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Uber die Losbarkeit
gewisser algebraischer Gleichungssysteme

Von WaALTER HABICcHT, Schaffhausen

Einleitung

1. Diese Arbeit hat das Ziel, zwei Sitze, die ihrem Inhalt nach in die
Algebra gehoren, die jedoch auf topologischem Wege entdeckt worden
waren und fiir die man bisher nur topologische Beweise kannte, mit rein
algebraischen Methoden zu beweisen.

Diese Sitze kniipfen an den beriihmten Satz von Poincaré- Brouwer
an, der besagt, dafl es, wenn n ungerade ist, auf der (n — 1)-dimensiona-
len Sphire im n-dimensionalen euklidischen Raum R" kein stetiges
Feld tangentialer Vektoren gibt, die 7 0 sind?!); er 148t sich, indem man

die Koordinaten des R® mit «, ,..., z, bezeichnet, folgendermaflen aus-
sprechen :
n sei ungerade; f,,...,f, seien reelle Funktionen der reellen Variab-
n
len z,,...,z,, erklirt und stetig fiir 3 2% = 1; es gelte die Relation
i=1
v fy+xfo+- -+ 2, f=0. (1)
Dann besitzen die f, eine gemeinsame Nullstelle (&,,,...,§,) (mit
n
>E=1).
§=1

Neuerdings hat B. Eckmann, ebenfalls mit topologischen Methoden,
bewiesen, daf3 der analoge Satz auch gilt, wenn man unter den x; kom-

plexe Variable und unter den f, komplexe Funktionen der z; versteht,

n
die fiir ¥z, 2, = 1 erklirt und stetig sind?).

i=1

Betrachtet man speziell Polynome f,, so erhilt man zwei Sitze, welche

algebraischen Charakter haben, und es entsteht die Aufgabe, diese Sitze

auch mit algebraischen Methoden zu beweisen, oder genauer: die Aufgabe,

zu untersuchen, ob diese Sitze iiberhaupt ,,rein algebraisch® in dem

Sinne sind, daf sie sich folgendermaflen formulieren lassen:

1) Alexandroff-Hopf, Topologie I (Berlin 1935), 481.

2) B. Eckmann, Systeme von Richtungsfeldern in Sphéren und stetige Lo-
sungen komplexerlinearer Gleichungen, Comment. Math. Helvet. 15 (1942), 1-26,
Satz IV.
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,,Der Poincaré- Brouwersche Satz und der Eckmannsche Satz fiir Poly-
nome bleiben giiltig, wenn man an Stelle des Korpers der reellen Zahlen
einen beliebigen reell-abgeschlossenen Korper (im Sinne von Artin-
Schreter3)) bzw. an Stelle des Korpers der komplexen Zahlen einen al-
gebraisch abgeschlossenen Korper zugrunde legt (und dabei die Behaup-
tung dahin abschwicht, da3 eine von (0, 0,..., 0) verschiedene Null-
stelle der f, existiert).*

Man kann die Untersuchung der Giiltigkeit dieser Sitze auch axioma-
tisch auffassen: es soll untersucht werden, ob die Sitze von Poincaré-
Brouwer und von Eckmann bei Beschrinkung auf Polynome unabhingig
sind von Stetigkeitsaxiomen, insbesondere vom Archimedischen Axiom.

2. Es ist mir bisher nicht gelungen, die hiermit aufgeworfenen Fragen
in der genannten Allgemeinheit zu kliren; ich hoffe aber, in einer spéiteren
Arbeit darauf eingehen zu koénnen. In der gegenwirtigen Arbeit be-
schridnke ich mich auf den Fall, in dem die Polynome f; homogene Formen
der z; sind; fiir diesen Fall werden die gewiinschten Sdtze bewiesen wer-
den, und zwar noch mit gewissen Verscharfungen, niamlich:

Satz I. K ser etn algebraisch abgeschlossener Korper; f,,...,f, seien
Formen aus dem Polynomring K |z,,...,x,]; zwischen ihnen bestehe
die Relation (1); es seien nicht gleichzeitig n gerade und die Grade
samtlicher f; gleich 1. Dann besitzen die f; etne von (0,0,...,0) ver-
schiedene gemeinsame Nullstelle in K.

Satz II. K se: ein reell-abgeschlossener Koérper; f,,..., [, seien Formen
aus dem Ring K [z,,..., x,]; zwischen thnen bestehe die Relation (1);
es seien nmicht gleichzeitig simtliche Anzahlen von Formen gleichen Grades
gerade und die Grade simtlicher f, ungerade. Dann besitzen die f, eine von
(0,0,...,0) verschiedene gemeinsame Nullstelle in K.

Die Voraussetzungen von Satz II sind insbesondere immer erfiillt,
wenn n ungerade ist.

Zu dem Satz I wird noch der Zusatz gemacht werden: falls simtliche
Formen f, vom Grade % sind, so ist die Anzahl der gemeinsamen Null-
stellen ,,im Allgemeinen‘‘ gleich

hn—l —_ kn——2 + I _+_ (__ l)n—l ,

also gleich einer Zahl, die nur im genannten Ausnahmefall — n gerade,
h=1— den Wert 0 hat; allerdings muf} hierfiir der Begriff ,,im All-

3) Vgl. hierzu: Artin-Schreier, Algebraische Konstruktion reeller Kérper,
Hamb. Abh. 5 (1927), 85—99.
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gemeinen‘‘ erst gehorig geklart werden (cf. § 2, 2., Sdtze 7 und 7a,
p. 168).

Auf den ersten Blick scheint der Fall, dal alle Formen vom gleichen
Grad sind, sehr speziell zu sein. In Wirklichkeit wird sich spater (cf.
§ 2, 4., p.173) herausstellen, daB der allgemeine Fall sich ohne weiteres
auf den Fall gleicher Grade zuriickfiihren 148t, und es bedeutet deshalb
eine ganz unwesentliche Einschrinkung, wenn wir in der folgenden ein-
leitenden Betrachtung alle Formen vom gleichen Grad annehmen.

3. Die in den Sidtzen genannten Ausnahmefille — ndmlich bei Be-
schrinkung auf Formen vom gleichen Grad h: n gerade, A = 1 bzw.
n gerade, h ungerade — treten wirklich auf: bei geradem = erfiillen die
Linearformen

. n
f2r~1=—"x2r’ f2r=x2r—-1 fiir 7‘=1,...,—§—
die Relation (1), besitzen aber auBer (0,0,..., 0) keine gemeinsame

Nullstelle; im reellen Falle kann man dann diese f; noch mit irgend-
einer definiten Form multiplizieren.

Die Existenz dieser Ausnahmen zeigt, dal unsere Sitze nicht trivial
sind, wie man vielleicht beim ersten Blick vermuten kénnte; man ist
néamlich versucht, etwa im Falle von Satz I folgendermaflen zu schlielen :
die 2 — 1 Formen f, ,..., f,_, besitzen nach dem Bézoutschen Theorem
eine gemeinsame Nullstelle (&, ,.. ., &,), und diese ist auf Grund von (1)
auch Nullstelle von f, ; dieser SchluB ist aber darum falsch, weil &, = 0
sein kann. DaB hier eine wirkliche Schwierigkeit vorliegt, wird durch die
Ausnahmen bestétigt.

