4 é Opn—g >
haben kann, sobald » = n, ist. AuBerdem ist kein Punkt der w-Kugel in

mehr als 17 der o, — o,_, Kreise (24) enthalten, wenn n = n, ist. Hier-
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nach ist kein Punkt des Kreises I(w, 0) < ¢, in mehr als 289 = 172
Kreisen (20) enthalten, sobald » = Max. (n,, n,, n,) ist, womit die Rich-
tigkeit unserer Behauptung nachgewiesen ist, wenn lim y(¢f) = 0 ist.

t->0
Wir nehmen jetzt an, daB
limy(@) =y >0.
t->0
Wir bestimmen 7, so, daB3
y 1+y
2 <ypt) < —5 5
fir alle ¢t = ¢, zutrifft, und erhalten wegen (21)
Y
tn+1 < tn ( - 'é‘) (n = ns)
also y k
<t (1=F) mzm, bz (25)
und hieraus
k
t,,-—t,,+k>tn(1_< _%>) m=n,, k=1) . (26)
Wegen (19) folgt ferner
1
bloog) <—Lt, (0 =)

also wegen (25)

6(aa"+k)<1+7( m%)ktn nz=zn, b =1) .

Werden die zwei letzten Ungleichungen mit (26) zusammengehalten, so
sieht man, daf

26(o¢0n) —+ 26(ocan+k) <t,—tpix

sobald n =n,, k = k, ist. Die Kreise

lw, o) < 28(%,) , O,,<?<0,, (27)
und
l(w’ “v) < 2 6(“1}) ’ 0n+ko-—1 <7,

bhaben deshalb keinen Punkt gemeinsam, wenn n = n, ist. Daraus folgt
weiter, dal eine Kreisfliche (27) keinen Punkt gemeinsam mit

Hw,0,) <26(x,) , v=0ny,,

318



hat, sobald n = n, ist. Nun gibt es eine von n unabhingige Zahl H, so
daB kein Punkt der w-Kugel in mehr als H der ¢, — o,_,-Kreise (27)
enthalten ist. Bedeutet n; das Max. (n,, n,), so ist folglich kein Punkt
des Kreises I(w, 0) < ¢, in mehr als (2k, — 1)H der Kreise (20) ent-
halten. Die Richtigkeit unserer Behauptung ist hiermit vollstindig be-
wiesen.

7. Wir kommen jetzt zum Beweis von Satz 3. Ohne Einschrinkung
der Allgemeinheit nehmen wir dabei an, da R > 1.
Indem p(w) die in (15) gegebene Bedeutung hat, iiberdecken wir die

in a,, a,,...,a, punktierte w-Kugel K mit Kreisen
(wy)
l(w,w:)<g-2—‘-’——~ v=1,2,...)

mit Mittelpunkten w? (v = 1, 2,...) und zwar so, daB jeder Punkt der
punktierten Kugelfliche einer beschrinkten Anzahl < p, < oo von

Kreisen
lw,w¥) <ok (»=1,2,...)

gehort. DaB eine Uberdeckung dieser Art stets moglich ist, folgt aus dem -
obigen Hilfssatz. Die Anzahl der benotigten Kreise ist endlich oder un-
endlich, je nachdem ¢ = 0 oder ¢ > 0 ist.

Wir betrachten jetzt die g(w)-Umgebung £2 eines beliebigen Punktes
w, auf W. Q ist ein zusammenhiingendes Flidchenstiick, das mit n < p
Blittern den Kreis [(w, w,) < o(w,) iiberdeckt, und dessen Rand mit
l(w, w,) = p(w,) zusammenfillt. Nun wird 2 durch w = f(z) umkehrbar
eindeutig auf einen Bereich der z-Ebene abgebildet, der von m < n ge-
trennten Randkurven begrenzt wird. Infolge einer bekannten Formel
der Topologie ist daher

Yo—1)=n4+m—252n—-2=52p—2, (28)

wobei die Summe iiber simtliche Ordnungszahlen ¢ — 1 der Windungs-

punkte von £ erstreckt werden soll.
Zu jedem iiber w¥ gelegenen Punkt w* bestimmen wir jetzt eine Um-

gebung U (w*) durch folgende Vorschrift:

Wir bestimmen die im Intervalle
1 1 1
. —— < *
2+8p=z9(w)31 Sp

gelegene Zahl ¢ (w*) fiir jedes w* 8o, daB kein Windungspunkt der g (w*)-
Umgebung von w* im Kreisringe
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(00" — 55 ) < 1w, w%) < (90007 + ) o

liegt. Da die Anzahl der Windungspunkte der g (w*)-Umgebung von w*
gemil (28) < 2p — 2 ist, so ist dies moglich. Wir definieren jetzt U (w*)
als die (9 (w*)e (w*) )-Umgebung von w*.

