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Sur l'intégrabilité élémentaire
de quelques classes d'expressions

Par M. A. Ostbowski, Bâle

Introduction

Les recherches que nous allons exposer dans la présente communication

partent du problème de l'intégration « élémentaire » d'une fonction

F(lgz,z) (1)

rationnelle en lg z et z. Nous avons complètement résolu cette question de
sorte que Ton peut maintenant à l'aide de calculs purement algébriques
reconnaître si l'intégrale de (1) est une fonction élémentaire ou non.

Nous appliquons notre méthode directement au cas plus général où
(1) est une fonction rationnelle en lgz à coefficients appartenant à un
corps R de fonctions de z, en supposant que R ne contient que des
fonctions holomorphes dans un certain domaine et que la dérivée de

chaque fonction de R est contenue en R.
Un tel corps de fonctions sera appelé un corps L (corps liouvillien).
Dans ce cas général, on peut encore reconnaître si l'intégrale de (1) est

une fonction élémentaire par rapport à iï ou non.
On peut même aller plus loin. Soit

w §p(z) dz

l'intégrale d'une fonction p(z) de R, qui n'est pas elle-même élémentaire

par rapport au corps R. Nous nous posons le problème de reconnaître
si l'intégrale

$F(w,z)dz (2)

est élémentaire par rapport au corps R(w), c'est-à-dire exprimable par
w et les grandeurs de R au moyen des fonctions algébriques, des
logarithmes et des exponentielles, itérés un nombre fini de fois.

Ce problème est complètement résolu dans la seconde partie de ce

mémoire, dans l'hypothèse que les problèmes d'intégration des
grandeurs du corps R que l'on rencontre au cours de cette analyse puissent
être résolus.

Notre discussion repose essentiellement sur l'énoncé que j'appelle le

principe de Laplace-Liouville. C'est Laplace qui, dans sa Théorie Ana-
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lytique des Probabilités1), a indiqué quelle forme générale devait avoir
l'intégrale d'une fonction élémentaire, en disant:

«... la différentiation laissant subsister les quantités exponentielles et
radicales, et ne faisant disparaître les quantités logarithmiques qu'autant
qu'elles sont multipliées par des constantes, on doit en conclure que
l'intégrale d'une fonction différentielle ne peut contenir d'autres quantités

exponentielles et radicales que celles qui sont contenues dans cette
fonction ...»

Toutefois ce n'est que Liouville qui est parvenu à démontrer d'une
manière exacte l'essentiel de cette observation de Laplace.

Liouville a démontré2) que si l'intégrale d'une fonction algébrique
y(z) de z est exprimable au moyen des fonctions algébriques, logarithmique

et exponentielle, elle peut être mise sous la forme

-S*ylgPv(») + Po(«) (3)
v l

où les pv(z) (v—0 ,...,71) sont des fonctions rationnelles en y(z) et z,

et où les ocv sont des constantes numériques.
Dans un autre mémoire3) Liouville a étendu ce théorème au cas où la

fonction y(z) est une fonction algébrique de z et d'un nombre fini de

grandeurs

satisfaisant à un système de Je équations différentielles algébriques
simultanées :

K =/*(%>•••>%>*) (#c=l,...,fc) (4)

Dans ce cas, si l'intégrale de y{z) est exprimable par z, ux,..., uk au

moyen des fonctions algébriques, logarithmique et exponentielle, cette
intégrale peut encore être écrite sous la forme (3), où les p(z) sont
algébriques en z, ux(z) uk(z) ; si en particulier y(z) est une fonction
rationnelle en z, ux,..., uk et s'il en est de même des fonctions fK en (4),
les fonctions pv(z) en (3) peuvent être choisies comme fonctions rationnelles

en z, ux,..., uk
Pourtant, la démonstration de Liouville, bien que complètement rigoureuse,

est loin d'être simple.

*) Paris (1820), 3e édition, p. 7.

a) J. Ec. Pol., Cahier 23 (1834) pp. 42—63.
») J. de Crelle 13 (1835) pp. 98—108.
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C'est la notion de corps liouvillien mentionnée plus haut, qui permet
de donner un énoncé très précis et très général du théorème en question
et d'en simplifier la démonstration:

Si y(z) est une fonction d'un corps liouvillien R et si Vintégrale de y(z)
peut être exprimée par les éléments de R au moyen des fonctions algébriques,
logarithmique et exponentielle, cette intégrale peut toujours être mise sous
la forme (3), où les fonctions pv(z) (v 0 n) appartiennent à R.

Cet énoncé que nous appelons le principe de Laplace-Liouviïle est
démontré dans le § 3 de cette communication. Au § 2, on trouve un
lemme qui résume et généralise les points essentiels des raisonnements
de Liouville. Les notions de corps L et de ses différentes extensions sont
étudiées au § 1.

Quant aux intégrales (2), nous étudions le cas où F est une fonction
linéaire en w (§ 4), un polynôme d'un degré quelconque (§ 5) et une
fonction rationnelle en w (§6).

