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Uber ganze Funktionen ganzer Ordnung

Von A. PFLUGER, Ziirich

1
I')
unterscheiden sich nicht so sehr in ihrer Dichte als vielmehr in ihrem
Symmetriecharakter, welch letzterer Unterschied ein vollig verschiedenes
asymptotisches Verhalten der beiden Funktionen bewirkt. Dieses ver-
schiedene Verhalten in allgemeinerem Rahmen aufzukliren ist das Ziel
dieser Arbeit; genauer, es wird das asymptotische Verhalten solcher
ganzer Funktionen untersucht, deren Ordnung ¢ ganzzahlig und deren
Nullstellenverteilung meBbar ist.

1. Die Nullstellen der beiden ganzen Funktionen sinzz und

Wir nennen eime Verteilung von Nullstellen messbar beziiglich re,
wenn fir irgend zwei Stetigkeitsstellen einer monoton wachsenden Funktion

N(p)
n(r; @', ¢") = (N(¢") — N(¢'))re + o (re) (1.1)

ist. Dabei bezeichnet n(r; ¢', ¢”) die Anzahl der Nullstellen im Sektor
lz|<r, ¢ Zargz <¢”; N(p) heift MaBfunktion der Null-
stellenverteilung?).

Die entsprechende Aufgabe fiir nichtganze Ordnungen wurde in einer
frithern Arbeit gelost?). Hier, im Falle ganzer Ordnungen, ist der Zu-
sammenhang zwischen den Nullstellen und dem Wachstum der ganzen
Funktion komplizierter. Um dies zu sehen, geniigt ein Blick auf die
kanonische Produktdarstellung vom Geschlecht o

G(z) = 2™-ecot "t ¢ £, 7 (2) , (1.2)

wo wir mit n(z) das Weierstraf’sche Produkt

@) =1E(Z, o) . B, =(—ue P70

v==1 v /

1) Vgl. die in FuBnote 2 zitierte Arbeit P,, insbesondere Nr.1l. An Sprungstellen
N(g+0) + N(e—0)
3 .

3) ,,Uber die Wertverteilung und das Verhalten von Betrag und Argument
einer speziellen Klasse analytischer Funktionen*, Comm. math. Helv. vol. 11
(1938), 180—214 und vol. 12 (1939/40), 25—65. Diese Arbeit wird im folgenden mit P,
bzw. P, zitiert.

setzen wir N(g) =
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bezeichnen. Denn der Exponentialfaktor vor = (z) und jede einzelne
Nullstelle liefern einen Beitrag von der Ordnung g und es geniigt des-
halb nicht, nur das asymptotische Verhalten der Nullstellen, ausgedriickt
durch die MaBfunktion N (¢) zu betrachten. Es muBl auch der ,,indi-
viduelle Einflul der Nullstellen mitberiicksichtigt werden. Darin be-
steht der wesentliche Unterschied gegeniiber dem Fall nichtganzer
Ordnung.

Die Untersuchungen von Wiman, Pringsheim, Lindelof und Cart-
wright®) haben nun gezeigt, dal der genannte ,,individuelle’ EinfluBl
des Exponentialfaktors und der Nullstellen im Ausdruck

S(r)=?e+—1— ¥ oz (1.4)

gesammelt wird. So ist z. B. G'(2) dann und nur dann hoéchstens vom
Mitteltypus der Ordnung g, wenn die beiden Bedingungen

n(r)=0@¢ und S(r)=0(1)
erfiillt sind.

Es handelt sich im folgenden nun darum, diese frithern Resultate zu
préazisieren unter der Voraussetzung, dafl die Nullstellen mef3bar sind,
indem wir genau abkldren, welchen Einflu die Funktion S(r) auf das
asymptotische Verhalten von G (z) hat. In der Tat kénnen wir mit den
Funktionen N (¢) und S(r) das erste bzw. die zwei ersten Glieder einer
asymptotischen Entwicklung von log |G (2)| berechnen. Diese Be-
ziehungen lassen sich geometrisch interpretieren, womit schon bekannte
Zusammenhinge zwischen unsern Fragestellungen und der Elementar-
geometrie ergidnzt werden?).

2. In dieser Nummer werden einige Begriffe und Resultate zur
spitern Verwendung zusammengestellt®).

3) A. Wiman, Arkiv for Mat. Astr. och Fys. 1 (1904). — A. Pringsheim, Math. Ann.
58 (1904). — E. Lindeléf, Sur les fonctions entiéres d’ordre entier. Ann. Sci. de
PEcole Normale (3) 22 (1905), 369—395. — M. L. Cartwright, Integral functions of
integral order. Proc. London Math. Soc. (2) 33 (1932), 209—224.

4) Vgl. G. Pdlya, [1] Untersuchungen iber Liicken und Singularitdten von
Potenzreihen. Math. Zeitschrift 29 (1929). [2] Untersuchungen iiber Liicken
und Singularitdten von Potenzreihen. Part. II. Annals of Math. 34 (1933).
[3] Geometrisches iiber die Verteilung der Nullstellen gewisser ganzer trans-
zendenter Funktionen. Miinchener Sitzungsberichte 1920, S. 285—290. [4] Analy-
tische Fortsetzung und konvexe Kurven. Math. Ann. 89 (1923). — Schwengeler, E.,
Geometrisches iiber die Verteilung der Nullstellen spezieller ganzer Funk-
tionen, Dissertation, Ziirich 1925; ferner P, und P,.

5) Vgl. P, und P,; insbesondere P, Nr.9 und P, Nr. 16—38.
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Es sei F'(z) im Winkelraum « < arg z < B reguldr und hochstens vom
Mitteltypus der Ordnung ¢ (0 < g < oo) . Die Funktion

H(p) =limsupr-elog | F(re?)| , a <o <fB, (2.1)
hei3t Strahltypus von F(z) . Sie ist stetig und je von rechts und
links differenzierbar. Diese Rechts- und Linksableitungen sind von be-
schrankter totaler Schwankung. Die Funktion

H’ H’

hat nur abzdhlbar viele Unstetigkeiten und es ist

H (p+ 0)+ H' (p — 0)

H'(9) = 5

Die Hiillkurve der Geradenschar
z-cospp + y-sinpp —H(p)=0, a<p<§p

ist konvex und heilt Indikatordiagramm. Durch
i / 109
20) = (B +- 1 ) 2-2)

wird jedem ¢ ein Punkt des Indikatordiagramms zugeordnet. An Ste-
tigkeitsstellen von H’(p) ist es der Berithrungspunkt der Stiitzgeraden
von Normalenrichtung g ¢, in den Unstetigkeitsstellen ist es der Mittel-
punkt der Strecke, die z(¢ — 0) mit z(¢ 4+ 0) verbindet. Strebt bei
festem @ der Ausdruck r—¢.log| F(re®)| in (2.1) gegen H (¢), wenn r
auf einer geeigneten Menge von linearer Dichte 1 gegen unendlich
strebt, so schreiben wir dafiir

lim* r-¢.log | F (re*?) | = H (¢p) .

