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Uber die Lôsbarkeit
gewisser algebraischer Gleichungssysteme

Von Walter Habicht, Schaffhausen

Einleitung

1. Dièse Arbeit hat das Ziel, zwei Satze, die ihrem Inhalt nach in die
Algebra gehôren, die jedoch auf topologischem Wege entdeckt worden
waren und fur die man bisher nur topologische Beweise kannte, mit rein
algebraischen Methoden zu beweisen.

Dièse Satze knupfen an den beruhmten Satz von Poincaré-Brouwer

an, der besagt, da8 es, wenn n ungerade ist, auf der (n — l)-dimensiona-
len Sphare im w-dimensionalen euklidischen Raum Rn kein stetiges
Feld tangentialer Vektoren gibt, die ^ 0 sind1); er laBt sich, indem man
die Koordinaten des Rn mit xx,..., xn bezeichnet, folgendermafien aus-
sprechen :

n sei ungerade ; fx fn seien réelle Funktionen der reellen Variab-
n

len a?!,..., xn erklart und stetig fur £ x2 1 ; es gelte die Relation

*l/l+*l/l +•••+*»/« 0. (1)

Daim besitzen die /, eine gemeinsame Nullstelle (£v ,...,£„) (mit

t
Neuerdings hat B. Eckmann, ebenfalls mit topologischen Methoden,

bewiesen, da8 der analoge Satz auch gilt, wenn man unter den xt kom-
plexe Variable und unter den ft komplexe Funktionen der xt versteht,

_die fur £x%xt 1 erklart und stetig sind2).
i=i

Betrachtet man speziell Polynôme fit so erhalt man zwei Satze, welche

algebraischen Charakter haben, und es entsteht die Aufgabe, dièse Sâtze
auch mit algebraischen Methoden zu beweisen, odergenauer: die Aufgabe,
zu untersuchen, ob dièse Satze uberhaupt ,,rein algebraisch" in dem
Sinne sind, dafi sie sich folgendermaBen formulieren lassen:

Alexandroff-Hopf, Topologie I (Berlin 1935), 481.
a) B. Eckmann, Système von Richtungsfeldern in Spharen und stetige Lo-

sungen komplexer hnearer Gleichungen, Comment. Math. Helvet. 15 (1942), 1-26,
Satz IV.
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,,Der Poincaré-Brouwersohe Satz und der Eckmannsche Satz fur
Polynôme bleiben gultig, wenn man an Stelle des Kôrpers der reellen Zahlen
einen beliebigen reell-abgeschlossenen Kôrper (im Sinne von Artin-
Schreier*)) bzw. an Stelle des Kôrpers der komplexen Zahlen einen al-
gebraisch abgeschlossenen Kôrper zugrunde legt (und dabei die Behaup-
tung dahin abschwàcht, daB eine von (0, 0,..., 0) verschiedene Null-
stelle der f{ existiert)."

Man kann die Untersuchung der Gultigkeit dieser Sâtze auch axioma-
tisch auffassen: es soll untersucht werden, ob die Sâtze von Poincaré-
Brouwer und von Eckmann bei Beschrânkung auf Polynôme unabhàngig
sind von Stetigkeitsaxiomen, insbesondere vom Archimedischen Axiom.

2. Es ist mir bisher nicht gelungen, die hiermit aufgeworfenen Fragen
in der genannten Allgemeinheit zu klâren ; ich liofïe aber, in einer spâteren
Arbeit darauf eingehen zu kônnen. In der gegenwartigen Arbeit be-
schranke ich mich auf den Fall, in dem die Polynôme ft homogène Formen
der x% sind ; fur diesen Fall werden die gewunschten Sàtze bewiesen werden,

und zwar noch mit gewissen Verscharfungen, nâmlich :

Satz I. K sei ein algebraisch abgeschlossener Kôrper; /i,...,/n seien

Formen aus dem Polynomring K[xx xn] ; zwischen ihnen bestehe

die Relation (1); es seien nicht gleichzeitig n gerade und die Grade
sâmtlicher f{ gleich 1. Dann besitzen die fl eine von (0, 0,..., 0)
verschiedene gemeinsame Nullstelle in K.

Satz II. K sei ein reell-abgeschlossener Kôrper; fY fn seien Formen
aus dem Ring K\xx,..., xn] ; zwischen ihnen bestehe die Relation (1);
es seien nicht gleichzeitig sàmtliche Anzahlen von Formen gleichen Grades

gerade und die Grade sâmtlicher f{ ungerade, Dann besitzen die ft eine von
(0, 0 0) verschiedene gemeinsame Nullstelle in K.

Die Voraussetzungen von Satz II sind insbesondere immer erfûllt,
wenn n ungerade ist.

Zu dem Satz I wird noch der Zusatz gemacht werden : falls sàmtliche
Formen ft vom Grade h sind, so ist die Anzahl der gemeinsamen Null-
stellen ,,im AUgemeinen" gleich

also gleich einer Zahl, die nur im genannten Ausnahmefall — n gerade,
h 1 — den Wert 0 hat; allerdings muB hierfûr der Begrifï ,,im All-

•) Vgl. hierzu: Artin-Schreier, Algebraische Konstruktion reeller Kôrper,
Hamb. Abh. 5 (1927), 85—99.
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gemeinen" erst gehôrig geklârt werden (cf. § 2, 2., Sàtze 7 und 7a,
p. 168).

Auf den ersten Blick scheint der Fall, da8 aile Formen vom gleichen
Grad sûid, sehr speziell zu sein. In Wirklichkeit wird sich spâter (cf.
§ 2, 4., p. 173) heraussteUen, daB der allgemeine Fall sich ohne weiteres
auf den Fall gleieher Grade zuruckfûhren lâBt, und es bedeutet deshalb
eine ganz unwesentliche Einschrânkung, wenn wir in der folgenden ein-
leitenden Betrachtung aile Formen vom gleichen Grad annehmen.

3, Die in den Sâtzen genannten Ausnahmefâlle -— nâmlich bei Be-
schrànkung auf Formen vom gleichen Grad h : n gerade, h 1 bzw.
n gerade, h ungerade — treten wirklich auf: bei geradem n erfullen die
Linearformen

12r-1 X2 r j j2r==X2 r-l
n

die Relation (1), besitzen aber auBer (0,0,..., 0) keine gemeinsame
Nullstelle; im reellen Falle kann man dann dièse /f noch mit irgend-
einer defîniten Form multiplizieren.

Die Existenz dieser Ausnahmen zeigt, daB unsere Sàtze nicht trivial
sind, wie man vielleicht beim ersten Blick vermuten kônnte; man ist
nâmlich versucht, etwa im Falle von Satz I folgendermaBen zu schlieBen :

die n — 1 Formen fx fn_1 besitzen nach dem Bézoutschen Theorem
eine gemeinsame Nullstelle (fj,..., |n), und dièse ist auf Grund von (1)
auch Nullstelle von fn ; dieser SchluB ist aber darum falsch, weil fn 0
sein kann. DaB hier eine wirkliche Schwierigkeit vorliegt, wird durch die
Ausnahmen bestâtigt.