Les résultats démontrés dans ce mémoire peuvent encore être
considérablement généralisés. On peut introduire, en plus de lg z, des intégrales
de fonctions algébriques de z, et en plus de ez, les fonctions inverses des

intégrales de fonctions algébriques de z. Alors, la plus grande partie de

nos résultats reste encore valable. Toutefois, les démonstrations exigent
des considérations plus étendues qui seront développées ailleurs.

§ 1. Les corps L de fonctions et leurs extensions

1. Soit D un domaine (ouvert) du plan des z. Nous considérons dans ce

qui suit un ensemble R de fonctions de z jouissant des propriétés
suivantes :

A) Chaque fonction de R est uniforme et holomorphe dans D, sauf
au plus dans un ensemble dénombrable de singularités isolées.

B) Si f(z) est une fonction de R, sa dérivée f(z) appartient aussi à R.

C) L'ensemble R contient toutes les constantes complexes et est un
corps, c'est-à-dire que si oc et /? =£ 0 sont deux éléments de R, les

grandeurs oc + 8 oc — 8 oc8 —- appartiennent aussi à R,
P

Un tel ensemble R sera appelé un corps L (un corps liouvillien) dans D.
L'exemple le plus simple d'un corps L est donné par l'ensemble Q de

toutes les fonctions rationnelles de z. Le domaine D correspondant est le

plan des z.
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2. Soit t(z) une fonction de z holomorphe et uniforme dans D et
satisfaisant à une équation algébrique

aor + a1*«-1+...+ an O (2.1)

où a0,..., an appartiennent à R et ne s'annulent pas tous identiquement.
Alors t est une grandeur algébrique par rapport à R.

Supposons que n > 1 est le degré minimum d'une équation du type
(2.1) satisfaite par t. En adjoignant t à R on obtient évidemment un
nouveau corps L que nous appelons une extension algébrique de degré n de R;
en effet, en différentiant (2.1) par rapport à z on exprime immédiatement

~j- par t et les éléments du corps L.

D'après cette définition l'adjonction à R d'une grandeur algébrique t
ne donne lieu à un corps L que si t est uniforme en D. Mais il est clair
que l'on peut toujours restreindre le domaine D de sorte que t y devienne
uniforme — en traçant par exemple des coupures convenables. En
effectuant un nombre fini d'adjonctions de grandeurs algébriques par rapport
à R on obtient, comme on sait, toujours une extension algébrique de R
qui peut être aussi obtenue en adjoignant une seule grandeur algébrique.
C'est, par définition, Vextension algébrique finie de R la plus générale; elle
sera aussi un corps L si l'on restreint convenablement D. Une extension
algébrique finie L de R sera en général désignée par le symbole R.

Rappelons enfin les définitions suivantes:
Un polynôme en ux,..., um par rapport à un corps R est un polynôme

en ux,..., um dont les coefficients appartiennent à R.
Une fonction rationnelle en ux,..., um par rapport à R est un quotient

de deux polynômes en ux,..., um par rapport à R.
Une fonction algébrique en ux,.. .,um par rapport à R est une fonction

satisfaisant à une équation algébrique (2.1), où a0 an sont des
polynômes en %,..., um par rapport à R,

Un polynôme primitif en w est un polynôme en w, dans lequel le
coefficient de la plus haute puissance de w est un.

3. Soit &(z) une fonction uniforme et holomorphe en D, sauf au plus
dans un ensemble dénombrable de singularités isolées. Si la fonction
O(z) n'est pas algébrique par rapport à R, elle est transcendante par
rapport à jB et l'on obtient en adjoignant 0(z) au corps R une extension
transcendante simple de R, qui sera désignée par R(&).

La condition nécessaire et suffisante pour qu'on obtienne un corps L en

adjoignant à R une fonction & uniforme et régulière en D sauf dans un en-
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semble dénombrable de singularités isolées, est que 0(z) satisfasse à une
équation différentielle,

0fz=W(0) (3.1)

où W{0) est une fonction rationnelle en © par rapport à R.

En effet, en vertu de (3.1) la dérivée de &(z) est contenue dans i?(0).
Mais alors il en est de même pour chaque grandeur T (0) rationnelle en
0 par rapport à R.

On peut obtenir des corps L encore dans des cas plus généraux.
En adjoignant à R une grandeur 0 transcendante par rapport à R, on

obtient un corps R(0) qui n'est pas nécessairement un corps L. Mais
alors il peut arriver qu'une extension algébrique R(0) de R(0) devienne

un corps L. C'est le cas si (9, sans satisfaire à une équation (3.1),
satisfait à une équation différentielle de la forme

0>(z)=F{0(z),z) (3.2)

où F (u, z) est algébrique en u par rapport à R.
Dans ce cas une extension finie algébrique R(0) de R(0), contenant

0f(z) sera encore appelée une extension transcendante simple L de R,
En effectuant n extensions L transcendantes simples consécutives, on

obtient une extension liouvillienne R* de R qui sera appelée une extension

L transcendante de rang n de R> si n est lé nombre minimum des

extensions L transcendantes simples, nécessaire pour obtenir R*.
Une extension L finie algébrique de jR sera dite de rang 0 par rapport

à R.

