Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 18 (1945-1946)

Artikel: Eine Ungleichung der Potentialtheorie und ihre Anwendung in der

Theorie der meromorphen Funktionen.

Autor: Selberg, Henrik L.

DOI: https://doi.org/10.5169/seals-16908

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eine Ungleichung der Potentialtheorie und ihre Anwendung in der Theorie der meromorphen Funktionen

Von Henrik L. Selberg, Gjövik (Norwegen)

Sei G ein einfach zusammenhängendes Gebiet der z-Ebene, g(z) eine zu G gehörende Greensche Funktion und L ein geradliniger Querschnitt von G. Dann ist

$$\int_{L} g(z) \mid dz \mid \leq c \int_{L} \mid dz \mid , \qquad (1)$$

wo c eine feste, numerische Konstante bedeutet. Die Richtigkeit dieser Ungleichung kann auf Grund des Koebeschen Verzerrungssatzes leicht nachgewiesen werden.

Die Ungleichung (1) kommt in einer Arbeit von $Teichmüller^1$) vor, wo sie zur Aufstellung einer Umkehrung des zweiten Hauptsatzes der Wertverteilungslehre benutzt wird. In derselben Arbeit beweist Teichmüller auch eine Verschärfung der Collingwoodschen Abschätzung von m(r; a).

Der einfache Zusammenhang von G bedeutet eine erhebliche Einschränkung der Anwendbarkeit der von Teichmüller benutzten Methode. Wir werden in der vorliegenden Arbeit zeigen, daß diese Einschränkung beseitigt werden kann. In § 1 schätzen wir das Integral

$$\int_{Q}g(re^{i\varphi})d\varphi$$

ab, wenn Q aus den Bogen besteht, welche der Kreis |z| = r gemeinsam mit G hat. G darf dabei ein beliebiges, einfach oder mehrfach zusammenhängendes Gebiet sein. In § 2 wenden wir das Resultat auf die von Teichmüller betrachteten Probleme an.

§ 1.

1. Wenn G ein Gebiet der z-Ebene ist, so bezeichnen wir im Folgenden mit $g(z; G, z_0)$ die Greensche Funktion von G, die in z_0 ihren Aufpunkt hat, und mit $h(z; G, z_0)$ die zu $g(z; G, z_0)$ konjugierte Potentialfunktion. Besteht die Begrenzung von G aus endlich vielen analytischen Kurvenbogen, so ist $g(z; G, z_0)$ eindeutig durch folgende Eigenschaften bestimmt:

¹⁾ O. Teichmüller, Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungslehre, Deutsche Mathematik, Bd. 2, 1937.

Im Innern von G ist $g(z; G, z_0)$ eindeutig und überall harmonisch mit Ausschluß des Punktes z_0 , wo

$$g(z; G, z_0) - \log \frac{1}{|z - z_0|}$$

noch harmonisch bleibt. Am Rande von G ist $g(z; G, z_0)$ stetig und gleich Null.

Sei nun Q eine offene Punktmenge auf dem Kreise |z|=r. Der Einfachheit halber nehmen wir an, daß Q aus endlich vielen Bogen besteht, von denen keine zwei aneinander grenzen. Die Gesamtlänge der Bogen Q setzen wir gleich θr . Mit \overline{Q} bezeichnen wir die Komplementärmenge von Q auf |z|=r und mit D das Gebiet der z-Vollebene, dessen Rand mit \overline{Q} zusammenfällt.

Setzen wir für $|z| \leq r$

$$\omega(z) = \frac{1}{\pi} \int_{0}^{z} d \arg (\zeta - z) - \frac{\theta}{2\pi}$$
,

wobei ζ sämtliche Bogen von Q in positiver Richtung durchlaufen soll, so ist $0 < \omega(z) < 1$ für |z| < r. Auf Q ist $\omega(z) = 1$ und in allen inneren Punkten von \overline{Q} ist $\omega(z) = 0$. Offenbar ist

$$\omega(te^{i\varphi}) \leq \frac{1}{\pi} \int_{\vartheta=\varphi-rac{ heta}{2}}^{\vartheta=\varphi+rac{ heta}{2}} d \operatorname{arg} (re^{i\vartheta} - te^{i\varphi}) - rac{ heta}{2\pi} \quad (t < r)$$

und folglich, wenn $\frac{\partial}{\partial r}$ die radiale Ableitung auf |z|=r bedeutet,

$$\frac{\partial \, \omega}{\partial r} \ge \frac{1}{\pi r} \cot g \, \frac{\theta}{4} \tag{2}$$

überall auf Q.

Wir nehmen jetzt an, daß der Aufpunkt z_0 von $g(z; D, z_0)$ in |z| < r liegt. Mit Hilfe der *Green*schen Transformationsformel erhalten wir dann

$$\int_{|z|=r} \left(g \frac{\partial \omega}{\partial r} - \omega \frac{\partial g}{\partial r} \right) ds = 2 \pi \omega(z_0) ,$$

wo ds das Linienelement bedeutet, also

$$\int_{Q} g \frac{\partial \omega}{\partial r} ds = \int_{Q} \frac{\partial g}{\partial r} ds + 2\pi \omega(z_0) . \tag{3}$$

Um das Integral an der rechten Seite auszuwerten, setzen wir $\omega(z)$ durch Spiegelung über den Bogen Q fort und erhalten dadurch eine in D eindeutige, zwischen 0 und 2 gelegene, harmonische Funktion. Wenn z einem inneren Punkt von \overline{Q} zustrebt, so ist der Grenzwert von $\omega(z)$ Null oder 2, je nachdem die Annäherung innerhalb oder außerhalb des Kreises |z| = r erfolgt. Da $\frac{\omega(z)}{2}$ somit das harmonische Maß der äußeren Ufer des Randes \overline{Q} in bezug auf D ist, erhalten wir²)

$$\pi\,\omega\left(z_{0}
ight) = -\int\limits_{0}^{s}dh\left(z\,;\,D\,,\,z_{0}
ight) = -\int\limits_{0}^{s}rac{\partial\,g}{\partial\,r}\,ds \;\;.$$

Wird dies in (3) eingesetzt, bekommt man

$$\int\limits_{Q}g\,\frac{\partial\omega}{\partial r}\,ds=\pi\,\omega(z_{0})$$

und hieraus wegen (2)

$$\int_{\Omega} g(re^{i\varphi}; D, z_0) d\varphi \leq \pi^2 \tan \frac{\theta}{4} . \tag{4}$$

Man überzeugt sich leicht, daß diese Ungleichung auch richtig bleibt, wenn $|z_0| \ge r$ ist.

