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Ûber ganze Funktionen ganzer Ordnung

Von A. Pfluger, Zurich

1. Die Nullstellen der beiden ganzen Funktionen sinnz und -=û-

unterscheiden sich nicht so sehr in ihrer Dichte als vielmehr in ihrem
Symmetriecharakter, weleh letzterer Unterschied ein vôllig verschiedenes

asymptotisches Verhalten der beiden Funktionen bewirkt. Dièses ver-
schiedene Verhalten in allgemeinerem Rahmen aufzuklàren ist das Ziel
dieser Arbeit; genauer, es wird das asymptotische Verhalten solcher

ganzer Funktionen untersucht, deren Ordnung g ganzzahlig und deren
Nullstellenverteilung meBbar ist.

Wir nennen eine Verteilung von Nullstellen mes s bar bezilglich re,

wenn filr irgend zwei Stetigkeitsstellen einer monoton wachsenden Funktion
N(<p)

)re + o(r«) (1.1)

ist, Dabei bezeichnet n(r; <p', <pfr) die Anzahl der Nullstellen im Sektor

\z\ ^ r 9/ < arg z <<p" \ N(<p) heipt MaBfunktion der Null-
stellenverteilung1).

Die entsprechende Aufgabe fur nichtganze Ordnungen wurde in einer
frûhern Arbeit gelôst2). Hier, im Falle ganzer Ordnungen, ist der Zu-
sammenhang zwischen den Nullstellen und dem Waehstum der ganzen
Funktion komplizierter. Um dies zu sehen, gentigt ein Blick auf die
kanonische Produktdarstellung vom Geschlecht g

G(z) zm-ee° + '~+cQ 2<?- n(z) (1.2)

wo wir mit n(z) das Weierstrapsche Produkt

7i(z)=IIE(—, g) E(ut g) (l-u)e Q (1.3)
V l \ Zy f

x) Vgl. die in FuBnote 2 zitierte Arbeit Plt insbesondere Nr. 11. An Sprungstellen
• xr/ N{<p + 0)+N(q>--0)Betzen wir N(cp) ———±—~- ~ '—.

2

•) ,,t)ber die Wertverteilung und das Verhalten von Betrag und Argument
einer speziellen Klasse analytischer Funktionen", Comm. math. Helv. vol. 11

(1938), 180—214 und vol. 12 (1939/40), 25—65. Dièse Arbeit wird im folgenden mit Pv
bzw. Pt zitiert.
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bezeichnen. Denn der Exponentialfaktor vor n(z) und jede einzelne
Nullstelle liefern einen Beitrag von der Ordnung g und es geniigt des-
halb nicht, nur das asymptotische Verhalten der Nullstellen, ausgedriickt
durch die MaBfunktion N(y) zu betrachten. Es mu6 auch der
,,individuelle" EinfluB der Nullstellen initberûcksichtigt werden. Darin be-
steht der wesentliche Unterschied gegenùber dem Fall niehtganzer
Ordnung.

Die Untersuehungen von Wiman, Pringsheim, Lindelôf und Cart-
wrighfî) haben nun gezeigt, daB der genannte „individuelle" EinfluB
des Exponentialfaktors und der Nullstellen im Ausdruck

gesammelt wird. So ist z. B. G(z) dann und nur dann hôchstens vom
Mitteltypus der Ordnung q, wenn die beiden Bedingungen

n{r) 0(r«) und 8(r) 0(1)
erfullt sind.

Es handelt sich im folgenden nun darum, dièse frûhern Resultate zu
prâzisieren unter der Voraussetzung, daB die Nullstellen meBbar sind,
indem wir genau abklàren, welehen EinfluB die Funktion 8(r) auf das

asymptotische Verhalten von G(z) hat. In der Tat kônnen wir mit den
Funktionen N(<p) und S(r) das erste bzw. die zwei ersten Glieder einer
asymptotischen Entwieklung von log | G(z) | berechnen. Dièse Be-
ziehungen lassen sich geometrisch interpretieren, womit schon bekannte
Zusammenhànge zwischen unsern Fragestellungen und der Elementar-
geometrie erganzt werden4).

2. In dieser Nummer werden einige Begriffe und Resultate zur
spàtern Verwendung zusammengestellt5).

8) A. Wiman, Arkiv for Mat. Astr. och Fys. 1 (1904). — A. Pringsheim, Math. Ann.
58 (1904). — E. Lindelôf, Sur les fonctions entières d'ordre entier. Ann. Sci. de
l'Ecole Normale (3) 22 (1905), 369—395. — M. L. Cartwright, Intégral functions of
intégral order. Proc. London Math. Soc. (2) 33 (1932), 209—224.

*) Vgl. Q. Pôlya, [1] Untersuehungen uber Lucken und Singularitaten von
Potenzreihen. Math. Zeitschrift 29 (1929). [2] Untersuchungen uber Lucken
und Singularitaten von Potenzreihen. Part. II. Annals of Math. 34 (1933).
[3] Geometrisches uber die Verteilung der Nullstellen gewisser ganzer trans-
zendenter Funktionen. Munchener Sitzungsberichte 1920, S. 285—290. [4] Analy-
tische Fortsetzung und konvexe Kurven. Math. Ann. 89 (1923). — Schwengeler, E.,
Geometrisehes uber die Verteilung der Nullstellen spezieller ganzer
Funktionen, Dissertation, Zurich 1925; ferner Px und P2.