4. Considérons quelques cas particuliers. Si l'on a

0 lg u(z)

où u(z) est une grandeur de JR, tandis que 0 n'est pas algébrique par
rapport à jR,

u (z)e
u(z)

appartient à R, Dans ce cas une extension liouvillienne R (lg u) sera
appelée une extension logarithmique simple de R en D.

Si Ton a
0 e«<«>

où u(z) appartient à J?, tandis que 0 n'est pas algébrique par rapport à R,

0'(z) uf(z)0(z)
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appartient au corps R(&). Dans ce cas une extension liouvillienne
R(eu{z)) sera appelée une extension exponentielle simple de R dans D.

Les extensions simples logarithmiques et exponentielles seront appelées
des extensions élémentaires simples. En effectuant, en partant de R, n
extensions élémentaires simples successives, on obtient, par définition,
une extension élémentaire i?* de R.

Une grandeur oc contenue dans une extension élémentaire de rang n de
R sera appelée une grandeur élémentaire par rapport à R, et en particulier
de rang n par rapport à R si elle n'est contenue dans aucune extension
élémentaire de R de rang n — 1. Une grandeur oc élémentaire par rapport
au corps Q des fonctions rationnelles de z, sera appelée simplement une
grandeur élémentaire.

§ 2. Un lemme

5. Soit R un corps L dans un domaine (ouvert) D du plan des z. Soit
&{z, oc) une fonction de z et de oc, qui pour les valeurs du paramètre oc

parcourant un ensemble E, reste uniforme et holomorphe en z pour z { D et

satisfait Véquation différentielle

^ K(z,G) (5.1)

où h (z, w) est indépendant de oc et est algébrique en w par rapport à R.

Soit W(z, t) une fonction de z et de t, dont les dérivées W'z et W\ sont
algébriques en t par rapport à R.

Supposons enfin qu'il existe un oco ¦{ E jouissant de la propriété
suivante :

La fonctionJ 0(z,oco)

n'est pas algébrique par rapport à R, satisfait à la relation

W(z,0(z)) 0 (z{D) (5.2)
et Von a

où K(zy t) ne s'annule pas identiquement en z et t, et est algébrique en t par
rapport à R,

Dans ces hypothèses on a pour une grandeur c indépendante de z et t:

fzjjhF' (5-4)
0(1)
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6. Démonstration. En prenant la dérivée totale de (5.2) on obtient en
vertu de (5.1)

w't + e'tw'0 o

O (6.1)

Or, d'après nos hypothèses, l'expression

W',(z,t) + h(z,t)Wt(z,t)

est algébrique en t par rapport à R. Et puisque 6 n'est pas algébrique
par rapport à R, la relation (6.1) doit être une identité, de sorte que
Ton a:

Wz(zJ) + h(z,t)W't(z,t) O

En remplaçant ici t par 0 (z, oc) on obtient donc

W'z(zy 0(zy(x)) + h(z, 0{z,oc))W'e(z, 0(z,oc)) O

c'est-à-dire d'après (5.1)

de sorte que W(z, 0(z, <x)) est indépendant de z:

W(z,0(z,oc)) C(oc) (6.2)

7. Or, d'après nos hypothèses, l'expression de gauche est dérivable

par rapport à <x, pour a <x0 C'(oco) c existe donc et l'on obtient en
dérivant (6.2) par rapport à oc, pour oc <xQ : Wfe(z, 6)0^(zf a0) c

donc, d'après (5.3)

D'après nos hypothèses, l'expression Wft(z,t)K(z,t) est algébrique par
rapport à R. Donc, 0 n'étant pas algébrique par rapport à JR, (7.1) est

une identité de même que

(7>2)

En intégrant (7.2) par rapport à t de 6 à t, on obtient enfin, en vertu de

(5.2), la relation (5.4), et notre proposition est démontrée.

19 Commentarii Mathematici Helvetici ^89



8. Deux cas spéciaux sont particulièrement importants:
oc) Soit

0(z, oc) <%e*<*> p(z)i R

Ici l'équation (5.1) se réduit à 0'z p'g 0 Pour a oco 1 on a

donc

K(z,t) t
Par (5.4) il résulte

ÏF(M) c(]g*—lg0(*)) (0(z) e*<*>) (8.1)
/?) Soit

0(z,oc) lgp(z)+oc p(z)iR
Ici on a

et

K(z,t) l
donc par (5.4)

(8.2)

§ 3. Le principe de Laplace-Liouville

9. Soit R un corps L dans un domaine (ouvert) du plan des z. Soit q>(z)

une fonction de R dont l'intégrale indéfinie:

V(z) $<p(z)dz (9.1)

est contenue dans une extension L élémentaire Rr de R de rang r. Alors la
fonction y>{z) peut être mise sous la forme

J
cp (z) à=i;«e lg uQ (z) + u0 (z) (9.2)

où ocx,..., ocr ne dépendent pas de z, tandis que les fonctions

uo(z),u1(z)y...,ur(z)
sont contenues dans R.

