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Eine Ungleichung der Potentialtheorie
und ihre Anwendung in der Théorie der
meromorphen Funktionen

Von Henrik L. Selberg, Gjôvik (Norwegen)

Sei G ein einfach zusammenhangendes Gebiet der z-Ebene, g(z) eine

zu G gehôrende Greensche Funktion und L ein geradliniger Querschnitt
von G. Dann ist

$^dz\ (1)

wo c eine feste, numerische Konstante bedeutet. Die Richtigkeit dieser

Ungleichung kann auf Grund des Koebeschen Verzerrungssatzes leicht
nachgewiesen werden.

Die Ungleichung (1) kommt in einer Arbeit von Teichmilller1) vor, wo
sie zur Aufstellung einer Umkehrung des zweiten Hauptsatzes der Wert-
verteilungslehre benutzt wird. In derselben Arbeit beweist Teichmilller
auch eine Verschârfung der Collingwoodachen Abschàtzung von m(r;a)

Der einfache Zusammenhang von G bedeutet eine erhebliche Ein-
schrânkung der Anwendbarkeit der von Teichmilller benutzten Méthode.
Wir werden in der vorliegenden Arbeit zeigen, dafi dièse Einschrânkung
beseitigt werden kann. In § 1 schatzen wir das Intégral

g(reiip)d<p

ab, wenn Q aus den Bogen besteht, welche der Kreis | z | r gemeinsam
mit G hat. G darf dabei ein beliebiges, einfach oder mehrfach zusammenhangendes

Gebiet sein. In § 2 wenden wir das Résultat auf die von
Teichmilller betrachteten Problème an.

1. Wenn G ein Gebiet der z-Ebene ist, so bezeichnen wir im Folgenden
mit g(z;G,z0) die Greensche Funktion von die in z0 ihren Aufpunkt
hat, und mit h(z ; G, z0) die zu g(z ; G, z0) konjugierte Potentialfunktion.
Besteht die Begrenzung von G aus endlich vielen analytischen Kurven-
bogen, so ist g{z\G, z0) eindeutig durch folgende Eigenschaften be-

stimmt:

*) O. Teichmuller, Eine Umkehrung des zweiten Hauptsatzes der Wertver-
teilungslehre, Deutsche Mathematik, Bd. 2, 1937.
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Im Innern von G ist g(z ; G, z0) eindeutig und uberall harmonisch mit
AusschluB des Punktes z0, wo

1
g(z;G,z0) — log

Z — Zn

noch harmonisch bleibt. Am Rande von G ist g(z ; z0) stetig und gleich
Null.

Sei nun Q eine offene Punktmenge auf dem Kreise \z\ r Der Ein-
fachheit halber nehmen wir an, daB Q aus endlich vielen Bogen besteht,
von denen keine zwei aneinander grenzen. Die Gesamtlange der Bogen Q

setzen wir gleich Or. Mit Q bezeichnen wir die Komplementârmenge von
Q auf | z | r und mit D das Gebiet der z-Vollebene, dessen Rand mit Q
zusammenfâllt.

Setzen wir fur | z | ^ r

— J (C-z) - —

wobei £ samtliche Bogen von Q in positiver Richtung durchlaufen soll,
so ist 0 < û)(z) < 1 fur \z\ < r Auf Q ist co(z) 1 und in allen inneren
Punkten von Q ist œ (z) 0 OfiEenbar ist

co

2

(te**) ^ ± J d arg (re^ - Je") - ~ (t<r)

und folglich, wenn — die radiale Ableitung auf \z\ r bedeutet,

uberall auf Q.