Wird nach dieser Vorschrift jedem iiber w*(» =1, 2,...) gelegenen
Punkt w* von W eine Umgebung U (w*) zugeordnet, so ergibt sich ein
System A von Umgebungen U (w*), welche die iiber a,, a,,. .., a, punk-
tierte Riemannsche Fliche W vollig iiberdecken. Durch die geschilderte
Konstruktion haben wir erreicht, daf

a) jeder Punkt w von W in héchstens p; Umgebungen von A4 enthalten

ist,
: . o (w*) :

b) der Radius von U (w*) zwischen 3 und g(w*) liegt,

¢) am Rande jeder Umgebung U (w*) von 4 lauter Punkte liegen,
e(w*)

8p
Vergrofern wir den Radius & (w*)p(w*) jeder Umgebung U (w*) des
e (w*)
8p
von Umgebungen U’(w*) mit denselben Mittelpunkten w* wie das

System 4 und Radien gleich (ﬁ‘(w*) + §1§) o(w*). U(w*) und U’ (w*)

haben offenbar dieselbe Blitteranzahl. Wir bemerken auflerdem, dafl

deren -Umgebungen schlichte Kreisflichen sind.

Systems 4 um den Betrag , erhalten wir ein neues System A’

d) kein Punkt von W in mehr als p, Umgebungen von 4’ enthalten
ist.

Wir betrachten nun die auf W gelegene Bildkurve C' des Kreises
|2]| =r< R. Nehmen wir der Einfachheit halber an, dal C durch
keinen Punkt a,, a,,. .., a, hindurchgeht, so werden endlich viele Um-
gebungen U,, U,,..., U, des Systems A von C geschnitten. Die Mittel-
punkte dieser Umgebungen bezeichnen wir mit w, (» =1,2,...,n),
ihre Radien mit g, (v = 1, 2,..., n). Das Gebiet, das in der z-Ebene der
Umgebung U, entspricht, bezeichnen wir mit @,. Mit ¢, bezeichnen wir
den in @, gelegenen Teil des Kreises | z | = r. Die zu den Mittelpunkten
w, (=1, 2,...,n) gehorenden Umgebungen von A’ bezeichnen wir mit
U!. Wir nehmen an, daB die Gebiete, welche in der z-Ebene den Um-
gebungen U, U},..., Ul entsprechen, alle auBerhalb des Kreises |z|=1
liegen. Wie man auf Grund von d) leicht bestitigt, trifft dies fiir alle
geniigend grofe r zu.
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8. Der erste Schritt nach diesen Vorbereitungen besteht in der Ab-
schitzung von
1+ /()
TG

(29)

wenn 2z ein Punkt auf @, ist. Da die GroBe (29) gegeniiber Drehungen
von K invariant ist, diirfen wir dabei annehmen, dafl w, nach w = 0
verlegt worden ist.

Wir betrachten zuerst den Fall B = oco. Sei w. ein am Rande von U,

gelegener Punkt, { der entsprechende Punkt der z-Ebene. Da die Q%U;L) -
Umgebung von w, gem#f c) Nr. 7 eine schlichte Kreisfliche ist, und die
Umkehrfunktion z(w) von w = f(2) in dieser Umgebung von w, die Kreis-
fliche | z| < 1 ausldfit, erhalten wir
1 | 2" (wy) | 8p
—= < . 30
EFOT T T " ow,) (30

Wir lassen nun F (z) die Potentialfunktion bezeichnen, die am Rande
von G, verschwindet und im Innern von @, iiberall harmonisch ist bis auf
den mehrfachen Stellen von f(z), wo

1

R EZLCT

noch harmonisch bleibt. Nach dem Prinzip des Maximums erhalten wir
aus (30)

1
IOgW <F,(2) —logo(w,) + log 8p
fiir jedes in G, gelegene z und hieraus

log —l_f%(%%—)—lw< F, (ret?) + 2logr + log 8p (31)
iiberall auf @, .