Die Betrachtung der Ausnahmen fùhrt auch dazu, unsere Sâtze mit
einem bekannten elementaren Satz in Zusammenhang zu bringen: be-
schrânkt man sich nâmlich zum vornherein auf Linearformen /^

n

JE aik xk > so i8^ die vorausgesetzte Relation (1) gleichbedeutend damit,

daB die Matrix (aik) schiefsymmetrisch, die behauptete Existenz einer
nichttrivialen Nullstelle gleichbedeutend damit, daB die Matrix singulàr
ist. Unsere Sâtze stellen also, bei Beschrânkung auf die in ihnen
genannten Klassen der zugrunde gelegten Kôrper, Verallgemeinerungen
des Satzes dar, daB eine schiefsymmetrische Matrix ungeraden Grades
immer singulàr ist.

4. Die Sâtze I und II lassen sich im Rahmen der projektiven
Géométrie folgendermaBen interpretieren. P sei der projektive m-dimen-
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sionale Raum (in bezug auf den Koordinatenkôrper K) ; jedem Punkt x
von P sei eine (m — l)-dimensionale Ebene Fx von P derart zugeordnet,
daB erstens ihre Ebenenkoordinaten /0,..., fm rational-homogen von
den Punktkoordinaten x0 xm des Punktes x abhangen — d. h. daB
die f{ Formen eines gewissen Grades h in den x sind —, und daB zweitens
x immer auf Fx liegt, d. h. daB die Relation (1) besteht. Dann besagt der
Satz I: im klassischen Fall des komplexen projektiven Raumes —

und allgemeiner, wenn K ein behebiger algebraisch abgeschlossener
Kôrper ist —, ist dies nur moglich, wenn die Dimension m ungerade ist
und die f4 linear sind, d. h. wenn ein lineares Nullsystem vorliegt; und
ein âhnlicher Satz gilt nach Satz II fur die reellen projektiven Ràume.

Dieser Satz von der Einzigkeit der bekannten linearen Nullsysteme
scheint bisher auch fur die gewohnhchen komplexen projektiven Raume
nicht formuliert zu sein Ûberhaupt durften die Satze I und II auch bei
Zugrundelegung komplexer bzw. reeller Zahlenkoeffizienten neu sein,
allerdings lassen sie sich dann ziemlich leicht aus bekannten topologischen
Sâtzen ableiten4).

6. Unsere Beweise der Satze I und II operieren, wie es wohl dem
Charakter der Satze entspricht, mit den Methoden der Eliminations-
théorie5). Zur geometrischen Deutung der algebraischen Begriffsbildun-
gen werden wir uns oft der Sprache der algebraischen Géométrie be-
dienen.

Wahrend bei den anfangs erwahnten topologischen Beweisen Satz II
sich wesentlich leichter ergibt als Satz I, wird sich bei der algebraischen
Herleitung umgekehrt Satz II als Folge einer Verscharfung von Satz I
(cf. § 2, 4., Satz Ib, p. 173) herausstellen. Dementsprechend gliedert
sich die Arbeit folgendermaBen :

In den ersten beiden Paragraphen wird Satz I bewiesen werden.

4) Topologischer Beweis (nach Angabe von Herrn H. Hopf). P sei der (n — l)-dimen-
sionale komplexe bzw. réelle projektive Raum, in ihm seien xx,.. xn projektive Koordi-
naten. fx,. fn seien Formen h ten Grades m den xn ohne gememsame niehttnviale Null-

etelle, dann wird im komplexen Fall durch x% ft {xx ,...,#„), un reellen Fall durch

x% ft (xx, xn) eine stetige Abbildung / von P in sich erklart. Wennnun (1) gilt, so

kann / kemen Fixpunkt besitzen. Daraus folgt im komplexen Fall (nach H. Hopf, Zur
Algebra der Abbildungen von Mannigfaltigkeiten, Crelles Journal 163 (1930),
71—88, § 5), dafî n — 1 ungerade und h 1 ist; und un reellen Fall folgt aus der Fix-
punktfreiheit (cf Alexandroff-Hopf, 1. c 532—533), dafi n — 1 ungerade und der Abbil-
dungsgrad von / gleich 1 sein muû, letzteres ist aber, wie man leicht sieht, nur moglich,
wenn h ungerade ist.

6) Vgl dazu B L.v d. Waerden, Moderne Algebra (Berlin 1941), Teil 2, Kapitel 11.
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Der dritte Paragraph ist von den beiden ersten weitgehend unab-
hângig. Sein Inhalt kann etwa so zusammengefafit werden: Wenn von
einem reellen System von Formen /t bekannt ist, daB es ,,im Allge-
meinen" (,,allgemein" in dem noch zu prâzisierenden Sinne; cf. § 2, 2.,

p. 168) eine ungerade Anzahl wesentlich verschiedener Lôsungen6)
besitzt, so wird bewiesen werden, daB dann das System ,,im Speziellen"
immer eine réelle Lôsung besitzt. Der Beweis ist einer von B. L.
v. d. Waerden angegebenen Méthode nachgebildet, welche erstmals von
F. Behrend7) angewandt wurde. Es wird dabei die Artin-Schreiersche
Théorie der reell-abgeschlossenen Kôrper benûtzt (vgl. a. a. O.3)).

§ 1. Zusammenstellung einiger Begriffe und Sâtze

der Eliminationstheorie

Die folgenden Ausfuhrungen schlieBen sich eng an die Entwicklungen
in v. d. Waerden, Moderne Algebra, Teil 2 an (vgl. a. a. 0.5)). Was die
geometrische Deutung der algebraischen Begrifïsbildungen betrifft, so
sei vor allem verwiesen auf v. d. Waerden, Einfuhrung in die algebraische
Géométrie8).

Sei K ein beliebiger kommutativer Kôrper der Charakteristik 0.

Wir fassen ein w-tupel (fx,. |n) beliebiger Elemente eines festen

algebraisch abgeschlossenen Erweiterungskôrpers von K auf als Koor-
dinaten eines Punktes in einem w-dimensionalen affinen Raum Rn. Die
Nullstellen eines Systems von Polynomen fi(x1,..., xn) in nVariablen
mit Koeffizienten aus K bilden dann einen Unterraum dièses Rn, die
Nullstelïenmannigfaltigkeit des Systems9).

1. Wie schon erwâhnt, werden wir uns bei den folgenden Unter-
suchungen auf Formen, d. h. homogène Polynôme, beschrànken. In
diesem Fall enthâlt die Nullstelïenmannigfaltigkeit mit einem Punkt
(|x,..., in) ^ (0 0) auch den ganzen Strahl dureh diesen Punkt
und den Ursprung; algebraisch ausgedrûckt: mit (^ |n) ist auch

(A-|1,..., A-|n) (A ein beliebiges Elément aus dem Koordinatenkôrper)

a) D. h. solche, deren Variablenreihen sich nur um konstante Faktoren unterscheiden.
7) F. Behrend, Ûber Système reeller algebraischer Gleichungen, Comp. Math.