Wir nehmen jetzt an, daB der Aufpunkt z0 von g(z; D,z0) in |z| < r
liegt. Mit Hilfe der Greewschen Transformationsformel erhalten wir dann

wo d« das Linienelement bedeutet, also

J dr J dr
Q Q
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Um das Intégral an der rechten Seite auszuwerten, setzen wir co(z)
durch Spiegelung iiber den Bogen Q fort und erhalten dadurch eine in D
eindeutige, zwischen 0 und 2 gelegene, harmonische Funktion. Wenn z

einem inneren Punkt von Q zustrebt, so ist der Grenzwert von w (z) Null
oder 2, je nachdem die Annàherung innerhalb oder auBerhalb des Kreises

\z\ — r erfolgt. Da ^ somit das harmonische MaB der âuBeren Ufer

des Randes Q in bezug auf D ist, erhalten wir2)

nco(z0) — dh(z;D,zQ) — -~~ds
J J or
Q Q

Wird dies in (3) eingesetzt, bekommt man

und hieraus wegen (2)

(rei<p; D, z0) d<p g n% tang - (4)

Q

Man ùberzeugt sich leicht, daB dièse Ungleichung auch richtig bleibt,
wenn | zQ | ^ r ist.

2. Sei jetzt G ein einfach oder mehrfach zusammenhangendes Gebiet
der z-Vollebene, und sei Q die Punktmenge, welche der Kreis \ z\ r
gemeinsam mit dem Innern von G hat. Der Einfachheit halber nehmen
wir an, daB der Rand von G aus endlich vielen analytischen Kurven-
bogen besteht, so daB Q in endlich viele offene Intervalle zerfâllt. Wie
oben bezeichnen wir mit Q die Komplementârmenge von Q auf | z | r
und mit D das Gebiet, dessen Rand mit Q zusammenfâllt. Da G entweder
mit D identisch ist oder ein Teilgebiet von D ist, erhalten wir

g(z]G,z0) <g{z)D,zQ)
und somit wegen (4)

Satz 1. Sei G ein schlichtes Gebiet der z-Vollebene, z0 ein innerer Punkt
von G und g{z;G,zQ) die zu G gehorende Greemche Funktion, die in z0

ihren Aufpunkt hat. Sei ferner Q die Punktmenge, welche der Kreis |z|=r
gemeinsam mit dem Innern von G hat und Or die Gesamtlange der Bogen

von Q. Dann ist „ n

J g{re**; G, z0) d<p ^ n% tang — (5)

Q

*) M. Nevanlinna, Eindeutige analytische Funktioneti, S. 28—33.
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Mitunter kann eine andere Abschâtzung zu einem besseren Ergebnis
fûhren.

Wir nehmen an, da8 z 0 weder innerer Punkt noch Randpunkt von
G ist, und lassen r0 den kleinsten Abstand von z 0 zum Rande von G

bedeuten. Im Innern von G gilt dann (50z0 | z0 |2)

g(z;G,zQ) g log

Nun ist

und folglich
h - z0)

2
r0

dcp ^

zz

'"
In

0

4 r

(6)

§2.
3. Wir betrachten im folgenden eine Funktion f(z), die im Kreise

| z | < R ^ oo meromorph ist. Mit W bezeichnen wir die liber der w-Kugel
ausgebreitete Riemannsche Flâche, worauf die Kreisflâche | z \ < R ver-
mittels w f(z) umkehrbar eindeutig und konform abgebildet wird. Wie
tiblich denken wir uns, daB die t^-Kugel durch eine stereographische
Projektion der w-Ebene auf eine Kugelflâehe K erhalten ist, welche die
w;-Ebene in w 0 berûhrt. Den Durchmesser von K wâhlen wir gleich 1.

Mit l(wr, w") bezeichnen wir den Abstand zweier Punkte wr und w" der
w-Kugel gemessen mit der Metrik von K lângs dem kûrzesten GroB-
kreisbogen, der w! und wn verbindet, und mit k (wr, wn) den chordalen
Abstand zwischen wf und w".

Wir erinnern zunàchst an einige Grundbegriffe der Nevanlinnaschen
Wertverteilungstheorie 3).

Wir bezeichnen mit n(r ; a) die Anzahl der a-Stellen von/(z) im Kreise
| z | ^ r unter Berucksichtigung ihrer Multiplizitàt und setzen

dN(r; a) _ n(r ; a)
dr ~ r

mit den Anfangsbedingungen

lim (m(r; a) + N(r; a) 0

8) Nâheres hierzu bei M. Nevanlinna, Eindeutige analytische Funktionen.
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Um MiBverstândnisse zu vermeiden, benutzen wir fur m(r; oo) und
N(r; oo) gelegentlich auch die Schreibweise m(r,f) und N(r,f)

Setzen wir
T(r) m(r;a) + N{r\a)

so hàngt T(r) nicht von a ab. In der Hauptsache ist dies der Inhalt des

sogenannten ersten Hauptsatzes der Wertverteilungslehre.