5) Vgl. Px und P2 ; insbesondere Px Nr. 9 und P2 Nr. 16—38.
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Es sei F (z) im Winkelraum <x < arg z < fi regulâr und hôchstens vom
Mitteltypus der Ordnung q (0 < q < oo) Die Funktion

H((p) lim sup r~<? log | F (ré*) | oc < y < p (2.1)
r->oo

hei8t Strahltypus von F(z) Sie ist stetig und je von rechts und
links differenzierbar. Dièse Rechts- und Linksableitungen sind von be-

schrânkter totaler Schwankung. Die Funktion

hat nur abzâhlbar viele Unstetigkeiten und es ist

Die Hullkurve der Geradenschar

x - cos q y -\- y-amç q> — H (y) 0 a < <p < fi

ist konvex und heifit Indikatordiagramm. Durch

y ») (2.2)

wird jedem cp ein Punkt des Indikatordiagramms zugeordnet. An Ste-

tigkeitsstellen von Hf((p) ist es der Berûhrungspunkt der Stûtzgeraden
von Normalenrichtung q cp, in den Unstetigkeitsstellen ist es der Mittel-
punkt der Strecke, die z(<p —0) mit z(cp + 0) verbindet. Strebt bei
festem cp der Ausdruck r~e-log | F(reiv>) | in (2.1) gegen H {y), wenn r
auf einer geeigneten Menge von linearer Dichte 1 gegen unendlich
strebt, so schreiben wir dafur

lim* r-e
r-> oo

Gilt dies fur aile <p in oc < (p < p, so sagen wir, daB sich F(z) im ge-
nannten Winkelraum bezûglich rQ asymptotisch regulâr verhalte.
Dièse Funktionen haben folgende Eigenschaften :

Die Nullstellenverteilung von F(z) ist meBbar bezûglich rQ. Ihre MaB-
funktion N((p) steht mit H (y) in einem einfachen geometrischen Zu-
sammenhang. Die Lange des Indikatordiagramms zwischen 2(0) und
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z((p) ist nâmlich gleich 2tïN(<p). Es bedeutet also 2n-N((p) die zum
Indikatordiagramm gehôrige Bogenfunktion. Auch hinsichtlich des

Argumentes zeigt F(z) ein regulàres asymptotisches Verhalten. Wird
nâmlich arg F (z) lângs der Halbgeraden arg z — y als eindeutige Funk-
tion erklàrt, indem éventuelle Nullstellen darauf durch kleine Halb-
kreise im positiven oder negativen Sinne umgangen werden, so gilt

- i-g'(ç, + 0) - o(l)< arg y^ <-jH'(ip - 0) + o(l) •

Dieser Satz liber argjF(z) und die Définition des regulàren asym-
ptotischen Verhaltens kônnen zu einer einzigen Aussage vereinigt werden,

indem wir

H(V)--jH'(<p)=Q(<p) (2.3)

setzen. Ferner ergibt sich aus dem geometrischen Zusammenhang zwi-
schen N(<p) und H (y), fur q> und (pQ im Intervall (<x> /S),

H{<p)=H{<pQ) cosQ{<p-<p0) +?~^)sine(<p-<p0)+27i CsinQ(<p-e)-dN(6).
Q J

Durch Difïerenzieren folgt dann

i Cie (2.4)

Zusammenfassend gilt

Satz A, Ist die Funktion F(z) im Winkelraum oc < arg z < /? regular
und bezilglich rQ von regularem asymptotischen Verhalten, so ist ihre Null-
stellenverteilung dort mefibar bezûglich rQ und

Dabei gilt fur aile <p

Um sup 91 e(r, cp) 0 lim* 91 c(r, y) 0 (2.6)

und

-O)) +0(1) (2.6')

/^ die Funktion F(z) im Winkelraum (<%<) a; < arg z < /?'(< j8) null-
stellenfrei, so gilt sogar

lime(r,<p) 0 (2.7)
f-^OO
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Der Zusammenhang zwischen den Funktionen h(<p), Q(cp) und N((p)
wird durch (2.3) und (2.4) festgelegt.

Ist insbesondere F(z) eine ganze Funktion von ganzzahliger Ord-

nung g, so genugt die Nullstellenverteilung neben der MeBbarkeits-
bedingung noch einer Art Oleichgewichtsforderung. Weil nàmlich Q((p)
die Période 2n hat, folgt aus (2.4)

e^e-dN(6) 0 (2.8)
J
o

Dies ist nur eine andere Form der geometrischen Tatsache, daB das

Indikatordiagramm eine (im allgemeinen nicht einfache) geschlossene
Kurve ist.

Noch einer dritten Bedingung miissen die Nullstellen einer ganzen
Funktion von ganzer Ordnung und regulârem asymptotischen Verhalten
genugen. Fur letzteres ist nàmlich notwendig und hinreichend, daB

o

Daraus folgt aber nach einem Satz von M. L.Cartwright*) (vgl. (1.2)
und (1.4))

Iim S(r) — [h(6) e^edd (2.9)
0

Dieser Grenzwert gestattet eine intéressante geometrische Deutung.
Wâhrend nàmlich die Bogenfunktion 2jtN(<p) das Tndikatordiagramm
nur bis auf Translationen bestimmt, wird durch den Grenzwert (2.9)
seine Lage eindeutig festgelegt. Um dies zu sehen, belegen wir die Kurve
mit Masse, deren Dichte gleich ist der Kurvenknimmung an der be-
treffenden Stelle. Der Schwerpunkt dièses Massensystems heiBt Kriim-
mungsschwerpunkt des Indikatordiagramms7). Um ihn zu berech-

nen beachten wir, daB der Lange ds die Masse d<p zukommt. Das zum
Kurvenpunkt z(q?) gehôrige Massenelement ist also gleich dq> und die
Gfesamtmasse gleich 2n. Der Schwerpunkt ist dann

•) Vgl. Anm. 3; in der unten gegebenen geometrischen Formiilierung begegnen wir
einem Résultat ûber Exponentialsummen von O. Pôlya, vgl. Anm. 4 Pôlya [3].

7) Der Begriff des Kriinimungsschwerpunktes geht auf J. Steiner zurûck.
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Aus (2.2), (2.3) und (2.4) folgt
2t 2ti

2. ^- ÇW)^iQ<Pd<p —fH(d)e^de (2.10)
Ait J nj0 0

Es konvergiert also S(r) gegen den Krûmmungsschwerpunkt des Indikator-
diagramms, wenn r gegen Unendlich strebt.

3. Bis jetzt sind wir ausgegangen von einer ganzen Funktion ganzer
positiver Ordnung, die sich asymptotisch regulâr verhàlt, und haben
drei notwendige Bedingungen fur die Nullstellenverteilung gefunden,
nâmlicli die Mefibarkeitsbedingung (1.1), die Gleichgewichtsbedingung (2.8)
und die Konvergenzbedingung (2.9), kurz die Bedingungen M, G und K.