7., 1, §2, 6—10.
8) B. L. v. d. Waerden, Einfuhrung in die algebraische Géométrie (Springer,

Berlin 1939), insbesondere Kap. IV—VI, p. 105 ff.
9) Zur Pràzisierung dièses Begriffes („Algebraische Mannigfaltigkeit") vgl. 8), Kap. IV,

7, (1939), 1—19.
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eine Nullstelle. Die Nullstellenmannigfaltigkeit besteht also jetzt, falls
sie nicht leer ist (der Punkt (0 .0) wird dabei nicht gezâhlt; er ist
iramer ,,triviale Nullstelle") aus einem Kegel von Nullstrahlen, resp. aus
endlich vielen Strahlen (|x,..., fJ. (Wir lassen im folgenden den un-
bestimmt bleibenden Proportionalitâtsfaktor in der Schreibweise weg.)
Wir nehmen irgendeinen Strahl, etwa (fx,..., fn), heraus. Ist etwa (k
die erste nichtverschwindende unter den Zahlen ft-, so liegt insbesondere
der Punkt

(00 1 £ CJ ^= * 0 *

auf dem Strahl. Die Grôfien Çt bestimmen den Strahl vollstândig. Wir
wollen sie kurz als die Richtungskoeffizienten des vorliegenden Strahls
bezeichnen.

Besitzt ein Formensystem endlich viele Nullstrahlen, so sind die
Richtungskoeffizienten sâmtlicher dieser Strahlen algebraisch ùber dem
Grundkôrper (cf. 3., Satz 5, p. 163).

Das algebraische Problem, die Lôsungen eines vorgelegten Gleichungs-
systems (in dem zugrunde gelegten Koordinatenkôrper) zu bestimmen,
làuft geometrisch darauf hinaus, in dem zugehôrigen Rn die Schnitt-
mannigfaltigkeit gewisser vorgelegter Nullstellenmannigfaltigkeiten zu
bestimmen. — Um nun bei der Bestimmung von Schnitten von
Mannigfaltigkeiten den Ausartungsfall des Zusammenfallens einzelner
Teile des Schnittgebildes zunàchst auszuschlieBen, ist es, geometrisch
gesprochen, zweckmàBig, die zu untersuchenden Gebilde zunàchst in
,,allgemeiner Lage" anzunehmen. Dem entspricht folgender algebraischer
ProzeB : man adjungiert zum Grundkôrper K eine Reihe von Unbestimm-
ten ax,..., aQ ; den so entstehenden Kôrper K(a±,..., aq) betrachtet
man als neuen Grundkôrper und ersetzt dementsprechend auch den

Koordinatenkôrper durch einen umfassenderen Kôrper. Sodann ersetzt
man in dem zu untersuchenden System die Koeffizienten der Formen f{
bei Festhaltung ihrer Gradzahlen h{ durch die a. Man erhâlt so ein
System von allgemeinen Formen von vorgeschriebenen Gradzahlen. Das
Verhalten dieser allgemeinen Formen ist in mancher Hinsicht einfacher
und ûbersichtlicher als dasjenige von speziellen Formen. Andererseits
erhàlt man jedes spezielle System durch Spezialisierung der Koeffizienten
im Grundkôrper. Die folgenden grundlegenden Sâtze geben einen ersten
AufschluB uber die Nullstrahlen eines allgemeinen Systems sowie liber
das Verhalten bei Spezialisierung10).

10) Die folgenden Sàtze 1, 2 und 3 sind fast wôrtlich zitiert nach v. d. Waerden; vgl.
a. a. O.5), Kap. 11, p. 77—83.
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2. Satz 1 (HiWertscher Nullstellensatz). Ist f ein Polynom in
K [xt,..., xn], das in allen gemeinsamen Nullstellen der Polynôme
/i j • • • y fr verschwindet, so gilt eine Kongruenz

f* 0 (mod. (/x,...,/r))

filr eine natûrliche Zahl q (und umgekehrt)11).

Der Satz 1 gilt allgemein, nicht nur fur Formen. Er bildet die Grund-
lage fur aile folgenden Untersuchungen.

Satz 2. r Formen fx,..., fr mit unbestimmten Koeffizienten a besitzen

ein Resultantensystem, bestehend ans endlich vielen ganzzahligen Formen Rx
in diesen Koeffizienten, so dafi filr spezielle Werte der Koeffizienten in K
das Verschurinden aller Resultanten notwendig und hinreichend ist fur die
Existenz einer nichttrivialen Lôsung der Oleichungen fi 0,i=l,...ir.12)

Insbesondere folgt aus Satz 2:

Satz 2 a. Hângen in einem System von Formen ft die Koeffizienten cv

ganz rational von einer Reihe von Unbestimmten ab und ist das System
lôsbar (d. h.: besitzt es einen Nullstrahl13)), so gilt dies auch nach einer
beliebigen Spezialisierung der Unbestimmten in K. Denn sei etwa cv

(pv(a1,..., aq), wo al9.. ,,aa Unbestimmte bedeuten und die q>v ganz
rational in den aQ sind. Dann bedeutet die Lôsbarkeit nach Satz 2, dafi

Bx(a) Rx (?i(a),..., yja) 0 (A 1 p)

identisch in den a gilt. Dièse Gleichungen bleiben erhalten bei Spezialisierung

der a zu Werten <x, woraus nach Satz 2 die Behauptung folgt14).
In dieser Tatsache âuBert sich der Vorzug der Formensysteme gegen-

ûber den Systemen von Polynomen. Beispielsweise besitzt das System
von zwei allgemeinen linearen Polynomen in zwei Variablen

«ii »i + «12 x2 + bx 0

«21 Xl + «22 X2 + h — 0

n) D. h. : es gibt in K [xt xn] n Formen qx qn so daÛ

/* *i/i+•••+*••/.• ;
cf. «), § 79, p. 6.

12) Vgl. *), § 80, p. 9.

18) In dem entsprechend erweiterten Rn-f cf. § 1, 1., p. 7; vgl. dazu a. a. O.8), p. 105 ff.

") Vgl. a. a. 0.12), Aufg. 3.
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eine gemeinsame Nullstelle; dièse Tatsache bleibt aber nicht bei jeder
Spezialisierung der a, b erhalten, sondern nur daim, wenn auch nach
der Spezialisierung die beiden Matrices

(8" M und (°« °» M
\ «21 «22 / \ «21 «22 »2 /

gleichen Rang haben. Zwei Linearformen in 3 Variablen hingegen be-
sitzen nicht nur im allgemeinen, sondern auch bei jeder Spezialisierung
der Koeffizienten einen gemeinsamen Nullstrahl.