Die Betrachtung der Ausnahmen fiihrt auch dazu, unsere Sdtze mit
einem bekannten elementaren Satz in Zusammenhang zu bringen: be-
schrinkt man sich ndmlich zum vornherein auf Linearformen f, =

n

3> a,, x, , so ist die vorausgesetzte Relation (1) gleichbedeutend damit,
k=1
daB die Matrix (a,,) schiefsymmetrisch, die behauptete Existenz einer

nichttrivialen Nullstelle gleichbedeutend damit, daf3 die Matrix singuldr
ist. Unsere Sitze stellen also, bei Beschrinkung auf die in ihnen ge-
nannten Klassen der zugrunde gelegten Korper, Verallgemeinerungen
des Satzes dar, daB eine schiefsymmetrische Matrix ungeraden Grades
immer singulér ist.

4. Die Sitze I und II lassen sich im Rahmen der projektiven Geo-
metrie folgendermafBlen interpretieren. P sei der projektive m-dimen-
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sionale Raum (in bezug auf den Koordinatenkérper K); jedem Punkt x
von P sei eine (m — 1)-dimensionale Ebene F, von P derart zugeordnet,
dafl erstens ihre Ebenenkoordinaten f,,...,f, rational-homogen von
den Punktkoordinaten z,,..., z,, des Punktes x abhingen — d. h. daB
die f, Formen eines gewissen Grades % in den z sind —, und daB zweitens
z immer auf ¥, liegt, d. h. daf die Relation (1) besteht. Dann besagt der
Satz I: im klassischen Fall des komplexen projektiven Raumes —
und allgemeiner, wenn K ein beliebiger algebraisch abgeschlossener
Korper ist —, ist dies nur moglich, wenn die Dimension m ungerade ist
und die f; linear sind, d. h. wenn ein lineares Nullsystem vorliegt; und
ein dhnlicher Satz gilt nach Satz II fiir die reellen projektiven Réume.

. Dieser Satz von der Einzigkeit der bekannten linearen Nullsysteme
scheint bisher auch fiir die gewohnlichen komplexen projektiven Riume
nicht formuliert zu sein. Uberhaupt diirften die Sdtze I und II auch bei
Zugrundelegung komplexer bzw. reeller Zahlenkoeffizienten neu sein;
allerdings lassen sie sich dann ziemlich leicht aus bekannten topologischen
Sétzen ableiten 4).

6. Unsere Beweise der Sitze I und II operieren, wie es wohl dem
Charakter der Sitze entspricht, mit den Methoden der Eliminations-
theorie 3). Zur geometrischen Deutung der algebraischen Begriffsbildun-
gen werden wir uns oft der Sprache der algebraischen Geometrie be-
dienen.

Wihrend bei den anfangs erwihnten topologischen Beweisen Satz II
sich wesentlich leichter ergibt als Satz I, wird sich bei der algebraischen
Herleitung umgekehrt Satz II als Folge einer Verschiarfung von Satz I
(cf. §2, 4., Satz Ib, p.173) herausstellen. Dementsprechend gliedert
sich die Arbeit folgendermafen:

In den ersten beiden Paragraphen wird Satz I bewiesen werden.

4) Topologischer Beweis (nach Angabe von Herrn H. Hopf): P sei der (n — 1)-dimen-
sionale komplexe bzw. reelle projektive Raum; in ihm seien z,,. .., z, projektive Koordi-
naten. f,,...,f, seien Formen h-ten Grades in den z, ohne gemeinsame nichttriviale Null-

stelle; dann wird im komplexen Fall durch a:; = f; (1 ,..., ), im reellen Fall durch
x; = f; (%y,-.., ,) oine stetige Abbildung f von P in sich erklart. Wenn nun (1) gilt, so
kann f keinen Fixpunkt besitzen. Daraus folgt im komplexen Fall (nach H. Hopf, Zur
Algebra der Abbildungen von Mannigfaltigkeiten, Crelles Journal 163 (1930),
71—88, § 5), daB n — 1 ungerade und h = 1 ist; und im reellen Fall folgt aus der Fix-
punktfreiheit (cf. Alexandroff-Hopf, 1. c., 532—533), daB n — 1 ungerade und der Abbil-
dungsgrad von f gleich 1 sein muB; letzteres ist aber, wie man leicht sieht, nur maoglich,

wenn h ungerade ist.
8) Vgl. dazu: B. L. v. d. Waerden, Moderne Algebra (Berlin 1941), Teil 2, Kapitel 11.
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Der dritte Paragraph ist von den beiden ersten weitgehend unab-
hingig. Sein Inhalt kann etwa so zusammengefal3t werden: Wenn von
einem reellen System von Formen f, bekannt ist, daB es ,,im Allge-
meinen‘‘ (,,allgemein‘‘ in dem mnoch zu prizisierenden Sinne; cf. § 2, 2.,
p. 168) eine ungerade Anzahl wesentlich verschiedener Losungen ®)
besitzt, so wird bewiesen werden, dafl dann das System ,,im Speziellen‘‘
immer eine reelle Losung besitzt. Der Beweis ist einer von B. L.
v. d. Waerden angegebenen Methode nachgebildet, welche erstmals von
F. Behrend?) angewandt wurde. Es wird dabei die Artin-Schretersche
Theorie der reell-abgeschlossenen Korper beniitzt (vgl. a. a. O.3)).

§ 1. Zusammenstellung einiger Begriffe und Sitze
der Eliminationstheorie

Die folgenden Ausfithrungen schlieBen sich eng an die Entwicklungen
in v. d. Waerden, Moderne Algebra, Teil 2 an (vgl. a. a. O.%)). Was die
geometrische Deutung der algebraischen Begriffsbildungen betrifft, sc
sei vor allem verwiesen auf v. d. Waerden, Einfithrung in die algebraische

Geometrie 8).
Sei K ein beliebiger kommutativer Korper der Charakteristik O.
Wir fassen ein n-tupel (§,,...,¢&,) beliebiger Elemente eines festen

algebraisch abgeschlossenen Erweiterungskorpers von K auf als Koor-
dinaten eines Punktes in einem n-dimensionalen affinen Raum R”™. Die
Nullstellen eines Systems von Polynomen f,(z,,..., z,) in n Variablen
mit Koeffizienten aus K bilden dann einen Unterraum dieses R, die
Nullstellenmannigfaltigkeit des Systems ?).

1. Wie schon erwdhnt, werden wir uns bei den folgenden Unter-
suchungen auf Formen, d. h. homogene Polynome, beschrinken. In
diesem Fall enthilt die Nullstellenmannigfaltigkeit mit einem Punkt
(&5,...,&,) #(0,...,0) auch den ganzen Strahl durch diesen Punkt
und den Ursprung; algebraisch ausgedriickt: mit (£, ,..., §,) ist auch
(A-&,..., A2:&,) (4 ein beliebiges Element aus dem Koordinatenkoérper)

%) D. h. solche, deren Variablenreihen sich nur um konstante Faktoren unterscheiden.

7) F. Behrend, Uber Systeme reeller algebraischer Gleichungen, Comp. Math.
7, 1, §2, 6—10.