Àus k(w, oo) (1 + | w |2) folgt, wenn \w\ ^ 1, k(w, oo) ^
— und, wenn \w\ ^ 1 ist, k(w, oo) ^ —- also

m(r ;oo) ^ -i-JloJ | /(re^) | rf^ + log ]/2
o

und hieraus, wenn ê eine beliebige positive Zahl ist,

(r ;oo) ^ ^-J log | */(re*") | dç> + log ± + log \/2 (7)m(

4. Wir gehen jetzt zur Anwendung der Ungleichung (5) ùber und
beginnen mit dem Beweis von4)

Satz 2. Liegen die Randpunkte von W aile aufierhalb eines Kreises

l(w,a) < g und zerfallt W ilber diesem Kreise in lauter Flachenstucke
mit beschrânhten Blattzahlen f£ p < oo so ist

m(r;a) 0(logr)+0(l) (8)

Beweis. Der Einfachheit halber nehmen wir an, daB a oo
1 < R ^ oo Wir betrachten die Flachenstucke, worin W uber dem

Kreise l(w, oo) < — zerfallt. Diejenige unter ihjien, welche von der Bild-

kurve des Kreises \z\ r geschnitten werden, bezeichnen wir mit U1,

U2,..., Un Die entsprechenden Gebiete in der z-Ebene bezeichnen
wir mit G1} G2,..., Gn. Auf dem Rande jedes Gebietes 0v ist

\f(z)\ =±- cotg± (9)

4) E. F. Collingwood, Sur les valeurs exceptionnelles des fonctions entières
d'ordre fini, C. R. 179; O. Teichmuller, loc. cit.; H. L. Selberg, Ûber einen Satz von
Collingwood, Archiv for Math, og Naturv. B. 47, 1944, Nr. 9.
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Im Innern von Gv ist/(z) meromorph mit hôchsten p Polen; auBerdem
ist/(z) nullstellenfrei in Gv. Folglich kann log | &f(z) | in jedem Gebiete
Ov als Summe von hôchstens p Oreen&chen Funktionen von Ov dargestellt
werden. Bezeichnet Qv die Bogen, welche der Kreis | z | r gemeinsam
mit Ov hat, und 0vr die Gesamtlànge der Bogen von Qv, so erhalten wir
gemâfi Satz 1

f log | #f(re**) | dtp ^ prcatang^-

Nehmen wir an, dafi dx ^ 02 ^ ^ 6n, so wird 6y ^ jr, y 2, 3,..., n,
n

und Z6v<2n. Folglich ist

n

log | &f(rè*) | ê<p < Vrt 2 tang %-g

Nun liegt Ol9 sobald r grôBer als ein gewisses rx<R ist, vôllig im Innern
des Klreisringes 1 < | z \ < R GemàB (6) ist daher

f log I ïïfirév) | d<p ^ 2np log r (r > rx) (11)
&

Aus (7) erhalten wir jetzt

m(r ; oo) ^ J- S j iog | #/(re*>) | d^ + log -*- + log V2

Q,,

und hieraus wegen (9), (10) und (11)

m(r ; oo) ^ p log r + -|^~ + log cotg -|- + log V2 (r>rx)

womit die Richtigkeit von Satz 2 dargetan ist.

6. Lassen wir aXi a2,...,aQ q voneinander verschiedene Werte be-
zeichnen, und setzen wir

S m(r; av) + N (r, j^ - N(r,f) + 2N(r,f) 2T(r) + 8{r), (12)

so genûgt 8(r) nachstehenden Ungleichungen :
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1. Im Falle R =00
S(r)<0(logT(r)) (13)

auBer moglicherweise fur eine Intervallfolge in r von endlicher Gesamt-
lange.

2. Im Falle R < 00

S(r) < ^g-^-r + 0 (log T(r)) + 0(1) (14)

mit môglicher Ausnahme einer Intervallfolge in r, auf welcher die Variation

von log-p beschrankt ist.

