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Ûber einen neuen Aufbau
der projektiven Flâchentheorie

Von G. Bol, Heuweiler (Baden) *)

Um zu einem Aufbau der Differentialgeometrie der Flâchen im projektiven

dreidimensionalen Raum zu gelangen, ist es zweckmâBig, sich zu
vergegenwàrtigen, wie man bei vorgegebener Gruppe eine Flâchentheorie
aufzubauen pflegt.

Das Verfahren ist hierbei durchweg folgendes. Zunâchst sucht man sich
eine quadratische Grundform, die bei den Transformationen der Gruppe
invariant ist. Mit Hilfe dieser Grundform wird ein kovarianter Differen-
tiationsprozeB eingefûhrt. Wenn nicht — wie bei der Euklidischen oder
Nichteuklidischen Géométrie — eine ,,Normale" von vornherein geo-
metrisch festgelegt ist, so bestimmt man sich eine mit Hilfe der Grundform,

etwa indem man auf den Flâchenpunkt den Laplaceschen Operator
in bezug auf die Grundform anwendet. Dann ist das ,,mitbewegende
Koordinatensystem" festgelegt, es werden die Ableitungsgleichungen fur
die Basisvektoren in diesem Koordinatensystem angegeben, die Inte-
grierbarkeitsbedingungen aufgestellt. Eine ,,Oberflâche" wird in der
ublichen Weise mit Hilfe der Grundform definiert. Die weiteren Unter-
suchungen fugen sich diesem Rahmen mehr oder weniger gut ein.

Fragen wir uns, wie man entsprechend in der projektiven Géométrie
vorgehen kann Die Asymptotenlinien einer Flàche sind ihrer Définition
zufolge projektiv-invariant, es wird also zweckmâBig sein, die Grundform
auf sie als Nullinien zu beziehen. Die Torsen miissen also von der Be-

trachtung ausgeschlossen bleiben. Wir wollen weiter Haupttangenten-
parameter einfuhren und uns in dieser Darstellung auf hyperbolisch
gekriimmte Flàchen beschrânken2).

*(*,*) (1)

sei die Darstellung der Flâche, x stellt in der ublichen Weise den Vierer-
vektor des Flâchenpunktes dar.

DaB u, v Asymptotenparameter sind, drûckt sich aus durch das Be-
stehen von Abhângigkeiten

1) Auszug aus Vortrâgen, gehalten im Mathematischen Reichsinstitut in Oberwolfach
(Baden) im Februar 1945.

2) Bei elliptisch gekrûmmten Flâchen kann man u und v konjugiert komplex wahlen.
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zwischen den Ableitungen von x. /3 0 oder y 0 kennzeichnet offen-
bar die Regelflâchen.

Die Koeffizienten im rechten Glied sind keineswegs invariant, wir
miissen berucksiehtigen, daB wir unsere Darstellung noch ândern kônnen,
und zwar durch die beiden folgenden Prozesse.

1. Umnormierung von x ;

x(u,v) =q(u,v)x(u,v) (3)

2. Ânderung der Haupttangentenparameter durch die Substitution

u f(u*) v g{v*) (4)

Wie man leicht nachrechnet, sind /? und y bei (3) invariant, bei (4)

àndern sie sich gemâB

j8* j8//al7/-1 y* y//-1jf/a. (5)

Wir nennen deshalb fi und y Halbinvarianten, /? hat das ,,Gewicht<f
(2, — 1), y das Gewicht (— 1, 2).

Aus (5) folgt
p*y* pyffg' (6)

und da
du* f'1 du dv* p'-1 <fo (7)

folgt
£* y* du* dv* 0y du dv (8)

Damit haben wir eine invariante Grundform gefunden. DemgemâB
kônnen wir die Projektivoberflâche einer Flâche durch

0= J l$ydudv (9)

erklâren. Sie verschwindet offenbar identisch fur Regelflâehen und nur
fur sie.

Um nun bei der Differentiation von x mit Hilfe unserer Grundform (8)

invariante Bildungen zu erhalten, miissen wir diesen Vektor nach (3)
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irgendwie invariant normieren. Wie man leicht nachreehnet, ist bei (3),
wenn die Klammer eine Déterminante bedeutet:

(S, XU,XV,XUV) Q* (X, XU,XV,XUV) (10)

Daraus ergibt sich, daB wir den Vektor x (u, v) stets so einrichten kônnen,
daB fur îhn

(xxuxvxuv)= 1 (11)
gilt3).

Die Normierung (11) hangt jetzt aber ofïenbar von der Wahl der
Asymptotenparameter u und v ab, bei einer Substitution (4) haben wir
wie leicht ersichtlich

wahrend fur die zu diesen Parametern gehonge Normierung s*

(x w xu.v.) 1

gelten soll.
Nach (10) ist also ofïenbar

(12)

durch die Normierung (11) wird der Vektor x halbinvariant vom Ge-

wicht (~ ^ - 1)

Jetzt kônnen wir aber leicht die gesuchte invariante Normierung von
x erhalten, indem wir

x xVpy (13)

setzen. Denn das Produkt rechts hat das Gewicht (0, 0), andert sich also

nicht bei den Substitutionen (4).
X sind die ,,normalen Koordinaten" von Fubini. Setzt man jetzt

^«* (14)

so ist auch n invariant festgelegt. Wir kônnen dann die Gerade (x, X))

die Projektivnormale der Flache nennen.