8) B.L.v.d. Waerden, Einfithrung in die algebraische Geometrie (Springer,
Berlin 1939), insbesondere Kap. IV—VI, p. 105 ff.

9) Zur Préazisierung dieses Begriffes (,,Algebraische Mannigfaltigkeit‘‘) vgl. 8), Kap. IV,
7, (1939), 1—19.
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eine Nullstelle. Die Nullstellenmannigfaltigkeit besteht also jetzt, falls
sie nicht leer ist (der Punkt (0,...0) wird dabei nicht gezihlt; er ist
immer ,,triviale Nullstelle*‘) aus einem Kegel von Nullstrahlen, resp. aus
endlich vielen Strahlen (¢, ,..., &,). (Wir lassen im folgenden den un-
bestimmt bleibenden Proportionalitdtsfaktor in der Schreibweise weg.)
Wir nehmen irgendeinen Strahl, etwa (&, ,..., &,), heraus. Ist etwa &,
die erste nichtverschwindende unter den Zahlen &,, so liegt insbesondere
der Punkt

(0,...,0, 1, 8x115--4580) C,:—i_i,

k

auf dem Strahl. Die Groflen {; bestimmen den Strahl vollstindig. Wir
wollen sie kurz als die Richtungskoeffizienten des vorliegenden Strahls
bezeichnen.

Besitzt ein Formensystem endlich viele Nullstrahlen, so sind die Rich-
tungskoeffizienten sdmtlicher dieser Strahlen algebraisch iiber dem
Grundkorper (cf. 3., Satz 5, p. 163).

Das algebraische Problem, die Losungen eines vorgelegten Gleichungs-
systems (in dem zugrunde gelegten Koordinatenkodrper) zu bestimmen,
liuft geometrisch darauf hinaus, in dem zugehorigen R die Schnitt-
mannigfaltigkeit gewisser vorgelegter Nullstellenmannigfaltigkeiten zu
bestimmen. — Um nun bei der Bestimmung von Schnitten von
Mannigfaltigkeiten den Ausartungsfall des Zusammenfallens einzelner
Teile des Schnittgebildes zunichst auszuschlieflen, ist es, geometrisch
gesprochen, zweckmifBig, die zu untersuchenden Gebilde zunéchst in
,,allgemeiner Lage‘ anzunehmen. Dem entspricht folgender algebraischer
Prozef} : man adjungiert zum Grundkorper K eine Reihe von Unbestimm-
tem @, ,...,a,; den so entstehenden Korper K (a,,...,a,) betrachtet
man als neuen Grundkorper und ersetzt dementsprechend auch den
Koordinatenkorper durch einen umfassenderen Korper. Sodann ersetzt
man in dem zu untersuchenden System die Koeffizienten der Formen f,
bei Festhaltung ihrer Gradzahlen A; durch die a. Man erhilt so ein
System von allgemeinen Formen von vorgeschriebenen Gradzahlen. Das
Verhalten dieser allgemeinen Formen ist in mancher Hinsicht einfacher
und iibersichtlicher als dasjenige von speziellen Formen. Andererseits
erhilt man jedes spezielle System durch Spezialisierung der Koeffizienten
im Grundkérper. Die folgenden grundlegenden Sitze geben einen ersten
Aufschluf3 iiber die Nullstrahlen eines allgemeinen Systems sowie iiber
das Verhalten bei Spezialisierung°).

19) Die folgenden Sitze 1, 2 und 3 sind fast wortlich zitiert nach v. d. Waerden; vgl.
a.a. 0.%), Kap. 11, p. 77—83.

t=20,,...,n
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2. Satz 1 (Hilbertscher Nullstellensatz). Ist f ein Polynom in
K[z ,...,2,], das in allen gemeinsamen Nullstellen der Polynome
f1s- .., [+ verschwindet, so gilt eine Kongruenz

fe=0 (mod. (fy,...,f,))

filr eine natiirliche Zahl ¢ (und wmgekehrt)1l).

Der Satz 1 gilt allgemein, nicht nur fiir Formen. Er bildet die Grund-
lage fiir alle folgenden Untersuchungen.

Satz 2. r Formen f,,..., [, mit unbestimmten Koeffizienten a besitzen
etn Resultantensystem, bestehend aus endlich vielen ganzzahligen Formen R)
in diesen Koeffizienten, so daf fiir spezielle Werte der Koeffizienten in K
das Verschwinden aller Resultanten notwendig und hinreichend ist fir die
Existenz einer nichttrivialen Losung der Gleichungen f; = 0,1 = 1,..., r.1?)

Insbesondere folgt aus Satz 2:

Satz 2a. Hdngen in einem System von Formen f,; die Koeffizienten c,
ganz rational von einer Rethe von Unbestimmten ab und ist das System
losbar (d. h.: besitzt es einen Nullstrahl®)), so gilt dies auch nach einer
beliebigen Spezialisierung der Unbestimmten tn K. Denn sei etwa ¢, =
@@, ,...,a,), Wo a,,...,a, Unbestimmte bedeuten und die ¢, ganz
rational in den @, sind. Dann bedeutet die Losbarkeit nach Satz 2, da3

Rt\(a)::Rz\(‘pl(a)""f(pw(a))=0 (}’=1’!p)

identisch in den a gilt. Diese Gleichungen bleiben erhalten bei Speziali-
sierung der a zu Werten «, woraus nach Satz 2 die Behauptung folgt 14).

In dieser Tatsache duBert sich der Vorzug der Formensysteme gegen-
iiber den Systemen von Polynomen. Beispielsweise besitzt das System
von zwei allgemeinen linearen Polynomen in zwei Variablen

@1 Ty + @1 Ty + by =0
Gy Ty + By Ty + by =0

1) D. h.: es gibt in K[«,,..., z,] n Formen ¢,,...,q,, so daB

fe=Q'1/1 S ke ol 2 P
cf. %), §79, p.6.

13) Vgl. 5), § 80, p.9.
13) In dem entsprechend erweiterten Rn; cf. § 1, 1., p. 7; vgl. dazu a.a.0.8), p. 105 ff.
14) Vgl. a.a. 0.12), Aufg.3.
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eine gemeinsame Nullstelle; diese Tatsache bleibt aber nicht bei jeder
Spezialisierung der @, b erhalten, sondern nur dann, wenn auch nach
der Spezialisierung die beiden Matrices

(a’n Qyo ) - ( @y @ b )
2T @y By by
gleichen Rang haben. Zwei Linearformen in 3 Variablen hingegen be-

sitzen nicht nur im allgemeinen, sondern auch bei jeder Spezialisierung
der Koeffizienten einen gemeinsamen Nullstrahl.

Satz 3. Ist r <n, so existiert keine von 0 wverschiedene Resultante.
r allgemeine Formen in n Variablen besitzen also wn diesem Fall immer
gemeinsame nichttriviale Nullstrahlen.

Ist r = m, so existiert ein von 0 verschiedenes Resultantensystem. Ist
insbesondere r = mn, so wird das Resultantensystem durch eine einzige
Form R in den Koeffizienten reprdsentiert. Sie ist homogen in den
Koeffizienten von f, vom Grade H, = hy+ ...+ h, (h; = Grad von f,), etc.
zyklisch fur H, mit ¢+ =1,...,r. — r allgemeine Formen besitzen also in
diesen Fillen keine gemeinsamen Nullstellen.