Gehen wir nun zur umgekehrten Fragestellung iiber. Wir geben uns
eine meCbare Nullstellenverteilung {zv} und untersuchen das asym-
ptotische Verhalten der zugehôrigen ganzen Funktion (1.2) bzw. des

kanonisehen Produktes (1.3). Der Fall niehtganzer Ordnung wurde in
einer fruhern Arbeit untersucht und fûhrte zum Ergebnis8)

Satz B. Ist die Nullstellenverteilung einer ganzen Funktion von
niehtganzer Ordnung g me/Sbar, so verhàlt sich die ganze Funktion asymptotisch
regular.

Im Falle ganzer positiver Ordnung ist die MeBbarkeit allein nicht hin-
reichend fur regulàres asymptotisehes Verhalten. Je nachdem wie viele
der Bedingungen M, G und K erfullt sind, wird ein besonderes
Verhalten vorliegen. Wir haben also drei Fàlle zu unterscheiden,

1. Fall: M, G und K
2. Fall: nur M und G, nicht K
3. Fall: nur Jf, nicht G und nicht K

und damit drei Aufgaben zu lôsen, deren Ergebnis in folgendem Satz

zusammengefaBt ist:

Satz 1. Es sei G(z) eine ganze Funktion von ganzer Ordnung g und
von mejibarer Nullstellenverteilung mit der Ma/ifunktion N(<p) bezûglich
rQ. cQ und S(r) seien mie in (1.2) und (1.4) definiert. Wir setzen weiter

q(ip) - i Ce
- e-W • dN(tp + 6) (3.1)

o

8) Vgl. Px p. 206.
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und 2*

e^6dN(6) C (3.2)
o

Dann ist

iog y) g(y) +1g^ JL^ + ^yj e,g, + s(r>(p)

Dabei erfùllt e(r,cp) die Bedmgungen (2.6) und (2.(3').

Die Diskussion verschieben wir auf Nr. 6.

4. Um die Hauptgedanken in der Beweisfuhrung von Satz 1 besser

hervortreten zu lassen, sei einiges durch Hilfssatze vorweggenommen.

Hilfssatz 1. Es sei f(z) im Winkelraum | arg z | ^ <x regular und
9t f(z) 0(| z \a) wobei a eine positive Konstante bedeutet. Dann gilt
sogar f(z) O(\z\a) in jedem Winkelraum \ arg z\ ^ oc — ô ô > 0

Betveis : Offenbar genugt es, den Fall oc — — zu betrachten. Der
z

Beweis selbst ergibt sich aus folgender Bemerkung: Ist die Funktion
F (z) in | z | < R regular, so gilt

\F' & i < R(\W ' MaX I ^Fi<Rel<P) 1 fur \z\< kR > k< 1 9) •

Im Kreis | z - R \ g R ist namlich Max | 3t /(z) | — 0 ({2R)a 0(R°)

nnd daher /; (z) -^tt^-tt^ • O(i2a) im Kreis | z — R |< JcR

Wahlen wir h cos <$ so ist der Kreisbogen | z | iî Vl — k2 r
| argz|^— (5 im letztern Kreise enthalten und daher ff(rel<p)

O(r°-i) fur |ç,| < -J-ô
Durch Intégration ergibt sich daraus die Behauptung.

•) Dièse Ungleichung ist mit jener von Caratheodory verwandt und kann mit analogen
Methoden bewiesen werden. Aus der Cmichy'schen Koeffizientenformel und aus

*...
2 Max

und an | < Rn

und daraus dann die Ungleichung fur F'(z)
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Hilfssatz 2. Das Kreisâuflere | z | > R sei lângs der negativen reellen
Achse aufgeschnitten ; die Funktion f(z) sei im Innern dièses Bereiches

regulàr und im ganzen Bereich, abgesehen von z oo noch stetig. Es gelte

e > 0 fur — rc < <p < rc r > E
und

lim [f(re™) —f(re~iv)] a
r-> oo

gleichmafiig in jedem Winkelraum \ <p \ ^ n — ô ô > 0

Der Beweis des Hilfssatz 2 ergibt sich leicht aus der Cauchy'schen Inte-
gralformel. Sei fc > 1 Der Integrationsweg F bestehe aus den beiden

Kreisbogen | f | Jcr und | C I ^"1^ — ^r < arg C < ^) welche

je lângs des obern und untern Ufers der negativen reellen Achse mit-
einander verbunden werden. Liegen die Punkte zx und z2 innerhalb F,
so gilt

kr

rJc-i

Setzen wir zx r z2 rci9>, | 991 < n und fc r1"^2 so wird der

Betrag des ersten Summanden kleiner als

Setzen wir f(q eiir) — f(g e~in) a + e(g) wo e(^) -> 0 fur ^ -> 00

so wird aus dem zweiten Summanden

kr kr

éi f {fhrdùads-îàî f Fptnfeje(e)dQ'(
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Hievon ist das erste Ghed gleich -—: log • —— und

dessen Grenzwert fur r->oo gleich a~- Wegen \<p\ < n — ô und
ô

\q + rei<p\ ^ sin — (q -\- r) wird der Betrag des zweiten Gliedes von
I ei<p — 11 -(4.1) kleiner als -*—.—r^r~me(r) > wenn c(r) Max e(p) gesetzt
Sin d/2 k-ir<k

wird. Da aber mit r auch k~xr gegen Unendlich strebt, so ist
lim e (r) 0 und damit der Hilfssatz bewiesen.
r->oo

Hilfssatz 3. Die in (2.3) bzw. (2.4) definierte Funktion Q(<p) besitzt
auch die Darstellung

27T

Q(cp) —i ity 4. 6)e-i<*e -dN(<p + 6) + ^e^* (4.2)
o

wenn A eine geeignete Konstante bedeutet.

Beweis : Setzen wir t y + 0 so wird

2ji <p + 2

Ç(q> + d)e-i^-dN(<p + 6) f

Daraus folgt in Verbindung mit (2.4) die Behauptung.