2. Sei jetzt G ein einfach oder mehrfach zusammenhängendes Gebiet der z-Vollebene, und sei Q die Punktmenge, welche der Kreis |z|=r gemeinsam mit dem Innern von G hat. Der Einfachheit halber nehmen wir an, daß der Rand von G aus endlich vielen analytischen Kurvenbogen besteht, so daß Q in endlich viele offene Intervalle zerfällt. Wie oben bezeichnen wir mit \overline{Q} die Komplementärmenge von Q auf |z|=r und mit D das Gebiet, dessen Rand mit \overline{Q} zusammenfällt. Da G entweder mit D identisch ist oder ein Teilgebiet von D ist, erhalten wir

$$g(z; G, z_0) \leq g(z; D, z_0)$$

und somit wegen (4)

Satz 1. Sei G ein schlichtes Gebiet der z-Vollebene, z_0 ein innerer Punkt von G und $g(z; G, z_0)$ die zu G gehörende Greensche Funktion, die in z_0 ihren Aufpunkt hat. Sei ferner Q die Punktmenge, welche der Kreis |z|=r gemeinsam mit dem Innern von G hat und θr die Gesamtlänge der Bogen von Q. Dann ist

$$\int_{Q} g(re^{i\varphi}; G, z_0) d\varphi \leq \pi^2 \tan \frac{\theta}{4} . \tag{5}$$

²⁾ R. Nevanlinna, Eindeutige analytische Funktionen, S. 28-33.

Mitunter kann eine andere Abschätzung zu einem besseren Ergebnis führen.

Wir nehmen an, daß z=0 weder innerer Punkt noch Randpunkt von G ist, und lassen r_0 den kleinsten Abstand von z=0 zum Rande von G bedeuten. Im Innern von G gilt dann $(\overline{z}_0 z_0 = |z_0|^2)$

$$g(z; G, z_0) \leq \log \left| \frac{r_0^2 - z \overline{z}_0}{r_0(z - z_0)} \right|.$$

Nun ist

 $\int_{0}^{2\pi} \log \left| \frac{r_0^2 - re^{i\varphi}\overline{z}_0}{r_0(re^{i\varphi} - z_0)} \right| d\varphi \leq 2\pi \log \frac{r}{r_0}$ $\int_{0}^{\pi} g(re^{i\varphi}; G, z_0) d\varphi \leq 2\pi \log \frac{r}{r_0}. \tag{6}$

und folglich

§ 2.

3. Wir betrachten im folgenden eine Funktion f(z), die im Kreise $|z| < R \le \infty$ meromorph ist. Mit W bezeichnen wir die über der w-Kugel ausgebreitete Riemannsche Fläche, worauf die Kreisfläche |z| < R vermittels w = f(z) umkehrbar eindeutig und konform abgebildet wird. Wie üblich denken wir uns, daß die w-Kugel durch eine stereographische Projektion der w-Ebene auf eine Kugelfläche K erhalten ist, welche die w-Ebene in w = 0 berührt. Den Durchmesser von K wählen wir gleich 1. Mit l(w', w'') bezeichnen wir den Abstand zweier Punkte w' und w'' der w-Kugel gemessen mit der Metrik von K längs dem kürzesten Großkreisbogen, der w' und w'' verbindet, und mit k(w', w'') den chordalen Abstand zwischen w' und w''.

Wir erinnern zunächst an einige Grundbegriffe der Nevanlinnaschen Wertverteilungstheorie 3).

Wir bezeichnen mit n(r; a) die Anzahl der a-Stellen von f(z) im Kreise $|z| \le r$ unter Berücksichtigung ihrer Multiplizität und setzen

$$\frac{dN(r; a)}{dr} = \frac{n(r; a)}{r}$$

$$m(r; a) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \frac{1}{k(f(re^{i\varphi}), a)} d\varphi$$

mit den Anfangsbedingungen

$$\lim_{r\to 0} (m(r;a) + N(r;a)) = 0.$$

³⁾ Näheres hierzu bei R. Nevanlinna, Eindeutige analytische Funktionen.

Um Mißverständnisse zu vermeiden, benutzen wir für $m(r; \infty)$ und $N(r; \infty)$ gelegentlich auch die Schreibweise m(r, f) und N(r, f).

Setzen wir

$$T(r) = m(r; a) + N(r; a) ,$$

so hängt T(r) nicht von a ab. In der Hauptsache ist dies der Inhalt des sogenannten ersten Hauptsatzes der Wertverteilungslehre.

Aus $k(w, \infty) = (1 + |w|^2)^{-\frac{1}{2}}$ folgt, wenn $|w| \ge 1$, $k(w, \infty) \ge \frac{1}{\sqrt{2}|w|}$ und, wenn $|w| \le 1$ ist, $k(w, \infty) \ge \frac{1}{\sqrt{2}}$, also

$$m(r;\infty) \leq \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\varphi})| d\varphi + \log \sqrt{2}$$

und hieraus, wenn & eine beliebige positive Zahl ist,

$$m(r;\infty) \leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |\vartheta f(re^{i\varphi})| d\varphi + \log^{+} \frac{1}{\vartheta} + \log \sqrt{2}.$$
 (7)

4. Wir gehen jetzt zur Anwendung der Ungleichung (5) über und beginnen mit dem Beweis von 4)

Satz 2. Liegen die Randpunkte von W alle außerhalb eines Kreises $l(w,a) < \varrho$, und zerfällt W über diesem Kreise in lauter Flächenstücke mit beschränkten Blattzahlen $\leq p < \infty$, so ist

$$m(r; a) = O(\log r) + O(1)$$
 (8)

Beweis. Der Einfachheit halber nehmen wir an, daß $a=\infty$, $1 < R \le \infty$. Wir betrachten die Flächenstücke, worin W über dem Kreise $l(w,\infty) < \frac{\varrho}{2}$ zerfällt. Diejenige unter ihnen, welche von der Bildkurve des Kreises |z|=r geschnitten werden, bezeichnen wir mit U_1 , U_2,\ldots,U_n . Die entsprechenden Gebiete in der z-Ebene bezeichnen wir mit G_1,G_2,\ldots,G_n . Auf dem Rande jedes Gebietes G_{ν} ist

$$|f(z)| = \frac{1}{\vartheta} = \cot \frac{\varrho}{2}$$
 (9)

⁴⁾ E. F. Collingwood, Sur les valeurs exceptionnelles des fonctions entières d'ordre fini, C. R. 179; O. Teichmüller, loc. cit.; H. L. Selberg, Über einen Satz von Collingwood, Archiv for Math. og Naturv. B. 47, 1944, Nr. 9.