r-—>» 00
Gilt dies fiir alle ¢ in &« < ¢ < B, so sagen wir, dafl sich F(z) im ge-
nannten Winkelraum beziiglich r¢ asymptotisch regulédr verhalte.
Diese Funktionen haben folgende Eigenschaften:

Die Nullstellenverteilung von F (z) ist meBbar beziiglich r¢. Thre MaB-

funktion N (¢) steht mit H(p) in einem einfachen geometrischen Zu-
sammenhang. Die Linge des Indikatordiagramms zwischen z(0) und
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z(p) ist namlich gleich 2a N (p). Es bedeutet also 2x-N(¢) die zum
Indikatordiagramm gehorige Bogenfunktion. Auch hinsichtlich des
Argumentes zeigt F (z) ein regulires asymptotisches Verhalten. Wird
némlich arg F(z) lings der Halbgeraden arg z = ¢ als eindeutige Funk-
tion erklirt, indem eventuelle Nullstellen darauf durch kleine Halb-
kreise im positiven oder negativen Sinne umgangen werden, so gilt

arg F(re??)
re

——Hp+0) —o(l)< <= Hp—0)+o() .

Dieser Satz iiber arg F(z) und die Definition des regulidren asym-
ptotischen Verhaltens konnen zu einer einzigen Aussage vereinigt wer-
den, indem wir

H(g) '":.TH' (9) = Q (o) (2.3)

setzen. Ferner ergibt sich aus dem geometrischen Zusammenhang zwi-
schen N (¢) und H (¢p), fir ¢ und ¢, im Intervall (x, ),

@

H’ : .
H (p)=H (,) cos ¢ (p—o) +w-—*§~p Ysin g (p—@o)+27 f' sin ¢ (p—0) - dN(0).
Po
Durch Differenzieren folgt dann
®
Q)¢ = Qpo)-eie% — 2ai [0 AN(O) . (2.4)

Po
Zusammenfassend gilt

Satz A. Ist die Funktion F (2) im Winkelraum « < argz < f regulir
und bezilglich re von reguldrem asymptotischen Verhalten, so ist thre Null-
stellenverteilung dort mepfbar beziglich re und

log F'(re®)

- =Q(p) +elr.g) , a<p<p . (2.5)
Daber qilt fur alle ¢
limsupRe(r,p) =0 , lim*Re(r,p) =0 (2.6)
und T o
|Je(r @) | <a(Nip+0) —N(p —0)) +o(1) . (2.6

Ist die Funktion F(z) im Winkelraum (<) o’ < argz < p'(Z B) null-
stellenfrer, so qilt sogar
lime(r,p)=0. (2.7)

r-> 0
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Der Zusammenhang zwischen den Funktionen %(¢), @(¢) und N (¢)
wird durch (2.3) und (2.4) festgelegt.

Ist insbesondere F(z) eine ganze Funktion von ganzzahliger Ord-
nung g, so geniigt die Nullstellenverteilung neben der MeBbarkeits-
bedingung noch einer Art Gleichgewichtsforderung. Weil namlich Q (¢p)
die Periode 2z hat, folgt aus (2.4)

2T

f'efee-dN(o) —0 . (2.8)

Dies ist nur eine andere Form der geometrischen Tatsache, daB das
Indikatordiagramm eine (im allgemeinen nicht einfache) geschlossene
Kurve ist.

Noch einer dritten Bedingung miissen die Nullstellen einer ganzen
Funktion von ganzer Ordnung und regulirem asymptotischen Verhalten
geniigen. Fiir letzteres ist ndmlich notwendig und hinreichend, da@

27

. m(r) 1

lim 25 ._szﬂ(a)do .
0

Daraus folgt aber nach einem Satz von M. L. Cartwright®) (vgl. (1.2)

und (1.4)) -

lim 8 (r) = _}t-fﬂ(e) €00 40 . 2.9)
0

7>

Dieser Grenzwert gestattet eine interessante geometrische Deutung.
Wihrend namlich die Bogenfunktion 2z N (¢) das Indikatordiagramm
nur bis auf Translationen bestimmt, wird durch den Grenzwert (2.9)
seine Lage eindeutig festgelegt. Um dies zu sehen, belegen wir die Kurve
mit Masse, deren Dichte gleich ist der Kurvenkrimmung an der be-
treffenden Stelle. Der Schwerpunkt dieses Massensystems hei3t Kriim -
mungsschwerpunkt des Indikatordiagramms?). Um ihn zu berech-
nen beachten wir, daB der Linge ds die Masse dp zukommt. Das zum
Kurvenpunkt z(p) gehoérige Massenelement ist also gleich dg und die
Gesamtmasse gleich 2z. Der Schwerpunkt ist dann

2

r= 5 [ 29 do -

‘) Vgl. Anm. 3; in der unten gegebenen geometrischen Formulierung begegnen wir
einem Resultat iiber Exponentialsummen von @. Pélya, vgl. Anm. 4 Pélya [3].
7) Der Begriff des Kriimmungsschwerpunktes geht auf J. Steiner zuriick.
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Aus (2.2), (2.3) und (2.4) folgt
an
JQH(e) eied 4 . (2.10)

0

2t
1 —— 1
= —— . ene? ——
2y 2Wfﬁ?(@?) ee? dp = —
0

Es konvergiert also S(r) gegen den Kriimmungsschwerpunkt des Indikator-
dvagramms, wenn r gegen Unendlich strebt.

3. Bis jetzt sind wir ausgegangen von einer ganzen Funktion ganzer
positiver Ordnung, die sich asymptotisch regulidr verhélt, und haben
drei notwendige Bedingungen fiir die Nullstellenverteilung gefunden,
niamlich die Mefbarkeitsbedingung (1.1), die Gleichgewichtsbedingung (2. 8)
und die Konvergenzbedingung (2.9), kurz die Bedingungen M, G und K.

Gehen wir nun zur umgekehrten Fragestellung iiber. Wir geben uns
eine meflbare Nullstellenverteilung {z,} und untersuchen das asym-
ptotische Verhalten der zugehorigen ganzen Funktion (1.2) bzw. des
kanonischen Produktes (1.3). Der Fall nichtganzer Ordnung wurde in
einer frithern Arbeit untersucht und fiihrte zum Ergebnis 8)

Satz B. Ist die Nullstellenverteilung einer ganzen Funktion von wmichit-
ganzer Ordnung o mefbar, so verhdlt sich die ganze Funktion asymptotisch
requldr.