10. Avant d'aborder la démonstration de notre théorème, nous allons
établir un lemme qui revient en partie essentielle à Abel.
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Soit B un corps L dans un domaine D du plan des z. Supposons qu'on
ait pour une jonction <p(z) de B la relation

/¦<p(z)dz ^ <*q ^%uq(z) + v>o(z) (10.1)

où oct,..., ocr ne dépendent pas de z, tandis que les jonctions uQ(z), ux(z),...,
ur(z) sont algébriques par rapport à B. Alors il existe une relation analogue,
où les r + 1 fonctions uQ (z) sont contenues dans B.

Démonstration du lemme. Il existe d'après l'hypothèse une fonction X

de z, algébrique par rapport à B et telle que les r-\- 1 fonctions uQ
(ç 0,1 r) s'écrivent:

uQ Ae(X, z) ^ <V A* (q 0,...,r) (10.2)

où les coefficients aQK appartiennent à JB, tandis que X satisfait à une
équation

Xk + a1Xk~1 + \-ak 0 (10.3)

dont les coefficients aK sont des éléments de B. Et nous pouvons supposer
en outre que le degré k de cette équation est minimum, de sorte que (10.3)
soit irréductible dans le corps B.

En dérivant (10.3) on peut, comme on sait, mettre -=- sous la forme

*à A(X,z)= 2M". (10.4)bK
K=0

En dérivant les deux membres de (10.1), on obtient en vertu de (10.2)
et de (10.4)

11. Désignons par

les k racines de (10.3). Les relations (10.4) et (10.5) doivent rester
valables si l'on y remplace X par une quelconque des XK l'équation (10.3)
étant irréductible par rapport à B.
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+ dA,

En faisant A Xx, A2,..., Xk dans (10.4) et (10.5) et en ajoutant
membre à membre, on obtient

* r r - 'dAç(XK,z) dXK
|

dAQ(kKiz)\
|

donc en intégrant:

A; U(«) dz 2 I 2 *9lg A9(kK,z) + A0(XK,z)l

(H.i)
r k k

Or, les expressions

étant symétriques en Xx,..., Afc elles appartiennent à iî et Ton peut
écrire (11.1):

f<p(z) à=j| \gvQ(z) + vo(z)

Notre lemme est démontré.

12. Démonstration du principe de Laplace-IÀouville. Pour r 0,

y (z) est par hypothèse algébrique par rapport à J? et il résulte du lemme
du No. 10 que ip(z) est contenue dans B. Dans ce cas notre théorème est
donc démontré.

Nous allons maintenant l'établir pour r> 0 par induction, en supposant

que ce théorème est déjà démontré pour les valeurs plus petites
de r. Soit

..,2*r £«(©,) (12.1)

la chaîne de r extensions L simples transcendantes, menant à Br. Soit
rf <î r le nombre des extensions logarithmiques parmi ces extensions. rf est
le rang logarithmique de la chaîne (12.1). Alors nous établirons la relation
(9.2) sous une forme plus précise, en y remplaçant r par r1

292



Rr est une extension de Rx de rang r — 1 Le rang logarithmique r'Q

de la chaîne partielle de (12.1), conduisant de R1 à Rr est r'— 1 ou r\
suivant que &x est une grandeur logarithmique ou exponentielle par
rapport à Ro

Appliquons donc notre théorème au corps R1; on a :

où les r'o coefficients fiç ne dépendent pas de z, et où les r'o -f1 fonctions

t^ojUj,.. .ufi sont contenues dans R1== R0(@i) • Or, ç?(z) appartient à

R^i&x) Donc, d'après le résultat du No. 10, on peut choisir u0 ,,uf*
dans le corps Rq(@x) et les exprimer par des fonctions rationnelles de &x

par rapport à jB0 :

tt, M»i) (e o,...,rj) • (12-3)

13. Considérons maintenant la fonction

W(z,t) % pQlgs9(t)+sQ(t) — V(z) (13.1)

Le lemme du § 2 est applicable à W(z>t) avec R Ro et @x 6 dans

un des cas du No. 8.

Pour une extension exponentielle on a rf0 rf et

©i==epu)> p(z){RQ

Il résulte de (8.1)
W(z,t) clgt — cp(z)

En remplaçant ici t par une constante numérique convenable y, on tire
de (13.1)

donc r,
S fiQ ^ Mr) + (*o(y) + o p(«) — c 1g r) ;

mais ici les r1 expressions s^y),..., sr,(y) et so(y) + cp(z) — clg y
appartiennent à Ro, et notre théorème résulte dans ce cas du lemme du
No. 10.
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D'autre part, s'il s'agit d'une extension logarithmique, 0X lg p(z)
p(z){ROi r'0 r'—l, on a par (8.2)

En comparant cette expression avec (13.1), on obtient identiquement
en t:

r'-l

En y remplaçant t par une valeur numérique convenable, on obtient
une relation du type (9.2), dans laquelle u0 ux,..., ur appartiennent à

Ro ]?", donc, d'après le lemme du No. 10 à fi.
Notre proposition est donc démontrée.
Rappelons enfin que nous avons démontré l'énoncé un peu plus précis

du principe de Laplace-Liouville que celui du No. 9, à savoir que dans
les hypothèses du No. 9 on peut remplacer r dans Vexpression (9.2) par le

rang logarithmique r' d'une chaîne (12.1), menant de Ro à Rr.