Im Innern von G_{ν} ist f(z) meromorph mit höchsten p Polen; außerdem ist f(z) nullstellenfrei in G_{ν} . Folglich kann $\log |\vartheta f(z)|$ in jedem Gebiete G_{ν} als Summe von höchstens p Greenschen Funktionen von G_{ν} dargestellt werden. Bezeichnet Q_{ν} die Bogen, welche der Kreis |z|=r gemeinsam mit G_{ν} hat, und $\theta_{\nu}r$ die Gesamtlänge der Bogen von Q_{ν} , so erhalten wir gemäß Satz 1

$$\int\limits_{Q_{\nu}} \log \mid \vartheta f(re^{i\varphi}) \mid d\varphi \leq p\pi^2 \tan \frac{\theta_{\nu}}{4} \ .$$

Nehmen wir an, daß $\theta_1 \ge \theta_2 \ge \ldots \ge \theta_n$, so wird $\theta_{\nu} \le \pi$, $\nu = 2, 3, \ldots, n$, und $\sum_{\nu=2}^{n} \theta_{\nu} < 2\pi$. Folglich ist

$$\sum_{\nu=2}^{n} \int_{Q_{\nu}} \log |\vartheta f(re^{i\varphi})| \vartheta \varphi \leq p\pi^{2} \sum_{\nu=2}^{n} \tan \frac{\theta_{\nu}}{4} \leq \frac{p\pi^{2}}{2\sqrt{2}} \sum_{\nu=2}^{n} \theta_{\nu} < \frac{p\pi^{3}}{\sqrt{2}}. \quad (10)$$

Nun liegt G_1 , sobald r größer als ein gewisses $r_1 < R$ ist, völlig im Innern des Kreisringes 1 < |z| < R. Gemäß (6) ist daher

$$\int_{q_1} \log |\vartheta f(re^{i\varphi})| d\varphi \leq 2\pi p \log r \quad (r > r_1) . \tag{11}$$

Aus (7) erhalten wir jetzt

$$m(r; \infty) \leq \frac{1}{2\pi} \sum_{\nu=1}^{n} \int_{Q_{\nu}} \log |\vartheta f(re^{i\varphi})| d\varphi + \log^{+} \frac{1}{\vartheta} + \log \sqrt{2}$$

und hieraus wegen (9), (10) und (11)

$$m(r; \infty) \leq p \log r + \frac{p\pi^2}{2\sqrt{2}} + \log \cot \frac{\varrho}{2} + \log \sqrt{2} \quad (r > r_1)$$
,

womit die Richtigkeit von Satz 2 dargetan ist.

5. Lassen wir a_1, a_2, \ldots, a_q voneinander verschiedene Werte bezeichnen, und setzen wir

$$\sum_{\nu=1}^{q} m(r; a_{\nu}) + N\left(r, \frac{1}{f'}\right) - N(r, f') + 2N(r, f) = 2T(r) + S(r), \quad (12)$$

so genügt S(r) nachstehenden Ungleichungen:

1. Im Falle $R = \infty$

$$S(r) < O\left(\log T(r)\right) \tag{13}$$

außer möglicherweise für eine Intervallfolge in r von endlicher Gesamtlänge.

2. Im Falle $R < \infty$

$$S(r) < \log \frac{1}{R - r} + O(\log T(r)) + O(1)$$
 (14)

mit möglicher Ausnahme einer Intervallfolge in r, auf welcher die Variation von $\log \frac{1}{R-r}$ beschränkt ist.

R. Nevanlinna bezeichnet diesen Satz als zweiten Hauptsatz seiner Theorie der meromorphen Funktionen.

Wir werden im folgenden zeigen, daß der zweite Hauptsatz durch eine Abschätzung von S(r) nach unten ergänzt werden kann, wenn die Riemannsche Fläche W gewissen einfachen Bedingungen hinsichtlich der Lage ihrer Rand- und Windungspunkte genügt⁵). Um diese Bedingungen einfach formulieren zu können, führen wir auf W einen geeigneten Umgebungsbegriff ein. Wir definieren die ϱ -Umgebung eines Punktes w_0 auf W als die Gesamtheit aller Punkte w von W, die von w_0 aus längs Wegen zu erreichen sind, die völlig im Innern des Kreises $l(w, w_0) < \varrho$ liegen. Den Punkt w_0 bezeichnen wir als Mittelpunkt, ϱ als Radius der Umgebung.

Es gilt nun folgende Umkehrung des zweiten Hauptsatzes:

Satz 3. Es sei $\Phi(t)$ stetig und $\geq \log(1+\varepsilon) > 0$ für $t \geq \log\frac{2}{\pi}$. Die Ableitung $\Phi'(t)$ sei stetig und ≥ 0 für $t \geq \log\frac{2}{\pi}$, und für alle genügend große t sei ferner $\Phi''(t) \leq 0$. Es sei W so beschaffen, daß die nachstehenden Bedingungen erfüllt sind:

- A) Eventuelle Randpunkte von W liegen alle über $a_1, a_2, \ldots, a_q \ (q \ge 0)$.
- B) Bezeichnet $\lambda(w)$ den kleinsten Abstand $l(w, a_{\nu})$ ($\nu = 1, 2, \ldots, q$), falls q > 0, und $\frac{\pi}{2}$, falls q = 0, so hat die durch

$$\varrho(w) = \lambda(w) e^{-\varphi(-\log \lambda(w))}$$
 (15)

⁵) Vgl. L. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. Bd. 65, 1935, S. 184; O. Teichmüller, loc. cit.; H. L. Selberg, Über den zweiten Hauptsatz der Wertverteilungslehre, Archiv for Math. og Naturv. B. 47, 1944, Nr. 10.

definierte $\varrho(w)$ -Umgebung jedes auf W gelegenen Punktes $w \ (\neq a_1, a_2, \ldots, a_q)$ eine beschränkte Blätteranzahl $\leq p < \infty$.