Im Falle ganzer positiver Ordnung ist die MeBbarkeit allein nicht hin-
reichend fiir regulires asymptotisches Verhalten. Je nachdem wie viele
der Bedingungen M, ¢ und K erfiillt sind, wird ein besonderes Ver-
halten vorliegen. Wir haben also drei Fille zu unterscheiden,

1. Fall: M, G und K
2. Fall: nur M und G, nicht K
3. Fall: nur M, nicht G und nicht K

und damit drei Aufgaben zu losen, deren Ergebnis in folgendem Satz
zusammengefaf3t ist:

Satz 1. Es sei G(z) etne ganze Funktion von ganzer Ordnung o und
von mefbarer Nullstellenverteilung mit der Maffunktion N (p) beziiglich
re. ¢, und S(r) seien wie in (1.2) und (1.4) definiert. Wir setzen weiter

) -———z‘fe-e-iw-dzv(we) (3.1)

&) Vgl. P, p. 206.
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und 4

€0 AN () = C . (3.2)

»
——— 1O

Dann st

re

Dabei erfullt e(r,p) die Bedingungen (2.6) und (2.6’).
Die Diskussion verschieben wir auf Nr. 6.

4. Um die Hauptgedanken in der Beweisfilhrung von Satz 1 besser
hervortreten zu lassen, sei einiges durch Hilfssitze vorweggenommen.

Hilfssatz 1. Es ser f(z) im Winkelraum |argz|< o regulir und
Rf(z) =0(|2]°), wober o eine positive Konstante bedeutet. Dann gilt
sogar f(z) = 0(|2]|?) in jedem Winkelraum |argz|< o —6,6 >0 .

Beweis : Offenbar geniigt es, den Fall x = % zu betrachten. Der
Beweis selbst ergibt sich aus folgender Bemerkung: Ist die Funktion
F(z) in | z| € R regular, so gilt

2

!F’(z)i('ﬁﬁ":—k")? - Max | RF(Rei?)| fir |z|< kR, k<1 9).

Im Kreis | z — R | < R ist ndmlich Max [ R f(z) | = 0 ((2R)°) = 0(R°)

und daher f'(2) = "R“”g . O(R°) im Kreis |z —R|< kR .

(1 — k) -
Wihlen wir k¥ = cos 6, so ist der Kreisbogen |z| =R V1 —k=r

arg z | < Z® _ 5 im letztern Kreise enthalten und daher f'(rei®) —
& 2

=0(r*t) fir |¢| <& —;i——é :

Durch Integration ergibt sich daraus die Behauptung.

%) Diese Ungleichung ist mit jener von Carathéodory verwandt und kann mit analogen
Methoden bewiesen werden. Aus der Cauchy’schen Koeffizientenformel und aus

Fi) . 1 RF(g)
ﬁ;ﬂ“ d;=0,n=1, 2,... folgtan=;t—i¢ §”+1-d§

1EI=R . ¢l =R
2 Max |RF(Re*?) |

Rn

und |a,|<

und daraus dann die Ungleichung fiir F'(z) .
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Hilfssatz 2. Das Kreisiufere |z|>= R sei lings der negativen reellen
Achse aufgeschnitten ; die Funktion f(z) sei im Innern dieses Bereiches
reguldir und im ganzen Bereich, abgesehen von z = oo, noch stetrg. Es gelte

frei?y =0(r'"%), e>0, fir —aLep<Za, r>R
und
lim [f(rei™) —f(re~™)] =a .

7>

Dann gilt gleichmdfprg in jedem Winkelraum || < —6, 6 >0,

lim (f(rei®) —f(r)) = a- -

EY- . E;‘ .
Der Beweis des Hilfssatz 2 ergibt sich leicht aus der Cauchy’schen Inte-
gralformel. Sei £ > 1. Der Integrationsweg I" bestehe aus den beiden
Kreisbogen | (| =4kr und |{|=k1r (—x <L arg{ < n), welche

je lings des obern und untern Ufers der negativen reellen Achse mit-
einander verbunden werden. Liegen die Punkte z, und 2, innerhalb I,

so gilt
1 " 1 1
o) = 1) = 5oz Pl — o) 1O 0 =
r
_.__1__ 2 — %y
| [ eirdegions
[TI=rk—t |8 kr
1 ¥ 1 1
" i i[l (9 +2 e+ zl) (floe™™) —flee'™)) de
Setzen wir z, =7, 2z, = 7€, |@| <m und k = r'"*, so wird der

Betrag des ersten Summanden kleiner als

|e?® —1]. k1 le“’—llk), 1—6) — () (1 t/a
( Ty =T + 1) O@rt—%) =0 (r |
Setzen wir f(p ™) —f(oe ") =a + ¢(p) , wo &(9) = 0 fiir p > o ,
so wird aus dem zweiten Summanden

kr
1 1 1

kr
1 By~
o7 - —)ado — s— 2 "1 do . (4.1
27 (e+zl e+z2)“ ¢ 2ml OFz) etz (@%- &1

rk—1
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1 + k——l k\'—l + eiw

+ klete k111 und

Hievon ist das erste Glied gleich Q—?ﬁ log :

dessen Grenzwert fiir r— oo gleich a - . Wegen |¢| < n — é und

2n
. .0 : . .
lo + re?| > sin - (6 +r) wird der Betrag des zweiten Gliedes von
e =1 e(r), wenn &(r) Max ¢(p) gesetzt
(1), e(r) = £
sin ¢/2 klr < @< kr o8
wird. Da aber mit r auch £-'r gegen Unendlich strebt, so ist

(4.1) kleiner als

lim e(r) = 0 und damit der Hilfssatz bewiesen.

Hilfssatz 3. Die in (2.3) bzw. (2.4) definierte Funktion Q(p) besitzt
auch die Darstellung

2w

Qp) = —i [(p+ 6) e=e? dN(p + 0) + deter (4.2)

0

wenn A eine geeignete Konstante bedeutet.

Beweis: Setzen wir t = ¢ + 0, so wird

?+27

2
[(9+0)eie0-aN(p + 0) = [ terets=0.am
: ;
2m ¥
_ I te-ie o). AN (t) + f (t -+ 27) efeto-0 . AN (t)
[ lo

14
2m @

— giev f te-iet AN(1) + 27 [ e-ieto-0. AN (1) .

0 0

Daraus folgt in Verbindung mit (2.4) die Behauptung.

Hilfssatz 4. 1°). Es seten 2,,25,...,2,,... dite von null verschiedenen,
nach wachsenden Betrigen geordneten Nullstellen der gamzen Funktion
G(z). Set ferner G(0) = 1; log G(2) hat also tm Nullpunkt eine Null-
stelle und ihre Multiplizitit sei o + 1 .

19) Der Satz erinnert an die Carleman’sche Formel und wird mit analoger Methode
bewiesen; vgl. auch Cartwright in Anm. 3.
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Dann gilt fir jedes R >0

2w
1 ("log |G (Re®)| 1 > (5- 2,°
n___f RQ A e? d¢ o — (ZV e — —Rze) .