3) Dabei sind also ,,Flachpunkte", bei denen die Déterminante verschwindet, von der
Betrachtung ausgeschlossen. Eventuell wurde auf Reahtat verzichtet, dièse làÛt sich aber
durch eine kleme Anderung des Ansatzes in jedem Fall erhalten.
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Das Netz der zur Normalenkongruenz gehôrigen ,,Krummimgslinien's
ist daim zu den Asymptotenlinien konjugiert wie in der Euklidischen
Géométrie; man sagt auch, die Kongruenz ist zur Flàehe konjugiert.

Damit wâre das Hauptgerust fertig, in dem der weitere Aufbau der
Théorie erfolgen kônnte.

Es ist nun aber uberraschend, daB dieser Aufbau, so zwangslàufig er
erscheint, nicht derjenige ist, der den geometrischen Tatsachen am
besten angepaBt ist. Vielmehr soll hier gezeigt werden, daB die projek-
tive Flâchentheorie, abweichend von derjenigen im Euklidischen und
affinen Raum und der Kugelgeometrie, besser unter Verzicht auf eine

zugrunde gelegte quadratische Grundform behandelt wird.
Ein Hinweis darauf ist schon in den Arbeiten von Fubini enthalten, in

denen der obige Ansatz, allerdings in anderer Gestalt, zuerst durch-
gefûhrt wird. Fubini geht nàmlich aus von einer beliebig angenommenen
invarianten Form

F dudv ;

F muB hier also eine Halbinvariante vom Gewicht (1, 1) sein. Mit Hilfe
dieser Form kann man dann genau so vorgehen wie oben skizziert, fur die
,,Normalen" in bezug auf dièse Form kann man durch geeignete Wahl
von F eine beliebige zur Flache konjugierte Kongruenz erhalten.

Setzt man nun F f$y so erhàlt man die normalen Koordinaten
und eine mit der Flache invariant verknûpfte Kongruenz, sonst treten
aber kaum Vereinfachungen ein, wie es sein mùBte, wenn dieser Ansatz
der geometrisch richtige wâre.

Um nun den richtigen Weg zu finden, iiberlegen wir uns einmal, zu
welchem Zweck denn statt der gewôhnlichen Difïerentiation diejenige
mit Hilfe einer invarianten Form verwendet wird. Bekanntlich wird sie

eingefuhrt, weil bei ihr die Ableitung eines Vektors ein Tensor ist. Bei
unseren Transformationen (4) sind nun die Komponenten eines Vektors
oder Tensors ofïenbar Halbinvarianten.

Wir suchen also ein Differentiationsverfahren, bei dem die Ableitungen
einer Halbinvarianten wieder halbinvariant sind.

Gelingt es ein solches zu finden, so brauchen wir auch nicht mehr x
invariant zu normieren, wir kônnen dann diesen ProzeB gleich auf die
durch (11) gegebene Normierung anwenden, bei der x halbinvariant vom
Gewicht (— \, — |) ist. Besonders dadurch werden die Formeln sehr
vereinfacht.

In Abschnitt I soll nun ein Differentiationsverfahren der gesuchten
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Art beschrieben und mit dessen Hilfe der Aufbau der Théorie dureh-
gefûhrt werden. In Abschnitt II wird dann der Differentiationsprozefi
so spezialisiert, da6 er in môglichst einfacher Weise invariant mit der
Flâche verknupft ist.

ABSCHNITT I
Àllgemeine Flâchentheorie

§ 1. Bas Differentiationsverfahren

Statt einer quadratischen Grundform denken wir uns zwei nictit ver-
schwindende Halbinvarianten

A vom Gewicht (— 1, c

jbt vom Gewicht d, — 1

vorgegeben4).
Ist nun m eine weitere Halbinvariante vom Gewicht (a, b) so ist

auch m Xa halbinvariant und hat das Gewicht (0, b -\- a c).
Also ist

(m Xa)u Xamu + a A"-1 Xu m

halbinvariant vom Gewicht (l,6 + ^c) und ebenso nach Division
durch Xa

m1 mu + a -~- m (16 a)
A

halbinvariant vom Gewicht (a -f- 1, b)

Ebenso ist
m2 mv + b^-m (16b)

halbinvariant vom Gewicht (a, b + 1)

Die durch (16) erklàrten Grô/ien nennen wir die kovarianten Ableitungen
von m mit Hilfe der Basisinvarianten A, /a.

Dièse Differentiation wird weiter durch angehângte Indizes ange-
geben.

Fur unser Differentiationsverfahren gelten die ûblichen Regeln, eine
Summe kann man allerdings nur differenzieren, wenn beide Glieder das-
selbe Gewicht haben. Auch sind Differentiationen nicht mehr vertausch-
bar; es gilt

4) a, 6, c, d dûrfen beliebige réelle Werte haben.
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m12 — m21 (2 aa — 2 6 r) m (17)

wo
<r=|(logA)uv, r= J(logAi)^ 5) (18)

gesetzt ist.
Ist m absolut invariant, so ist mi mu m2 mv mx 0 bedeutet,

daû m Xa cp (v) Dann ist
i

K_ 1_ w_« {m a)u
X a m _ i '

m a

m! 0 bedeutet, dafi bei der Erklârung des Differentiationsverfahrens X

i
durch m a ersetzt werden darf, ohne dafî sich dièse ândert.