Dann genügt die durch (12) definierte Größe S(r) nachstehenden Ungleichungen:

1. Falls $R = \infty$

$$S(r) > -\Phi(qT(r)) - O(\log r) \tag{16}$$

2. Falls $R < \infty$

$$S(r) > \log \frac{1}{R-r} - \Phi(q T(r)) - O(1)$$
 (17)

6. Wir beweisen zunächst den

Hilfssatz. Sei $0 < \psi(t) \le \frac{1}{1+\varepsilon} < 1$ für $0 < t \le t_0 \le \frac{\pi}{4}$ und $\psi(t)$ stetig für $0 \le t \le t_0$. Ferner sei

$$\lim \frac{\psi(\tau)}{\psi(t)} = 1 , \qquad (18)$$

wenn gleichzeitig $t \to 0$ und $\frac{\tau}{t} \to 1$. Es ist dann möglich, die punktierte Kreisfläche $0 < l(w, 0) \le t_0$ der w-Kugel durch ein System von Kreisen

$$l(w, \alpha_{\nu}) < \delta(\alpha_{\nu}) = \frac{1}{2} l(\alpha_{\nu}, 0) \psi(l(\alpha_{\nu}, 0)), \quad \nu = 1, 2, \dots,$$
 (19)

wo $l(\alpha_{\nu}, 0) \leq t_0$, vollständig zu überdecken, und zwar so, daß folgende Bedingung erfüllt ist:

Es gibt eine endliche Zahl h so, da β das durch Verdoppelung der Radien $\delta(\alpha_v)$ erhaltene Kreissystem

$$l(w, \alpha_{\nu}) < 2\delta(\alpha_{\nu}), \qquad \nu = 1, 2, \ldots, \tag{20}$$

keinen Punkt der w-Kugel mehr als h-mal überdeckt.

Beweis. Indem [x] wie üblich die größte ganze Zahl $\leq x$ bedeutet, setzen wir

$$t_n = t_{n-1} - \frac{1}{4} t_{n-1} \psi(t_{n-1}) \qquad (n = 1, 2, ...)$$
 (21)

$$\sigma_{-1} = 0$$
, $\sigma_n = \sigma_{n-1} + \left[\frac{2\pi \sin 2t_n}{t_n \psi(t_n)} \right] + 1$ $(n = 0, 1, 2, ...)$. (22)

Auf jedem Kreis $l(w, 0) = t_n$ verteilen wir nun die $\sigma_n - \sigma_{n-1}$ Punkte $\alpha_{\sigma_{n-1}+1}, \alpha_{\sigma_{n-1}+2}, \ldots, \alpha_{\sigma_n}$ so, daß sie ein reguläres $(\sigma_n - \sigma_{n-1})$ -Eck bilden. Wir behaupten, daß die Kreissysteme (19) und (20) mit dieser Wahl der Mittelpunkte α_v die verlangten Eigenschaften besitzen.

Wir bemerken zunächst, daß die Länge der Kreisperipherie $l(w, 0)=t_n$

gleich $\pi \sin 2t_n$, während die Anzahl der auf diesem Kreise gelegenen Mittelpunkte α_{ν} gleich

$$\sigma_n - \sigma_{n-1} = \left[\frac{2\pi \sin 2t_n}{t_n \psi(t_n)}\right] + 1$$

ist. Die Kreise $l(w, \alpha_{\nu}) < \delta(\alpha_{\nu}), \nu = \sigma_{n-1} + 1, \ldots, \sigma_n$, überdecken daher den Kreisring $t_n \leq l(w, 0) \leq t_{n+1}$ vollständig. Wegen $\lim_{n \to \infty} t_n = 0$ folgt

hieraus, daß das Kreissystem (19) den punktierten Kreis $0 < l(w, 0) \le t_0$ lückenlos überdeckt.

Für das weitere unterscheiden wir zwei Fälle, je nachdem $\lim_{t\to 0} \psi(t) = 0$ oder $\lim_{t\to 0} \psi(t) > 0$ ist. Im ersten Falle erhalten wir gemäß (21)

$$\lim_{n\to\infty}\frac{t_{n+1}}{t_n}=1$$

und folglich gemäß (18)

$$\lim_{n\to\infty}\frac{\psi(t_{n+1})}{\psi(t_n)}=1$$

also

$$\lim_{n\to\infty} \frac{\delta(\alpha_{\sigma_{n+1}})}{\delta(\alpha_{\sigma_n})} = \lim_{n\to\infty} \frac{t_{n+1} \psi(t_{n+1})}{t_n \psi(t_n)} = 1 . \tag{23}$$

Nun ist

$$t_n - t_{n+1} = \frac{\delta(\alpha_{\sigma_n})}{2}$$

also

$$t_n - t_{n+9} = \frac{1}{2} \sum_{j=0}^{8} \delta(\alpha_{\sigma_{n+j}})$$

und somit wegen (23)

$$t_n - t_{n+9} > 2 \, \delta(\alpha_{\sigma_n}) + 2 \, \delta(\alpha_{\sigma_{n+9}})$$

für alle hinreichend große n. Hiernach kann eine Kreisfläche

$$l(w, \alpha_{\nu}) < 2\delta(\alpha_{\nu}), \, \sigma_{n-1} < \nu \le \sigma_n \quad , \tag{24}$$

keinen Punkt gemeinsam mit einer Kreisfläche

$$l(w,\alpha_{\nu}) < 2\delta(\alpha_{\nu})$$
 , $\nu > \sigma_{n+8}$,

haben, sobald $n \ge n_0$ ist. Daraus schließt man weiter, daß eine Kreisfläche (24) keinen Punkt gemeinsam mit

$$l(w, \alpha_{\nu}) < 2 \delta(\alpha_{\nu})$$
 , $\nu \leq \sigma_{n-\theta}$,

haben kann, sobald $n \ge n_1$ ist. Außerdem ist kein Punkt der w-Kugel in mehr als 17 der $\sigma_n - \sigma_{n-1}$ Kreise (24) enthalten, wenn $n \ge n_2$ ist. Hier-

nach ist kein Punkt des Kreises $l(w, 0) \le t_n$ in mehr als $289 = 17^2$ Kreisen (20) enthalten, sobald $n \ge \text{Max.}(n_0, n_1, n_2)$ ist, womit die Richtigkeit unserer Behauptung nachgewiesen ist, wenn $\lim \psi(t) = 0$ ist.