Hilfssatz 4. 10). ^ seien zl9 z2,..., zn dte von n^K verschiedenen,
nach toachsenden Betràgen geordneten Nullstelhn der ganzen Funktion
O (z) Sei ferner G (0) 1 ; log G (z) hat also im Nullpunkt eine Null-
stelle und ihre Multiplizitât sei g + 1

10) Der Satz erinnert an die Carleman 'sehe Formel und wird mit analoger Méthode
bewiesen; vgl. auch Cartwright in Anm. 3.
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Dann gilt fur jedes R>0

Beweis : Wir betrachten das Intégral

Zunàchst folgt

± jt J R Y ' K

anderseits durch partielle Intégration, nachherige Anwendung des

Argumentprinzipes und des Residuensatzes

ICI
(4.4)

0
2n

Dabei bedeutet n die Anzahl der Nullstellen in | z \ < R Aus (4.3)
und (4.4) folgt dann durch Berechnung des Ausdruckes 3{T+ + i^î7.
die Behauptung.

Hilfssatz 5. /s£ die Nullstellenverteilung {zv} mefibar bezûglich rQ und
ist N(<p) ihre Mafifunktion, so gilt

Beweis : Sei zunàchst 0 < r1 ^ r2 ^ rz ^ eine Punktfolge auf der

positiven reellen Achse, deren Anzahlfunktion der Bedingung n(r)
genugt. Dann ist
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l t«-dn(t) Ren(R) —g j t

Bei gleicher Anzahlfïïnktion sollen nun die Stellen zv rve%e^ im Winkel-
raum | arg z — d | < ô gelegen sein.

Wegen | el«*« - e^e \ < g \ 6n - d | folgt dann

Sei schlieBlich {zv} die gegebene Nullstellenverteilung. Wir zerlegen
die Ebene vom Nullpunkt aus in n Winkelraume mit der Offnung < ô.

Die Richtungswinkel 63 der teilenden Strahlen seien Stetigkeitspunkte
der MaBfunktion N((p) Dann ergibt sich aus dem Vorausgehenden,
mit AN(6j) N(63+1)—N(d3) an Stelle von d und D =N(2tz) — JV(O),

27C

fe^0

denn es kann ô beliebig klein gewahlt werden.

5. Beweis von Satz 1. Wir beweisen ihn fur kanonische Produkte.
Es sei also q eine positive ganze Zahl, zly z2,..., zn .(zn ^0) eine

gegebene meBbare Punktfolge mit der MaBfunktion N(<p) bezuglich r«

und n(z) das zugehorige WeierstraB'sche kanonische Produkt vom Ge-

schleeht q.
Man braucht offenbar den Satz nur fur den Fall zu beweisen, daB

die linke Halbebene nullstellenfrei ist. Denn der allgemeine Fall ergibt
sich daraus folgendermaBen: Es sei N+(<p) die MaBfunktion und 7t+(z)
das kanonische Produkt der Nullstellen in der abgesehlossenen rechten
Halbebene, N_(q>) und tz_(z) entsprechend die MaBfunktion und das

kanonische Produkt fur die Nullstellen in der offenen linken Halbebene.
Dann gilt Satz 1 zunachst fur n+ (z) mit N+ (ç?) und tz_( —z) mit N_(cp-{-7t),
nach einer Drehung der z-Ebene um —n auch fur n_(z) mit N_(<p) und
daher fur n(z) 7i+(z)'jz__(z) mit N(<p) N+(q>) + N_(<p)

Es sei also die linke Halbebene nullstellenfrei. Durch die Substitution
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w z°, | < g < 1 — 7^ 1, 2, 3,... wird die Punktfolge {zn} trans-

formiert in die Punktfolge {wn z*} die ebenfalls meBbar ist, aber

beziiglich rQla Das zugehôrige kanonische Produkt na (w) ist eine ganze
Funktion der Ordnung qja (nichtganz) und daher nach Satz B von
regulârem asymptotischen Verhalten beziïglich rQ/° Um zur ursprûng-
lichen Stellenverteilung zurûckzukehren, setzen wir na{w) na(za)

F(z) Der Winkelraum | arg w | ^ n (lângs der negativen reellen Achse

aufgeschnittene tt?-Ebene wird durch w za auf den Winkelraum

| arg z | < n ja (Winkelraum Z)

der Riemann'schen Flâche von log z abgebildet. Es ist also F(z) in diesem
Winkelraum eindeutig und analytisch, von der Ordnung g und beztiglich
r* von regulârem asymptotischen Verhalten. Die Nullstellen von F(z)
fallen dort mit denjenigen von tz(z) zusammen, insbesondere ist F(z)^=0
in den beiden Winkelrâumen | arg z A^ n \ < n j% Es gilt also gemâfi
Satz A im Winkelraum E

^ .(r,V), (5-1)

wobei sich Q(q>) gemâB (2.4) durch die MaBfunktion N(<p) darstellen
Iâ6t. Insbesondere gilt

in den beiden Winkelrâumen | <p i n \ < n\^ Nun ist nach (2.4) und
(3.2)

Q{q> + 2tz) -Q(<p)=
und daher

fur \cp —n\ <nJ2 -

Vergleichen wir nun n{z) mit F(z) indem wir die Funktion

betrachten. Dièse ist in E regulâr, nullstellenfrei und von der Ordnung q,
also log 0(z) in E regulàr und log | &(z) \ < A \ z \Q+e 0 < e < 1

Aus dem Hilfssatz 1, angewandt auf log 0(z) folgt dann weiter

\log0(z)\<B\z\* + * (5.4)
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Wir setzen ietzt ^,102 0 (z)
f(z) —-—— (5.6)j\ f zQ v /

Dièse Funktion ist in £ regular. Ferner gilt nach (5.4), (5.2) und (5.3)

|/(2)| <B\z\e in i7
und

lim \f(rel{tp + 27T)) —flre^)] 27tiC
r->oo

fur cp in der Umgebung von —n Daher ist nach Hilfssatz 2, gleichmâBig
fur | <p | ^ n

lim [f(rel<p) — f(r)] Ci<p
r-> c»

und w^eiter nach (5.5) und (5.3)

logn(ret<p) logF(rellf>) + (/(r) + C^9?) (rel(p)Q + o(r^)

und schlieBlich nach (5.1)

logn{retq>)