Ofïenbar ist
X± ^2 0 (19)

a —- r 0 bedeutet, dafi — ;¦ ; setzen wir
^ q>(u)

-A- -i? co (20)
v(v) ç>(%)

v

so wird

X co ju co

so daB sich unser Ableitungsverfahren auch mit Hilfe einer einzigen

Grundinvarianten co -=- vom Gewicht (— 1, — 1) erklâren lafit. In
.F

diesem Falle ist unser Ableitungsverfahren fur Tensoren identisch mit
der kovarianten Differentiation mit Hilfe der Form (14).

§ 2. Ableitungsgleichungen

Wird die Normierung (11) vorausgesetzt, so rechnet man leicht nach,
dafi oc und ô verschwinden. Ersetzt man nun in (2) die gewôhnliche Ab-
leitung durch die kovariante mit Hilfe zweier beliebiger fest gewâhlter
Grundinvarianten, so erhalten dièse Ableitungsgleichungen die Gestalt:

*u Px2 + Ix
^22 yxx + mx

wo
6) Der Faktor J ist fur die flâchentheoretische Anwendung zweckmafîig.
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(22)

gesetzt ist. Nach (17) ist

*i2 ~ «2i (r - a) X

die drei Punkte x, X12i x21 liegen also auf einer Geraden. Ist t) ein belie-
biger von x verschiedener Punkt dieser Geraden, so kônnen wir unsere
Gleichungen zu

«n /»«2 + ï« >

«12 1) + V* (23)
3^21 9 + ^3C

ï22 yxl + mï
mit

q-p a-r (24)

ergànzen. Die Gerade (x, X)) nennen wir die ,,erste Relativnormale" der
Flâehe in bezug auf die Halbinvarianten A und ju

Nach (11) ist
(««1«2«12> (««1«2 9)= l • (26)

§ 3. Ebenenkoordinaten

Der Vektor

dessen Komponenten die dreizeiligen algebraischen Minoren der rechts-
stehenden Matrix sein sollen, stellt die Tangentenebene unserer Flàche
dar, es ist

f X fx, f ï, 0 (27)

| ist offenbar halbinvariant vom Gewicht (— \, — ^), es ist

Man erhâlt in der ublichen Weise durch Berucksichtigung der durch

fortgesetzte Differentiation aus (27) hervorgehenden Gleichungen:

135



*7 +
(29)

wobei rj eine beliebige Ebene der von f, f12, f21 bestimmten Geraden
ist und

Hierbei ist
q — p a — r

*?*2 0 ^t) f2t) 0

(31)

(32)

Die Schnittgerade (£, rj) nennen wir die ,,zweite Relativnormale"
unserer Flâche.

§ 4. Begleittetraeder

Die Forderung, daB der Punkt t) in der Ebene ^ liegen soll, so daB

rjX) 0 gilt, fïihrt auf die Bedingung

p-\-q q-{-p=—2C=— f}y-\-o+r (33)

Ist sie erfûllt, so bilden at, x1, x2 > n die Ecken; |, fa, |2, r\ die Seiten-
flâchen eines Tetraeders; wir nennen es das Begleittetraeder der Flàche.
Es gilt die Multiplikationstabelle

h
V

• '¦
0

0

0

1

0

0

— 1

0

0

-1
0

0

1

0

0

0

wo an jeder Stelle das Produkt
der links und oberhalb ver-
zeichneten Vektoren abzulesen
ist.
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§ 5. Integrierbarkeitsbedingungen

Mit Hilfe der Vertauschungsregel (17) erhàlt man aus (23), (29) die
Ableitungsgleichungen fur t) und rj, nâmlich

*>i <Z *x + îx2 + s X ^ q £ + lÇt - s £

X)2 mx1 + px2 + tx rh m f x + p f2 — t£
mit

- Pl pm ~ ï2 +pt
(oo)

< y l Jrml-q2=^yl __ Çkx + g2

Aus (34) ergibt sich die weitere Integrierbarkeitsbedingung

tx — 82 ~\- ml — lm -j- pq —qp O (36)

§ 6. Die Lie- F2
Zieht man in jedem Punkte einer Asymptotenlinie v v0 die

Tangente an die andere hindurchgehende Asymptotenlinie, so entsteht eine

Regelflàche RVq Drei fur u u0 ,,aufeinanderfolgende" Geraden dieser
Regelflache bestimmen eine Quadrik, die man die Lie-.F2 der Flache im
Punkte (Uq v0) nennt. Geht man statt von RVq von der der Kurve u u0
anbeschriebenen Regelflache RUq aus, so entsteht dieselbe Quadrik.

Es ergibt sich, dafi der Punkt t) auf der Lie-jF2 liegt, wenn

V V Q =Q
und daher wegen (33)

T. (38)

rj ist dann die Tangentenebene der Lie-jF2 im Punkte t). Die Lie--F2 selbst
hat dann die Parameterdarstellung

3(25, w) t) + wx1 + zx2 + 2 wx (39)

Die beiden Normalen (XX)) und (f, rj) (x1x2) sind polar in bezug
auf die Lie-.F2

§ 7. Basiskongruenz

Wir haben in § 2 zu jedem Paar von Grundinvarianten eindeutig eine

Kongruenz von Geraden (3E, t)) gefunden. Man kann leicht sehen, dafi
auch zu jeder Kongruenz, deren Geraden nicht in der Tangentenebene
liegen, eindeutig ein kovarianter DifferentiationsprozeB gehôrt.
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Dazu bestimmen wir in jedem Punkt die zu der vorgegebenen in bezug
auf die Lie-F2 polare Gerade der Tangentenebenè ; schneidet dièse die

Haupttangenten in den Punkten

xu + Ax xv + Bx

wobei wir x nach (11) normiert denken, so muB

sein und daher

—

gesetzt werden.