SatzI (cf. p.155) besagt also: Wihrend » allgemeine Formen in n Variab-
len keine gemeinsame nichttriviale Nullstelle haben, ist dies der Fall,
sobald die Koeffizienten irgendwie so spezialisiert werden, da3 zwischen
den Formen die identische Relation (1) besteht.

3. Diefolgenden Sitze 4 und 5 sind fiir uns im ndchsten Paragraphen
wichtig.

Satz 4. Besitzt das Gleichungssystem
f=0,...f =0 (2)

hochstens endlich viele Nullstrahlen, so besitzt es mit eimer allgemeinen

Linearform
L=wx,+ - F+u,z, (3)

(u; Unbestimmte, die dem Grundkorper adjungiert werden, cf. p. 169) keine
gemeinsamen Nullstrahlen, und umgekehrt.
Beweis. a) Da der Grundkorper von der Charakteristik 0 voraus-

gesetzt ist, lassen sich in ihm n Elemente ¢, so finden, daB die Linear-
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form ¢, z, +- - -+ ¢, z, auf keinem der endlich vielen Nullstrahlen ver-
schwindet :

n
>c; & #0 fiir simtliche Nullstrahlen ) .

i=1

Daraus folgt a fortiori fiir die Unbestimmten wu;:

>u,é #0 fiir sémtliche Nullstrahlen.
i=1

Das bedeutet geometrisch: Sind im R” endlich viele Strahlen fest vor-
gegeben, so geht eine Hyperebene ,,in allgemeiner Lage‘* durch keinen
von diesen Strahlen hindurch.

b) Das System f, ,..., ., L besitze keine gemeinsamen Nullstrahlen.
R, (u) sei eine der nichtverschwindenden Resultanten des Resultanten-
systems von f,,...,f., L, aufgefafit als Form in den u. R)(u) ver-
schwindet fiir spezielle v jedenfalls dann, wenn auf einem Nullstrahl
(&y,...,&,) von f,,..., [, zugleich auch L verschwindet, d. h. wenn
fiir diese » und diesen Strahl gilt:

L*:u1§1+"'+un£nzo- (3/)

Fassen wir (3’) als Gleichung einer Hyperebene H des u-Raums auf, so
konnen wir dies kurz so ausdriicken: R)(u) verschwindet auf der Hyper-
ebene H. Daraus folgt aber nach Satz 1:

Ry(u)e=0 (mod. (& 4+ -+ u, §n)) (4)

oder in Worten: R)(u) spaltet im Ring K[u«] den Linearfaktor », & +- - -
+ u, &, ab. Da dies fiir einen ganz beliebigen Nullstrahl von f,,.. ., ,
gilt, R, (u) aber eine Form endlichen Grades in den u ist, so kann es nur
endlich viele Nullstrahlen von (2) geben, q.e.d.

Zusatz zu Satz 4. Besitzt das System (2) nur endlich viele Nullstrahlen,
80 besitzt es mit einer allgemeinen Form von beliebigem Grad h keine gemein-
same Nullstrahlen.

Beweis: Man spezialisiere die allgemeine Form zu einem Produkt von A
allgemeinen Linearformen; dann folgt die Behauptung aus Satz 4, a) und
aus Satz 2a (cf. p. 160).

15) Beweis leicht.
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Wir setzen jetzt voraus, daf das Gleichungssystem (2) genau endlich
viele Losungsstrahlen besitzt, etwa (£%,..., &%) (x =1,...,¢q), und
wollen diese Strahlen bestimmen 1$).

Wir nehmen zu dem System eine allgemeine Linearform (3) hinzu und
bilden das Resultantensystem R, (u),..., B, () der Formen f,,...,f,,L.
Dieses verschwindet fiir spezielle # dann und nur dann, wenn es einen
Nullstrahl (&%,..., &%) von (2) gibt, auf dem auch L verschwindet,
d. h. wenn fiir diese » und dieses « gilt

Ly= w8+ oo +u =0
Das bedeutet: Die gemeinsamen Nullstrahlen der Formen R, (u),

.., B, (u) (aufgefalt als Formen in den %) sind genau die 0-Strahlen des

q
Produkts I7 L, . Daraus folgt: bezeichnet D(u) den groBten gemein-

a=1
samen Teiler der I)(u) im Ring K[u], so ist nach Satz 1 fiir eine natiir-
liche Zahl p:
ITLE =0 (mod. D(u)) ; (5)

es gibt aber auch eine natiirliche Zahl o, so dal} fiir jedes 4:

RI=0 (mod. ITL,) . (4')

Aus (5) und (4') folgt: IT L, und D (u) enthalten genau dieselben Linear-

faktoren; d. h. es gibt eine Reihe natiirlicher Zahlen g,, so daf3

D(uw) =T L. (6)
In Worten:

Satz 6. Die Linearformen L,, welche die Losungsstrahlen von (2) be-
stimmen, werden durch Faktorzerlequng der Form D (u), g. ¢. T. des Resul-
tantensystems R, (u), gefunden.

Insbesondere ergibt sich im Fall r =n — 1, da dann D(u) = R(u)
vom Grade H="h,-...-h,_, in den w ist (cf. Satz3, p.161, mit f,= L):

byoooiihyy =0+ +0q- (7)

1) Das Folgende bis inkl. Satz 5 fast wortlich zitiert nach v. d. Waerden; vgl. &), § 83,
p. 16.
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Man nennt die g, die Vielfachheiten oder Multiplizititen der Nullstrahlen.
Die rechte Seite von (7) stellt dann die Gesamtzahl der Losungen des
vorgelegten Gleichungssystems, mit Vielfachheiten gerechnet, dar. Wir
geben im folgenden Abschnitt noch eine andere Charakterisierung der
Vielfachheit eines Strahls (¢, ,..., &,), welche es erlaubt, die Vielfach-
heit bei gegebenem D (u) zu bestimmen, ohne D (#) in Linearfaktoren zu
zerfillen.

Zusatz zu Satz 5.

In einem System (2) mit genau endlich vielen Nullstrahlen mégen die
Koeffizienten von unbestimmten Parametern ganz rational abhingen.
Seine u-Resultante D (u) hdngt dann ebenfalls ganz rational von diesen
unbestimmten Parametern ab.

Bei einer Spezialisierung der Parameter im Grundkorper besitze das
spezialisierte System immer noch genau endlich viele Nullstrahlen.
D (u) gehe bei der Spezialisierung iiber in D* (u). Dann gilt fiir die u-Re-
sultante % (u) des spezialisierten Systems:

Eu)=0 (mod. D*(u) ) .

Denn die Teilbarkeit im Ring K[u] bleibt bei der Spezialisierung be-
stehen; deshalb ist D* (u) ein Teiler samtlicher spezialisierter Resultanten
R} (u), also auch ein Teiler ihres g.g. T. E (u), q.e.d.