Dabei hate(r, tp) dieselbe Bedeutung wie in Satz A. In Verbindung mit
(3.1) folgt aus Hilfssatz 3

Q(q>) + Citpe*** q(<p) + Atx** (5.6)

und daher mit P(r) =f(r)-\-A
logy) g (y) + P(r) e*«> + (r, y) (5.7)

Zur weitern Verwendung setzen wir

î(r,9) g(y) + P(r)e*^ (5.8)

9iq(<p) h(<p) und 9lg(r, ç>) fc(r, ç>) (5-9)

Dann ist, wie sich leicht aus (5.6) und (2.3) bestàtigen laBt,

und (5.10)
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In (5.7) ist der erste Term der rechten Seite durch das asymptotische
Verhalten der Nullstellen vollstàndig bestimmt. Wie hângt nun P(r)
mit den Nullstellen zusammen? Um diesen Zusammenhang zu finden,
benôtigen wir von (5.7) nur die Realteile. Es ist nach (5.9)

=h{r>(p) + xe{r><p). (5Al)

Nun wird durch eine geeignete Opération aus der rechten Seite das
Glied P(r) und aus der linken Seite der gesuchte Àusdruck in den
Nullstellen zv herauspràpariert. Wir bilden zunàchst den zu (2.10) analogen
Ausdruck und erhalten nach (5.10) und (5.8)

0 0

(5.12)
2ir

1 n r i _ I / 1 \
— \q(r><p)-\ viiCie1*9) \eiçq> dw Plr) + C [ni -)
2n J L i? J \ 2Qf

0

Denn es ist

(5.13)

Um dieseinzusehen, setzen wir Qx{<p) q{q>) — Ciye***. Nach (5.6)
und (2.4) ist dann

Nun

und

ist

nach

e

2n

0

(3.1)

^ Te*'

0

V) ï(0) + 2jr

2n

i e^e -dN(d)
0

27T

0

und
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Daraus ergibt sich die obige Behauptung. Anderseits ist nach Hilfs-
satz 4 n)

Die dritte GrôBe in (5.11), 5R e(r, cp), ist ,,meistens klein" ; es ist also zu
vermuten, daB die linken Seiten von (5.12) und (5.14) sich nur um eine
Grôfîe o(l) unterscheiden und daB daher naeh Hilfssatz 5 und (3.2)

(5.15)

ist. Es bleibt also zu zeigen, daB

in

o{l) (5.16)
0 0

ist. Aus der MeBbarkeit der Nullstellenverteilung folgt

lim -^- N(2n) - N(0) D

und daher nach der Jensen'schen Formel

r 1 r \og\n(re^)\ 1 f n(t) D
lim — ——— — dw lim — —— dt —

0 0

Anderseits ist wegen (5.8) und (5.9)
2/r 2^

1 r l r
2jr J ' 2jt J

0 0

Aus (3.1) und (5.9) folgt durch partielle Intégration
27T

h{(p) I (sin g6 + g 6 cos qO) N(q> -f 0)rf0

o

n) Es hat Iog7r(z) bei z 0 eine (ç + l)-fache Nullstelle, weil 77(2) vom Geschlecht
(> ist.
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2ir

m + D6

Weiter ist wegen der Periodizitat von dN((p)

2k • 2ir

ÇN((p + 6)d<p= Ç N(t)dt + 6(N(2n) —
J J
o o

Zusammen ergibt sich

27T 27T

i r i /* d
— h(r,<p) dy — (sin q6 + qO cos qO) (m + D-d)d6 —In j ln J g

0 0

Es folgt also zunàchst

2n

lim I I — h(T, <

0

Setzen wir nun

(5.18)

So ist wegen (5.11) und (2.6) lim sup 0(r,(p)=O und zwar
r -> oo

27T

gleichmàBig fiir aile <p Es ist also lim j 0+ (r, <p) d<p 0
r->oo »/

0

In Verbindung mit (5.17) folgt daraus auch lim l (-— 0 (r, (p))+ d<p 0
f->0O c/

0

2n

Nun ist $+ -f (— 0)+ | 01 also sogar lim I | 0 (r, <p) \ d<p 0 und
r->oo %)

0
2tr

somit lim j 0(r,tp)ei^q>d(p O, wasmit (5.16) gleichbedeutend ist.
0

6. Wir kehren nun zur Diskussion des Satz 1 zuruck. GemâB (3.4)
wird das asymptotische Verhalten von G(z) durch die beiden Funk-

tionen q(w) + V [ni 1 é** und 8(r) charakterisiert. Wâhrend bei
\ Q J

der ersten nur das asymptotische Verhalten der Nullstellen eine Rolle
spielt, kommt ihr ,,individueller EinfluB" in S(r) zur Geltung. Dieser
Unterschied wird auch in der nachfolgenden geometrischen
Interprétation zum Ausdruck kommen.
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Zunachst bemerken wir, daB

S(r) C-lgr + o(lgr) (6.1)

ist. Betrachten wir nâmlich eine Nullstellenverteilung auf der positiven
reellen Achse, deren Anzahlfunktion der Bedingung n(r) d-rQ -\-o(r<>)

genugt, so ist ^ r~Q

r r

f t-e -dn(t) r-*-n(r) +Q t'^^n^dt gdlgr + o(lgr)
o o

Der Rest ergibt sich ganz analog wie bei Hilfssatz 5. Nach (6.1) sind
also die Bedingungen G 0 und 8(r) O(lgr) gleichbedeutend.

Im Falle C 0 ist gemâB (4.2) Q(q>) q[q>) + Aé** und daher

277

h(<p) Wq((p) - Ç OainQO-dN{<p + 6) (6.2)
o

die Stùtzfunktion einer geschlossenen konvexen Kurve. Wegen (2.10)
und (5.13) liegt ihr Krùmmungsschwerpunkt im Nullpunkt. Wir nennen
dièse Kurve das zur MaBfunktion N(<p) gehôrige Indikatordiagramm in
Normallage und bezeichnen es mit 3o •

Gehen wir nun iiber zur Diskussion der drei Fàlle in Nr. 3.