A, 1 fJ-v

+ Bx

B

(39)

(40)

Dadurch ist aber der Differentiationsprozefi eindeutig festgelegt ; denn

bei diesem werden nur ¦— und — verwendet.
A /bt

Durch Intégration finden wir X und ju, die Halbinvarianz Iâ6t sich
leicht erreichen.

Wir kônnen daher auch von Differentiation in bezug auf eine beliebig
vorgegebene Kongruenz sprechen; deren Geraden dûrfen nur nicht in
den Tangentenebenen liegen.

§ 8. RelatiYkriimmungslinien

Die Normalen (x, X)) lângs einer Kurve u(t) v(t) der Flàche be-

ruhren eine Raumkurve

% r) + g(t)x (41)

wenn
d% 3M du + 3V dv 0 (mod x, î))

also

3t du + 32 dv 0 (mod x, î)) (42)

Nach (34) gibt dies

{(î + 0)*i + lx2}du + {mx1 + (p + g)x2}dv 0

oder
(q + g) du + m dv 0

- (43)
Zd!^ + (p+ g)dv 0
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Elimination von g gibt die Gleichung

Idu2 + (p — q)dudv — m dv2 0 (44)

der ,,Krummungslinien erster Art".
Fur die ,,Krùmmungslinien zweiter Art" der Kongruenz (f, rj) findet

man entsprechend
l du2 + (p — q)dudv — m dv2 0 (45)

Die Kongruenz (x, t) ist also dann und nur dann in bezug auf die
Flàche konjugiert, wenn

V — q r — <x 0

also nach § 1 wenn die Differentiation auch mit Hilfe einer quadratischen
Orundform (14) erklârt werden kann*). Wegen (24) ist dann auch die
zweite Kongruenz (£, rj) konjugiert und umgekehrt.

In diesem Sinne ergibt sich die Fubinische Théorie als Spezialfall der
vorliegenden ; um die Fubinischen Formeln fur normale Koordinaten zu
erhalten, muB man X fi /S y setzen. Unsere Relativnormale wird
dann Fubinis Projektivnormale.

Die beiden Krûmmungsliniennetze kônnen bei nicht konjugierten
Kongruenzen ofïenbar nur dann zusammenfallen, wenn 1 1, m m
oder nach (30), wenn /32 y1 0. Nach § 1 bedeutet das aber, daB

A y ii P (46)

gesetzt werden kann.
Durch die Wahl (46) wird der DifferentiationsprozeB in einfachster

Weise invariant mit der Flàche verknupft. Wir werden im nâchsten Ab-
schnitt dièse Wahl zugrunde legen und feststellen, daB sie fur die meisten
geometrischen Fragen allen anderen vorzuziehen ist.

Wann bei konjugierten Kongruenzen beide Netze zusammenfallen,
soll hier nicht untersucht werden, da sich hier keine neuen Gesichts-

punkte ergeben.
Durch Elimination der Differentiale erhâlt man aus (43) die Gleichung

9Z+ (q +p)9 + qp -Tm 0 (47)

8) Hierin ist wohl der wichtigste Grand zu sehen, weshalb die fruheren Theorien fast
ausschlieûlich konjugierte Kongruenzen betrachteten.
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der Brennpunkte des Strahles, fur die also, wenn t) auf der Lie-F2 liegt,
also (37) gilt, nach (33)

gii) + g(2) - (q +p)==2C g<» g<» =qp-lm (48)

gesetzt werden kann.
Der vierte harmonische Punkt zu 3e in bezug auf die Brennpunkte

liegt daher in X) + Cx wir wollen ihn den Kriïmmungsmittelpunkt
nennen.

Dual erklàrt man die Krummungsmittelebene rj + C f der zweiten
Kongruenz.

Krummungsmittelpunkt und Krummungsmittelebene liegen polar in
bezug auf die Lie-jP2.

§ 9. Affine Flâchentheorie

Die zweiten Normalen unserer Flàche liegen aile in einer festen Ebene,
wenn rj fest ist, also nach (34), (24)

p q=zl=zm 0 — r 0 (49)

gilt. Wir haben dann die Ableitungsgleiehungen

Xl2 X21 X) f12 |21 - rj - 2 CX

- 2 C*! + /82X2 ^ r?2 0

Wegen (49) kann man diesen AbleitungsprozeB mit einer einzigen Grund-
invarianten <o vom Gewicht (—1,-1) erklàren, deren Ableitungen
wegen (19) verschwinden.

Setzt man dann

1 1 /
7

a)

/X)=VcoX) iy

so sind die quergestriehenen Vektoren absolut invariant, und es gelten
die Ableitungsformeln
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co
12 21

oj

ï22 y *i ?22 — y 11 + ri >

^2 yi û>ïi — 2 c û>ï2

Wâhlt man die feste Ebene rj als uneigentliche Ebene eines affinen
Koordinatensystems :

7j (0, 0, 0, 1)

so erhalten wegen rjx rj i 1 die vierten Koordinaten des Punktes x
den Wert 1, die drei ersten sind also die affinen Koordinaten dièses

Punktes. (52) stellt dann also die Formeln der affinen Flâchentheorie dar.
Ein Vergleich mit den ûblichen Formeln, etwa in W. Blaschkes Diffe-

rentialgeometrie II, p. 132, zeigt daB

A D 1 2C

gesetzt werden muB.
Dabei ist zu bedenken, daB die ersten Ableitungen von X, î) und |

wegen der absoluten Invarianz dieser Vektoren gewôhnliche Ableitungen
sind.