4. Charakteristerung der Multiplizitit o eines Strahls (&,,...,&,).

Der vorliegende Strahl bestimmt im #-Raum?'’) eine Hyperebene
L* ='71'151 ++un5n= Oa
welche kurz mit H bezeichnet sei. Dann gilt:

Ist die Multvplizitit etnes Strahles gleich o, so verschwinden auf H sdmi-
liche folgenden Formen in den wu:

oD (u) 8D (u) @D(u) @D (u) 1D (u)
U Gu, T ouw  dwou, T duet

D(u), (8)

ou,
es verschwinden aber nicht simtliche der Formen

e D (u) 0D (u)
oul 7wl

(8"

und wumgekehrt.
17) D. h. wir fassen die u als Unbestimmte auf; vgl. Beweis von Satz 4, b), p. 162.
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Bewezs.

a) Ist die Multiplizitit des Strahls gleich p, so verschwinden in H
samtliche Ausdriicke (8).

Dies ergibt sich durch partielle Differentiation der Identitdt (6) (cf.
p. 163); alle partiellen Ableitungen bis zur (o — 1)-ten spalten offenbar
den Faktor w, &, +---+4+ u, &, ab.

b) Unter derselben Voraussetzung verschwinden in H nicht alle der

Formen (8’). Denn sei etwa &, % 0. Wiirde ag?
Uy

auf H verschwinden, so
wiirde (wieder nach (6)) auch

D’ (’LL) = H, Lga

auf H verschwinden (der Strich am Produktzeichen bedeutet, daB der
zum vorliegenden Strahl gehorige Index « bei der Produktbildung weg-
zulassen ist). Dann miiite aber nach Satz 1 D’(u) den Faktor u, £, +
«+++ u, &, abspalten, was nicht der Fall ist.

¢) Verschwinden auf H sidmtliche der Formen (8), aber nicht alle der
Formen (8'), so ist die Multiplizitidt des Strahls gleich ¢. Dal} sie minde-
stens gleich p ist, folgt aus b), daf} sie hochstens gleich ¢ ist, aus a).

Folgerungen.

Die Tatsache, daB3 die simtlichen Nullstrahlen eines Systems (2) die
Vielfachheit 1 besitzen, oder, wie wir sagen wollen, getrennt liegen, 148t
sich so charakterisieren, daB auf keiner der Hyperebenen, in welche die
Nullstellenmannigfaltigkeit von D(u) im u-Raum zerfillt, simtliche
ersten partiellen Ableitungen von D (u) verschwinden. Wir erhalten also:

Kriterium fur die Vielfachheit 1.
Notwendig und hinreichend dafiir, dafl simtliche Nullstrahlen eines

Systems (2) getrennt liegen, ist, dafl die zugeordneten Formen

0
D(u), Dy(w) ,..., D,(u) D,(u) = 55;

im 4-Raum keinen gemeinsamen Nullstrahl haben.
In dieser Formulierung konnte iibrigens D (u) weggelassen werden, da

ja h-D(u) = }nju,- D, (u) ist (h = Grad von D(u)), und die Existenz eines
i=1

gemeinsamen Nullstrahls der D, (x) kann nach Satz 3 (cf.p.161) durch das
Verschwinden einer einzigen Form 4 in den Koeffizienten der D,(u),
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also auch in den Koeffizienten der f,(x), charakterisiert werden. A4 heif3t
die Diskriminante des Systems (2).

Aus diesem Kriterium und Satz 2 a (cf. p. 160) folgt:

Satz 6. Hdngen in einem System (2) die Koeffizienten der f, (also auch
diejenigen der D;) ganz rational von unbestimmten Parametern ab und
liegen bei einer Spezialisierung dieser Parameter die Nullstrahlen getrennt,
8o 18t dies auch vor der Spezialisierung der Fall.

Wir werden diesen Satz im néchsten Paragraphen (cf. § 2, 3., p. 169)
anwenden.

§ 2. Beweis von Satz I

Wir wollen Satz I in zwei Schritten beweisen. Der erste Schritt be-
steht darin, dal wir die allgemeinsten Formen von vorgeschriebenen
Gradzahlen, welche der Relation (1) geniigen, explizite angeben8). Der
zweite Schritt besteht im Beweis eines Satzes iiber diese allgemeinsten
Formen (cf. 4., Satz I b, p. 173), welcher eine Verschirfung von Satz I
darstellt.

1. Als Vorbereitung beweisen wir folgenden

Hilfssatz 1. Gegeben r Formen f, ,.. ., f, vom selben Grad h in n Variab-
len z,,...,z,, welche die identische Relation
Xz fi=0 (1a)
i=1

erfillen. Dann lassen sich die Formen f; darstellen in der Gestalt

L= ZoGra + *°° + Zr Gyr

fr=29n+ + + Tr—1grr
Daber ist

gi; = — gji ’

gu= 0

ferner ist g,; (¢ < j) eine Form vom Grade h — 1, welche aufer von x,,
ee .y &; nur von den Varwablen z,,,,..., x, abhingt.

18) Die Prazisierung dieser Aussage folgt im néchsten Abschnitt (cf. 2., Sétze 7 und 7a,
p. 168).
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Beweis. Wir beweisen den Satz durch Induktion nach der Anzahl der
in (1a) auftretenden Formen f,. Der Satz sei also schon bewiesen fiir
die Anzahl ¢ — 1. D.h.: wenn ¢ — 1 Formen in den Variablen z,,

-1
ooy Xgy; Tpyase ., &, die Relation ¥ x, f, = 0 erfiillen, so lassen sie
i=1
sich in der Form (9) darstellen (wobei man in (9) » durch ¢ — 1 zu er-
setzen hat); dabei hingt ¢,; # <j)nurabvonz,,...,2;; Z,,,..., %, .
Nun seien ¢ Formen in den Variablen x,,...,%,; z,.,,..., %, Vor-

e
gelegt, welche die Relation ¥ z;f, = 0 erfiillen. Betrachten wir diese
i=1

Formen in der Hyperebene x, = 0, so gehen sie iiber in Formen der Va-
riablen z,,..., %,y Tryyy. o, By Die ersten ¢ — 1 unter ihnen er-
filllen die Induktionsvoraussetzung. Es gilt deshalb

L = Taizt+ c 0+ Tem1 Fre-1+ Tefie
(10)
fe-1 =1%1ge-11+ * ** + To-20-1,0-2 + %eFe-1,¢ -
Hierin sind die g,, gewisse Formen A — 1*® Grades in den Variablen z, ,
ooy Xy Tpiyse..s T, . Multipliziert man diese p — 1 Identitédten resp.
mit 2, ,..., Z,_, und addiert, so folgt
e—1 -1
Safi=%, 3 %90 (11)
i=1 i=1

¢
also wegen Y z,f;,=0:

i=1
e—-1

fQ: - Exigio ‘
i=1

Setzt man nun

ggi:—gig (i=1w--’0“"1)»
Goe = 9>
so wird
e—1
fq= E Z; gQi . (12)
t=1

(10) und (12) ergeben zusammen genau die behauptete Darstellung der
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Formen f,,...,f,. Da der Satz richtig ist fiir ¢ = 2, so folgt er fiir
beliebiges 7. 1)