0 |2y |€ R

Beweis : Wir betrachten das Integral

2:Jzz ,¢‘ log G(C (R20 iceﬂ) a¢ -
|E]=R

Zunichst folgt

_ 1 log G (Re'?) | cosgtp)
J Re MsmgcpS (4-3)

anderseits durch partielle Integration, nachherige Anwendung des
Argumentprinzipes und des Residuensatzes

p=27
i ge ! 1 G'({) 1 e
Ty = 2nzglogG(Re ?) (R29 Le ) 2710 G () (:t e R“) a
=0 tI=R
Y o (4.4)
_}o 1 _ z$
R E Z/R(iz"e_R“) '
oRe |20 | <

Dabei bedeutet n die Anzahl der Nullstellen in |2| < B . Aus (4.3)
und (4.4) folgt dann durch Berechnung des Ausdruckes RT  + ¢J7_
die Behauptung.

Hilfssatz 5. Ist die Nullstellenverteilung {z,} mepbar beziiglich re und
18t N(@) thre Mapfunktion, so gilt

> Rze—gf €0 aN () + o(1) .

|2y | <R

Beweis: Sei zunichst 0 < r, £ r, £ r; £ ... eine Punktfolge auf der
positiven reellen Achse, deren Anzahlfunktion der Bedingung n(r) =
d-re + o(r?) geniigt. Dann ist
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R R
3 e — jte-dn(t) — Ren(R) _-gfte—l. n(t) dt
ry <R

[ &

0

ce

I

1 dRe 1 o(R2) .

Bei gleicher Anzahlfunktion sollen nun die Stellen z, = r,e%#» im Winkel-
raum |argz —0|< 6 gelegen sein.
Wegen |etefn —eie® | <p|0, —6| folgt dann

28 = L dR¢. ¢i® | O(dd R%¢) + o(R) .

|2 | <R

Sei schlieBlich {z,} die gegebene Nullstellenverteilung. Wir zerlegen
die Ebene vom Nullpunkt aus in » Winkelriume mit der Offnung < 6.
Die Richtungswinkel 0, der teilenden Strahlen seien Stetigkeitspunkte
der MaBfunktion N(¢). Dann ergibt sich aus dem Vorausgehenden,
mit AN(0,) = N(0,,,) —N(0,) an Stelle von d und D = N (2x)— N(0),

3 28 __;%_Rze - 3 eted . AN(0,) + O(6D R2¢) 4 o(n R2e)
| 2 | 2 R (7)
27
— ] Ree .feiee .dN(8) + o(R?®) ;

0

denn es kann J beliebig klein gewihlt werden.

b. Beweis von Satz 1. Wir beweisen ihn fiir kanonische Produkte.
Es sei also g eine positive ganze Zahl; z,,2,,...,2,,...(2, 7 0) eine
gegebene meBbare Punktfolge mit der Maffunktion N (¢) beziiglich re
und 7 (z) das zugehorige Weierstraf’sche kanonische Produkt vom Ge-
schlecht ¢.

Man braucht offenbar den Satz nur fiir den Fall zu beweisen, daB
die linke Halbebene nullstellenfrei ist. Denn der allgemeine Fall ergibt
sich daraus folgendermaflen: Es sei N, (p) die Mafifunktion und =, (2)
das kanonische Produkt der Nullstellen in der abgeschlossenen rechten
Halbebene, N_(¢) und z_(2) entsprechend die Maffunktion und das
kanonische Produkt fiir die Nullstellen in der offenen linken Halbebene.
Dann gilt Satz 1 zunéchst fiir z, (z) mit N (¢) und z_( —2) mit N_(¢p+n),
nach einer Drehung der z-Ebene um —=x auch fiir n_(z) mit N_(¢) und
daher fir =(2) ==, (2)-7n_(2) mit N(p) = N, (p) + N_(¢) .

Es sei also die linke Halbebene nullstellenfrei. Durch die Substitution
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w = 2%, —%— <o <l, —GQ— #1,2,3,... wird die Punktfolge {z,} trans-

formiert in die Punktfolge {w, = 27}, die ebenfalls meBbar ist, aber
beziiglich 7%¢ . Das zugehorige kanonische Produkt 7, (w) ist eine ganze
Funktion der Ordnung g /o (nichtganz) und daher nach Satz B von
regulirem asymptotischen Verhalten beziiglich 7%/ . Um zur urspriing-
lichen Stellenverteilung zuriickzukehren, setzen wir x,{(w) = n,(2°) =
F(z) . Der Winkelraum | arg w | € & (lings der negativen reellen Achse
aufgeschnittene w-Ebene wird durch w = 2° auf den Winkelraum

largz | < n /o (Winkelraum X))

der Riemann’schen Fldche von log z abgebildet. Es ist also F'(z) in diesem
Winkelraum eindeutig und analytisch, von der Ordnung ¢ und beziiglich
r¢ von regulirem asymptotischen Verhalten. Die Nullstellen von F(z)
fallen dort mit denjenigen von 7z (z) zusammen, insbesondere ist F (z) #0
in den beiden Winkelrdumen |argz 4z | <n/o . Es gilt also gemiB
Satz A im Winkelraum X

log F(rei?)
re

ZQ(¢)+£(T’¢) ) (5'1)

wobei sich @ (¢) gemafl (2.4) durch die MaBfunktion N (p) darstellen
lift. Insbesondere gilt

lim

>

=@ (9)

log F(re*®)
re

in den beiden Winkelrdumen | ¢ 4+ | <7 /9 . Nun ist nach (2.4) und
(3.2)

Qe + 2n) —@Q (¢p) = — 2aiCeie?
und daher

i log F(ret®+2m)  log F(re'®)
m (rei®+2m)e  —  (rei%)e

)—_.—._2m'6 (5.2)

7 ->»00

fir |l —7| <z/y .
Vergleichen wir nun x(z) mit #(z), indem wir die Funktion

7 (2)

20 = Fa)

(5.3)

betrachten. Diese ist in X regulir, nullstellenfrei und von der Ordnung o,
also log @(2) in X regulir und log | DP(z)| <A |z|®"*, 0 <e<1.
Aus dem Hilfssatz 1, angewandt auf log @(z), folgt dann weiter

|log®(z) |< B|z|2*® . (5.4)
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Wir setzen jetzt _ log ®(2)

f(2) (5.5)

ze
Diese Funktion ist in X reguldr. Ferner gilt nach (5.4), (5.2) und (5.3)

|f&)| <B|z|° in X
und
lim [f(re!®®*+2M) — f(rei?)] = 2niC

>0
fiir ¢ in der Umgebung von —z. Daher ist nach Hilfssatz 2, gleichmaBig
fir || < n,
lim [f(ret?) —f(r)] = Cip

r—> oo

und weiter nach (5.5) und (5.3)
log 7 (rei?) = log F (re®?) + (f(r) + Cig) (rei*)e + o(re)

und schlieBlich nach (5.1)

log 7 (ret?®)
re

=Q(p) + (f(r) + Cip)ee? 4 g(r,¢) .