1. F a11: Es seien erfullt die Bedingungen M und K\ dann ist C 0
und auch Bedingung G erfullt. Wir setzen

lim S(r) SQ p + iq p und q reell.
r->oo

Dann ist nach Satz 1

lim* —^-!— ^-L h (cp) + p cos Q<p + q sin q q> H(q>).

Die ganze Funktion G(z) ist also von regulârem asymptotischen Ver-
halten und So nach (2.10) Krùmmungsschwerpunkt des Indikator-
diagramms. In Verbindung mit (2.9) folgt schlieBlich

13 Commentarli Mathematici Helvetici x vo



Satz 2. Eine ganze Funktion vont Mitteltypus der ganzen Ordnung q
ist dann und nur dann von regulàrem asymptotischen Verhalten, wenn die
Nullstellenverteilung mefibar ist bezûglich r* und limS(r) existiert l2)

2. Fall: Es seien erfullt die Bedingungen M und G. Wir setzen 8(r)
Dann ist

(6.3)

mit
h(r, (p) h(<p) -f- S1(r) cos g ç> + S2(r) sin g ç>

Bei festem r ist h(r, (p) die Stûtzfunktion einer konvexen Kurve mit dem
.Krummungsschwerpunkt 8(r). Wir nennen sie das ,,bewegliche In-
dikatordiagramm" und bezeichnen es mit 3r ; denn es geht aus dem

Indikatordiagramm in Normallage, aus 3o> durch Parallelverschiebung
um S(r) hervor. Wàhrend also die Form von 3r allein durch h(<p) bzw.
N(<p) schon bestimmt und daher unabhàngig von r ist, wird seine Lage,
sein Krummungsschwerpunkt durch die Funktion S(r) festgelegt. Nach
MaBgabe von 8(r) bewegt sich also 3r bei wachsendem r in der Ebene
hin und her und charakterisiert im Sinne der Gleichung (6.3) fur jedes r
durch seine Lage und seine Form das Verhalten von G(z)13).

Bei beschrânktem 8(r) ist die Funktion G (z) offenbar vom Mitteltypus

der Ordnung q und

lim sup —sJ—1 LL h(q)) + lim sup [S1 (r) cos g<p + 82(r) sin ^9?)

ihr Strahltypus, die Stûtzfunktion einer geschlossenen konvexen Kurve,
die wir jetzt, im Gegensatz zu oben, ,,festes Indikatordiagramm"
nennen wollen. Wie das feste Indikatordiagramm durch das bewegliche
erzeugt wird, sieht man am besten im Falle q 1. Dann ist nâmlich
das Diagramm eine einfache geschlossene Kurve und somit der Rand

ia) In einer frûhern Arbeit ,,Ûber Interpolation ganzer Funktionen", Comm.
Math. Helv., vol. 14 (1941/42) p. 316—349, wurde eine Bedingung aufgestellt, die wohl
hinreichend, aber nicht notwendig ist fur regulâres asymptotisches Verhalten. Die dortigen
etwas komplizierten Betrachtungen werden min ûberflûssig, da jene etwas verschârfte
Mefibarkeitsbedingung (p. 319) auch die Konvergenz von S(r) zur Folge hat.

13) In einer frûhern Arbeit, ,,Ûber gewisse ganze Funktionen vom Exponen-
tialtypus", Comm. Math. Helv., vol. 16 (1943/44), p. 1—18, wurde fur q 1 und
nur fur den Fall, daÛ die Nullstellen hinreichend genau in Richtung der reellen Achse

liegen, dasselbe Résultat mit andern Methoden erhalten.
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eines konvexen Bereiches. Das feste Indikatordiagramm kônnen wir
dann auffassen als den Rand des kleinsten konvexen Bereiches, aus
dessen Umgebung das bewegliche Diagramm fur aile hinreichend grofien
r nicht mehr herauskommt.

Die Bedeutung des beweglichen Indikatordiagramms wird noch besser
aus der folgenden Betrachtung ersichtlich (q 1). Nach (3.4), (2.2),
(2.3) und (4.2) in Verbindung mit unserer Voraussetzung C 0 ist

lcgO(rei<p)
«(?) + ^W + £(r > <P) ' e~iQ<P

>

d. h. der Wert der linken Seite liegt meistens in der Umgebung des an
der reellen Achse gespiegelten ,,beweglichen Indikatordiagramms".

3. Fall: Nur die Bedingung M ist erfiillt, nicht aber 6 und daher
auch nicht K. Nach Satz 1 ist

\ogO{rei<p) e*«* • 3T(r) • t* + lq(<p) + uUi~-)e**Ar*+e(r,q>) t*

Nach (6.1) ist das erste Glied von der GrôBenordnung rç lg r das
zweite Glied vom Mitteltypus der Ordnung q. Es ist aber h (y) $iq(<p)
nicht mehr Stûtzfunktion einer konvexen Kurve, was man leicht mit
(3.1) und (4.2) bestâtigen kann.

Prxifen wir noch. kurz unsere Resultate an den beiden bekannten

Beispielen sin^r z und _, nach.

L sin nz Es ist g 1 C 0 S (r) 0

1 fur (p 0 und n
0 sonst,

0<9?<:7r

dN(cp)

niei<p 0>ç?> — n
also

«4 4 1 -^ A
log sin^rz /^/

+ 7riz,t/z<0.
2. — Hier ist q 1 C — 1

i \&)

i 1 fur 99 ndN (w)KY/ 0 sonst
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S(r) y — 2 — ^ — l°g r + °U) (y ist die Euler'sche Konstante)

und daher

log -p^y z lg r — i<pz + z + o (z)

oder
log F(z) z log z — z 4- o (z) fur | <p \ < rc

7. Im Vorangehenden behandelten wir nur jene Nullstellenvertei-
lungen, die beziïglich rQ mefibar sind. Um auch andere meBbare Ver-
teilungen definieren zu kônnen, die ebenfalls zu ganzen Funktionen
ganzer Ordnung fuhren, benutzen wir die prâzise Wachstumsord-
nung ç(r), eine Funktion, die im Intervall (0, 00) stetig ist, deren
Rechts- und Linksableitungen existieren und stûckweise ubereinstim-
men. Sie genùgt den Bedingungen

(r) e (7.1)
f-> OO

und
Km Q;(r)r log r 0 (7.2)
r->-oo

wenn fur Qf(r) die Rechts- oder Linksableitung eingesetzt wird. Ist fiir
eine ganze Funktion G(z) lim sup r~Q{r) log M (r) positiv und endlich

r ->- 00

so ist G (z) von der Ordnung q und der prâzisen Ordnung g(r).