" 2. Aus dem Hilfssatz 1 ergibt sich jetzt die behauptete explizite Dar-
stellung in folgendem prizisen Sinne:

Satz 7. Gegeben r, Formen vom Grade h,, r, Formen vom Grade h,,

etc....,r, Formen vom Grade h, (h,=1, t=1,...,t) in n Unbe-
i

stimmten xz,,...,%,; es set Xr, =n.
1=1

Diese n Formen mogen der Relation (1) geniigen. Dann gehen sie (nach
geeigneter Umnumerierung der Formen und Unbestimmien) aus folgenden
Formen durch Spezialisierung der unbestimmten Koeffizienten hervor :

= X %9, (G, j=1,...,7r)

fi= X %9 (G g=r+1,...,7+ 7,

fi= >x9; (,jg=r+--+r,+1,...,n);
9is = — Gij> 9u = 0 (13)

die Matrix (g,;), durch die die Formen (13) definiert sind, ist also schief-
symmetrisck und zerfdllt tn Kdstchen; ferner ist g, (¢ < j), falls sie etwa
im t-ten Kistchen steht, eine allgemeine Form (h, — 1)-ten Grades in
Zyyeoes Xy

Die Formen (13) erfiillen offenbar selbst die Relation (1); wir nennen
sie die allgemeinsten Formen von vorgeschriebenen Gradzahlen h,,. .., h,,
welche (1) erfiillen, und kénnen dann Satz 7 kurz so zusammenfassen:

Satz 7a. Bei vorgeschriebenen Gradzahlen erhilt man jedes Formen-
system, das die Relation (1) erfillt, durch Spezialisierung der Koeffizienten
der allgemeinsten Formen, welche (1) erfiillen.

Bewets. Seien irgendwelche Formen f, (¢ = 1,..., n) in den Variablen
Zy,..., x, gegeben. Wir denken uns das Polynom ¥ z,f, formal hin-
i=1

geschrieben und nach homogenen Bestandteilen geordnet. Falls nun die
Relation (1) besteht, miissen diese Bestandteile einzeln verschwinden.
Das bedeutet aber: wenn man die Formen f; und entsprechend die
Variablen so numeriert, dafl sie etwa nach aufsteigenden Graden ge-
ordnet erscheinen, so bestehen die ¢ Relationen

1) Eine ahnliche SchluBweise findet sich bei 4. Hurwitz; vgl. dazu: A. Hurwitz, Uber
die Tragheitsformen eines algebraischen Moduls, Annali di Matematica pura e

applicata 20 (1913).
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Exifizo (i::lw"arl)
Exi/izo (7::7‘1—{-—1,...,7’1—}—*7’2) (lb)
Sz, f,=0 t=r4-4r_,+1,...,n).

Das bedeutet aber: fait man die gegebenen Formen nach verschiedenen
Graden in Gruppen zusammen, so erfiillen die Formen einer Gruppe
jeweils die Voraussetzung von Hilfssatz 1 (nach geeigneter Umbenen-
nung der Variablen). Nach Hilfssatz 120) ergibt-sich jetzt die behauptete
Darstellung ohne weiteres.

Es sei noch speziell auf den Fall hingewiesen, wo simtliche Formen f,
vom gleichen Grade % sind. (13) reduziert sich dann auf

f1= x2912+ t T + xngln
fa = %1 924 + -+ X, G2a
. * . * (14)

fnlegn,1+ ce T Ty In, n—1

Der Sinn von Satz 7 ist folgender. Wenn man von dem System (13) von
Formen vorgeschriebener Gradzahlen zeigen kann, daB es Nullstrahlen
besitzt, so besitzt nach Satz 7a und Satz 2a (cf. p. 160) jedes System von
Formen mit denselben Gradzahlen, das (1) erfiillt, ebenfalls mindestens
einen Nullstrahl. Satz I wird deshalb bewiesen sein, sobald er far das
System (13) bewiesen ist.

3. Wir betrachten nun zuerst nicht das System (13), sondern das
etwas speziellere System (14), und wollen in diesem Abschnitt zeigen,
daB dieses System mindestens einen Nullstrahl besitzt, falls nicht der
Grad der in (14) auftretenden Formen gleich 1 und auBerdem die Anzahl »n
der Variablen gerade ist. In diesen Ausnahmefillen besitzt das System
(14) keinen Nullstrahl.

SatzIa. Das System (14) besitzt
B — (— 1)
B+ 1

z;h) — hn-1 __ pn—2 + - . + (___ l)n_l —

Nullstrahlen, und diese liegen getrennt.

20) cf. p. 165. Hilfssatz 1 liefert sogar noch eine etwas schiarfere Aussage (beziiglich 'der
Abhéngigkeit der g;; von den z;). Diese Verschiarfung ist jedoch fiir uns unwesentlich.
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Die Zahl z ist offenbar dann und nur dann 0, wenn A gleich 1 und n
gerade ist. In Satz Ia sind also auch die Ausnahmefille enthalten.
Dem Beweis von Satz Ia schicken wir zwei Hilfsséitze voraus.

Hilfssatz 2. Die ersten n — 1 Formen f,,..., f,_, tn (14) besitzen nur
endlich viele Nullstrahlen, und diese liegen getrennd.

Wir fiihren den Beweis durch Induktion nach » unter Beniitzung von
Satz 6 (cf. § 1, 4., p. 165). Der Satz sei schon bewiesen fiir n — 1.

Die Induktionsvoraussetzung bedeutet: das Formensystem in n — 1
Variablen

fl == TaGie+ - +ZTa—2 GJ1,n—2+ Tpn-191,n-1
(15)
fr-2 =21 In—21+ *°* + Tn-3Gn—2,n-3 + Zn—1Gn—2,n-1
mit g,; = — g,; (¢ <j), g = 0, wobei g,; eine allgemeine Form A — 1%®
Grades in » — 1 Variablen z,,..., z,_, ist, besitzt endlich viele ge-

trennte Nullstrahlen.
Wir gehen jetzt iiber zu n und betrachten folgendes Formensystem in
n Variablen z,,..., z, :

hL = TaGra+ ++* + Tu2 GJ1,n—2+ Tn-191,n-1
(15')

fa—z =21 gn—21+ *°* + Tn—3 Fn-2,n-3 + Zn—1 Ggn-2, n—1
fho1 = 21 In—1,1 + .- + Zp_2 In—-1, n—2 + Zn In—1,n -

Dabei sollen die ersten n — 2 Formen genau die Formen (15) sein; sie
enthalten also die Variable z, nicht. Ferner soll g, , ; = — g, ,—, sein
¢=1,...,n—2), undg,, , endlich soll eine allgemeine Form in den
Variablen z,,..., z, sein.