§ 4. Intégration des expressions de la forme Ao w + Ax,
w étant une intégrale définie

14. Soit R un corps L dans un domaine D du plan des z et p(z) une
fonction de R telle que l'intégrale

w= $p(z)dz (14.1)

n'est pas algébrique par rapport à R.
Considérons l'extension liouvillienne intégrale R(w) de R obtenue en

adjoignant w à R et en traçant dans D des coupures convenables, de sorte

que w y devienne uniforme.
Soit i/ \ /iA o\f(w,z) (14.2)

un élément de R(w), donc une fonction rationnelle en w par rapport à

R. Si l'intégrale de (14.2) est élémentaire par rapport à R(w), on a
d'après le principe de Laplace-Liouville

tz) dz F(w,z) (14.3)
où

n

F(w,z) 2 (xvlg fv(w,z) + fo(w,z) (14.4)
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et où les

sont rationnelles en w par rapport à R.
Notons que les dérivées partielles F'wi Fz de F(w,z) sont rationnelles

en w par rapport à R.
En différentiant (totalement) par rapport à z la relation (14.3), on a

en vertu de (14.1)

f(w,z) F'w(w,z)p(z) + Ffz(w,z) (14.6)

Or, les deux membres de (14.6) sont rationnels en w par rapport à i2.

Donc, puisque w est transcendant par rapport à R, la relation (14.6) doit
être valable identiquement en w.

Remplaçons dans (14.6) w par w-\-y, y étant une indéterminée, et
intégrons par rapport à z ; on obtient pour une constante c0 indépendante
de y:

z

Cf(w + y,z)dz F(w + y,z) + G(y) (14.7)

En différentiant k fois (14.7) par rapport à y, on obtient

z

f /(*i (w + y,z)dz FikJk (w + y.z) + C<*>(y) (14.8)

16. Considérons maintenant le cas où / a la forme

f(w, z) A0(z)w + Ax(z) A0(z), Ax(z) { R (15.1)

Dans ce cas on a par (14.8), pour 4=1:

0(z)dz F'w(w + y,z) + C'{y) (15.2)

Posons
F'w(w,z) G(w,z) (15.3)

Puisque l'intégrale de gauche de (15.2) ne dépend pas de y, il en résulte
qu'on a

G(w + y, z) G(w, z) + c(y)

où c(y) est indépendant de z (et de w).
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Différentions cette relation par rapport à y; on obtient

et Ton voit que la dérivée partielle Orw(w,z) a une valeur c indépendante
de z et w. On a donc

' (15.4)

où c est une constante et a(z) appartient à i?.

En différentiant (15.2) on obtient maintenant

A0(z) cp(z) + a'(z) (15.5)

et c est complètement déterminé par (15.5) si a (z) doit être un élément
de R.

16. Introduisons cette valeur de AQ dans (15.1), on a

I (Aow + Aj) dz c I p(z)wdz + j ar(z)wdz + I A1(z)dz

(16.1)

Y w* + a(z) w + / (^()
où l'intégrale de droite doit donc aussi être élémentaire par rapport au

corps R(w)
En posantr A(z)

on a donc
^ m

Ar(z)dz=z H(wyz) 2 A,lgMw,z) + ho(w>z) (16-2)

où les ^(ttfjZ), (/x 0, m) sont rationnelles en w par rapport à

R et les /^ ne dépendent pas de z.

En appliquant à (16.2) la relation (14.8) pour k — 1, on a, puisque
A[(z) ne dépend pas de w:

où Cj est indépendant de z et de te?.

Il en résulte que la dérivée de la fonction

H(w, z) — ct w
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par rapport à w s'annule. Donc, puisque cette dérivée est rationnelle
en w par rapport à jR, elle doit s'annuler identiquement en w. La
fonction

H(u, z) — cxu

de l'indéterminée u et de z est indépendante de u, et l'on a pour une
constante numérique convenable u0:

m

H(w,z) cxw + 2 ^ ïg /^K> *) + h0 (u0, z)

A(z) (16.3)
avec :

m

A(z) 2 ^lg^(i*0, z) + hQ(u09z) (16.4)

où les hp (u0 z), {(x 0, m) sont des fonctions appartenant à R et
A(z) une fonction élémentaire par rapport à JB. Donc, l'intégrale (16.2)
est élémentaire par rapport à R.

17. Si en particulier l'intégrale de (15.1) est non seulement élémentaire

par rapport à R{w), mais contenue dans R(w)9 il résulte de (16.1)
qu'il en est de même de l'intégrale (16.2), de sorte que les termes
logarithmiques dans l'expression de H(w,z) s'annulent et que H{w,z) est
rationnelle en w par rapport à R. Mais alors il résulte de (16.4) que A (z)
est non seulement élémentaire par rapport à JB, mais est même un
élément de JB.

D'autre part, on conclut de (16.1) que nos conditions sont aussi
suffisantes pour que l'intégrale de (15.1) soit élémentaire par rapport à

R(w) ou bien soit contenue dans R(w). Nous avons en définitive le
théorème :

Soit R un corps L dans un domaine D du plan des z, p (z) un élément de R
et w son intégrale (14.1) transcendante par rapport à R.