Nun brauchen wir nur in (1.1) und (2.1) die Vergleichsfunktion rQ

durch die allgemeinere r^ir) zu ersetzen, um sofort die entsprechenden
BegrifiEe ,,me/$bare Nullstellenverteilung bezuglich rQ{r) " und ,,Strahl-
typus der Funktion F(z) bezuglich re(r) t£ zu erhalten. Die inNr. 2 bis
und mit (2.8) ausgesprochenen Resultate bleiben erhalten. Auch die

analytische Funktion zQ, die der reellwertigen Funktion rQ entspricht,
hat ihr Analogon: Es existiert nâmlich zu jeder prâzisen Ordnung @(r)

mit q > 0 eine Funktion V(z), die auf der positiven reellen Achse reell-
wertig, monoton wachsend und von dort ausgehend im Winkelraum
| arg z | < §7r der Riemanrtschen Flâche von log z eindeutig und analy-
tisch ist und die den Bedingungen

und
F(s)~e*«*-F(r) z re** (7.3)
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genûgt, letzteres gleichmàBig in | argz | < §tt — r/ rj> 0 14). Aus
(7.1) und (7.2) in Verbindung mit (7.3) folgt fur festes k > 1 und
k~xr ^t^lcr tQ«) (1 + c(r,É) ).$•<'> (7.4)
mit

lime(r, fc) 0 (7.5)

Wir kônnen uns nun die allgemeine Aufgabe stellen, zu jeder meB-
baren Nullstellenverteilung beziiglich einer prâzisen Ordnung g (r) mit
g > 0 das asymptotische Verhalten des zugehôrigen kanonischen Pro-
duktes zu bestimmen. Fur nichtganzes g wurde dièse Aufgabe in einer
fruhern Arbeit15) erledigt, deren Résultat in Satz B ausgesprochen ist.
Es verbleibt also, analog zu Nummer 3, die Aufgabe fur ganzzahliges

g> 0 zu lôsen. g sei im folgenden wieder ganz. Die Verallgemeinerung
des Satz 1 lautet dann

Satz 3. n(z) sei das kanonische Produkt einer mefibaren Nullstellenverteilung

bezûglich rQ{r) und von ganzer Ordnung g > 0. S(r), C und
q((p) seien wie in (1.4) 16), (3.2) und (3.1) definiert. Dann ist

qq)) + jr^i _lj eiev + ^SJF) e*** + e{r,9) (7.6)

falls das Geschlecht g und

^^f1 q(9) + ^(«-7) ^+^)e^(^)--SW)) + e(ri<P)

(7.7)
falls das Geschlecht g—1 ist. e(r,<p) erfûllt dieselben Bedingungen wie in
Satz 1.

8. Der Beweis von Satz 2 verlâuft ganz analog wie bei Satz 1. Die
Hilfssâtze 2 und 3 erfahren uberhaupt keine Ànderung. Wâhrend aber
Hilfssatz 4 fur beliebige kanonische Produkte vom Geschlecht g gultig
bleibt, bedarf er fur Produkte vom Geschlecht g — 1 einer Modification.
In diesem Falle hat nâmlich nr{z)jn(z) bei z 0 eine Nullstelle von der
Ordnung g — 1 Es ist also (4.4) zu ersetzen durch

0
2»

z?.

14) Vgl. Px Nr. 5. Dort wurde der Satz allerdings nur fur den Winkelraum | arg z \ <ttIç
ausgesprochen, doch lâfit sich dieser Winkelraum durch freiere Wahl der Zahl p leicht
vergrôÛern.

16) Vgl. Anm. 2.
1€) Es ist jetzt cq 0 zu setzen.
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Dabei ist aQ der Koeffizient von z^-1 in der Potenzreihenentwicklung von
nr(z)jn{z) um z 0 aQ lâBt sich aber leicht berechnen; denn es ist
in der Umgebung des Nullpunktes

und daher

«« - 2 zvQ -v l
Es folgt also

und daraus
2.71

0 I*" I < T

im Falle des Geschlechtes q — 1.

An Stelle von Hilfssatz 5 gilt etwas allgemeiner

(8.2)

wenn die Nullstellen beziiglich F(r) meBbar sind.
Zum Beweis wâhlen wir auf der positiven reellen Achse eine Punkt-

folge {rv}, deren Anzahlfunktion der Bedingung n(r) d- V(r)+o(V(r))
genûgt. Dann ist

2 r l # dn(t) r« P7(r) d — q d ft*'1 V(t) dt + o(r* V(r)
0

Fur ein k < 1 gilt
kr

o

und wegen (7.4)
r

IV1 V(t) dt
k
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Es ist also

2 r? dr* V(r) II - Q
(1 + e(r, k)) (1 -W+ «<'> - Qk>*)

rv*Zr \ Q ~T Q\r) I
Wir beriicksichtigen nun (7.5) und (7.1) und lassen mit r auch k~l ge-
eignet gegen oo streben. Dann strebt die Klammer gegen J und wir
haben

2 rj~ —r«. F(r)

Der Rest ergibt sich analog wie in Hilfssatz 5.

An der in Nummer 5 dargestellten Méthode ist nun nichts Wesent-
liches mehr zu ândern. In (5.1) haben wir r* durch V(r) zu ersetzen.
(5.2) lautet

V(re«)

entsprechend zu (5.5) ist f(z) —v regulàr fiir aile z imWinkel-

raum S mit \z\ > Ro woraus wir wieder nach Hilfssatz 2 schlieBlich
erhalten

Ebenso ergibt sich analog

Bei der Auswertung des Intégrais ist nun zu unterscheiden, ob es sich

um kanonische Produkte vom Geschlecht q oder q — 1 handelt. In Be-

rucksichtigung von (8.2) ergibt sich im Falle des Geschlechtes q

im Fall des Geschlechtes q — 1 aus (8.1)

(xi + è)="rV (<S(r) ~8{oo)) ~hc+0W) + c

und daraus die Behauptung des Satz 2.
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9. Auch die Diskussion des Satz 3, vor allem Fall 1 und 2 bringen
gegeniiber dem in Nr. 6 schon Gesagten nichts wesentlich Neues. Nur der
Fall 3, wo die MeBbarkeit, nicht aber die Bedingung (2.8) erfiïllt, also
C ^ 0 ist, soll hier etwas eingehender besprochen werden.