Dabei hat ¢(r, ¢) dieselbe Bedeutung wie in Satz A. In Verbindung mit
(3.1) folgt aus Hilfssatz 3

Q(p) + Cipeie? = q(p) + Aeie? (5.6)
und daher mit P(r) = f(r) + 4

log 7;5,7'6""’) _ 9(99) + P(T) gie? - 6(7’, (P) . (5.7)

Zur weitern Verwendung setzen wir
q(r, 9) = q (p) + P(r)ee® , (5.8)
Rqlp) =h(p) und Rq(r, ¢) = hir @) . (5.9)

Dann ist, wie sich leicht aus (5.6) und (2.3) bestdtigen 1aBt,

g(p) = h(p) — —;— b () + —”Q— R (Cieie?)
und (5.10)

Q(",fp)~h(?‘,¢)~——é——-—a—q)—~—+-—am(0w") .
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In (5.7) ist der erste Term der rechten Seite durch das asymptotische
Verhalten der Nullstellen vollstindig bestimmt. Wie hdngt nun P (r)
mit den Nullstellen zusammen? Um diesen Zusammenhang zu finden,
benostigen wir von (5.7) nur die Realteile. Es ist nach (5.9)

log | 7 (ret®)|

re

=h(r,p) +Re(r,9) - (5.11)

Nun wird durch eine geeignete Operation aus der rechten Seite das
Glied P (r) und aus der linken Seite der gesuchte Ausdruck in den Null-
stellen z, herauspriapariert. Wir bilden zunéchst den zu (2.10) analogen
Ausdruck und erhalten nach (5.10) und (5. 8)

2n 2m
1 . 1 2 ah(r,qp) .
_ 109 —— —_— 109 f—
- [mepeerdp =g [ (b + 5 20D o dy
0 0
(5.12)
2m . 1
1 SN AN . — ,
= — —_— 109 109 == i .
2nf[(1(r,¢)+ . R(Cre )Je dy P(r)+0(nz+2g)
0
Denn es ist
2
1 [ —— ,
i .etle® — . .
anq«v) e?dp =miC (5.13)
0

Um dies einzusehen, setzen wir @, (p) = q(p) — Cig ei¢?. Nach (5.6)
und (2.4) ist dann

14

eie? Qo) = 700) + 2ai [ e'e - AN (D) -

0

Nun ist
2

L 4 27
fdcpf e"e"dN(G)=2n0——f9e‘99-dN(0)
0 0

0

und nach (3.1) -
700) =i f Beie®. AN (6)
0

und
27
[ erer dp = amticr .
0
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Daraus ergibt sich die obige Behauptung. Anderseits ist nach Hilfs-
satz 4 11)

27

%f o8 [nire™)| ete? do =

1 28
re 0 |2

Z{ (E;e“ rzve) =T(r) . (5.14)

0

Die dritte GroBe in (5.11), Re(r, ¢), ist ,,meistens klein‘‘; es ist also zu
vermuten, dafl die linken Seiten von (5.12) und (5.14) sich nur um eine
GroBle o(1) unterscheiden und daB daher nach Hilfssatz 5 und (3.2)

P@) =T + 0 (ai = 5] +0() =5 + T (i =) + o)
(5.15)

ist. Es bleibt also zu zeigen, daf3

re

27 27

f log |7 (re*?) | .eie? do th(r,qg),eiw dp + o(1) . (5.16)
0 0

ist. Aus der MeBbarkeit der Nullstellenverteilung folgt

n (r)

lim
r>wo T

= N(2n) — N(0) =

und daher nach der Jensen’schen Formel

em T
lim l'f loglﬂgre’”’" dep = lim _l_f_.ith___—_B,
0

7> 00 2n r r> 00 'I'Q Q
0

Anderseits ist wegen (5.8) und (5.9)

——fh(r ?)d jnh(qo)dqv -

Aus (3.1) und (5.9) folgt durch partielle Integration

hig) = f (sin 06 + 00 cos 00) N (g + 6)d0

1) Es hat log7(z) bei z = 0 eine (¢ + 1)-fache Nullstelle, weil 77(z) vom Geschlecht
Q ist.
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Weiter ist wegen der Periodizitdt von dN ()

fN((p—l—O)dtp::fN(t)dt+9(N(2n) _N@©O)=m+D-6 .
0 0

Zusammen ergibt sich

2 2
1 1 . D
%fh(r,tp)dq)—ﬂj (sin o0 + p 6 cos p0) (m,+D~0)d0__—Q— .
0

0

Es folgt also zunéchst

2r
lim f’[log[nrgre“’)l —-—h(r,tp)]dqazo ‘ (56.17)
Setzen wir nun .
D(r,g) = log |7 (re') | —kir,p) , (5.18)

re

So ist wegen (5.11) und (2.6) lim sup D (r,¢) =0 und zwar

21
gleichméBig fiir alle ¢ . Es ist also lim Ot (r,p)dp =0 .
7> 00 Qo
2w
In Verbindung mit (5.17) folgt daraus auchlim | (— @ (r,¢)) dp =0 .
T->» o0 .
2
Nun ist @+ 4 (— @)+ = |P|, also sogar lim | |DP(r,¢)|dp =0 und
7->» 00 .
27
somit lim D(r,p) ee?dp = 0, wasmit (5.16) gleichbedeutend ist.

>0

6. Wir kehren nun zur Diskussion des Satz 1 zuriick. Geméal} (3.4)
wird das asymptotische Verhalten von G(z) durch die beiden Funk-

tionen ¢(¢) 4+ C (m’ ——-—;—) e'e? und S(r) charakterisiert. Wihrend bei

der ersten nur das asymptotische Verhalten der Nullstellen eine Rolle
spielt, kommt ihr ,individueller EinfluB« in S(r) zur Geltung. Dieser
Unterschied wird auch in der nachfolgenden geometrischen Inter-
pretation zum Ausdruck kommen.
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Zunichst bemerken wir, daf3
S(r)y=0C-lgr + o(lgr) (6.1)

ist. Betrachten wir ndmlich eine Nullstellenverteilung auf der positiven
reellen Achse, deren Anzahlfunktion der Bedingung =n(r)=d 7?4 o(r?)
geniigt, so 1st ¥ r ¢ =

o
ryZr
r r

f t=e-dn(t) =r—2-n(r) +o J't—@—ln(t)dt =pdlgr +o(lgr) .

0 0

Der Rest ergibt sich ganz analog wie bei Hilfssatz 5. Nach (6.1) sind
also die Bedingungen C = 0 und S(r) = 0(lgr) gleichbedeutend.

Im Falle C = 0 ist gemiB (4.2) Q(¢) = q(p) + 4e*¢? und daher

hp) = Ralp) = — [ Osing0-dN(p +0) (6.2)

die Stiitzfunktion einer geschlossenen konvexen Kurve. Wegen (2.10)
und (5.13) liegt ihr Krimmungsschwerpunkt im Nullpunkt. Wir nennen
diese Kurve das zur MaBfunktion N (¢) gehorige Indikatordiagramm in
Normallage und bezeichnen es mit J, .