Si les fonctions A0(z), Ax(z) appartiennent à R, la condition nécessaire

et suffisante pour que l'intégrale

*

(A0(z)w + A1(w))dz (17.1)

soit élémentaire par rapport au corps R(w) est, que Von ait premièrement

-a'(z) (17.2)
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où c ne dépend pas de z et a(z) est une fonction de R, et secondement

A,(z) — a(z)p(z) clP(z) + A'(z) (17.3)

où cx ne dépend pas dezet A(z) est une fonction élémentaire par rapport à R.
Alors on a

(A0(z) w + Ax(z)) dz y w* + (a(z) + q) w + A (z) (17.4)

Pour que Vintégrale (17.1) soit en particulier une grandeur du corps
R (w), il est en outre nécessaire et suffisant que cx et A (z) dans (17.3) puissent
être choisis de sorte que A (z) soit une fonction de R.

18. Pour appliquer le théorème précédent à quelques cas importants
dans la théorie élémentaire de l'intégration, supposons d'abord que R soit
le corps Q des fonctions rationnelles de z. Posons:

p(z) — w lgz (18.1)
z

Alors, si A0(z), Ax(z) sont rationnels, les conditions du théorème préoé-
dent pour que l'intégrale

f(A0(z)lg (18.2)

soit élémentaire se réduisent à la condition (17.2), puisque la condition
(17.3) est toujours satisfaite. Donc:

La condition nécessaire et suffisante pour que Vintégrale (18.2) soit
élémentaire, est:

AQ(z) =-j + a'(z) (18.3)

c étant une constante et a(z) une fonction rationnelle. Autrement dit, les

résidus de A0(z) doivent s'annuler en chaque point fini, sauf peut-être
pour z 0

Posons d'autre part

V(z) y2 > w=arctgz (18.4)
z -j- i

Dans ce cas, si A0(z), At(z) sont des fonctions rationnelles en z, la
condition nécessaire et suffisante pour que Vintégrale

Ç (A0(z) arctg z + At(z) )dz (18.5)

298



soit élémentaire, se réduit à

A0(z) j^ + a' (z) (18.6)

où c est une constante et a(z) une fonction rationnelle en z, — puisque la
condition (17.3) est toujours satisfaite dans ce cas aussi.

Soit enfin R le corps Q (]j/i — z2) obtenu à partir de Q par l'adjonction

de \/\ — z2, et

p (z) w arcsin z (18.7)

On sait que dans ce cas l'intégrale de toute fonction de R est élémentaire,

de sorte que la condition (17.3) est toujours satisfaite dans ce
cas aussi.

Donc, si A0(z), A1(z) sont des expressions de la forme

(18.8)

avec b(z) et c(z) rationnels, la condition nécessaire et suffisante pour que
V intégrale

Ç (A0(z) arcsin z + A1(z))dz (18.9)

soit élémentaire, se réduit à

A0(z)= * +a'(z) (18.10)ri — z2

où c est une constante et a(z) une fonction de R, c'est-à-dire une expression
de la forme (18.8), b et c étant rationnels.

Autrement dit, pour que (18.9) soit élémentaire, il est nécessaire et
suffisant que dans l'intégrale

§A0(z)dz

les termes logarithmiques se réduisent à c arcsin z.

§ 5. Intégration d*un polynôme en w w étant une intégrale indéfinie

19. En généralisant l'analyse des Nos. 14 à 17, nous allons maintenant
considérer le cas où / (w, z) est un polynôme en w par rapport à R de degré

n> 1 :

f(wtz) 2 (n\Avw»~v Aown + nAxw«-i + + AH (19.1)
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Dans ce cas, si l'intégrale
$f(w,z)dz

est élémentaire, on a
$f{w9z)dz F(w,z) (19.2)

où

Q(w9z)=F'w(w9z) (19.3)

est rationnel en w par rapport à R.
Appliquons alors (14.8) pour k n — 1 et y 0. On a par (19.3)

n i (Aow + Ax) dz G^l (w,z)

Donc, puisque l'expression de droite est rationnelle en w par rapport à
R9 la formule (17.4) est applicable, et l'on a

où c0 est une constante et bl9 b2 sont des grandeurs de R, Donc, en
intégrant par rapport à w, on voit que G(w,z) est un polynôme de degré n
en w ; et puisque G (w, z) est rationnel en w par rapport à R, les coefficients
de ce polynôme en w appartiennent à R. On peut donc écrire

\v{z)wn~* (19.4)

où J50 JSn appartiennent à R.
Posons

u étant une indéterminée. On a évidemment

-fcF0(u,z)=G(u,z)

Donc, la dérivée partielle de

F(u,z)— F0(u,z)

par rapport] à u s'annule identiquement en u, et cette différence ne
dépend pas de u. Pour une valeur numérique convenable u0 de u on a donc

F{u,z) F0(u,z) + ^-j JSn+1 ~-jBn+l F(u09 z)—F0(u0> z).
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Or, il résulte des relations (14.4) et (19.5) que Bn+1 est une grandeur
élémentaire par rapport à R, et nous voyons que, si (19.2) est élémentaire

par rapport à R(w) on a:

F(w9z) (19.6)

où Bo Bn appartiennent à Ry tandis que Bn+l est élémentaire par rapport

à R. D'ailleurs, si l'intégrale (19.2) appartient à B(w), Bn+l(z) est
en outre un élément de R.