Wir nehmen jetzt an, daß

$$\lim_{t\to 0}\psi(t)=\gamma>0.$$

Wir bestimmen n_3 so, daß

$$\frac{\gamma}{2} < \psi(t) < \frac{1+\gamma}{2}$$

für alle $t \ge t_{n_s}$ zutrifft, und erhalten wegen (21)

$$t_{n+1} < t_n \left(1 - \frac{\gamma}{8} \right) \qquad (n \ge n_3)$$

also

$$t_{n+k} < t_n \left(1 - \frac{\gamma}{8}\right)^k \quad (n \ge n_3, \ k \ge 1)$$
 (25)

und hieraus

$$t_n - t_{n+k} > t_n \left(1 - \left(1 - \frac{\gamma}{8} \right)^k \right) \quad (n \ge n_3, k \ge 1) .$$
 (26)

Wegen (19) folgt ferner

$$\delta(\alpha_{\sigma_n}) < \frac{1+\gamma}{4} t_n \qquad (n \geq n_3)$$

also wegen (25)

$$\delta(\alpha_{\sigma_{n+k}}) < \frac{1+\gamma}{4} \left(1-\frac{\gamma}{8}\right)^k t_n \qquad (n \geq n_3, k \geq 1)$$
.

Werden die zwei letzten Ungleichungen mit (26) zusammengehalten, so sieht man, daß

$$2\,\delta(\alpha_{\sigma_n})\,+\,2\,\delta(\alpha_{\sigma_{n+k}}) < t_n\,-\,t_{n+k}\ ,$$

sobald $n \ge n_3$, $k \ge k_0$ ist. Die Kreise

$$l(w, \alpha_{\nu}) < 2\delta(\alpha_{\nu})$$
, $\sigma_{n-1} < \nu \le \sigma_n$, (27)

und

$$l\left(w,\,\alpha_{\,\nu}\right) < 2\,\delta\left(\alpha_{\,\nu}\right) \;, \qquad \sigma_{n+k_0-1} < \nu \;, \label{eq:continuous_signal}$$

haben deshalb keinen Punkt gemeinsam, wenn $n \ge n_3$ ist. Daraus folgt weiter, daß eine Kreisfläche (27) keinen Punkt gemeinsam mit

$$l(w, \alpha_{\nu}) < 2 \, \delta(\alpha_{\nu})$$
 , $\nu \leq \sigma_{n-k_{\bullet}}$,

hat, sobald $n \ge n_4$ ist. Nun gibt es eine von n unabhängige Zahl H, so daß kein Punkt der w-Kugel in mehr als H der $\sigma_n - \sigma_{n-1}$ -Kreise (27) enthalten ist. Bedeutet n_5 das Max. (n_3, n_4) , so ist folglich kein Punkt des Kreises $l(w, 0) \le t_{n_5}$ in mehr als $(2k_0 - 1)H$ der Kreise (20) enthalten. Die Richtigkeit unserer Behauptung ist hiermit vollständig bewiesen.

7. Wir kommen jetzt zum Beweis von Satz 3. Ohne Einschränkung der Allgemeinheit nehmen wir dabei an, daß R > 1.

Indem $\varrho(w)$ die in (15) gegebene Bedeutung hat, überdecken wir die in a_1, a_2, \ldots, a_q punktierte w-Kugel K mit Kreisen

$$l(w, w_{\nu}^{*}) < \frac{\varrho(w_{\nu}^{*})}{2}$$
 $(\nu = 1, 2, \ldots)$

mit Mittelpunkten w_{ν}^* ($\nu=1,2,\ldots$) und zwar so, daß jeder Punkt der punktierten Kugelfläche einer beschränkten Anzahl $\leq p_1 < \infty$ von Kreisen

$$l(w, w_{\nu}^{*}) < \varrho(w_{\nu}^{*}) \qquad (\nu = 1, 2, ...)$$

gehört. Daß eine Überdeckung dieser Art stets möglich ist, folgt aus dem obigen Hilfssatz. Die Anzahl der benötigten Kreise ist endlich oder unendlich, je nachdem q = 0 oder q > 0 ist.

Wir betrachten jetzt die $\varrho(w)$ -Umgebung Ω eines beliebigen Punktes w_0 auf W. Ω ist ein zusammenhängendes Flächenstück, das mit $n \leq p$ Blättern den Kreis $l(w, w_0) < \varrho(w_0)$ überdeckt, und dessen Rand mit $l(w, w_0) = \varrho(w_0)$ zusammenfällt. Nun wird Ω durch w = f(z) umkehrbar eindeutig auf einen Bereich der z-Ebene abgebildet, der von $m \leq n$ getrennten Randkurven begrenzt wird. Infolge einer bekannten Formel der Topologie ist daher

$$\sum (\sigma - 1) = n + m - 2 \le 2n - 2 \le 2p - 2 , \qquad (28)$$

wobei die Summe über sämtliche Ordnungszahlen $\sigma-1$ der Windungspunkte von Ω erstreckt werden soll.

Zu jedem über w_{ν}^* gelegenen Punkt w^* bestimmen wir jetzt eine Umgebung $U(w^*)$ durch folgende Vorschrift:

Wir bestimmen die im Intervalle

$$\frac{1}{2} + \frac{1}{8p} \leq \vartheta(w^*) \leq 1 - \frac{1}{8p}$$

gelegene Zahl $\vartheta(w^*)$ für jedes w^* so, daß kein Windungspunkt der $\varrho(w^*)$ -Umgebung von w^* im Kreisringe

$$\left(\vartheta(w^*) - \frac{1}{8p}\right)\varrho(w^*) < l(w, w^*) < \left(\vartheta(w^*) + \frac{1}{8p}\right)\varrho(w^*)$$

liegt. Da die Anzahl der Windungspunkte der $\varrho(w^*)$ -Umgebung von w^* gemäß (28) $\leq 2p-2$ ist, so ist dies möglich. Wir definieren jetzt $U(w^*)$ als die $(\vartheta(w^*)\varrho(w^*))$ -Umgebung von w^* .