R. Nevanlinna bezeichnet diesen Satz als zweiten Hauptsatz seiner
Théorie der meromorphen Funktionen.

Wir werden im folgenden zeigen, da6 der zweite Hauptsatz durch eine
Abschâtzung von S(r) nach unten ergânzt werden kann, wenn die Rie-
mannsche Flache W gewissen einfachen Bedingungen hinsichtlich der
Lage ihrer Rand-und Windungspunkte genugt5). Um dièse Bedingungen
einfach formulieren zu konnen, fuhren wir auf W einen geeigneten Um-
gebungsbegrifï ein. Wir definieren die ^-Umgebung eines Punktes w0 auf
W als die Gesamtheit aller Punkte w von W, die von w0 aus lângs Wegen
zu erreichen sind, die vollig im Innern des Kreises l(w, w0) < q liegen.
Den Punkt w0 bezeichnen wir als Mittelpunkt, q als Radius der Umge-
bung.

Es gilt nun folgende Umkehrung des zweiten Hauptsatzes:
2

Satz 3. Es sei &(t) stetig und ^ log (1 + e) > 0 fur t ^ log — Die
2 n

Ableitung <I>r{t) sei stetig und à 0 fur t ^ log— und fur aile genilgend
71

grofle t seiferner &"(t) ^ 0 Es sei W so beschaffen, da/S die nachstehenden

Bedingungen erfûllt sind:

A) Eventuelle Randpunkte von W liegen aile ûber at, a2i..., aq (#^0).
B) Bezeichnet X(w) den Meinsten Abstand l(w,av) (v 1, 2,..., q),

falls q > 0, und —, falls q 0, so hat die durch

Q(w) X(w)e (15)

6) Vgl. L. Ahlfors, Zut Théorie der Ûberlagerungsflachen, Acta Math. Bd. 65,
1935, S. 184; O. Teichmuller, loc. cit., H.L. Selberg, Ûber den zweiten Hauptsatz der
Wertverteilungslehre, Arehiv for Math, og Naturv. B. 47, 1944, Nr. 10
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definierte Q(w)-Umgebung jedes aufW gelegenenPunktes w (=^=a1,a2,... ,aq)
eine beschrânkte Blatteranzahl ^ p < oo

Dann genûgt die durch (12) definierte Grôfie S(r) nachstehenden Un-
gleichungen :

1. Falls R =00
8(r) > -0 (qT(r) - O(log r) (16)

2. Falls R<oo
log-^-:v - 0(qT(r)) - 0(1) (17)

6. Wir beweisen zunàchst den

Hilfssatz. Set 0 < y (t) ^ ^— < 1 fur 0 < t^ t0 ^ -~ und y> (t) stetig

fur O^t<^to. Ferner sei

wenn gleichzeitig t-> 0 und > 1. Es ist dann môglich, die punktierte
t

Kreisflache 0<l(w, 0) ti to der w-Kugél durch ein System von Kreisen

l(w,ocv)<ô(ocv)=±l(ocv,O)y>(l(ocv,0)) v= 1,2,..., (19)

wo l(ocv, 0)^t0, vollstândig zu ûberdecken, und zwar so, da/i folgende
Bedingung erfûllt ist:

Es gibt eine endliche Zahl h so, daft das durch Verdoppelung der Radien
ô(ocv) erhaltene Kreissystem

l(w,ocv)<2ô(ocv), v 1,2,..., (20)

keinen Punkt der w-Kugel mehr als h-mal liberdeckt.
Beweis. Indem [x] wie iiblich die grôBte ganze Zahl ^ x bedeutet,

setzen wir
tn tn_1 —\tn^1ip(tn^1) (n 1, 2,...) (21)

j- i \n u, i,z,... \ll)

Auf jedem Kreis l(w, 0) tn verteilen wir nun die an — on_x Punkte

"on-i +1 > *W-i+2>--><Xon so> daB sie ein regnlâres (crn- cr^-Eck bilden.
Wir behaupten, dafi die Kreissysteme (19) und (20) mit dieser Wahl der