Wir betrachten jetzt den Fall B < oo. Indem z, ein beliebig gewéhlter
Punkt auf @, bedeutet, fithren wir eine lineare Transformation Z=L((z2)
aus, durch welche die Kreisfliche |z| < R auf |Z| < R abgebildet
wird, so daB z, in Z = 0 iibergeht. Dadurch geht die Umkehrfunktion
z(w) von w = f(z) iiber in Z(w). Sei nun w, ein am Rande von U, ge-
legener Punkt, ¢ der entsprechende Punkt in der z-Ebene und Z, = L({).
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Da die %%‘2 -Umgebung von w, eine schlichte Kreisfliche ist, und Z (w)

diese Kreisfliche auf ein Teilgebiet von | Z | < R abbildet, erhalten wir

8p R
e(w,)

| Z" (wg) | <

und, wenn F (z) dieselbe Bedeutung wie frither hat, folgt hieraus

log | Z' (f(z))| < F,(z) — log o(w,) + log 8p R . (32)
Nun ist
dzZ dz

Rz__Ile ~R2—|z]2

also
; _ R?
IZ (f(zv))I - lf/(zv)l(Rz__Tz) ‘

Setzen wir dies in (32) ein, erhalten wir die Ungleichung

e(w,) io 8p
log 7 re®) | (B — 7% < F,(rei?) 4 log = (33)

die iiberall auf @, giiltig ist.
Ist nun w ein Punkt in U,, so ist A(w) < 24(w,), also, da p(w) mit
wachsendem A(w) nicht abnimmt,

o(w) < 2A(w,)e” * (Tl M)~ BN < 6, p(w,)
wo ¢, = 2 Max. 2°'(¥ | Hiernach ist

o (f(rei®)) < cy0(w,) (34)

iiberall auf @,. Da w, nach w = 0 verlegt worden ist, erhalten wir ferner
fiir jedes auf @, gelegene rei®

1 1 < 1

= . 5
cos2g, = cos?p (w,) % (35)

1+ [f(re?®) |*=

cos?

T
2(1 4 &)

Beriicksichtigen wir die Ungleichungen (34) und (35), so erhalten wir
aus (31) bzw. (33) fiir jedes auf @, gelegene re®

322



T (14 | f(ret?) |?) o (f(rei®))
log 77 re®)] (36)

< F,(re®) 4+ 2logr + log 8pc,c, (R = o0)
bzw.

t (14 [ f(re®?) [?) o (f(re'?))

1 :
T e | (R — )
(37)
< F (ret?) + lo+g _§}2%*c} (R < o0) .

Bei der Ableitung von (36) und (37) haben wir vorausgesetzt, da3 der
Mittelpunkt w, durch eine Drehung von K nach w = 0 gebracht worden
ist. Aber die linke Seite von (36) und (37) ist invariant gegeniiber allen
Drehungen von K, und die gefundenen Abschitzungen bleiben somit
noch giiltig, wenn w, seine urspriingliche Lage einnimmt.

9. Infolge von a) Nr. 7 liegt jeder Punkt des Kreises |z | = r auf
hochstens p, Punktmengen ,. Lassen wir 0,r die Gesamtlinge der
Bogen von @, bezeichnen, so ist folglich

> 6,=2p,m . (38)

y=1
Wir nehmen nun an, dafl 6, =6, =...=0,. Wegen (38) mull dann
b, <z ,2p,+1=Zv=n. (39)

Wir betrachten jetzt die Funktion ¥ (z). Sie kann gemidf (28) als
Summe von hoéchstens 2p — 2 Greenschen Funktionen von @, dar-
gestellt werden. Durch Anwendung der Ungleichung (5) erhalten wir
folglich

1 ; 0,
"E}z’fF"(re ?)dp < (p — 1) = tang - . (40)
¢

Nun haben wir r so groB angenommen, daf die Gebiete G, alle auBerhalb
des Kreises | z | = 1 liegen. Infolge (6) ist daher

sz"l;gf F,(re®?) dp < (2p — 2)logr . (41)
Q
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Wir erhalten somit