Wird nach dieser Vorschrift jedem über $w_{\nu}^{*}(\nu=1,2,...)$ gelegenen Punkt w^{*} von W eine Umgebung $U(w^{*})$ zugeordnet, so ergibt sich ein System A von Umgebungen $U(w^{*})$, welche die über $a_{1}, a_{2},...,a_{q}$ punktierte Riemannsche Fläche W völlig überdecken. Durch die geschilderte Konstruktion haben wir erreicht, daß

- a) jeder Punkt w von W in höchstens p_1 Umgebungen von A enthalten ist,
 - b) der Radius von $U(w^*)$ zwischen $\frac{\varrho(w^*)}{2}$ und $\varrho(w^*)$ liegt,
- c) am Rande jeder Umgebung $U(w^*)$ von A lauter Punkte liegen, deren $\frac{\varrho(w^*)}{8\,p}$ -Umgebungen schlichte Kreisflächen sind.

Vergrößern wir den Radius $\vartheta(w^*)\varrho(w^*)$ jeder Umgebung $U(w^*)$ des Systems A um den Betrag $\frac{\varrho(w^*)}{8p}$, erhalten wir ein neues System A' von Umgebungen $U'(w^*)$ mit denselben Mittelpunkten w^* wie das System A und Radien gleich $\left(\vartheta(w^*) + \frac{1}{8p}\right)\varrho(w^*)$. $U(w^*)$ und $U'(w^*)$ haben offenbar dieselbe Blätteranzahl. Wir bemerken außerdem, daß

d) kein Punkt von W in mehr als p_1 Umgebungen von A' enthalten ist.

Wir betrachten nun die auf W gelegene Bildkurve C des Kreises |z|=r < R. Nehmen wir der Einfachheit halber an, daß C durch keinen Punkt a_1, a_2, \ldots, a_q hindurchgeht, so werden endlich viele Umgebungen U_1, U_2, \ldots, U_n des Systems A von C geschnitten. Die Mittelpunkte dieser Umgebungen bezeichnen wir mit w_{ν} ($\nu=1,2,\ldots,n$), ihre Radien mit ϱ_{ν} ($\nu=1,2,\ldots,n$). Das Gebiet, das in der z-Ebene der Umgebung U_{ν} entspricht, bezeichnen wir mit G_{ν} . Mit G_{ν} bezeichnen wir den in G_{ν} gelegenen Teil des Kreises |z|=r. Die zu den Mittelpunkten W_{ν} ($\nu=1,2,\ldots,n$) gehörenden Umgebungen von A' bezeichnen wir mit U'_{ν} . Wir nehmen an, daß die Gebiete, welche in der z-Ebene den Umgebungen U'_1, U'_2, \ldots, U'_n entsprechen, alle außerhalb des Kreises |z|=1 liegen. Wie man auf Grund von d) leicht bestätigt, trifft dies für alle genügend große r zu.

8. Der erste Schritt nach diesen Vorbereitungen besteht in der Abschätzung von

$$\frac{1+|f(z)|^2}{|f'(z)|},$$
 (29)

wenn z ein Punkt auf Q_{ν} ist. Da die Größe (29) gegenüber Drehungen von K invariant ist, dürfen wir dabei annehmen, daß w_{ν} nach w=0 verlegt worden ist.

Wir betrachten zuerst den Fall $R=\infty$. Sei w_{ζ} ein am Rande von U_{ν} gelegener Punkt, ζ der entsprechende Punkt der z-Ebene. Da die $\frac{\varrho(w_{\nu})}{8\,p}$ - Umgebung von w_{ζ} gemäß c) Nr. 7 eine schlichte Kreisfläche ist, und die Umkehrfunktion z(w) von w=f(z) in dieser Umgebung von w_{ζ} die Kreisfläche $|z| \leq 1$ ausläßt, erhalten wir

$$\frac{1}{|\zeta^2 f'(\zeta)|} = \frac{|z'(w_{\zeta})|}{|\zeta|^2} < \frac{8p}{\varrho(w_{\nu})}. \tag{30}$$

Wir lassen nun $F_{\nu}(z)$ die Potentialfunktion bezeichnen, die am Rande von G_{ν} verschwindet und im Innern von G_{ν} überall harmonisch ist bis auf den mehrfachen Stellen von f(z), wo

$$\log\frac{1}{\mid z^2f'(z)\mid}-F_{\nu}(z)$$

noch harmonisch bleibt. Nach dem Prinzip des Maximums erhalten wir aus (30)

$$\log \frac{1}{|z^2 f'(z)|} < F_{\nu}(z) - \log \varrho(w_{\nu}) + \log 8p$$

für jedes in G_{ν} gelegene z und hieraus

$$\log \frac{\varrho(w_{\nu})}{|f'(re^{i\varphi})|} < F_{\nu}(re^{i\varphi}) + 2\log r + \log 8p \tag{31}$$

überall auf Q_{ν} .

Wir betrachten jetzt den Fall $R < \infty$. Indem z_{ν} ein beliebig gewählter Punkt auf Q_{ν} bedeutet, führen wir eine lineare Transformation Z = L(z) aus, durch welche die Kreisfläche |z| < R auf |Z| < R abgebildet wird, so daß z_{ν} in Z = 0 übergeht. Dadurch geht die Umkehrfunktion z(w) von w = f(z) über in Z(w). Sei nun w_{ζ} ein am Rande von U_{ν} gelegener Punkt, ζ der entsprechende Punkt in der z-Ebene und $Z_{\zeta} = L(\zeta)$.

Da die $\frac{\varrho(w_{\nu})}{8p}$ -Umgebung von w_{ξ} eine schlichte Kreisfläche ist, und Z(w) diese Kreisfläche auf ein Teilgebiet von |Z| < R abbildet, erhalten wir

$$|Z'(w_{\zeta})| < \frac{8pR}{\varrho(w_{\nu})}$$

und, wenn $F_{\nu}(z)$ dieselbe Bedeutung wie früher hat, folgt hieraus

$$\log |Z'(f(z_{\nu}))| < F_{\nu}(z_{\nu}) - \log \varrho(w_{\nu}) + \log 8pR . \tag{32}$$

Nun ist

$$rac{dZ}{R^2 - |Z|^2} = rac{dz}{R^2 - |z|^2}$$

also

$$\mid Z'\left(f(z_{\scriptscriptstyle
u})\,
ight)\mid =rac{R^2}{\mid f'(z_{\scriptscriptstyle
u})\mid (R^2-r^2)} \;\; .$$

Setzen wir dies in (32) ein, erhalten wir die Ungleichung

$$\log \frac{\varrho(w_{\nu})}{|f'(re^{i\varphi})|(R^2-r^2)} < F_{\nu}(re^{i\varphi}) + \log \frac{8p}{R}, \tag{33}$$

die überall auf Q_{ν} gültig ist.