Mittelpunkte ocv die verlangten Eigenschaften besitzen.
Wir bemerken zunâehst, da8 die Lange der Kreisperipherie l(w, 0)=£n
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gleich 7rsin2£n, wàhrend die Anzahl der auf diesem Kreise gelegenen
Mittelpunkte <xv gleich

ist. Die Kreise l(w, av) < ô(ocv), v an^x + 1, an, ûberdecken daher
den Kreisring tntil(w,O) ti.tn+i vollstândig. Wegen lim tn 0 folgt

hieraus, daB das Kreissystem (19) den punktierten Kreis 0 < l(w, 0) ^ £0

liickenlos uberdeckt.
Fur das weitere unterscheiden wir zwei Fâlle, je nachdem limtp(t)=0

oder lim^(£) > 0 ist. Im ersten Falle erhalten wir gemâÛ (21)

und folglich gemâlî (18)

also

Nun ist

Um -*g>*±± Hm ^y(/#^ 1 (23)
_^oc 0{<Xan) n->oo *W VlU

also

und somit wegen (23)

fur aile hinreichend groBe n. Hiernach kann eine Kreisflâehe

l(w, otv) < 2 «(«„), an_x <v^an (24)

keinen Punkt gemeinsam mit einer Kreisflâehe

l(w,<xv)< 2ô(ocv) v > an+8

haben, sobald n ^ n0 ist. Daraus schlieBt man weiter, daB eine Kreisflâehe

(24) keinen Punkt gemeinsam mit

1(W, (Xv) < 2Ô((XV) V ^ (Tn_9

haben kann, sobald »^% ist. AuBerdem ist kein Punkt der w-Kugel in
mehr als 17 der an — an_x Kreise (24) enthalten, wenn n ^ n2 ist. Hier-
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nach ist kein Punkt des Kreises l(w, 0)^tn in mehr als 289 172

Kreisen (20) enthalten, sobald n ^ Max. (n0, nl9 n2) ist, womit die Rich-
tigkeit unserer Behauptung nachgewiesen ist, wenn lim ip(t) 0 ist.

Wir nehmen jetzt an, daB

lim ip(t) y > 0

Wir bestimmen n3 so, daB

fur aile t ^ tn^ zutrifft, und erhalten wegen (21)

/ y\K+i < K l —g-1 (^ â ^a)

also / v\kU<Ul-i (n^n3, 4^1) (25)

und hieraus

tn ~ tn+k > tn 1 - 1 - ¦£} (n^nz, k^l) (26)

Wegen (19) folgt ferner

also wegen (25)

ô(ccan+k) < l±JL (i _ Zytn (n ^ «,, fc ^ 1)

Werden die zwei letzten Ungleichungen mit (26) zusammengehalten, so
sieht man, da8

2ô(«Gn) + 2ô(ocan+k)<tn ~ tn+k

sobald n ^ ns, k ^ k0 ist. Die Kreise

l(w, *v) < 2ô(ocv) an^ < v ^ an (27)
und

l (w, ocv) < 2 ô (ocv) <7n+*,-i < v >

haben deshalb keinen Punkt gemeinsam, wenn n ^ n3 ist. Daraus folgt
weiter, daB eine Kreisflàehe (27) keinen Punkt gemeinsam mit

l(w,ocv)<2ô(ocv) v^an_kû
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hat, sobald n ^ n4 ist. Nun gibt es eine von n unabhângige Zahl H, so
da8 kein Punkt der w-Kugel in mehr als H der an — <jn_1-Kreise (27)
enthalten ist. Bedeutet % das Max. (?i3, n4), so ist folglich kein Punkt
des Kreises l(w, 0) ^ tns in mehr als (2fc0 — l)H der Kreise (20)
enthalten. Die Richtigkeit unserer Behauptung ist hiermit vollstândig be-
wiesen.

7. Wir kommen jetzt zum Beweis von Satz 3. Ohne Einschrânkung
der Allgemeinheit nehmen wir dabei an, daB R > 1.

Indem q(w) die in (15) gegebene Bedeutung hat, ûberdecken wir die
in ax, a2,..., aq punktierte w-Kugel K mit Kreisen

mit Mittelpunkten w* (v 1, 2,...) und zwar so, daB jeder Punkt der

punktierten Kugelflâche einer beschrânkten Anzahl g px < oo von
Kxeisen

l(wfw*)<Q(w*) (v= 1,2,...)

gehôrt. DaB eine Ûberdeckung dieser Art stets môglich ist, folgt aus dem

obigen Hilfssatz. Die Anzahl der benôtigten Kreise ist endlich oder un-
endlich, je nachdem q 0 oder q > 0 ist.