Satz 3. Ist r <n, so existiert keine von 0 verschiedene Résultante.

r allgemeine Formen in n Variablen besitzen also in diesem Fall immer
gemeinsame nichttriviale Nullstrahlen.

Ist r ^ n, so existiert ein von 0 verschiedenes Resultantensystem. Ist
insbesondere r n, so wird das Resultantensystem durch eine einzige
Form R in den Koeffizienten reprâsentiert. Sie ist homogen in den

Koeffizienten von /x vom Grade H1 — h2> >hr (At- Orad von /^), etc.

zylclisch fur Hi mit i l,..., r. —- r allgemeine Formen besitzen also in
diesen Fâllen keine gemeinsamen Nullsteïlen.

Satzl (cf. p. 155) besagt also : Wàhrend n allgemeine Formen in n Variablen

keine gemeinsame nichttriviale Nullstelle haben, ist dies der Fall,
sobald die Koeffizienten irgendwie so spezialisiert werden, daû zwischen
den Formen die identische Relation (1) besteht.

3. Die folgenden Sàtze 4 und 5 sind fur uns im nâchsten Paragraphen
wichtig.

Satz 4. Besitzt das Gleichungssystem

/1 0,...,/r 0 (2)

ho'chstens endlich viele Nullstrahlen, so besitzt es mit einer allgemeinen

Linearform
L u1x1-\ h un xn (3)

(u{ Unbestimmte, die demGrundkôrper adjungiert werden, cf. p. 159) keine

gemeinsamen Nullstrahlen, und umgekehrt.

Beweis. a) Da der Grundkôrper von der Charakteristik 0 voraus-
gesetzt ist, lassen sich in ihm n Elemente ct so finden, daB die Linear-

1 Al
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form c1x1 -\-- - - -\- cnxn auf keinem der endlich vielen Nullstrahlen
verschwindet :

n

J£ ct |t ^ 0 fur samtliche Nullstrahlen15)

Daraus folgt a fortiori fur die Unbestimmten ut:
n

]j? ut ft ^ 0 fur samtliche Nullstrahlen.

Das bedeutet geometrisch : Sind im Rn endlich viele Strahlen fest vor-
gegeben, so geht eine Hyperebene ,,in allgemeiner Lage" durch keinen
von diesen Strahlen hindurch.

b) Das System fx,. fr, L besitze keine gemeinsamen Nullstrahlen.
R\{u) sei eine der nichtverschwindenden Resultanten des Resultanten-
systems von fx,..., fr, L, aufgefaBt als Form in den u. R\(u)
verschwindet fur spezielle u jedenfalls dann, wenn auf einem Nullstrahl
(fi,...,fn) von /i,...,/r zugleich auch L verschwindet, d. h. wenn
fur dièse u und diesen Strahl gilt:

Z,*=tt1f1+... + t*n*n O. (30

Fassen wir (30 als Gleichung einer Hyperebene H des w-Raums auf, so

kônnen wir dies kurz so ausdrucken: R\(u) verschwindet auf der Hyperebene

H. Daraus folgt aber nach Satz 1:

Rx(u)* 0 (mod. (Ul£1+...+ Un |n) (4)

oder in Worten: R\(u) spaltet im Ring K\u\ den Linearfaktor ux £t + • • •

+ unÇn ab. Da dies fur einen ganz beliebigen Nullstrahl von fx,..., /r
gilt, R\(u) aber eine Form endlichen Grades in den u ist, so kann es nur
endlich viele Nullstrahlen von (2) geben, q. e. d.

Zusatz zu Satz 4. Besitzt das System (2) nur endlich viele Nullstrahlen,
so besitzt es mit einer allgemeinen Form von beliebigem Grad h keine gemein-

same Nullstrahlen.

Beweis : Man spezialisiere die allgemeine Form zu einem Produkt von h

allgemeinen Lûiearformen ; dann folgt die Behauptung aus Satz 4, a) und
aus Satz 2a (cf. p. 160).

") Beweis leicht.
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Wir setzen jetzt voraus, daB das Gleichungssystem (2) genau endlich
viele Lôsungsstrahlen besitzt, etwa (ff\..., fjf0) (a 1 g), und
wollen dièse Strahlen bestimmen16).

Wir nehmen zu dem System eine allgemeine Linearform (3) hinzu und
bilden das Resultantensystem Rx(u)y..., Rv(u) der Formen fl9.. .,fr,L.
Dièses versehwindet fur spezielle u dann und nur dann, wenn es einen
Nullstrahl {ij[a),..., £^a)) von (2) gibt, auf dem auch L versehwindet,
d. h. wenn fur dièse u und dièses oc gilt

La *!&>+ ¦¦¦ +«,#)=0.
Das bedeutet : Die gemeinsamen Nullstrahlen der Formen JBX (u),

Rv(u) (aufgefaût als Formen in den u) sind genau die O-Strahlen des

Produkts FI La Daraus folgt: bezeichnet D(u) den grôflten gemein-
a=l

samen Teiler der R\(u) im Ring K\u\ so ist nach Satz 1 fur eine natiir-
Jiche Zahl q:

nLl^O (mod.D(u)) ; (5)
a

es gibt aber auch eine natùrliche Zahl a, so daB fur jedes A:

Rax 0 (mod.77£a) (40
oc

Aus (5) und (4') folgt: 77La und D(u) enthalten genau dieselben Linear-
a

faktoren; d. h. es gibt eine Reihe natiirlicher Zahlen ça, so daB

D(u)=nLl°. (6)
oc

In Worten :

Satz 6. Die Linearformen La, welche die Lôsungsstrahlen von (2) 6e-

stimmen, werden durch Faktorzerlegung der Form D(u), g. g. T. des Resul-

tantensystems R\{u), gefunden.

Insbesondere ergibt sich im Fall r n — 1, da dann D(u) R(u)
vom Grade H h1... -hn__1 in den u ist (ef. Satz3, p. 161, mit /w= L):

u) Das Folgende bis inkl. Satz 5 fast wôrtlich zitiert nach v. d. Waerden; vgl. 5), § 83, «^~
p. 16.
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Man nennt die £a die Vielfachheiten oder Multiplizitâten der Nullstrahlen.
Die rechte Seite von (7) stellt dann die Gesamtzahl der Lôsungen des

vorgelegten Gleichungssystems, mit Vielfachheiten gerechnet, dar. Wir
geben im folgenden Abschnitt noch eine andere Charakterisierung der
Vielfachheit eines Strahls (fx,..., £J, welche es erlaubt, die Vielfach-
heit bei gegebenem D (u) zu bestimmen, ohne D (u) in Linearfaktoren zu
zerfâllen.

Zusatz zu Satz 5.

In einem System (2) mit genau endlich vielen Nullstrahlen môgen die
Koeffizienten von unbestimmten Parametern ganz rational abhângen.
Seine w-Resultante D{u) hângt dann ebenfalls ganz rational von diesen
unbestimmten Parametern ab.