Gehen wir nun iiber zur Diskussion der drei Fille in Nr. 3.

1. Fall: Es seien erfiillt die Bedingungen M und K; dann ist C = 0
und auch Bedingung G erfiillt. Wir setzen

lim S(r) =S8, =p +tq, pund q reell.

r-> 0

Dann ist nach Satz 1

lim*

- 00

= h(p) + p cosgp + ¢ singp = H(p).

log |G (re?) |
re

Die ganze Funktion G(z) ist also von regulirem asymptotischen Ver-
halten und S, nach (2.10) Kriimmungsschwerpunkt des Indikator-
diagramms. In Verbindung mit (2.9) folgt schlieflich
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Satz 2. Eine ganze Funktion vom Mitteltypus der ganzen Ordnung o
18t dann und nur dann von requlirem asymptotischen Verhalten, wenn die
Nullstellenverteilung mefbar ist beziiglich r¢ und lim S(r) existiert 12) .

2. Fall: Es seien erfiillt die Bedingungen M und G. Wir setzen S(r) =
S,(r) 4+ 1 Sy(r) , S, und S, reell. Dann ist

log | G (rei?) |

. =h(r,p) + Re(r,¢) (6.3)

mit
h(r, p) = h(p) + S;(r) cos g ¢ 4 S,(r)sing ¢ .

Bei festem 7 ist A (r, @) die Stiitzfunktion einer konvexen Kurve mit dem
Kriimmungsschwerpunkt S(r). Wir nennen sie das ,,bewegliche In-
dikatordiagramm*’ und bezeichnen es mit J, ; denn es geht aus dem
Indikatordiagramm in Normallage, aus J,, durch Parallelverschiebung
um S(r) hervor. Wiahrend also die Form von J, allein durch A (¢) bzw.
N (@) schon bestimmt und daher unabhingig von r ist, wird seine Lage,
sein Kriimmungsschwerpunkt durch die Funktion S(r) festgelegt. Nach
Mafigabe von S(r) bewegt sich also J, bei wachsendem r in der Ebene
hin und her und charakterisiert im Sinne der Gleichung (6.3) fiir jedes »
durch seine Lage und seine Form das Verhalten von G(z) 12).

Bei beschrinktem S(r) ist die Funktion G'(z) offenbar vom Mittel-
typus der Ordnung ¢ und

lim sup log |G(ereW) | = h(p) 4 lim sup (S, (r) cos pp + S,(r) sin 0p)

7> 00 r oo

ihr Strahltypus, die Stiitzfunktion einer geschlossenen konvexen Kurve,
die wir jetzt, im Gegensatz zu oben, ,,festes Indikatordiagramm*
nennen wollen. Wie das feste Indikatordiagramm durch das bewegliche
erzeugt wird, sieht man am besten im Falle ¢ = 1. Dann ist ndmlich
das Diagramm eine einfache geschlossene Kurve und somit der Rand

13) In einer frithern Arbeit ,,Uber Interpolation ganzer Funktionen*, Comm.
Math. Helv., vol. 14 (1941/42) p. 316—349, wurde eine Bedingung aufgestellt, die wohl
hinreichend, aber nicht notwendig ist fiir reguliares asymptotisches Verhalten. Die dortigen
etwas komplizierten Betrachtungen werden nun iiberfliissig, da jene etwas verschérfte
MeBbarkeitsbedingung (p. 319) auch die Konvergenz von S(r) zur Folge hat.

13) In einer frithern Arbeit, ,,Uber gewisse ganze Funktionen vom Exponen-
tialtypus*, Comm.Math. Helv., vol. 16 (1943/44), p.1—18, wurde fiir ¢ = 1 und
nur fiir den Fall, daB die Nullstellen hinreichend genau in Richtung der reellen Achse
liegen, dasselbe Resultat mit andern Methoden erhalten.
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eines konvexen Bereiches. Das feste Indikatordiagramm koénnen wir
dann auffassen als den Rand des kleinsten konvexen Bereiches, aus
dessen Umgebung das bewegliche Diagramm fiir alle hinreichend groBen
r nicht mehr herauskommt.

Die Bedeutung des beweglichen Indikatordiagramms wird noch besser
aus der folgenden Betrachtung ersichtlich (¢ = 1). Nach (3.4), (2.2),
(2.3) und (4.2) in Verbindung mit unserer Voraussetzung C = 0 ist

CBIUT) _ W) + S0 + T eiee

d. h. der Wert der linken Seite liegt meistens in der Umgebung des an
der reellen Achse gespiegelten ,,beweglichen Indikatordiagramms‘.

3. Fall: Nur die Bedingung M ist erfiillt, nicht aber G und daher
auch nicht K. Nach Satz 1 ist

log G (ret?) = eie? . §(r) - re + (q((p) - Z“(ni—»%)e"w)r9+s(r,¢) re .

Nach (6.1) ist das erste Glied von der Groflenordnung r¢lgr, das
zweite Glied vom Mitteltypus der Ordnung g. Es ist aber k(p) = Rq(¢)
nicht mehr Stitzfunktion einer konvexen Kurve, was man leicht mit
(3.1) und (4.2) bestitigen kann.

Priifen wir noch kurz unsere Resultate an den beiden bekannten

: . 1
Beispielen sin zz und —— nach.

I'(z)

l.sinnz. Esist p=1, C=0, S(r)=0,

1 fiir =0 und =
dN(sv)=; v

0 sonst,
7(g) = —mte? , 0<gp<nm
¥ + miet? , 0>¢p> —m,
also
—atz, Jz>0
log sin 2 ~ 1, >
+miz, Jz<O .
1
2. TN N e i 't =1 =—""1
%) Hier ist o , C ,
{1 fir o=m=n
% (3 | 0 sonst ,
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1
S(r)y=y—3 — == log 7 + 0(1) (y ist die Euler’sche Konstante)
vZr

q(p) =i(n — @) e*®
und daher

1 .
10g]—1§)—:zlgr——z<pz+z+o(z)

oder _
log I'(z) = zlogz — 2+ 0(2) fir |p|<a .

7. Im Vorangehenden behandelten wir nur jene Nullstellenvertei-
lungen, die beziiglich r¢ meBbar sind. Um auch andere mefBbare Ver-
teilungen definieren zu konnen, die ebenfalls zu ganzen Funktionen
ganzer Ordnung fiihren, beniitzen wir die pridzise Wachstumsord-
nung p(r), eine Funktion, die im Intervall (0, co) stetig ist, deren
Rechts- und Linksableitungen existieren und stiickweise iibereinstim-
men. Sie geniigt den Bedingungen

lim o (r) = o (7.1)
und r-> o
lim o' (r)rlogr =0, (7.2)

7> 00

wenn fiir o’ (r) die Rechts- oder Linksableitung eingesetzt wird. Ist fiir
eine ganze Funktion G (z) lim sup r—¢( log M (r) positiv und endlich

7> o0

so ist G'(z) von der Ordnung o und der prdzisen Ordnung o(r).