S [Reendp— L3 [+ L 3
rev? == +

2” v=1 , g & 2‘75 v=1 27 v=2§1+1 e

14 v Qv

n

6
<4p(p—1logr+ (p—1)=x Y tang—>.
v=2p; +1 4

Auf Grund (39) und (38) ist

é tangﬁ‘is i b, < P7
y=2p;+1 4 T 1 2V2 = V2

Wir erhalten folglich

= X [ Be) dp<ap(p—1logr+ B
y=1

14

Falls R = oo ist, erhalten wir nun aus (36)

1 (Lt I fre) 9 o (flrei®)
5o f o8 Fre™) | de

“ (14 | fren) [ o ((Flre) |
J o Frem |

<—-—-— th e"’)dq:—}—(2logr+log8polcz)fd<p$

y=1

also wegen (42) und (38)

2w

L (rop (L 176 [9 0 (flre)
Za) 8T (e i

(43)

- 1 2
< (4pp, — 2p,) log r + p, (log 8pc,c, + (p ﬁ) d )

fiir alle gentigend grofle r .
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Fall R < co ist, erhalten wir aus (37)

1 (14 | fre®) |9 o(f(re?))
“‘f log ——7iGan (@ —r) ¢

13 (i (LS ) e (firein)
o 2 [

<

+
fF (rei®)dg -+ log 8pclczfd ‘

also wegen (42) und (38)

1 n
<o X

L[ (L4 [ fre®) |2) o (f(rei®)
EF] f log 7re?) | dg
(44)

— 1)
<log(B—7)+ (4pp,—4pi-+1) log R+p, (logwp;gcz +(p ﬁ)“ ) + log 2

fiir alle geniigend grofle » < R.

10. Setzen wir den Ausdruck (15) fiir p ein, erhalten wir anderer-
seits

1 (L 1) 9 o (flre)
108 F7ire®) | &

2m

27
1 .y 1 |
= —%—flog | f'(re®) | do + 2m(r, f) + 5 | log 2 (f(re')) do
0 0

— 52 [P (= log A(s(re)) dp
Nun ist
o [[1og 1506 |1 dp = N1, 47) = N0, 1) + 0,
m('r,f) = T(T>f) — N(’i‘,f) ’

y=1

e g
%J log A (f(re))dp = — 3 m(r;a,)+ O(1) .
0
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Fiir alle geniigend groBe ¢ ist @'(t) = 0,P"(t) <0 wund daher

o [@(~log A(f(re))) do

0

<@ (= 5 [log 2 (fre) dp) + 001 (45)
0

—o ()_: mir; a,) + 0(1)) + 0(1)

<®(qT(r)+0(1)+00)=2(qT(r)) + 0(1) .

Zusammenfassend erhalten wir

de >

1 (Lt e ) o(flre))
2n0f log [ (reo) |

N(r,f) — N(r,—fl—,\) — 2N(r,f) — Ei:lm(r; a,)+ 2T (r)
—@(qT(r))—0(Q),

was zusammen mit (43) und (44) die zu beweisenden Ungleichungen (16)
und (17) zur Folge hat.

11. Eine geringfiigige Anderung des Beweises 148t erkennen, daB
Satz 2 noch richtig bleibt, wenn f(2) eine im Kreise | z | < B < oo endlich-
vieldeutige, bis auf algebraische Singularitdten iiberall in |z | < R ana-
lytisch fortsetzbare Funktion ist, und W die tber der w-Kugel aus-
gebreitete Riemannsche Fliache bedeutet, worauf die iiber | z | < R aus-
gebreitete endlichvielblidttrige Riemannsche Fldche von f(z) vermittels
w = f(z) umkehrbar eindeutig und konform abgebildet wird. Dasselbe
gilt bei Satz 3, nur miissen wir hier voraussetzen, daBl die durch (15)
definierte p(w)-Umgebung jedes auf W gelegenen Punktes w (# a,,
@y,...,a,) nicht nur eine beschrinkte Anzahl < p < co von Blittern,
sondern auch eine beschrinkte Anzahl < p’ < co von Windungspunkten
hat.

(Eingegangen den 1. November 1945.)
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