Unsere erste Relativnormale fàllt mit der Affinnormale zusammen, sie

ist die Polare in bezug auf die Lie-F2 von der unendlich fernen Geraden
der Tangentenebene.

Bei den Affinsphàren gehen auBerdem die ersten Normalen durch einen
festen Punkt, hier muB also aueh

7= m 0

gelten. Wegen (30) gilt dann fi2 yx 0 man kann wie in § 8

setzen. Ist auch C 0, so liegt der feste Punkt in rj, die Affinsphâre ist
dann uneigentlich.

H 0, also wegen (53), (49), (33) :
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stellt bekanntlich die Affinminimalflâchen dar. Da hier (37) gilt, ist rj
Tangentenebene der IAe-F2.

Die Lie -F2 der Affinminimalflâchen sind also sâmtlich Paraboloide.
Deshalb hat man dièse Flàchen fruher aueh paraboloidisch genannt
(P. Franck).

§ 10. Kanonisches Bûschel

Wâhlt man bei festem x, y

X p*-l y2*-l y ^ £21,-1 yy-l } (54)

so erhâlt man eine mit der Flâche invariant verkniïpfte Kongruenz.
Besonders wichtig ist der Fall x y Die bei dieser Wahl entstehenden
oo1-Normalen liegen in einer festen Ebene. Sie bilden das ,,Kanonische
BuscheF*, dessen Geraden bei verschiedenen Fragen eine wichtige Rolle
spielen.

Wir wollen das an einem bekannten Beispiel illustrieren. Die
Gleichung

pdu* — ydv* 0 (55)

stellt auf der Flâche drei Kurvenscharen dar, deren Kurven bekanntlich
die Segrekurven genannt werden.

Wâhlt man eine dieser Scharen aus, so ist

t =*! + Ax2

ein Punkt der Tangente, wenn

H
A ist halbinvariant vom Gewicht (1 — 1). Wir setzen daher

X A-1 il A

Dem entsprechen in (54) die Werte x § y ^. Nun ist

tx + Aï% 2 Ar) + A*yxx + px2 + (l + Ap + Aq + A*m)x

ein Punkt der Schmiegebene unserer Kurve, wegen (56) ist aber
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so daB dièse Schmiegebene die zu unseren Grundinvarianten gehôrige
Normale enthàlt. Das gilt fur jede der drei Scharen. Also

Die Schmiegebenen der drei Segrekurven haben eine Gerade gemeinsam,
namlich den zu x y ^ gehôrigen Strahi des kanonischen Buschels.

Diesen Strahl nennt man auch die Segresche Normale oder ,,Aehse"
der Flâche.

Fur x ~ y 1 erhâlt man die Wilczynskische Normale oder ,,Direk-
trix", fiir die X~y, \i /? gilt, also wegen (19) /?2 yx 0 kenn-
zeichnend ist.

x y 0 gibt die Fubinische Normale, die oft auch als Projektiv-
normale schlechthin eingefuhrt wird. Geometrisch scheint mir das aller-
dings nicht gerechtfertigt.

Der Wert x y \ gehôrt schliefîlich zur Greenschen Normale. Fiir
sie ist fii — y2 0 kennzeichnend. Sie spielt ftir viele Fragen eine wich-
tige Rolle, die mit den algebraischen Schmiegmannigfaltigkeiten der
Flàche oder ihrer Asymptotenlinien in einem festen Punkte zu tun haben.

ABSCHNITT II

Flâchentheorie im natiirlichen Koordînatensystem

§ 11. Die Grundformeln

Wir wollen uns in diesem Abschnitt auf die Wahl

A y p P (57)

der Grundinvarianten festlegen7). Dann ist nach (19), (30)

ï= l m w (58)

Aus (35) folgt jetzt s |3m, t y l. Wir setzen noch p p, q =q
und haben dann die Ableitungsgleichungen

7) Das ist nur môglich, wenn die Flâche keine Regelfiâche ist. Ist aber etwa /i 0 so
bleiben die Formeln sogar richtig, wenn man die Halbinvariante jlc beliebig wâhlt. Hier
soH darauf nicht eingegangen werden.

143



«12 V) + PX, 12 TJ + PS, ^X2± =: t) -j- ^3t ç2X — ?] "T" (/ç >

£9, =r= y xî -f- 77i x £o y £ -j- tu £ '

,7 ^ 7^ (60)
n2 mxx + ^«2 + y^« V2 ' "

Hier ist

P=i/8y-cr, <*= £(logy)ttl,,
(61)

Die Integrierbarkeitsbedingungen nehmen die einfache Gestalt an

2 ~~ Pl ~~ '
(62)

mx — q2 0 ;

y ^i — p ^2 ==: ^ • i"**/

Wenn von der Projektivnormalen gesprochen wird, meinen wir von jetzt
an die zu diesem System gehôrige Normale (von Wilczynski). Auch die
Invarianten sollen sich immer auf das obige System beziehen.

§ 12. Diskussion der Integrierbarkeitsbedingungen

Fur verschiedene Untersuchungen ist es zweckmâBig, das Gleichungs-
system (62), (63) vollstândig zu machen. Das geschieht etwa indem man
zunàchst an die Stelle von (63) unter Einfùhrung einer neuen Funktion n
die Gleichungen° lx n p m2 — ny
setzt. Durch dreimaliges Aufstellen von Integrierbarkeitsbedingungen
erhâlt man das vollstàndige System

lx np mx q2

h Pi > m2 ny

\ P Ji \ Y Js \P/i \Y
m

Ï2

144



Der Vorzug des Systems (66) ist, dafi es auch noch vollstàndig bleibt,
wenn man zwischen /? und y eine Beziehung voraussetzt.