Nun brauchen wir nur in (1.1) und (2.1) die Vergleichsfunktion r¢
durch die allgemeinere r¢(" zu ersetzen, um sofort die entsprechenden
Begrifie ,,mefbare Nullstellenverteilung beziiglich r¢" *“ und ,,Strahl-
typus der Funktion F (z) beziiglich re‘" ‘ zu erhalten. Die in Nr. 2 bis
und mit (2.8) ausgesprochenen Resultate bleiben erhalten. Auch die
analytische Funktion z¢, die der reellwertigen Funktion ¢ entspricht,
hat ihr Analogon: Es existiert ndmlich zu jeder prdzisen Ordnung o(r)
mit 9> 0 eine Funktion V(z), die auf der positiven reellen Achse reell-
wertig, monoton wachsend und von dort ausgehend im Winkelraum
| arg z | < 3 der Riemann’schen Fliche von log z eindeutig und analy-
tisch ist und die den Bedingungen

V(’)") ~ rel(r)
und ) :
V(z) ~ee?-V(r) , z=re"° (7.3)
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geniigt, letzteres gleichmiBig in |argz|< §n —75, #>0 ). Aus
(7.1) und (7.2) in Verbindung mit (7.3) folgt fiir festes ¥ > 1 und
klr=zt= kr
tet) = (1 + &(r, k))-te (7.4)
mit
lime(r,k) =0 . (7.5)
7> 0
Wir konnen uns nun die allgemeine Aufgabe stellen, zu jeder meB-
baren Nullstellenverteilung beziiglich einer préizisen Ordnung g (r) mit
¢ > 0 das asymptotische Verhalten des zugehérigen kanonischen Pro-
duktes zu bestimmen. Fiir nichtganzes ¢ wurde diese Aufgabe in einer
frithern Arbeit 15) erledigt, deren Resultat in Satz B ausgesprochen ist.
Es verbleibt also, analog zu Nummer 3, die Aufgabe fiir ganzzahliges
o> 0 zu losen. g sei im folgenden wieder ganz. Die Verallgemeinerung
des Satz 1 lautet dann

Satz 3. = (z) ser das kanonische Produkt einer mefbaren Nullstellen-
verteslung beziiglich r¢'™ und von ganzer Ordnung o > 0. S(r), C und
q(p) seten wie in (1.4) 18), (3.2) und (3.1) definiert. Dann ist

10g;((:;ew) =q9) + ﬁ(m‘ *"lé) eie? vr(gr) S(r) elev+e(r, ), (7.6)
falls das Geschlecht o und
log;;((:;ew) — Q((P) o} Z—]— (7”, _____;__) ele? -+ Vr(j‘) eiO‘P(S (7‘) — S(oo)) -+ 8(7’, ¢) ’

(7.7)
falls das Geschlecht o —1 ist. e(r,@) erfillt dieselben Bedingungen wie in
Satz 1.

8. Der Beweis von Satz 2 verlduft ganz analog wie bei Satz 1. Die
Hilfsséitze 2 und 3 erfahren iiberhaupt keine Anderung. Wihrend aber
Hilfssatz 4 fiir beliebige kanonische Produkte vom Geschlecht ¢ giiltig
bleibt, bedarf er fiir Produkte vom Geschlecht o — 1 einer Modifikation.
In diesem Falle hat ndmlich n’(2)/n(2) bei 2 = 0 eine Nullstelle von der
Ordnung ¢ — 1. Es ist also (4.4) zu ersetzen durch

G o 1 2
T:h= 2On :l:-—-———e :l:S(T)——'—' 2
—_— 0 lzylér e

{ gre

14) Vgl. P, Nr. 5. Dort wurde der Satz allerdings nur fiir den Winkelraum | arg z | <<ar/o
ausgesprochen, doch laft sich dieser Winkelraum durch freiere Wahl der Zahl p leicht
vergrofern.

15) Vgl. Anm. 2.

16) Es ist jetzt cg = 0 zu setzen.
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Dabei ist a, der Koeffizient von 2¢-! in der Potenzreihenentwicklung von
7'(2)[n(2) um z=0. a, liBt sich aber leicht berechnen; denn es ist
in der Umgebung des Nullpunktes

2 1 [2z\¢
(o) =)

und daher
aez——v:lz:g = "—Q'S(Oo)
Es folgt also
5 0 zy
28 £ (5) — 8(eo )h—e- 2
lz |<r
und daraus
2
1 lo rei¢ . 1 N zlo'
—7—{.{ glf’;g )| ezwd(p—_—S(r)“S(oo)“——lzzlzr 70 (8.1)

0

im Falle des Geschlechtes o — 1.
An Stelle von Hilfssatz 5 gilt etwas allgemeiner

_—:_f ¢ied . 4N (6) - V(r) +0(Kr(—6"—)-), (8.2)

zv|<r7' e

wenn die Nullstellen beziiglich V(r) mebar sind.

Zum Beweis wiahlen wir auf der positiven reellen Achse eine Punkt-
folge {7,}, deren Anzahlfunktion der Bedingung n(r)=d - V(r)+o(V(r))
geniigt. Dann ist

3 rf= jte dn(t) =reV(r)d —od {tﬂ"l Vt)ydt 4+ o(reV(r)) .

ry, 1
4 [}
0 0

Fir ein k<1 gilt
kr

j te-1. V(1) dt < k2e-reV(r)

0

und wegen (7.4)
fto—l Ve)dt = (1 + e(r, k))ft?‘lﬂ(ﬂdt =
ir kr
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Es ist also

Y r¢=drel(r) (1 —

ry&r

e _Leteny __ o2
Q+Q(r)(l+e(r,k))(l k ) Qk").
Wir beriicksichtigen nun (7.5) und (7.1) und lassen mit » auch k! ge-
eignet gegen oo streben. Dann strebt die Klammer gegen 3 und wir
haben

Der Rest ergibt sich analog wie in Hilfssatz 5.

An der in Nummer 5 dargestellten Methode ist nun nichts Wesent-
liches mehr zu dndern. In (5.1) haben wir r¢ durch V(r) zu ersetzen.
(5.2) lautet

, log F(reite+2m) log F(re®)
'EE ( VY (reite+2m )M“ o V(rei®) ) —27iC,
. log D (2) e e . .
entsprechend zu (5.5) ist f(z) =V reguldr fir alle z im Winkel-

raum X mit | z| > R,, woraus wir wieder nach Hilfssatz 2 schlieBlich
erhalten
log = (r e”’)
V(r)

q(p) + P(r) e + e(r, @) .

Ebenso ergibt sich analog

_}{f logl;’;((:)ew)l eie? dp = P(r) + C (gm..|_ ) + o(1) .