Wir bemerken zunichst, da man die Formen (15’) aus den ersten
n — 1 Formen (14) (cf. p. 169) erhélt durch Spezialisierung gewisser un-
bestimmter Koeffizienten zu 0 (ndmlich simtlicher Koeffizienten von
gin>» t=1,...,m — 2, und auBerdem aller Koeffizienten der von z,
abhéngigen Glieder in g;;, ¢ <j < n — 1). Um Hilfssatz 2 zu beweisen,
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geniigt es also nach Satz 2 (cf. p. 8) und Satz 6 (cf. p. 14), zu zeigen, dal
das System (15’) nur endlich viele, getrennte Nullstrahlen besitzt.
Nun kann man aber die Nullstrahlen von (15’) explizit aus den Null-
strahlen von (15) berechnen, da die Variable x, nur in der letzten Form
fn_i auftritt. Damit zundchst die ersten » — 2 Gleichungen f, = 0 er-

fillt sind, miissen z,,...,z,_, auf einem Nullstrahl von (15) liegen.
Man wihle nun irgendeinen dieser Nullstrahlen, etwa (&, ,...,&,_,), aus
und setze seine Richtungskoeffizienten an Stelleder z;(: = 1,...,n — 1)

in der letzten Gleichung f,_; = 0 ein. Diejenigen Zahlen £, , die den
gegebenen Nullstrahl zu einem Nullstrahl von (15’) ergéinzen, sind dann
aus der Gleichung

xn'g(xn;él""’fn—l)+020 (16)

zu bestimmen, wobei zur Abkiirzung gesetzt ist:

n—2

In-1,n = 9 > 5-; & In—1,4 (Ey..,&6,)=0C.

Wir zeigen jetzt, daB die Gleichung (16) nur endlich viele, und zwar ge-
trennte Losungen besitzt.

Sei etwa &, 7% 0. Dann spezialisieren wir die unbestimmten Koeffi-
zienten von g so, daB nur das Glied z*~* mit dem Koeffizienten 1 und das
Glied u-£*! mit unbestimmt bleibendem Koeffizienten u iibrigbleibt.
Gleichung (16) wird dadurch zu

z, (-1 LAy L C=0.. (167)

Die Gleichung (16') besitzt aber endlich viele getrennte Losungen, da u
eine (dem Grundkoérper adjungierte) Unbestimmte ist (man sieht nim-
lich unmittelbar, daB das Polynom auf der linken Seite von (16’) mit
seiner Ableitung keinen gemeinsamen Teiler besitzt).

(16”) entstand aber aus (16) durch Spezialisierung; also gilt dasselbe
fir die Gleichung (16)2).

Die so gefundenen % verschiedenen Losungen von (16) ergéinzen nun
den betrachteten Nullstrahl von (15) zu ~ getrennten Nullstrahlen von
(15”). Macht man dasselbe fiir simtliche Nullstrahlen von (15), so erhilt
man alle Nullstrahlen von (15”), und da die Nullstrahlen von (15) ge-
trennt liegen nach Induktionsvoraussetzung, so folgt dasselbe fiir die
Nullstrahlen von (15"), q. e. d.

31) Denn die Diskriminante des Polynoms auf der linken Seite von (16") geht aus der-
jenigen des Polynoms auf der linken Seite von (16) durch Spezialisierung hervor.
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Da der Hilfssatz richtig ist fiir » = 2 (dann reduziert sich namlich f,
auf z,g,, und besitzt endlich viele getrennte Nullstrahlen), so gilt er
allgemein.

Hilfssatz 3. Auf einem Nullstrahl der Formen f, ,..., f,._; tn (14), der
in der Hyperebene xz, = 0 liegt, kann f, nicht verschwinden.

Das bedeutet: die Formen f,,..., [, besitzen in der Hyperebene
z, = 0 keine gemeinsame Nullstelle.
Wir beweisen sogar: die Formen f, ,..., f,_, besitzen in der Hyper-

ebene z, = 0 keine gemeinsame Nullstelle. Dann folgt durch Vertau-
schung der Indizes 1 und » in den Formen und Variablen, da3 sogar die

Formen f,,..., f, in z, = 0 keine gemeinsame Nullstelle haben. — Zum
Beweis setzen wir in f,,..., f,_, die Variable z, gleich 0. Dann sind
[f2)uy0 s+ - -3 [fuo1lz,=0 2 — 2 Formen in n — 1 Variablen von genau der

Beschaffenheit, wie wir sie in Hilfssatz 2 betrachtet haben (man hat
nur in dem Schema (14) (cf.p.169) die letzte Zeile, ferner die erste Zeile
und erste Spalte und in den g,; alle Glieder mit x, wegzulassen). Sie be-
sitzen also nach Hilfssatz 2 endlich viele (iibrigens getrennte) Nullstrah-
len. Die Form f, wird aber fiir , = 0 eine allgemeine Form der Variablen
Zy,..., x,, deren Koeffizienten von denen der Formen [f,], _q,.--,
[fn-1]z,— o algebraisch unabhingig sind (man betrachte wieder das Schema
(14)). Nach dem Zusatz zu Satz 4 (cf. p. 162) besitzen also [}], _o, [f2ls,=0
e+ +s [fn-1le,—0 keinen gemeinsamen Nullstrahl, q. e. d.

Jetzt konnen wir Satz Ia beweisen. Wir betrachten von den » Formen
(14) nur die ersten n — 1. Sie besitzen endlich viele getrennte Nullstrah-
len. Diese teilen wir in zwei Kategorien: solche in der Hyperebene z, =0
und solche auBerhalb. Auf einem Nullstrahl in der Hyperebene ver-
schwindet f, nach HS. 3 nicht, auf einem solchen auflerhalb verschwin-
det aber f, trivialerweise; denn die Relation (1) liefert dann

n-—-1
én.fn(sl IARRS En) = E Sifi(fl ye e ey En) =0,
i=1
also verschwindet links wegen &, # 0 notwendigerweise f,(&, ,..., &,).

Die Nullstrahlen der » Formen (14) liegen also getrennt und ihre An-
zahl 2 ist gleich der Anzahl der Nullstrahlen der Formen f,,...,f,,
auBerhalb der Hyperebene z, = 0, d. h. gleich der Differenz aus der Ge-
samtzahl ihrer Nullstrahlen und der Zahl ihrer Nullstrahlen in der
Hyperebene z, = 0.

Die Gesamtzahl ist nach Formel (7) (cf.p. 163) gleich A1 ; die letztere
Zahl aber ist zZ», ; denn setzt man in f,,..., f,_, iiberall z,=0, so
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entsteht wieder genau ein System von der Gestalt (14), wobei man n
durch n — 1 zu ersetzen hat. Es gilt also fiir 2 die Rekursionsformel

28 = pr-t . -1 (17)

Aus ihr und aus 2" = h — 1 ergibt sich Satz Ia.

4. Wir wollen jetzt zeigen, dafl das allgemeinere Formensystem (13)
(cf. p. 168) immer einen Nullstrahl besitzt, ausgenommen wenn samtliche
f; Linearformen sind und » gerade ist. Damit wird dann auch Satz I
bewiesen sein (cf. 2., p. 169).

Durch die Gleichungen

;=0 (e=r +1,...,n) (18)

wird ein r,-dimensionaler Teilraum A" des R" definiert. Wegen des
Zerfallens von (13) in Kaéstchen gilt in diesem Teilraum identisch in
Tyyenny Ty

fi=0 @C=r +1,...,n). (19)

Die iibrigbleibenden Formen bilden in A", aufgefafit als Funktionen in
den iibrigbleibenden Variablen, ein System (14).