Bei einer Spezialisierung der Parameter im Grundkôrper besitze das

spezialisierte System immer noch genau endlich viele Nullstrahlen.
D(u) gehe bei der Spezialisierung uber in D*(u), Dann gilt fur die
^-Résultante E(u) des spezialisierten Systems:

E(u) 0 (mod.D*(u))

Denn die Teilbarkeit im Ring K[u\ bleibt bei der Spezialisierung be-
stehen ; deshalb ist D* (u) ein Teiler sâmtlicher spezialisierter Resultanten
M* (u), also auch ein Teiler ihres g. g. T. E (u), q. e. d.

4. Charakterisierung der Multiplizitât g eines Strahls (£lt..., £n).

Der vorliegende Strahl bestimmt im w-Raum17) eine Hyperebene

welche kurz mit H bezeichnet sei. Dann gilt:

Ist die Multiplizitât eines Strahles gleich g, so verschwinden auf H sâmt-
liche folgenden Formen in den u:

dD{u) dD(u) d2D(u) d2D(u)
du± dun du1 du± du%

es verschwinden aber nicht sâmtliche der Formen

d<>D{u)

und umgekehrt.

(8')

17) D. h. wir fassen die u als Unbestimmte «,uf ; vgl. Beweis von Satz 4, b), p. 162.
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Beweis.

a) Ist die Multiplizitât des Strahls gleich g, so verschwinden in H
sàmtliche Ausdriicke (8).

Dies ergibt sich durch partielle Differentiation der Identitât (6) (cf.

p. 163); aile partiellen Ableitungen bis zur (g—l)-ten spalten offenbar
den Faktor ux |x + • • • + un f n ab.

b) Unter derselben Voraussetzung verschwinden in H nicht aile der

ormen (8'). Denn sei etwa f,

wûrde (wiedernach (6)) auch

Formen (8'). Denn sei etwa f, ^ 0. Wurde auf// verschwinden, so
oui

auf H verschwinden (der Strich am Produktzeichen bedeutet, daB der
zum vorliegenden Strahl gehôrige Index oc bei der Produktbildung weg-
zulassen ist). Dann miïBte aber nach Satz 1 D'(u) den Faktor ux £x +
• * • + un£n abspalten, was nicht der Fall ist.

c) Verschwinden auf H sàmtliche der Formen (8), aber nicht aile der
Formen (8'), so ist die Multiplizitât des Strahls gleich g. DaB sie minde-
stens gleich g ist, folgt aus b), daB sie hôchstens gleich g ist, aus a).

Folgerungen.
Die Tatsache, daB die sâmtlichen Nullstrahlen eines Systems (2) die

Vielfachheit 1 besitzen, oder, wie wir sagen wollen, getrennt liegen, lâBt
sich so charakterisieren, daB auf keiner der Hyperebenen, in welche die

Nullstellenmannigfaltigkeit von D(u) im tt-Raum zerfâllt, sàmtliche
ersten partiellen Ableitungen von D(u) verschwinden. Wir erhalten also:

Kriteriwn fur die Vielfachheit 1.

Notwendig und hinreichend dafûr, daB sàmtliche Nullstrahlen eines

Systems (2) getrennt liegen, ist, daB die zugeordneten Formen

D(u),D1(u),...,Dn(u) Dt(u)= g~

im w-Raum keinen gemeinsamen Nullstrahl haben.

In dieser Formulierung kônnte iibrigens D(u) weggelassen werden, da
n

ja h-D(u) £ut D%(u) ist (h Grad von D(u)), und die Existenz eines

gemeinsamen Nullstrahls der D^u) kannnach Satz 3 (cf. p. 161) durch das

Versohwinden einer einzigen Form A in den Koeffizienten der D{(u),
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also auch in den Koeffizienten der ft(x), charakterisiert werden. A heiBt
die Diskriminante des Systems (2).

Aus diesem Kriterium und Satz 2 a (cf. p. 160) folgt:

Satz 6. Hangen in einem System (2) die Koeffizienten der ft (also auch

diejenigen der Dt) ganz rational von unbestimmten Parametern ab und
liegen bei einer Spezialisierung dieser Parameter die Nullstrahlen getrennt,
80 ist dies auch vor der Spezialisierung der Fall.

Wir werden diesen Satz îm nachsten Paragraphen (cf § 2, 3., p. 169)
anwenden.

§ 2. Beweis von Satz I
Wir wollen Satz I in zwei Schritten beweisen. Der erste Schritt be-

steht darin, daB wir die allgemeinsten Formen von vorgeschriebenen
Gradzahlen, welche der Relation (1) genugen, explizite angeben18). Der
zweite Schritt besteht im Beweis eines Satzes uber dièse allgemeinsten
Formen (cf. 4., Satz I b, p. 173), welcher eine Verscharfung von Satz I
darstellt.

1. Als Vorbereitung beweisen wir folgenden

Hilfssatz 1. Oegeben r Formen fx,..., fr vom selben Orad h in n Variab-
len xx,..., xn welche die identische Relation

r
V (la)

erfûllen. Dann lassen sich die Formen ft darstellen in der Oestalt

(9)

Dabei ist
fr xxgrl

9n= 0

ferner ist g{J (i < j) eine Form vom Grade h — 1, welche aujier von xx t

x} nur von den Variablen xr+1,..., xn abhangt.

18) Die Prâzisierung dieser Aussage folgt un nachsten Abschnitt (cf. 2., Satze 7 und 7 a,
p. 168).
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Beweis. Wir beweisen den Satz durch Induktion nach der Anzahl der
in (la) auftretenden Formen ft. Der Satz sei also schon bewiesen fur
die Anzahl g — 1. D. h.: wenn g — 1 Formen in den Variablen xt,

Q-l
•.. > #c-i ; xr+i > • • • » #n die Relation ]? xtft 0 erfullen, so lassen sie

sich in der Form (9) darstellen (wobei man in (9) r durch g — 1 zu er-
setzen hat) ; dabei hàngt gtj (i < j) nur ab von xx,..., xi ; xr+l,..., xn

Nun seien g Formen in den Variablen xx,..., xQ ; xr+1,..., xn vor-
Q

gelegt, welche die Relation J£ xt ft 0 erfullen. Betrachten wir dièse

Formen in der Hyperebene xQ 0, so gehen sie uber in Formen der
Variablen xx,..., xQ_x ; #r+1,..., xn Die ersten g — 1 unter ihnen
erfullen die Induktionsvoraussetzung. Es gilt deshalb

h

(10)

+ %Q~2 Çq-1, Q-2

Hierin sind die gr,e gewisse Formen h — lten Grades in den Variablen xx

xQ ; #r+1,..., xn Multipliziert man dièse g — 1 Identitaten resp.
mit xt,..., xQ_x und addiert, so folgt

q-1

also wegen /i 0 :

Setzt man nun

so wird
Q-l

fQ S *X (12)

(10) und (12) ergeben zusammen genau die behauptete Darstellung der
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Formen ft,..., fQ. Da der Satz richtig ist fur q 2, so folgt er fur
beliebiges r. 19)