Ist nun w ein Punkt in U_{ν} , so ist $\lambda(w) \leq 2\lambda(w_{\nu})$, also, da $\varrho(w)$ mit wachsendem $\lambda(w)$ nicht abnimmt,

$$\varrho(w) \leq 2\lambda(w_{\nu})e^{-\Phi(-\log\lambda(w_{\nu})-\log 2)} \leq c_1 \varrho(w_{\nu}) ,$$

wo $c_1 = 2 \text{ Max. } 2^{\Phi'(t)}$. Hiernach ist

$$\varrho\left(f(re^{i\varphi})\right) \le c_1\varrho\left(w_{\nu}\right) \tag{34}$$

überall auf Q_{ν} . Da w_{ν} nach w=0 verlegt worden ist, erhalten wir ferner für jedes auf Q_{ν} gelegene $re^{i\varphi}$

$$1 + |f(re^{i\varphi})|^2 \le \frac{1}{\cos^2 \varrho_{\nu}} \le \frac{1}{\cos^2 \varrho (w_{\nu})} \le \frac{1}{\cos^2 \frac{\pi}{2(1+\varepsilon)}} = c_2.$$
 (35)

Berücksichtigen wir die Ungleichungen (34) und (35), so erhalten wir aus (31) bzw. (33) für jedes auf Q_{ν} gelegene $re^{i\varphi}$

$$\log \frac{\left(1+|f(re^{i\varphi})|^2\right)\varrho\left(f(re^{i\varphi})\right)}{|f'(re^{i\varphi})|} \tag{36}$$

$$\langle F_{\nu}(re^{i\varphi}) + 2\log r + \log 8p c_1 c_2 \quad (R = \infty)$$

bzw.

$$\log \frac{(1 + |f(re^{i\varphi})|^2) \varrho (f(re^{i\varphi}))}{|f'(re^{i\varphi})| (R^2 - r^2)}
< F_{\nu}(re^{i\varphi}) + \log \frac{8 p c_1 c_2}{R} \qquad (R < \infty) .$$
(37)

Bei der Ableitung von (36) und (37) haben wir vorausgesetzt, daß der Mittelpunkt w_{ν} durch eine Drehung von K nach w=0 gebracht worden ist. Aber die linke Seite von (36) und (37) ist invariant gegenüber allen Drehungen von K, und die gefundenen Abschätzungen bleiben somit noch gültig, wenn w_{ν} seine ursprüngliche Lage einnimmt.

9. Infolge von a) Nr. 7 liegt jeder Punkt des Kreises |z| = r auf höchstens p_1 Punktmengen Q_{ν} . Lassen wir $\theta_{\nu}r$ die Gesamtlänge der Bogen von Q_{ν} bezeichnen, so ist folglich

$$\sum_{\nu=1}^{n} \theta_{\nu} \le 2 \, p_1 \pi \ . \tag{38}$$

Wir nehmen nun an, daß $\theta_1 \ge \theta_2 \ge \ldots \ge \theta_n$. Wegen (38) muß dann

$$\theta_{\nu} < \pi \ , \ 2p_1 + 1 \le \nu \le n \ .$$
 (39)

Wir betrachten jetzt die Funktion $F_{\nu}(z)$. Sie kann gemäß (28) als Summe von höchstens 2p-2 Greenschen Funktionen von G_{ν} dargestellt werden. Durch Anwendung der Ungleichung (5) erhalten wir folglich

$$\frac{1}{2\pi} \int_{Q_{\nu}} F_{\nu}(re^{i\varphi}) d\varphi \leq (p-1) \pi \tan \frac{\theta_{\nu}}{4} . \tag{40}$$

Nun haben wir r so groß angenommen, daß die Gebiete G_{ν} alle außerhalb des Kreises |z|=1 liegen. Infolge (6) ist daher

$$\frac{1}{2\pi} \int_{Q_{\nu}} F_{\nu}(re^{i\varphi}) d\varphi \leq (2p-2) \log r . \tag{41}$$

Wir erhalten somit

$$\begin{split} &\frac{1}{2\pi} \sum_{\nu=1}^{n} \int_{Q_{\nu}}^{r} F_{\nu}(re^{i\varphi}) \ d\varphi = \frac{1}{2\pi} \sum_{\nu=1}^{2p_{1}} \int_{Q_{\nu}}^{r} + \frac{1}{2\pi} \sum_{\nu=2p_{1}+1}^{n} \int_{Q_{\nu}}^{r} \\ & \leq 4 p_{1}(p-1) \log r + (p-1) \pi \sum_{\nu=2p_{1}+1}^{n} \tan \frac{\theta_{\nu}}{4} \ . \end{split}$$

Auf Grund (39) und (38) ist

$$\sum_{\nu=2p_1+1}^n \ \tan\! \frac{\theta_{\nu}}{4} \leq \sum_{\nu=2p_1+1}^n \frac{\theta_{\nu}}{2 \, \sqrt{2}} \leq \frac{p_1 \, \pi}{\sqrt{2}} \ .$$

Wir erhalten folglich

$$\frac{1}{2\pi} \sum_{\nu=1}^{n} \int_{Q_{\nu}} F_{\nu}(re^{i\varphi}) d\varphi \leq 4 p_{1}(p-1) \log r + \frac{p_{1}(p-1) \pi^{2}}{\sqrt{2}}.$$
 (42)

Falls $R = \infty$ ist, erhalten wir nun aus (36)

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log \frac{(1 + |f(re^{i\varphi})|^{2}) \varrho (f(re^{i\varphi}))}{|f'(re^{i\varphi})|} d\varphi$$

$$\leq \frac{1}{2\pi} \sum_{\nu=1}^{n} \int_{Q_{\nu}} \log \frac{(1 + |f(re^{i\varphi})|^{2}) \varrho ((f(re^{i\varphi})))}{|f'(re^{i\varphi})|} d\varphi$$

$$< \frac{1}{2\pi} \sum_{\nu=1}^{n} \left\{ \int_{Q_{\nu}} F_{\nu}(re^{i\varphi}) d\varphi + (2 \log r + \log 8 p c_{1} c_{2}) \int_{Q_{\nu}} d\varphi \right\}$$

also wegen (42) und (38)

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log \frac{(1 + |f(re^{i\varphi})|^{2}) \varrho (f(re^{i\varphi}))}{|f'(re^{i\varphi})|} d\varphi$$

$$< (4pp_{1} - 2p_{1}) \log r + p_{1} \left(\log 8pc_{1}c_{2} + \frac{(p-1)\pi^{2}}{\sqrt{2}} \right)$$
(43)

für alle genügend große r.