Was wir hier fiir das erste Késtchen ausgefiihrt haben, 148t sich genau
gleich fiir die andern Kistchen durchfithren. In analoger Bezeichnung
folgt deshalb aus Satz Ia:

Satz Ib. Das Formensystem (13) besitzt fiir jedes v (1< t<1t) in
einem gewissen Tetlraum A" des R™ genaw 2 (:') Nullstrahlen, und drese

liegen getrennt.

Da 2™ nur 0 ist fiir 2 = 1 und gerades 7, so haben wir damit die Exi-
stenz eines Nullstrahls von (13) gezeigt.

b. Zum SchluB dieses Paragraphen sei noch erwidhnt, daf man durch
Verallgemeinerung des in Abschnitt 3. angewandten Beweisverfahrens
die Anzahl der Nullstrahlen des Systems (13) genau bestimmen kann, in
folgendem Sinne:

Satz Ie. Ses ¢ die Anzahl der Kdstchen in (13). Dann besitzt das System
(13) mat ¢ — 1 allgemeinen Linearformen genau

L by bt — (=)0 hy — (—1)"
ATEEEY re - ht+1 kt+1
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gemeinsame Nullstrahlen. Diese Zahl ist 0 dann und nur dann, wenn
h,=1 und r, gerade ist. In letzterem Fall besitzt (13) mit t—2 allgemeinen
Linearformen 202" Nullstrahlen.

,,,,,

§ 3. Beweis von Satz II

1. In diesem Paragraphen wollen wir den zugrunde liegenden Koeffi-
zientenkorper K reell-abgeschlossen voraussetzen (vgl. a. a. 0.3)).

Ein Formensystem f,,...,f, in » Variablen z,,..., z, mit Koeffi-
zienten aus K erfiille die Relation (1). Ferner sei die Voraussetzung von
Satz II erfiillt; d. h. es seien nicht sémtliche Formen f; von ungeradem
Grade und zugleich sémtliche Anzahlen von Formen gleichen Grades
gerade. Diese Voraussetzung ist insbesondere erfiillt, wenn » ungerade ist.

Dann lautet die Behauptung von Satz II: das System besitzt in K
einen Nullstrahl.

Ein solches System geht nach Satz 7 (cf. § 2, 2., p. 168) aus einem
System (13) durch Spezialisierung der unbestimmten Koeffizienten her-
vor, wobei (nach geeigneter Umnumerierung der Formen und Variablen)
etwa fiir das erste Késtchen gilt:

Es ist nicht zugleich die Ordnung k des Kistchens gerade und der
Grad A der Formen f,,..., f, ungerade.

Nun besitzt das System (13) nach Satz Ib (cf. §2,4., p. 173) im Teil-
raum A*, welcher durch die Gleichungen

z; =0 t=k+1,...,m)

definiert wird, genau 2z getrennte Nullstrahlen.

Betrachten wir nun das System (13) im Teilraum A*. Es stellt hier ein
Formensystem in nur £ Variablen dar. Bildet man nun von diesem System
die u-Resultante, so besagt Satz Ib, dafl diese in den % genau vom Grade
2P ist ; ihre Strahlen (£, ,..., &) sind genau die Nullstrahlen des Systems
(13) im Teilraum 4*. Nun ist aber (cf. § 2, 3., p. 169, SatzIa) z{» dann
und nur dann gerade, wenn k gerade und A ungerade ist.

Im vorliegenden Fall ist also D(u) ungeraden Grades in den w.

2. Wir beweisen jetzt

Satz 8. Ein System ff ,..., ¥ gehe aus einem System f,,...,f, mit
Koeffizienten aus K [a, ,. .., a,] durch Spezialisierung der unbestimmten a
tm reell-abgeschlossenen Grundkérper K hervor. Besitzt dann das System
fis...,fr endlich viele Nullstrahlen und ist setne u-Resultante D (u) un-
geraden Grades in den u, so besitzen die Formen fF ,...,f* in K einen
Nullstrahl.
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Wie schon in der Einleitung erwihnt, ergibt sich der Beweis in ganz
dhnlicher Weise wie bei F. Behrend (vgl. a.a. 0.7)).
Seien «, ,..., «, ¢ beliebige Elemente aus K. Um nun die a, zu den

«, zu spezialisieren, fithren wir durch die Substitution

e
@, = &y + ¢, (o=1,...,9)

eine Reihe neuer Unbestimmter ¢,(¢ =1,...,q) ein.

Das System f; geht dadurch iiber in ein System f;(f, ) mit Koeffi-
zienten aus K (¢, ,. .., t,), welches eine ungerade Anzahl von Nullstrahlen
besitzt (eventuelle Multiplizititen mitgezidhlt). Diese liegen in dem
Raum A4;,, welcher zu einem algebraisch-abgeschlossenen Erweiterungs-
korper von K (¢, ,...,t,) gehort. Ein solcher ist der Korper £2 aller Pui-
seuxschen Reihen nach aufsteigenden gebrochenen Potenzen der Groflen
t, mit Koeffizienten aus K (¢)22).

Der Unterkérper P der reellen Puiseuxschen Reihen (d. h. der Reihen
mit Koeffizienten aus K) ist formal-reell und wird durch Adjunktion von
v algebraisch abgeschlossen (P (¢) = £2) ; also ist er reell-abgeschlossen?).

Da nun das System f, (1, ) Koeffizienten aus P hat und aullerdem in
P(z) = Q eine ungerade Anzahl von Losungen besitzt, so folgt (da zu
jedem Losungsstrahl der konjugiert komplexe Strahl auch Loésungs-
strahl, und zwar von der gleichen Multiplizitit, ist), dal eine reelle Lo-
sung, d. h. eine solche mit Koordinaten aus P existieren muf3. Die Koor-
dinaten dieses Losungsstrahls sind also reelle Puiseuxsche Reihen. Da
sie nur bis auf einen Proportionalitdatsfaktor bestimmt sind, kann man
sie durch Multiplikation mit einem geeigneten Potenzprodukt der ¢, so
normieren, daf3 keine negativen Potenzen der t{, vorkommen und daf}
mindestens ein £, ein von 0 verschiedenes konstantes Glied besitzt. Setzt
man nun alle ¢, = 0, so erhilt man offenbar eine nicht-triviale Losung
des Systems f, mit Koordinaten aus K; damit ist Satz 8 bewiesen.

Erfiillen nun » Formen /] ,..., f¥ die Voraussetzungen von Satz II,
go erfiillen sie im Teilraum A* die Voraussetzungen von Satz 8, womit
Satz II bewiesen ist.

(Eingegangen den 20. August 1945.)

%) Vgl. dazu: B. L. v. d. Waerden, Einfiihrung in die algebraische Geometrie,
Kap. IT, § 14, 52—54, und die von Ostrowski Math. Zeitschrift 37 (1933), 98—133, §1
gegebene Herleitung der Puiseuxschen Reihenentwicklung. Diese Entwicklung liefert
unsere Behauptung zuni#ichst nur fur algebraische Funktionen einer einzigen Verénder-
lichen . Sie iibertrigt sich aber ohne weiteres durch Induktion auf eine beliebige An-
zahl ¢ von Veranderlichen to(p =1,...,¢).

23) Vgl. 3).
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