2. Aus dem Hilfssatz 1 ergibt sich jetzt die behauptete explizite Dar-
stellung in folgendem pràzisen Sinne:

Satz 7. Gegeben rx Formen vom Grade hx, r2 Formen vom Grade h2,

etc... .,rt Formen vom Grade ht (ht ^ 1 t 1 t) in n Uribe-
t

stimmten xx,.. xn ; es sei v rf n
T l

Dièse n Formen mogen der Relation (1) genugen. Dann gehen sie (nach
geeigneter Umnumerierung der Formen und Unbestimmten) aus folgenden
Formen durch Spezialisierung der unbestimmten Koeffizienten hervor:

fi= 2 *j 9t3 (t, / 1 rx)
'

fi £ %, 9t3 [h j rx + 1 rx + r2)

/, 2*, 9t, (h j rt H h rt_x + 1 n);

die Matrix (gtJ), durch die die Formen (13) definiert sind, ist also schief-
symmetrisch und zerfâllt in Kâstchen; ferner ist gt} (i < j), falls sie etwa
im r-ten Kâstchen steht, eine allgemeine Form (hT — \)4en Grades in

Die Formen (13) erfullen ofifenbar selbst die Relation (1); wir nennen
sie die allgemeinsten Formen von vorgeschriebenen Gradzahlen hx,..., ht,
welche (1) erfullen, und kônnen dann Satz 7 kurz so zusammenfassen :

Satz 7 a. Bei vorgeschriebenen Gradzahlen erhalt man jedes Formen-
system, das die Relation (1) erfûllt, durch Spezialisierung der Koeffizienten
der allgemeinsten Formen, welche (1) erfullen.

Beweis. Seien irgendwelche Formen f{ (i 1 n) in den Variablen
n

x1,..., xn gegeben. Wir denken uns das PolynomJ£ %ifi formai hin-

geschrieben und nach homogenen Bestandteilen geordnet. Falls nun die
Relation (1) besteht, mûssen dièse Bestandteile einzeln verschwinden.
Das bedeutet aber: wenn man die Formen /2- und entspreehend die
Variablen so numeriert, daB sie etwa nach aufsteigenden Graden
geordnet erscheinen, so bestehen die t Relationen

*•) Eine àhnliche Schlufiweise findet sich bei A. Hurwitz; vgl. dazu: A. Hurwitz, tJber
die Trâgheitsformen eines algebraischen Moduls, Annali di Matematica pura e

applicata 20 (1913).
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(lb)
h *Vi n)

Das bedeutet aber : faut man die gegebenen Formen nach verschiedenen
Graden in Gruppen zusammen, so erfûllen die Formen einer Gruppe
jeweils die Voraussetzung von Hilfssatz 1 (nach geeigneter Umbenen-
nung der Variablen). Nach Hilfssatz l20) ergibt sich jetzt die behauptete
Darstellung ohne weiteres.

Es sei noch speziell auf den Fall hingewiesen, wo sàmtliche Formen f{
vom gleichen Grade h sind. (13) reduziert sich dann auf

fx + + znglf

(14)

fn %l 9n,l + + xn-l 9n,n-l

Der Sinn von Satz 7 ist folgender. Wenn man von dem System (13) von
Formen vorgeschriebener Gradzahlen zeigen kann, dafî es Nullstrahlen
besitzt, so besitzt nach Satz 7 a und Satz 2 a (cf. p. 160) jedes System von
Formen mit denselben Gradzahlen, das (1) erfûllt, ebenfalls mindestens
einen Nullstrahl. Satz I wird deshalb bewiesen sein, sobald er fur das

System (13) bewiesen ist.

3. Wir betrachten nun zuerst nicht das System (13), sondern das

etwas speziellere System (14), und wollen in diesem Abschnitt zeigen,
daB dièses System mindestens einen Nullstrahl besitzt, falls nicht der
Grad der in (14) auftretenden Formen gleich 1 und auBerdem die Anzahl n
der Variablen gerade ist. In diesen Ausnahmefâllen besitzt das System
(14) keinen Nullstrahl.

Satz la. Das System (14) besitzt

z(h) hn-l __ hn~2 _J +

Nullstrahlen, und dièse liegen getrennt.

(-1)"

20) cf. p. 165. Hilfssatz 1 liefert sogar noch eine etwas schârfere Anssage (bezûglich der
Abhàngigkeit der g{. von den x( Dièse Verschàrfung ist jedoch fur uns unwesentlich.



Die Zahl z%} ist offenbar dann und nur dann 0, wenn h gleich 1 und n
gerade ist. In Satz la sind also auch die Ausnahmefàlle enthalten.

Dem Beweis von Satz la schicken wir zwei Hilfssàtze voraus.

Hilfssatz 2. Die ersten n — 1 Formen fx,..., fn_1 in (14) besitzen nur
endlich viele Nullstrahlen y und dièse liegen getrenvt.

Wir fûhren den Beweis durch Induktion nach n unter Benûtzung von
Satz 6 (cf. § 1, 4., p. 165). Der Satz sei schon bewiesen fur n — 1.

Die Induktionsvoraussetzung bedeutet: das Formensystem in n — 1

Variablen

h

/n-2 =X\ Çn-2,1 + * ' ' + #n-3 Çn-2,n-Z

(15)

+ ^n-l

mit gH — gi5 (i < j), gu 0, wobei gu eine allgemeine Form h — lfcen

Grades in n — 1 Variablen xx,..., xn__t ist, besitzt endlich viele ge-
trennte Nullstrahlen.

Wir gehen jetzt ûber zu n und betrachten folgendes Formensystem in
n Variablen xx,..., xn :

h Xn-2 i, n-2 + ^n-1 Çl,n-1

(15')

/n-2 Xi gn-2,l +
^n-1 ^1 Çn-1,1 +

n_2, n-3

n-1, n-2 n-lt n

Dabei sollen die ersten n — 2 Formen genau die Formen (15) sein; sie

enthalten also die Variable xn nicht. Ferner soll <7n_M — <7*fW-i s6^
(i 1 n — 2), und grn_1) n endlich soll eine allgemeine Form in den
Variablen xx,..., xn sein.

Wir bemerken zunàchst, daB man die Formen (15') aus den ersten
n — 1 Formen (14) (cf. p. 169) erhalt durch Spezialisierung gewisser un-
bestimmter Koeffizienten zu 0 (namlich sâmtlicher Koeffizienten von
g. n { 1 n — 2, und auBerdem aller Koeffizienten der von xn
abhângigen Glieder in gijy i <j<Z>n— 1). Um Hilfssatz 2 zu beweisen,
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genûgt es also nach Satz 2 (cf. p. 8) und Satz 6 (cf. p. 14), zu zeigen, daB
das System (15') nur endlich viele, getrennte Nullstrahlen besitzt.