Etwa bei den isotherm-asymptotischen Flàchen ist /? y nach geeig-
neter Transformation (4). Da nach (61) p das Hauptglied yuv, q das

Hauptglied (}uv enthàlt, ist

Plll ~7uuuuv » #222 ~ Puvvvv •

Die isotherm-asymptotischen Flàchen hângen daher ab von filnf beliebigen
Funictionen einer Verànderlichen8).

Dièses altbekannte Ergebnis lâBt sich hier besonders einfach be-
griïnden.

§ 13. Projektive Abwickelbarkeit

Auch hier bringen wir keine neuen Ergebnisse, zeigen nur wie man die
bekannten mit Hilfe unserer Formeln einfach begriinden kann.

Zwei Flàchen heiBen aufeinander projektiv abwickelbar, wenn sie sich
unter Entsprechen der Asymptotenlinien so eineindeutig aufeinander
beziehen lassen, daB an entsprechenden Stellen

giit.
Um festzustellen, ob eine Flâche projektiv abwickelbar ist, muB man

untersuchen, ob das Gleichungssystem (62), (63) bei fest gehaltenem
/5, y also p, q auBer der zur Flâche gehôrigen noch andere Lôsungen l\ mf
hat.

Fiir L V — l, M mr — m fiihrt das auf die Gleichungen

L2 0, Jf^O, Liy-M2p 0 (67)

Verschwindet L nicht, so bedeutet die erste Gleichung, da L das Ge-

wicht (2, 0) hat, daB L nicht von v abhângt; man kann dann u so wâhlen,
daB L 1 wird. Ist M ^ 0 so kann man ebenso M 1 erreichen. Aus
(19) liest man dann ab, daB

y. /». (68)
sein muB.

8) Das folgt durch die ûbliche Abzâhlung der an fester Stelle noch frei wâhlbaren
Ableitungen; von der fûnften an sind das in jeder Differentiationsordnung fûnfAbleitungen
von /? y% wâhrend die von l, m, n durch (66) festgelegt sind.
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(66) lehrt, daB die jR-Flâchen, fur die das gilt, von sechs beliebigen
Funktionen einer Verànderlichen abhângen (Cartan).

Ist dagegen L ^ 0, M 0 so wird man auf die Bedingung

7u 0 (69)

gefuhrt und kann dann v so einrichten, da8 y 1 wird.
Dièse 22O-Flâchen hângen ab von fiïnf beliebigen Funktionen einer

Verànderlichen.
Es ergibt sich daher im Gegensatz zur gewôhnlichen Differential-

geometrie, daB die abwickelbaren Flàehen nur eine verhàltnismàBig
kleine Klasse ausmachen.

Da die Lôsungen von (67) nur bis auf einen konstanten Faktor be-
stimmt sind, ist jede projektiv abwickelbare Flâche auf unendlich viele
Arten projektiv abwickelbar.

Nach (66) hângen bei vorgegebener Flâche die Lôsungen fur L, M, N
von hôchstens drei Parametern ab, letzteres nur wenn

(70) kennzeichnet die isothermasymptotischen Flâchen, bei denen die
GauBsche Kriimmung k der Form p y dudv konstant ist.

§ 14. Das Demoulinsche Yiereck. Geometrische Deutung der Invarianten

Wie man leicht nachpriift, haben die Iàq-F2 einer Flâche im allge-
meinen noch vier weitere Hûllflâchen, die dièse in den Punkten

p t) + hxî + kx2 + hkx (71)
beruhren, fur die

h* m k2 1 (72)
gilt.

Offenbar bilden sie ein Viereck, das ganz auf der Lie-jP2 liegt, das ,,Vier-
eck von Demoulin".

Gtehôrt Po zu den Werten h und k, so entstehen die beiden ,,benach-
barten" Ecken Pt und P2 des Vierecks durch Vorzeichenwechsel von h
oder k, die ,,gegenuberliegende" Ecke P3 durch Vorzeichenwechsel von h
und k.
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Die beiden iibrigen Kanten Po P3 und Px P2 des ,,Tetraeders von De-
moulin" schneiden die Normale in den Punkten X) ±hkx Darin ist
die geometrische Définition der Normale, sowie das Verschwinden der
Invarianten l und m enthalten.

Die Normale ist die Transversale der Diagonalen des Demoulinschen
Vierecks durch den Flàchenpunkt.

Ebenso ist die zweite Normale die Verbindungsgerade der Schnittpunkte
der Diagonalen mit der Tangentenebene.

Jede der Kanten des Demoulinschen Vierecks erzeugt eine der
,,Demoulinschen Kongruenzen".

AuBer diesen werden wir auch die Kongruenzen zu betrachten haben,
die von der Verbindungsgeraden des Flâchenpunktes mit einem der
Beruhrungspunkte der Hullflàchen bestimmt werden, die ,,Hûllpunkts-
kongruenzen".

Zwischen diesen verschiedenen Gebilden bestehen nun eine Reihe von
geometrischen Beziehungen, von denen die wichtigsten hier zusammen-
gestellt werden sollen, die aber wohl erst zum kleinsten Teil aufgedeckt
sind.