Die von null verschiedenen, nach wachsenden Betràgen geordneten
Nullstellen bezeichnen wir wieder mit zx, z2,..., ihre Anzahlfunktion
mit n(r). Wir setzen | zv | rv und N(2n) ~ N(0) D Dann ist

00

n(r) D-V(r) + o(V(r)). Die Reihe Sr~Q und das Intégral

sind gleichzeitig konvergent oder divergent, das zu den Nullstellen {zv}
gehôrige kanonische Produkt also vom Geschlecht g oder q — 1, je
nachdem (9.1) divergiert oder konvergiert. Denn es ist

rv<r J
ïn

(9.2)

(D + o(l)) Y®- + (QD + o(l)) JM dt

und ûberdies wenn das Intégral (9.1) konvergiert, V{r) o(r^). Wir
zeigen weiter, daB

lim I
t dt oo falls das Geschlecht g (9.3)

und

lim ^t-t- I j^dt oo falls das Geschlecht g — 1 (9.4)

ist. Ieh beweise (9.3); fur (9.4) geht der Beweis analog. Da es sich um
den Maximal- oder Minimaltypus der Ordnung g handelt, so hat g(r) — g

von einem gewissen r ab keinen Vorzeichenwechsel mehr. Aus (7.4)
folgt dann zunâchst fur ein festes k< 1
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kr kr

e(r,k))
Q(r) ~ Q

Wegen (7.1) und (7.5) strebt dann der letzte Ausdruek gegen unendlich,
wenn wir mit r auch k~x hinreichend langsam gegen unendlich streben
lassen.

Weiter folgt aus (9.2) in Verbindung mit (9.3) und (9.4)

/V(t)^dt fur das Geschlecht g

i
und

00

j£ r Q IqD -\- o(\)) I dt fur das Geschlecht q—1

r

Analog wie in Nr. 6 bzw. im Beweis von Hilfssatz 5 ergibt sich daraus

bzw.

S(oo) - S(r) (C + 0(1))

und sehlieBlich mit Satz 3, indem wir noch die Glieder niedrigerer Ord-

nung vernachlâssigen,

1 (9'5)
1

bzw.

log»(«)= -(C + eitftztJ-^dt, (9.6)

je nachdem das Gteschlecht q bzw. q — 1 ist.

Speziell, wenn aile Nullstellen auf der negativen reellen Achse liegen,
D N(2 n) — N(0) und V(r) r^(lg r)a, r > e, gesetzt wird, so ist
C (— l)e, fur oc > — 1 das Geschlecht gleich q, fur oc < — 1 das
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Geschlecht gleieh g — 1 und es gilt fur das zugehôrige kanonische
Produkt

ZQ (\a r\+
logn(z)~(-D)* l8/. «#-1, |argz|<7r

und

log:t(z) ~ (— D)Qze log logr a — 1 |args| < n 17)

10. Zum Schlusse erwâhne ich eine Anwendung der vorangehenden
Resultate auf die Interpolation ganzer Funktionen. In der oben zitierten
Arbeit (Anm. 12) wurde die Frage untersueht, unter welchen hinreiehen-
den Bedingungen flir die Punktfolge %, a2 ,...,»„,... die Interpola-
tionsformel

gûltig ist. Fur den Fall ganzer Ordnung wurde dort eine etwas kùnstliche
,,verschàrfte MeBbarkeitsbedingung" eingefuhrt, die sich nun auf Grund
der obigen Resultate durch schwàchere und natiirlichere Bedingungen
ersetzen làBt. Wie sich leicht aus Satz 1 der vorliegenden Arbeit und aus
den Nr. 12—21 und dem Nachtrag S. 349 der genannten Arbeit ergibt,
lautet fur den Mitteltypus einer ganzen Ordnung das Résultat dann
folgendermafîen :

Satz 4. Es sei q eine ganze positive Zahl und es môge die Folge von
Stellen aXi a2,..., av die aile vont Nullpunkt verschieden sind und
keinen endlichen Hàufungspunkt besitzen, den folgenden Bedingungen ge-

nûgen :

1. Es ist
n{r; <p', ç>") k(<pf - <pr) r<* + o(r<>)

wobei n(r\ ç/, y/f die Anzahl der Stellen im Sektor \z\^r,(pf ^ arg z <q>"
bezeichnet.

oo

2. Die Reihe Jg av-Q konvergiert und ist gleieh aq.

17) Fur dièse und andere Spezialfâlle vgl. E. Linddôf, Mémoires sur la théorie des
fonctions entières de genre fini, Acta Soc. Sci. Fenn., vol. 31 (1902). Das allge-
meùie Kesultat, wie es durch die Gleichungen (9.5) und (9.6) ausgedriickt wird, war
mir bis jetzt unbekannt.
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3. Es existiert ein d> 0, so dafi die Kreise \ z — av\ ^ d\av \l~Qfi

v 1,2,... einander nicht iiberdecken.

Es sei ferner P(z) e~azQ- n(z) wobei n{z) das zur Folge {av} gehôrige
kanonische Produkt bedeutet undO(z) eine ganze Funktion, deren Maximal-
betrag der Bedingung

lim sup — n < — h

genûgt.
Dann gilt die Interpolationsformel (10.1). Die Reihe ist in jedem 6e-

schrânkten und abgeschlossenen Bereich, der keinen der Punkte aL, a2
enthàlty absolut und gleichmafiig konvergent.

Gibt es uberdies eine Konstante x, so dafi

\ I ^ « v —¦ 1 2

50 i$£ (?(2;) notwendig eine Konstante.

(Eingegangen den 14. September 1945.)
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