20, Remplaçons dans la relation (19.2) les fonctions f et F par leurs
expressions (19.1) et (19.6) et prenons la dérivée totale par rapport à z.
On obtient la relation

V=0 - v ±

Donc, puisque cette relation doit avoir lieu identiquement en w, on
obtient

-Bfv+l (v 0,l, .yn) (20.1)

BQ c0 (20.2)
et Bo est une constante:

II résulte alors des relations (20.1):

Ao c0 p -f- B1

A, BlP +$B'2

IV

(20.3)

formules qui permettent de déterminer successivement les fonctions

Bx,..., Bn Bn+1 Pour que Vintégrale (19.2) soit élémentaire par rapport

à R(w), il est nécessaire et suffisant que les grandeurs Bx,..., Bn
ainsi obtenues soient des éléments de R et que Bn+1 soit élémentaire par rapport

à R. Pour que Vintégrale (19.2) soit en particulier contenue dans

R(w), il est de plus nécessaire et suffisant que Bn+l soit aussi un élément
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de R. w n'étant pas un élément de R, il est évident que c0 est
complètement déterminé par la première des relations (20.3) si B1 doit
être un élément de R.

Dans le cas où R est le corps 42, la théorie élémentaire de l'intégration
permettra toujours de résoudre la question de l'intégrabilité de (19.2)
par les calculs élémentaires.

Appliquons notre résultat au cas

/ A(z)wn p — w log z (20.4)

A(z) étant rationnel en z ; les formules (20.3) se réduisent ici aux
relations suivantes

n+1 n+1 *

t
Or, on peut évidemment toujours choisir univoquement c0 et les

constantes d'intégration intervenant en Bx, B2,..., Bn de sorte que
les résidus, pour z 0, de

Â c0 Bx Bn

s'annulent. Nos conditions se réduisent donc à ceci qu'alors pour chaque
pôle j8 7^ 0 de A, les résidus des

A ' ~z~ '••" z

s'annulent en tout point à distance finie, distinct de 0

§ 6. Intégration d'une expression rationnelle en w,
w étant une intégrale indéfinie

21. Considérons maintenant le cas plus général où (14.2) est une fonction

rationnelle en w far rapport à R:

N, D étant des polynômes en w par rapport à R, sans diviseur commun.
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Supposons que l'intégrale (14.3) soit élémentaire par rapport à R(w).
Soit

N±, Dx étant des polynômes en w par rapport à B, sans diviseur commun,
et fpiw^z) des fonctions rationnelles en w par rapport à jR.

Nous pouvons évidemment supposer que D et Dx sont des polynômes
primitifs en w.

Soient
D(w,z) Px^,^1 • • Pfc(w,z)** (21.3)

D^w^^Qï • ÇJ» (21.4)

où les polynômes PK et Qv en w sont primitifs et irréductibles par rapport à

B. Nous pouvons supposer que les polynômes PK sont tous différents
entre eux, ainsi que les polynômes Qv

NAlors / et ~=p peuvent être décomposés de la façon suivante:
JJ1

* *k M
f P+ S 2 "£- (21-5)

où P, Ç, ^v a itf^.^ sont des polynômes en w par rapport à B. On peut
supposer que le degré de chaque MK a, NVtO est inférieur à celui du PK

ou Qv correspondant. Les décompositions (21.5) et (21.6) sont alors

univoquement déterminées.

On peut d'autre part supposer que

h(w,z),...ffmi(w,z) (21.7)

sont des polynômes en w par rapport à B. En les décomposant en facteurs
irréductibles et regroupant les termes logarithmiques de (21.2), on peut
supposer qu'une partie des fonctions (21.7) sont des polynômes primitifs
et irréductibles en w par rapport à J?, les autres étant des éléments de B
(donc indépendantes de w).

Parmi les fonctions (21.7), désignons par aA (A 1 2 .1) celles

qui sont indépendantes de w, et par 8lf..., 8m les différents polynômes
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en w distincts de Qv. Alors on peut, en changeant les notations, écrire
F(w,z) sous la forme

n m l n tv -kt

v=»l ft=l X=»l v—1 o=l

(21.8)

où les ocv, (2^, y\ sont des constantes; certains des xv peuvent éventuellement

s'annuler. Q et Nv^a sont des polynômes en w par rapport à R. Le
degré de chaque Nva est inférieur à celui du Qv correspondant.