Wir betrachten jetzt die q (w)-Umgebung Q eines beliebigen Punktes

w0 auf W. Q ist ein zusammenhângendes Flâchenstuck, das mit n^ p
Blâttern den Kreis l(w, w0) < q(w0) ûberdeckt, und dessen Rand mit
l(w, w0) q(w0) zusammenfâllt. Nun wird Q durch w f(z) umkehrbar
eindeutig auf einen Bereich der z-Ebene abgebildet, der von m g n ge-
trennten Randkurven begrenzt wird. Infolge einer bekannten Formel
der Topologie ist daher

%(o -l) n + m~-2^2n- 2^2p- 2 (28)

wobei die Summe ûber sàmtliche Ordnungszahlen a — 1 der Windungs-
punkte von Q erstreckt werden soll.

Zu jedem tiber w* gelegenen Punkt w* bestimmen wir jetzt eine Um-
gebung U(w*) durch folgende Vorschrift :

Wir bestimmen die im Intervalle

2 ' Sp^ v ' " Sp

gelegene Zahl ê(w*) fur jedes w* so, daB kein Windungspunkt der q(w*)~

Umgebung von w* im Kreisringe
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liegt. Da die Anzahl der Windungspunkte der @(w*)-Umgebung von w*
gemàB (28) ^ 2p — 2 ist, so ist dies môglich. Wir definieren jetzt U(w*)
als die (&(w*)q(w*) )-Umgebung von w*.

Wird nach dieser Vorschrift jedem uber w*(v 1, 2,...) gelegenen
Punkt w?* von W eine Umgebung ?7(w*) zugeordnet, so ergibt sich ein
System A von Umgebungen U(w*), welche die liber al9 a2f..., aQ punk-
tierte Riemannsche Flâche W vôllig Iiberdecken. Durch die geschilderte
Konstruktion haben wir erreicht, daB

a) jeder Punkt w von W in hôchstens pt Umgebungen von A enthalten
ist,

b) der Radius von U(w*) zwischen -—-—- und q(w*) liegt,

c) am Rande jeder Umgebung U(w*) von A lauter Punkte liegen,
o [tv}deren ^-—^-Umgebungen sehlichte Kreisflâchen sind.

Vergrôfiern wir den Radius &(w*)q(w*) jeder Umgebung U(w*) des

fi (lJJ^\
Systems A um den Betrag ——- erhalten wir ein neues System A!

von Umgebungen Ur{w*) mit denselben Mittelpunkten w* wie das

System A und Radien gleieh l&(w*) + — q(w*) f7(w*) und Uf{w*)

haben offenbar dieselbe Blâtteranzahl. Wir bemerken auBerdem, daB

d) kein Punkt von W in mehr als px Umgebungen von A' enthalten
ist.

Wir betrachten nun die auf W gelegene Bildkurve C des Kreises
| z | r < R Nehmen wir der Einfachheit halber an, daB C durch
keinen Punkt at, a2,..., aq hindurchgeht, so werden endlich viele
Umgebungen U1, U2,. Un des Systems A von C geschnitten. Die Mittel-
punkte dieser Umgebungen bezeichnen wir mit wv (v 1, 2,..., n),
ihre Radien mit qv (v 1, 2,..., n). Das Gebiet, das in der z-Ebene der