Nun kann man aber die Nullstrahlen von (15') explizit aus den
Nullstrahlen von (15) berechnen, da die Variable xn nur in der letzten Form
/„_! auftritt. Damit zunàchst die ersten n — 2 Gleichungen fi 0 er-
fïïllt sind, mûssen xt,..., xn__1 auf einem Nullstrahl von (15) liegen.
Man wâhle nun irgendeinen dieser Nullstrahlen, etwa (Çt,..., £„_!), aus
und setze seine Richtungskoeffizienten an Stelle der #t- (i 1 n — 1

in der letzten Gleichung fn_x 0 ein. Diejenigen Zahlen fn die den
gegebenen Nullstrahl zu einem Nullstrahl von (15') ergànzen, sind dann
aus der Gleichung

Sl,-",£n-l) + C=0 (16)

zu bestimmen, wobei zur Abkurzung gesetzt ist:
n-2

0,1-1,11 9 î S ^ 9n-hi (f 1 • • •> fn-l) C
i=l

Wir zeigen jetzt, da6 die Gleichung (16) nur endlich viele, und zwar
getrennte Lôsungen besitzt.

Sei etwa fx ^ 0. Dann spezialisieren wir die unbestimmten Koeffi-
zienten von g so, daB nur das Glied a^"1 mit dem Koeffizienten 1 und das

Glied U'^\~x mit unbestimmt bleibendem Koeffizienten u ûbrigbleibt.
Gleichung (16) wird dadurch zu

^•(^•^-1 + ^-1) + C 0. (160

Die Gleichung (16') besitzt aber endlich viele getrennte Lôsungen, da u
eine (dem Grundkôrper adjungierte) Unbestimmte ist (man sieht nâm-
lich unmittelbar, daB das Polynom auf der linken Seite von (16') mit
seiner Ableitung keinen gemeinsamen Teiler besitzt).

(16r) entstand aber aus (16) durch Spezialisierung ; also gilt dasselbe

fur die Gleichung (16)21).
Die so gefundenen h verschiedenen Lôsungen von (16) ergànzen nun

den betrachteten Nullstrahl von (15) zu h getrennten Nullstrahlen von
(I5r). Macht man dasselbe fur sâmtliche Nullstrahlen von (15), so erhàlt
man aile Nullstrahlen von (15'), und da die Nullstrahlen von (15) ge-
trennt liegen nach Induktionsvoraussetzung, so folgt dasselbe fur die
Nullstrahlen von (15'), q. e. d.

%l) Denn die Diskriminante des Polynoms auf der linken Seite von (16') geht aus der-
jenigen des Polynoms auf der linken Seite von (16) durch Spezialisierung hervor.
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Da der Hilfssatz richtig ist fur n 2 (dann reduziert sich nâmlich ft
auf a?2<712 und besitzt endlich viele getrennte Nullstrahlen), so gilt er
allgemein.

Hilfssatz 3. Auf einem Nullstrahl der Formen f1 fn_x in (14), der
in der Hyperebene xn 0 liegt, kann fn nicht verschwinden.

Das bedeutet : die Formen fx,..., fn besitzen in der Hyperebene
xn 0 keine gemeinsame Nullstelle.

Wir beweisen sogar: die Formen fx /n_1 besitzen in der Hyperebene

xx 0 keine gemeinsame Nullstelle. Dann folgt durch Vertau-
schung der Indizes 1 und n in den Formen und Variablen, dafi sogar die
Formen /2,..., fn in xn 0 keine gemeinsame Nullstelle haben. — Zum
Beweis setzen wir in /2,..., fn__x die Variable xx gleich 0. Dann sind
U^xx=0 > • • • » [/n-iL^o ^ — 2 Formen in w-1 Variablen von genau der
Beschafïenheit, wie wir sie in Hilfssatz 2 betrachtet haben (man hat
nur in dem Schéma (14) (cf. p. 169) die letzte Zeile, ferner die erste Zeile
und erste Spalte und in den gi5 aile Glieder mit xx wegzulassen). Sie
besitzen also nach Hilfssatz 2 endlich viele (iibrigens getrennte) Nullstrahlen.

Die Form fx wird aber fur xx 0 eine allgemeine Form der Variablen

x2,..., xn deren Koeffîzienten von denen der Formen [/J^,,,...,
[/n-iLi:=o algebraisch unabhângig sind (man betrachte wieder das Schéma

(14)). Nach dem Zusatz zu Satz 4 (cf. p. 162) besitzen also [/J^^o, [/2]iCl=o *

[fn-.i]x =o keinen gemeinsamen Nullstrahl, q. e. d.

Jetzt kônnen wir Satz la beweisen. Wir betrachten von den n Formen
(14) nur die ersten n — 1. Sie besitzen endlich viele getrennte Nullstrahlen.

Dièse teilen wir in zwei Kategorien : solche in der Hyperebene xn 0

und solche auBerhalb. Auf einem Nullstrahl in der Hyperebene ver-
schwindet fn nach HS. 3 nicht, auf einem solchen auBerhalb verschwin-
det aber fn trivialerweise ; denn die Relation (1) liefert dann

*./,(fi..-.,*.) -"S *J«(fi,••.,*.) 0;
ï l

also verschwindet links wegen in ^= 0 notwendigerweise /n(fx,..., !„).
Die Nullstrahlen der n Formen (14) liegen also getrennt und ihre An-

zahl 4A) i8^ gleich der Anzahl der Nullstrahlen der Formen /lv,., fn^t
auBerhalb der Hyperebene xn 0, d. h. gleich der Differenz aus der Ge-
samtzahl ihrer Nullstrahlen und der Zahl ihrer Nullstrahlen in der
Hyperebene xn 0.

Die Gesamtzahl ist nach Formel (7) (cf. p. 163) gleich An-1 ; die letztere
Zahl aber ist z<f-i \ denn setzt man in /x,..., fn_x ûberall xn 0 so
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entsteht wieder genau ein System von der Gestalt (14), wobei man n
durch n — 1 zu ersetzen hat. Es gilt also fur z^ die Rekursionsformel

zn — n — zn (i/j
Aus ihr und aus z2h) h — 1 ergibt sich Satz la.

4. Wir wollen jetzt zeigen, daB das allgemeinere Formensystem (13)
(cf. p. 168) immer einen Nullstrahl besitzt, ausgenommen wenn sâmtliche
f{ Linearformen sind und n gerade ist. Damit wird dann auch Satz I
bewiesen sein (cf. 2., p. 169).

Durch die Gleichungen

x. 0 (* r1+l,...,n) (18)

wird, ein r1-dimensionaler Teilraum Ari des Rn definiert. Wegen des

Zerfallens von (13) in Kâstchen gilt in diesem Teilraum identisch in

/. 0 (i r1+ l ,...,n) (19)

Die Iibrigbleibenden Formen bilden in ATl, aufgefafit als Funktionen in
den iibrigbleibenden Variablen, ein System (14).