Da nur die Verwendung des hier verwendeten Wilczynskischen Koor-
dinatensystems die Symmetrien dieser Wechselbeziehungen zutage treten
lâfit, scheint es wohl berechtigt, es das natiirliche zu nennen, im Gegen-
satz zu dem bis jetzt mehr verwendeten Fubinischen.

In den folgenden Paragraphen sollen die wichtigsten Flâchenklassen
hauptsachlich auf Grund der bei ihnen vorhandenen Besonderheiten der
Demoulinschen Figur defîniert werden, eine Zusammenstellung der

wichtigsten Sâtze und Kriterien geben wir dann in einer Tabelle, aus der
sich am leichtesten die Zusammenhânge entnehmen lassen.
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Flâchenklasse
Kenn-

zelchnende
Bedingungen

Normalen-
kongruenz

Ihre
Krûmmungs-

linien
Kongruenz

von Demoulin
Ihre

Krûmmungs-
linien

Isotherm-
asymptotische
Flâchen

a T

I t
p q

konjugiert1)

Projektiv-
Minimal-
flâchen m. 0

Flâchen mit
entartetem
Viereck von
Demoulin

m 01)

Q-Flâchen
q + hx 0
V + kt - 0

Komplex-
Flâchen1)

Komplex-
Flâchen »)

mit entartetem
Demoulin-

Viereck
Projektive Ab
wicklungen der
Afflnsphâren

Flâchen von
Tzitzeica-
Wilczynski

Flâchen
von

Demoulin

Projektiv-
sphàren

m 0

p q
Pl Pt

Va ¦>

Po/*! erzeugt
eine Regelflâche

Eine Schar
fâUt mit den
Asymptaten-
linien

I u konst.
i zusammen.

WA

m 0

W À

Brennpunkte
sind die
Schnittpunkte
mit denDiago
nalen vom
moulin-Viereck.

l)

ii und ii sind
Brennpunkte
der ersten, px
und pt sind
Brennebenen

| der 2. Norma-
i lenkongruenzl)

p q ¦¦

l m

Die erste Art
durch festen
Punkt, die
2. Art in fester
Ebene durch
diesen Punkt.

P0Pi und PtPt
erzeugen Regel-
scharen derselben
Quadrik Q.

konjugiert

konjugiert

PoP, und PtP3
sind in Regelflâ-
chen entartet.
P0Pi und PtPt
erzeugen TF-Strah-
lensysterne. »)

Bine Schar
fâllt mit
den Asym-
ptotenlinien
u konst.
zusammen.

konjugiert

konjugiert

Fàllen mil
den Asym-
ptotenlinien
zusammen.

unbestimmt

Wie oben, die bei-
den Regelflàchen
fallen zusammen,
deshalb auch die
Brennflâchen der
W- Système.

Paarweise entartet
in die beiden Regel-
scharen einer
Quadrik Q.

Ebene
Geradenbûschel

und P,Pt
konjugiert.

P>Pt
und Po

du%

konjugiert

A — Anzahl der beliebigen Funktionen einer Verânderlichen, von der die Klasse abhângt.
Kursiv : die Eigenschaft ist kennzeichnend, wenn sie fiir aile Gebilde der Art erfiillt ist.
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Hùllflachen
der

Die Asymptotenlimen
entsprechen denen der Flache8)

Po und P2 beschreiben Teile
| derselben Regelflarhe

Po fâlU mvt P2,
Px mit Ps zusammen
Die Asymptotenhnien
entsprechen denen der Flache

Po beschreibt eine Quadnk Q,
deren Geraden den Asymptoten-
linien entsprechen

Po und P2 erzeugen dieselbe
Regelflache,
Pi und P3 ebenfalls

Po und P2, P, und P, fallen
zusammen

Die vwr Hullflàchen sind Teile
derselben Quadnk, deren
Asymptotenhnien denen der Flache
entsprechen

Po, Pi, Ps, P, fallen zusam-
men, es gibt nur eineHUUflâche,
ebenfalls eine Flache von De-
mouhn mit derselben Lie-.F2,
denselben Normalen, entspre-
chende Asymptotenlinien und

denselben Projektiv-Oberflachen

Die Lte-Ft beruhren eine feste
Ebene m einem festen Punkt

i

Hull-
punkts-

Kongruenz

Ihre Krum-
mungs-
lmien

Die gleich-
artigen zu

Gegenecken
gehongen
fallen
zusammen8)

Zur selben Ecke geho-
rtge Krummungslimen
rwhtungen gehen durch
Drehung um 90° m em-
ander uber, wenn als
Nulhnien die
Asymptotenhnien gewâhlt
werden1)

Fallen mit
der Norma-
lenkongru-
enz
zusammen

Fallenmit
der Norma-
lenkongru-
enz
zusammen

Eine
Schar fàllt
mit den
Kurven
u konst
zusammen

Eine
Schar fallt
mit den
Kurven
u konst
zusammen

konjugiert

Konjugiert

unbe-
stimmt

Sonstiges

1 Die Ebenen durch Mtttelpunkt undDtagonalen
beruhren die Krûmmungshnien

2) Kennzeichnend, sofern es wirklich zwei ver-
schiedene Kongruenzen emer Art gibt

1) Aus einer der beiden Gleichungen folgt die
andere

2) Zur Kennzeichnung gemigt es, wenn zwei
benachbarte Kongruenzen W sind oder eine
Wa ist

3) Ist das fur zwei Hullflachen der Fall, so fur
aile Dann ist die Flache entweder eine
Projektivminimalflache oder eine Flache
von Tzitzeica Wilczynski