Umgebung Uv entspricht, bezeichnen wir mit Gv. Mit Qv bezeichnen wir
den in Ov gelegenen Teil des Kreises \z\ r. Die zu den Mittelpunkten
wv (v 1, 2,..., n) gehôrenden Umgebungen von A1 bezeichnen wir mit
Urv. Wir nehmen an, daB die Gebiete, welche in der z-Ebene den
Umgebungen Uf19 U'2,..., U'n entsprechen, aile auBerhalb des Kreises |z| l
liegen. Wie man auf Grand von d) leicht bestàtigt, trifft dies fur aile

genûgend grofie r zu.
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8. Der erste Schritt nach diesen Vorbereitungen besteht in der Ab-
schâtzung von

i+j/WP, {29)

wenn z ein Punkt auf Qv ist. Da die Grôtëe (29) gegeniiber Drehungen
von K invariant ist, durfen wir dabei annehmen, dafi wv nach w 0

verlegt worden ist.
Wir betrachten zuerst den Fall R — oo. Sei w~ ein am Rande von Uv

gelegener Punkt, £ der entsprechende Punkt der z-Ebene. Da die ^ -

Umgebung von w^ gemâB c) Nr. 7 eine schlichte Kreisflache ist, und die
Umkehrfunktion z(w) von w f(z) in dieser Umgebung von w^ die Kreisflache

| z | <£ 1 auslâBt, erhalten wir

kliM^ (30)|C2TOl ~ Kl2 e(«g
"

Wir lassen nun Fv(z) die Potentialfunktion bezeichnen, die am Rande
von Gv verschwindet und im Innern von 0v uberall harmonisch ist bis auf
den mehrfachen Stellen von f(z), wo

noch harmonisch bleibt. Nach dem Prinzip des Maximums erhalten wir
aus (30)

log gy^g) |
< Fv{z) - log q(wv) + log Sp

fur jedes in Ov gelegene z und hieraus

log lfÔ,l%l)l< Fv{ré") + 21ogr + log 8p (31)

ûberall auf Qv

Wir betrachten jetzt den Fall R < oo. Indem zv ein beliebig gewâhlter
Punkt auf Qv bedeutet, fûhren wir eine lineare Transformation Z=L(z)
aus, durch welche die Kreisflaehe \ z\ < R auf \ Z \ < R abgebildet
wird, so dafi zv in Z 0 iibergeht. Dadurch geht die Umkehrfunktion
z(w) von w =f(z) ûber in Z(w). Sei nun w^ ein am Rande von Uv
gelegener Punkt, C der entsprechende Punkt in der z-Ebene und Z^
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Da die - v -Umgebung von w^ eine schlichte Kreisflâche ist, und Z (w)

dièse Kreisflâche auf ein Teilgebiet von \Z \ < R abbildet, erhalten wir

und, wenn Fv(z) dieselbe Bedeutung wie frûher hat, folgt hieraus

log | Z! (f(zv) | < Fv(zv) - log q{wv) + log SpR (32)
Nun ist

dZ dz
R2 — \Z |2 R2— | z\2

also
I f7 / / /• / \ \ I Jtt/

.- u^/i- |/'(z,)|(iî«-r«) •

Setzen wir dies in (32) ein, erhalten wir die Ungleichung

-X' (33)

die ùberall auf Qv gultig ist.
Ist nun w ein Punkt in Uv, so ist X(w) ^ 2X(wv), also, da q(w) mit

wachsendem À(w) nicht abnimmt,

q(w) ^ 2AK)e-0(-logX(M;v)- »o«2)g Cl q(wv)

wo cx 2 Max. 2*'(t) Hiernach ist

Q(f(ré*))^clQ(wv) (34)

iiberall auf Qv. Da wv nach w 0 verlegt worden ist, erhalten wir ferner
fur jedes auf Qv gelegene rei(p

1 + \f(re**) |2 <: ^— < *
x ^ î

c2 (35)^ IM n ~ cos2^, - cos2e (wv) - n
C°S

2(1 + e)

Berûcksiehtigen wir die Ungleichungen (34) und (35), so erhalten wir
aus (31) bzw. (33) fur jedes auf Qv gelegene rei<p
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+ (l + l/t"*)!') g (/<"*))
°g |/'(«*)! (36)

< F„ {rê*) + 2 log r + log 8p cx c2 (/? oo)

bzw.
+
ë \f'{rét*)\{Rt-r*)

(37)

+ log ~pCj£* (R < oo)

Bei der Ableitung von (36) und (37) haben wir vorausgesetzt, daB der
Mittelpunkt wv durch eine Drehung von K nach w 0 gebracht worden
ist. Aber die linke Seite von (36) und (37) ist invariant gegenûber allen
Drehungen von K, und die gefundenen Abschâtzungen bleiben somit
noch gûltig, wenn wv seine ursprûngliche Lage einnimmt.