Bei der Auswertung des Integrals ist nun zu unterscheiden, ob es sich
um kanonische Produkte vom Geschlecht o oder ¢ — 1 handelt. In Be-
riicksichtigung von (8.2) ergibt sich im Falle des Geschlechtes p

P(1)+C(nz+ ) S(r)——~C’+o(l),

( 7)
im Fall des Geschlechtes ¢ — 1 aus (8.1)

"1’_(7)+0(ai+-2-15)=1f S(oo))——glé-o—{-o(l)

und daraus die Behauptung des Satz 2.
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9. Auch die Diskussion des Satz 3, vor allem Fall 1 und 2 bringen
gegeniiber dem in Nr. 6 schon Gesagten nichts wesentlich Neues. Nur der
Fall 3, wo die MeBbarkeit, nicht aber die Bedingung (2.8) erfiillt, also
C +# 0 ist, soll hier etwas eingehender besprochen werden.

Die von null verschiedenen, nach wachsenden Betrigen geordneten
Nullstellen bezeichnen wir wieder mit z, ,2,,..., ihre Anzahlfunktion
mit n(r). Wir setzen |z,| = r, und N(2 n) —N(0) = D . Dann ist

n(r) = D-V(r) + o(V(r)). Die Reihe Z’r ¢ und das Integral

v=1

o0

f Qfﬁ dt (9.1)

1

sind gleichzeitig konvergent oder divergent, das zu den Nullstellen {z,}
gehorige kanonische Produkt also vom Geschlecht ¢ oder ¢ — 1, je
nachdem (9.1) divergiert oder konvergiert. Denn es ist

X nt=mn-rt+ ef:_,it)ldt———

rp,<r
in

(9.2)

= (D + of

t9+1

und iiberdies wenn das Integral (9.1) konvergiert, V(r) = o(r¢). Wir
zeigen weiter, daf

lim 7 f U dt = oo, falls das Geschlecht o (9.3)

r-> oo fe+1

und

: V()
}l-pn;lo V(r),f TR dt = oo falls das Geschlecht p — 1  (9.4)

ist. Ich beweise (9.3); fiir (9.4) geht der Beweis analog. Da es sich um
den Maximal- oder Minimaltypus der Ordnung ¢ handelt, so hat o(r) —¢
von einem gewissen r ab keinen Vorzeichenwechsel mehr. Aus (7.4)
folgt dann zundchst fiir ein festes k< 1
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r
V(t) re jetn—e-1gy _
V()Jt"“dt vy (L + ) | =
kr kr

1 — ke(n—e

e(r) — e

Wegen (7.1) und (7.5) strebt dann der letzte Ausdruck gegen unendlich,
wenn wir mit r auch k! hinreichend langsam gegen unendlich streben

lassen.
Weiter folgt aus (9.2) in Verbindung mit (9.3) und (9.4)

= (14 e(r,k))

V()

Y 7%= (oD + o(1)) -——~dt fiir das Geschlecht
ry €1
1
und
Y %= (eD+ Geschlecht ¢—1 .
Ty >7

Analog wie in Nr. 6 bzw. im Beweis von Hilfssatz 5 ergibt sich daraus

8(r) = (C+ O(l))J'tZgl

dt

bzw.

" V()

S (c0) — 8(r) = (C + 0(1) )f#’“dt

und schlieBlich mit Satz 3, indem wir noch die Glieder niedrigerer Ord-

nung vernachlissigen,
4

log #(2) = (C + £(2)) 2¢ - f'::g)l di (9.5)
bzw. 1
log z(2) = — (C + £(2)) 2 J ::(:)1 dt , (9.6)

je nachdem das Geschlecht o bzw. ¢ — 1 ist.

Speziell, wenn alle Nullstellen auf der negativen reellen Achse liegen,
D=N@2a) —N (0) und V(r) = re(lgr)®, r >e, gesetzt wird, so ist
C = (—1)¢, fiir x> —1 das Geschlecht gleich ¢, fiir « < — 1 das
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Geschlecht gleich o —1 und es gilt fiir das zugehorige kanonische
Produkt
2@ (Ig r)oe+1

log 7 (z) ~ (— D) %1

, a# —1, |argz|<m,

und
logn(z) ~(— D)eze log logr , a=—1, |argz|<=m 7).

10. Zum Schlusse erwiihne ich eine Anwendung der vorangehenden
Resultate auf die Interpolation ganzer Funktionen. In der oben zitierten
Arbeit (Anm. 12) wurde die Frage untersucht, unter welchen hinreichen-
den Bedingungen fiir die Punktfolge a@,,a,,...,a,,... die Interpola-
tionsformel

G(2) = P(2) gl P’(a?;(?zV)—-— 3 (10.1)

giiltig ist. Fiir den Fall ganzer Ordnung wurde dort eine etwas kiinstliche
,,verschirfte MeBbarkeitsbedingung‘‘ eingefiihrt, die sich nun auf Grund
der obigen Resultate durch schwichere und natiirlichere Bedingungen
ersetzen liBt. Wie sich leicht aus Satz 1 der vorliegenden Arbeit und aus
den Nr. 12 —21 und dem Nachtrag S. 349 der genannten Arbeit ergibt,
lautet fiir den Mitteltypus einer ganzen Ordnung das Resultat dann
folgendermafien:

Satz 4. Es sei p eine ganze positive Zahl und es moge die Folge von
Stellen a,,a,,...,a,,..., die alle vom Nullpunkt verschieden sind und
keinen endlichen Hdiaufungspunkt besiizen, den folgenden Bedingungen ge-
niigen .

1. Es ist
n(r; ¢, @") =k(¢" —¢')re 4 o(re) ,

wobei n(r; ¢, ¢") die Anzahl der Stellen im Sektor |z| < r, ¢’ < arg z<¢”
bezeichnet.

2. Die Reihe X a,° konvergiert und st gleich ag.

v=1

17) Fur diese und andere Spezialfille vgl. E. Lindelof, Mémoires sur la théorie des
fonctions entiéres de genre fini, Acta Soc. Sci. Fenn., vol. 31 (1902). Das allge-
meine Resultat, wie es durch die Gleichungen (9.5) und (9.6) ausgedriickt wird, war
mir bis jetzt unbekannt,
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3. Es existiert ein d> 0, so daf die Kreise |z —a,| Z d|a, |-,
v=1,2,... esnander nicht iberdecken.

Es sei ferner P(2) = e~%°. 7(z) , wobei n(2) das zur Folge {a,} gehorige
kanonische Produkt bedeutet und G (z) eine ganze Funktion, deren Maximal-
betrag der Bedingung

loglqlf(r)<_2_zk

lim sup =<
gentigt.
Dann gilt die Interpolationsformel (10.1). Die Reihe ist in jedem be-
schrankten und abgeschlossenen Bereich, der keinen der Punkte a, , a,,. ..
enthdlt, absolut und gleichmdifig konvergent.

Gibt es iberdies eine Konstante x, so daf
|Ga,) | € = , yv=1,2,... ,

80 18t G (z) notwendig eine Konstante.

(Eingegangen den 14. September 1945.)
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