Was wir hier fur das erste Kâstchen ausgefuhrt haben, lâBt sich genau
gleich fur die andern Kâstchen durchfùhren. In analoger Bezeichnung
folgt deshalb aus Satz la:

Satz Ib. Das Formensystem (13) besitzt fur jedes r(l^r^t) in
einem gewissen Teilraum Ar% des Rn genau z

' x' Nullstrahlen, und dièse

liegen getrennt.

Da z^ nur 0 ist fur h 1 und gerades r, so haben wir damit die Exi-
stenz eines Nullstrahls von (13) gezeigt.

6. Zum SchluB dièses Paragraphen sei noch erwâhnt, daB man durch
Verallgemeinerung des in Abschnitt 3. angewandten Beweisverfahrens
die Anzahl der Nullstrahlen des Systems (13) genau bestimmen kann, in
folgendem Sinne:

Satz le. Sei t die Anzahl der Kâstchen in (13). Dann besitzt das System
(13) mit t — 1 allgemeinen Linearformen genau

(A, »>_ ftp -(-!)* h?-{-!)«
ri H ~ ht+l '" h,+ l

173



gemeinsame Nullstrahïen. Dièse Zahl ist 0 dann und nur dann, wenn
A1=l und rx gerade ist. In letzterem Fall besitzt (13) mit t—2 allgemeinen
Linearformen z(j22;;;;;*f Nullstrahïen.

§ 3. Beweis von Satz II
1. In diesem Paragraphen wollen wir den zugrunde liegenden Koeffi-

zientenkôrper K reell-abgeschlossen voraussetzen (vgl. a. a. O.3)).
Ein Formensystem fx,..., fn in n Variablen xx,..., xn mit Koeffi-

zienten aus K erfulle die Relation (1). Ferner sei die Voraussetzung von
Satz II erfiïllt; d. h. es seien nicht sàmtliche Formen /,. von ungeradem
Grade und zugleich sàmtliche Anzahlen von Formen gleichen Grades

gerade. Dièse Voraussetzung ist insbesondere erfûllt, wenn n ungerade ist.
Dann lautet die Behauptung von Satz II: das System besitzt in K

einen Nullstrahî.
Ein solches System geht nach Satz 7 (cf. § 2, 2., p. 168) aus einem

System (13) durch Spezialisierung der unbestimmten Koeffizienten her-

vor, wobei (nach geeigneter Umnumerierung der Formen und Variablen)
etwa fur das erste Kâstchen gilt:

Es ist nicht zugleich die Ordnung k des Kàstchens gerade und der
Grad h der Formen fx,..., fk ungerade.

Nun besitzt das System (13) nach Satz Ib (cf. §2,4., p. 173) imTeil-
raum Ak, welcher durch die Gleichungen

xt 0 (i k + 1 n)

definiert wird, genau z^ getrennte Nullstrahïen.
Betrachten wir nun das System (13) im Teilraum Ak. Es stellt hier ein

Formensystem in nur kVariablen dar. Bildet man nun von diesem System
die 'M-Resultante, so besagt Satz Ib, dafi dièse in den u genau vom Grade

z^ ist ; ihre Strahlen (fx,..., £*.) sind genau die Nullstrahïen des Systems
(13) im Teilraum ^4*. Nun ist aber (cf. § 2, 3., p. 169, Satz la) zf dann
und nur dann gerade, wenn k gerade und h ungerade ist.

Im vorliegenden Fall ist also D(u) ungeraden Grades in den u.

2. Wir beweisen jetzt
Satz 8. Ein System f* ,...,/* gehe aus einem System f±,..., fr mit

Koeffizienten aus K[ax aff] durch Spezialisierung der unbestimmten a
im reell-abgeschhssenen Grundkôrper K hervor. Besitzt dann das System

/i • • • » fr endlich viele Nullstrahïen und ist seine u-Resultante D (u)
ungeraden Grades in den u, so besitzen die Formen f* ,...,/* in K einen
Nullstrahî.
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Wie schon in der Einleitung erwâhnt, ergibt sich der Beweis in ganz
ahnlicher Weise wie bei F. Behrend (vgl. a. a. 0.7)).

Seien 04 aq q beliebige Elemente aus K. Um nun die aQ zu den

ocQ zu spezialisieren, fuhren wir durch die Substitution

eine Reihe neuer Unbestimmter tQ (g 1 q) ein.
Das System ft geht dadurch uber in ein System ft(t, x) mit Koeffi-

zienten aus K(tt,..., tQ), welches eine ungerade Anzahl von Nullstrahlen
besitzt (éventuelle Multiplizitaten mitgezahlt). Dièse liegen in dem
Raum -4^), welcher zu einem algebraisch-abgeschlossenen Erweiterungs-
kôrper von K (tx,..., tQ) gehort. Ein solcher ist der Kôrper Q aller Pui-
seuxschen Reihen nach aufsteigenden gebroohenen Potenzen der GroBen
tQ mit Koeffizienten aus K(i)22).

Der Unterkôrper P der reellen Puiseuxschen Reihen (d. h. der Reihen
mit Koeffizienten aus K) ist formal-reell und wird durch Adjunktion von
i algebraisch abgeschlossen {P(i) Q) ; also ist er reell-abgeschlossen23).

Da nun das System ft(i, x) Koeffizienten aus P hat und auGerdem m
P(i) Q eine ungerade Anzahl von Losungen besitzt, so folgt (da zu
jedem Losungsstrahl der konjugiert komplexe Strahl auch Lôsungs-
strahl, und zwar von der gleichen Multiplizitat, ist), daC eine réelle Lô-
sung, d. h. eine solche mit Koordinaten aus P existieren muB. Die Koor-
dinaten dièses Losungsstrahls sind also réelle Puiseuxsche Reihen. Da
sie nur bis auf einen Proportionalitatsfaktor bestimmt sind, kann man
sie durch Multiplikation mit einem geeigneten Potenzprodukt der tQ so

normieren, daB keine negativen Potenzen der tQ vorkommen und daB

mindestens ein £t ein von 0 verschiedenes konstantes Glied besitzt. Setzt
man nun aile tQ 0, so erhalt man offenbar eine nicht-triviale Lôsung
des Systems f% mit Koordinaten aus K; damit ist Satz 8 bewiesen.

Erfullen nun n Formen f* ,...,/* die Voraussetzungen von Satz II,
so erfullen sie im Teilraum Âk die Voraussetzungen von Satz 8, womit
Satz II bewiesen ist.

(Eingegangen den 20. August 1945.)

22) Vgl. dazu* B.L.v.d. Waerden, Einfuhrung in die algebraische Géométrie,
Kap. II, § 14, 52—54, und die von Ostrowski Math. Zeitschrift 37 (1933), 98—133, § 1

gegebene Herleitung der Puiseuxschen Reihenentwicklung. Dièse Entwicklung liefert
unsere Behauptung zunachst nur fur algebraische Funktionen einer emzigen Verander-
lichen t. Sie ubertragt sich aber ohne weiteres durch Induktion auf eme beliebige
Anzahl q von Veranderhchen tç {q 1 q).

23) Vgl. 3).
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