9, Infolge von a) Nr. 7 liegt jeder Punkt des Kreises | z \ r auf
hôchstens pt Punktmengen Qv. Lassen wir dvr die Gesamtlange der
Bogen von Qv bezeichnen, so ist folglich

£ 6v^2Pln (38)

Wir nehmen nun an, daB 6t ^ 02 ^... ^ Bn Wegen (38) muB dann

Bv<n 2p1 + l^v^n (39)

Wir betrachten jetzt die Funktion Fv(z). Sie kann gemàB (28) als

Summe von hôchstens 2p — 2 (rreenschen Funktionen von Ov dar-
gestellt werden. Durch Anwendung der Ungleichung (5) erhalten wir
folglich

^f ^(p-l)Tt tang -^ (40)

Nun haben wir r so groB angenommen, daB die Grebiete Ov aile auBerhalb
des Kxeises | z \ 1 liegen. Infolge (6) ist daher

— f **¦ dq> â (2j> - 2) log r (41)
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Wir erhalten somit

v-l

1 2pi C 1 n P~2 +~ 2 I^ r=lj Z:7r v=2Pl + l J

^*Pi(p— l)logr

Auf Grund (39) und (38) ist

Wir erhalten folglich

^^ f dcp <L 4Pl(p - 1) log r + ^"-^ *'
• (42)

Falls R =cx5 ist, erhalten wir nun aus (36)

2n

2^J g
0

P

(l + |/(re«')|«)e(/(r

i n r* +

1 » I /»
< -5— 2 I I Fv(retq>) d<p + (2 log r + log 8p Ci c2)

also wegen (42) und (38)

2ir
(1 + \f(rei<p) |2) ^ (f{

(43)

?1 — 2Pl) l0ë r + Pi I l0§ 8PC1C2 + ,- I

fur aile geniigend groBe r.
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Fall B < oo ist, erhalten wir aus (37)

|/'(«*')
dq>

(J?2 -r2)

J Fv(re«)dv + log

also wegen (42) und (38)

27T

dcp

(44)

< log(iZ-r) + (42,^-4^+1) log R+Pl

fur aile genûgend groBe r < R.

10. Setzen wir den Ausdruek (15) fur g ein, erhalten wir anderer-
seits

27T

2m(r, (/(re<*) d^

Nun ist

'(re«*) | dcp ^(r,^-)

m(r,f)=T(r,f)-N(r,f)

flog - 2 m(r; av)+ 0(1)
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Fur aile genûgend groBe t ist &'(t) ^ 0, &"(t) ^0 und daher

27T

0

27T

(45)

< *(îï»(r) + 0(1)) + 0(1) 0(qT(r)) + 0(1)

Zusammenfassend erhalten wir

log
0

N(r,f) -Nlr^)- 2N(r,f) - ^m(r; av) + 2T(r)

-0(qT(r))-O(l)
was zusammen mit (43) und (44) die zu beweisenden Ungleichungen (16)
und (17) zur Folge hat.

11. Eine geringfugige Ànderung des Beweises lâBt erkennen, daB
Satz 2 noch richtig bleibt, wenn/(2) eine im Kreise | z \ < R ^ oo endlich-
vieldeutige, bis auf algebraische Singularitâten uberall in | z \ < R ana-
lytisch fortsetzbare Funktion ist, und W die uber der t^-Kugel aus-
gebreitete Riemannsche Flâche bedeutet, worauf die liber \z\ < R aus-
gebreitete endlichvielblàttrige Riemannsche Flâche von f(z) vermittels
w f(z) umkehrbar eindeutig und konform abgebildet wird. Dasselbe

gilt bei Satz 3, nur mûssen wir hier voraussetzen, daB die durch (15)
definierte q(w)-Umgebung jedes auf W gelegenen Punktes w (^ al9
&2,- • -, «a) nicht nur eine beschrânkte Anzahl ^ p < oo von Blàttern,
sondern auch eine beschrânkte Anzahl ^ pf < oo von Windungspunkten
hat.

(Eingegangen den 1. November 1945.)
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