22. En dérivant maintenant la relation (14.3) et en utilisant (21.5) et
(21.8), on a

k ** MK o
l a'x m S' n l Qf tv (N o\\

(22.1)

où l'accent désigne la dérivée totale par rapport à z, de sorte qu'on a, par
exemple,

Or, dans l'expression de droite de (22.1) pour chaque v le terme con¬

tenant la plus haute puissance de -^— est — tv —v%ttv+l •

Mais ici, le degré de Qfv est inférieur à celui de Qv. Et Q'v ne s'annule

pas identiquement, car, dans le cas contraire, Qv aurait une valeur
numérique et w serait algébrique par rapport à R. Enfin NVit ne s'annule

pas non plus et n'est pas divisible par Qv. Donc NVtt Qfv n'est pas divisible

par Qv et le terme en Q~ v~ ne peut pas disparaître. Il en résulte que
chacun des polynômes Qy est aussi un des PK, tandis que les polynômes
PK, qui sont différents de Qvi sont identiques aux polynômes 8^ Donc,
en changeant les notations, on peut poser

Pn+fi Sp (/i 1 m) n + m k
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Mais alors la décomposition (21.5) peut s'écrire

n *v M m M
(22.2)

et Ton voit que les 8^ sont ceux des polynômes PK pour lesquels les

exposants sK ont la valeur un.

23. La relation (22.1) peut être maintenant écrite:

2a I D i

-»

Dans les fractions entre crochets, le degré du numérateur correspondant
au dénominateur Pva est en général supérieur à celui de Pv Mais en divisant

ce numérateur par Pv9 on obtient, à côté d'un reste qui peut être
nul, un polynôme de degré inférieur à celui de Pv comme quotient.
D'autre part, le numérateur correspondant au dénominateur Py a déjà
dès le début un degré inférieur à celui de Pv.

Donc, en regroupant les termes de l'expression entre crochets de sorte

que le degré de chaque numérateur soit plus petit que celui du Pv

correspondant, on n'aura pas de terme polynomiaL II en résulte que la relation

(23.1) se décompose en:

Mp^P^ Gu= 1, 2,..., m) (23.2)

(23.3)

p ' ** pa

-(sv-\) Nv'S!P" (*=l,...,n). (23.4)
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Les relations (23.2)—(23.4) montrent évidemment que si l'intégrale
de (21.5) est élémentaire par rapport à R, il en est de même pour P et

°v M
pour chacune des sommes 2 —~

a*=l Pv

La relation (23.2) exige que M^ soit égal à 8^ multiplié par une
constante numérique.

Quant à la relation (23.3), elle est équivalente à

et nous avons montré au § 4 comment on peut déduire les conditions
nécessaires et suffisantes pour qu'une telle relation soit possible et
comment on peut alors déterminer Q.

24. Nous allons maintenant étudier les relations (23.4). Ces n relations
étant indépendantes entre elles, il suffit d'étudier une relation de la forme
(23.4) en y supprimant l'indice v. Alors, on obtient

r
(24.1)

ances •=

(24.1), on peut calculer successivement les polynômes:

En comparant les coefficients des différentes puissances •=£• dans

#-i, ^2,...,^! (24.2)

et obtenir la condition portant sur les No, qui est nécessaire et suffisante

pour que (24.1) soit possible.
Toutefois on ne peut pas comparer directement les deux membres de

(24.1), puisque le théorème d'unicité suppose que le degré de chaque
numérateur est inférieur à t, degré de P en w.

D'autre part, en déterminant les polynômes (24.2), il faudra résoudre
des congruences modulo P. Nous allons donc procéder comme suit:

En appliquant à P et à P' l'algorithme d'Euclide, on peut trouver
deux polynômes U, V en w par rapport à R, tels qu'on ait

UP' + VP= 1 (24.3)

306



En effet, puisque dans P le coefficient de la plus haute puissance de w
est un, le degré de P' est ^ t — 1 Mais alors P et P' sont premiers
entre eux, et l'algorithme d'Euclide conduit en effet à une relation (24.3).

En outre, on peut supposer, comme on sait, que dans cette relation le

degré de U en w est < t et celui de F est < t — 1.

26. En multipliant (24.1) par U et en éliminant dans la somme de
droite U Pr au moyen de la relation (24.3), on obtient

p<*
y p*

_ 4. a VNa — UMa UM9
p ^^ p® r>*

Or ici Ton a
(s — 1) N8_, — UM8 (mod. P)

et N8^ est déterminé comme reste de la division de —- UMM par P.

En soustrayant le terme — ~-s—s-z^~ des deux membres de (25.1)

et en posant

pr12 ~ A*-i y

il vient

UP; "2 VNra + a VNa — UMa
oc h Y! h* pa+1

ps-1

Comparons ici les coefficients de
ps_1 On obtient la congruence

(s- 2) N,_2 t/iV,'., + (s - 1) FJV^ - C7if._1 + ^<_1 (mod. P)

qui permet de calculer N8_2 par division.

307



En procédant de la même façon et en comparant successivement les

coefficients de -^, psl ^ on obtient les s — 1 grandeurs (24.2).

En introduisant ces valeurs dans l'expression de droite de (25.1), on
obtient une dernière relation de la forme

oc
UP'

p — p

qui exige que le polynôme A (w,z) en w par rapport à R soit égal à U Pr
multiplié par une constante numérique. Cette condition est donc nécessaire

et suffisante pour que la relation (24.1) soit possible.
En résumé, notre méthode permet de résoudre le problème de

Pintégrabilité élémentaire de (14.2) chaque fois que f(w,z) est rationnel
»en w par rapport à R.

(Reçu le 1er septembre 1945.)
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