Fall $R < \infty$ ist, erhalten wir aus (37)

$$\begin{split} &\frac{1}{2\pi} \int_{0}^{2\pi} \log \frac{(1+|f(re^{i\varphi})|^{2}) \ \varrho(f(re^{i\varphi}))}{|f'(re^{i\varphi})| \ (R^{2}-r^{2})} \ d\varphi \\ & \leq \frac{1}{2\pi} \sum_{\nu=1}^{n} \int_{Q_{\nu}}^{+} \log \frac{(1+|f(re^{i\varphi})|^{2}) \ \varrho(f(re^{i\varphi}))}{|f'(re^{i\varphi})| \ (R^{2}-r^{2})} \ d\varphi \\ & < \frac{1}{2\pi} \sum_{\nu=1}^{n} \left\{ \int_{Q_{\nu}}^{+} F_{\nu}(re^{i\varphi}) d\varphi + \log \frac{8 \ p \ c_{1} \ c_{2}}{R} \int_{Q_{\nu}}^{+} d\varphi \right\} \end{split}$$

also wegen (42) und (38)

$$\begin{split} &\frac{1}{2\pi} \int\limits_{0}^{2\pi} \log \frac{(1+|f(re^{i\varphi})|^2) \, \varrho\left(f(re^{i\varphi})\right)}{|f'(re^{i\varphi})|} \, d\varphi \\ &< \log \left(R-r\right) + (4\, p\, p_1 - 4\, p_1 + 1) \log \, R + p_1 \left(\log \frac{8\, p\, c_1\, c_2}{R} + \frac{(p-1)\pi^2}{\sqrt{2}}\right) + \log 2 \\ &\text{für alle genügend große } r < R\,. \end{split}$$

10. Setzen wir den Ausdruck (15) für ϱ ein, erhalten wir andererseits

$$\begin{split} &\frac{1}{2\pi}\int\limits_{0}^{2\pi}\log\frac{(1+|f(re^{i\varphi})|^2)\,\varrho\left(f(re^{i\varphi})\right)}{|f'(re^{i\varphi})|}\,d\varphi\\ &=-\frac{1}{2\pi}\int\limits_{0}^{2\pi}\log|f'(re^{i\varphi})|\,d\varphi+2m(r,f)+\frac{1}{2\pi}\int\limits_{0}^{2\pi}\log\,\lambda\left(f(re^{i\varphi})\right)\,d\varphi\\ &-\frac{1}{2\pi}\int\limits_{0}^{2\pi}\varPhi\left(-\log\lambda\left(f(re^{i\varphi})\right)\right)\,d\varphi \ . \end{split}$$

Nun ist

$$rac{1}{2\pi} \int_{0}^{2\pi} \log |f'(re^{i\varphi})| d\varphi = N\left(r, rac{1}{f'}
ight) - N(r, f') + O(1),$$
 $m(r, f) = T(r, f) - N(r, f),$
 $rac{1}{2\pi} \int_{0}^{2\pi} \log \lambda \left(f(re^{i\varphi})\right) d\varphi = -\sum_{\nu=1}^{q} m(r; a_{\nu}) + O(1).$

Für alle genügend große t ist $\Phi'(t) \ge 0$, $\Phi''(t) \le 0$ und daher

$$\frac{1}{2\pi} \int_{0}^{2\pi} \Phi\left(-\log \lambda\left(f(re^{i\varphi})\right)\right) d\varphi$$

$$<\Phi\left(-\frac{1}{2\pi} \int_{0}^{2\pi} \log \lambda\left(f(re^{i\varphi})\right) d\varphi\right) + O(1)$$

$$=\Phi\left(\sum_{\nu=1}^{q} m(r; a_{\nu}) + O(1)\right) + O(1)$$

$$<\Phi\left(qT(r) + O(1)\right) + O(1) = \Phi\left(qT(r)\right) + O(1).$$
(45)

Zusammenfassend erhalten wir

$$egin{split} rac{1}{2\pi} \int\limits_0^{2\pi} \log rac{(1+|f(re^{iarphi})|^2)\; arrho\, (f(re^{iarphi}))}{|f'(re^{iarphi})|} \, darphi > \ N(r,f') - N\left(r,rac{1}{f'}
ight) - 2N(r,f) - \sum_{
u=1}^q m(r\,;a_
u) + 2\, T(r) \ &- arPhi(q\,T(r)) - O(1) \;\;, \end{split}$$

was zusammen mit (43) und (44) die zu beweisenden Ungleichungen (16) und (17) zur Folge hat.

11. Eine geringfügige Änderung des Beweises läßt erkennen, daß Satz 2 noch richtig bleibt, wenn f(z) eine im Kreise $|z| < R \le \infty$ endlichvieldeutige, bis auf algebraische Singularitäten überall in |z| < R analytisch fortsetzbare Funktion ist, und W die über der w-Kugel ausgebreitete Riemannsche Fläche bedeutet, worauf die über |z| < R ausgebreitete endlichvielblättrige Riemannsche Fläche von f(z) vermittels w = f(z) umkehrbar eindeutig und konform abgebildet wird. Dasselbe gilt bei Satz 3, nur müssen wir hier voraussetzen, daß die durch (15) definierte $\varrho(w)$ -Umgebung jedes auf W gelegenen Punktes $w \ (\neq a_1, a_2, \ldots, a_q)$ nicht nur eine beschränkte Anzahl $\leq p < \infty$ von Blättern, sondern auch eine beschränkte Anzahl $\leq p' < \infty$ von Windungspunkten hat.

(Eingegangen den 1. November 1945.)