4) Schon bei einem Paar kennzeichnend
1) Allgemein eme der vier Gleichungen

tf±Ai 0 p ± k2 0

1) oder l 0

1) oder Vorzeichenwechsel bei A, A:

1) Die Tangenten jeder Asymptotenhnve emer
Schar gehoren einem hnearen Komplex an

2) wenn die obige Eigenschaft fur die Kurven
u konst gilt, sonst p — 0

3) kennzeichnend, wenn nicht Wj_

1) oder p — l — 0, wenn die Schar m konst
die Eigenschaft hat

1) Die projektiv-abwickelbaren etgentlichen
Afflnspharen hangen wohl nur von Kon-
stanten ab

1) Auch dièse erzeugen W-Kongruenzen mit
denselben Brennflachen

2) Auch die Punkte y+ Mxi + Kxt + HKx
H =* xh, K yk, x, y konst erzeugen zur
Flache konjugierte Kongruenzen Die Ebenen

durch Mittelpunkt und Diagonalen
beruhren die Krummungslinien der ISTormalen-
kongruenz Die Flachen dieser Klasse sind
die P-Abwicklungen der Projektivspharen
Sie sind den Flachen von Bianchi der
Nichteuklidischen Géométrie projektiv
gleichwertig

1) Die Asymptotenlmien jeder Brennflache bil-
den konjugierte Netze

Jede Projektivsphare lafit sich auf oo» Arten
projektiv abwickeln, die Abwlcklungen sind
Flachen von Tzitzeica-Wilczynski

W ÏF-Strahlensysteme
WA Tf-Strahlensystem, die Asymptotenlinien der Brennflachen entsprechen denen der Flache selbst
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§ 15. Kennzeichnung der wichtigsten Flâchenklassen

mit Hilfe von Eigenschalten der Demoulinschen Kongruenzen

Wie man leicht feststellt, gibt es keine Flâchen, bei denen eine Kante
des Demoulinschen Vierecks auf der ganzen Flàclie festbleibt. Dagegen
kann es z. B. sein, daB etwa lângs jeder Asymptotenlinie v — konst. die
Kante Po Px des Vierecks stationàr ist, so daB die zugehôrige Kongruenz
von Demoulin in ein einparametriges Geradensystem ausartet, das ofïen-
bar eine Regelflâehe bildet. Die von Po und Pt beschriebenen Flâchen
sind dann Teile dieser Regelflâchen. Fur dièse Flâchen gilt die Beziehung
q -j- hx 0 Ist die Regelflâehe eine Torse, so beschreibt einer der
Punkte die Kehlkurve dieser Torse.

Interessanter ist der Fall, daB zwei der Kanten dieselbe Eigenschaft
haben. Liegen dièse einander gegeniiber, so genugt die Flâche der Bedin-

gung q 0 die Flâchen dieser Klasse sind dadurch bekannt geworden,
daB bei ihnen die Tangenten jeder Asymptotenlinie v konst. einem
linearen Komplex angehôren. Wegen der hier auftretenden Schar von
Komplexen nennen wir sie auch Komplexflachen.

Entarten dagegen zwei benachbarte Kongruenzen von Demoulin zu
Regelscharen, so liegen dièse beide auf der von Po beschriebenen Flâche,
die daher im allgemeinen eine Quadrik ist. In diesem Fall nennen wir die
Flâche eine Q-Flache. Die Annahme, daB P eine Ebene beschreibt, fuhrt
nicht auf einen Sonderfall hiervon. Wir erhalten hier eine Flâchenklasse,
bei der die Lie-i^2 eine feste Ebene beriïhren, das sind die Projektiv-
transformierten der Affinminimalflachen, fur die das Intégral J §F du dv

extrem wird.
Eine dritte Môglichkeit ist, daB P festbleibt. Die Affinminimalflâchen,

die gleichzeitig Ç-Flâchen sind, sind denjenigen projektiv gleichwertig,
bei denen die Lie-iFg Drehflâchen sind, — eine Flâchenklasse, die schein-
bar kaum beachtet worden ist.

Natûrlich kann man auch die Frage stellen, ob mehrere der Hull-
flâchen gleichzeitig eine der obigen Eigenschaften haben kônnen. Wie
sich herausstellt, gibt es Flâchen, bei denen eine Hullflâehe eine Ebene,
eine benachbarte ein Punkt ist. Das gibt also Affinminimalflâchen, die
durch Korrelationen in Affinminimalflâchen ubergefuhrt werden kônnen.
Aile anderen Kombinationen fuhren aber stets auf die Bedingungen
p q 0.

Die Flâchen, die durch dièse Bedingungen gekennzeichnet werden —

wir nennen sie ,,Flàchen von Tzitzeica-Wilczynski" — sind geometrisch
dadurch ausgezeiehnet, daB bei ihnen die vier Kongruenzen von De-

150



moulin paarweise in die beiden Regelseharen einer festen Quadrik Q

ausarten, so dafi die vier Hullflâehen Teile dieser Quadrik sind9). Die
Demoulinschen Vierecke liegen aile auf dieser Quadrik.

Andererseits sind, wie aus den Bedingungen p q 0 hervorgeht,
bei den Flâchen von Tzitzeica-Wilczynski die Tangenten jeder Asym-
ptotenlinie in einem linearen Komplex enthalten.

Schon lange bekannt sind die Flâchen, bei denen die vier Ecken des
Demoulinschen Tetraeders zusammenfallen. Wir wollen sie ,,Flachen
von Demoulin'' nennen. Sie sind durch die Bedingungen l m 0

gekennzeichnet. Bei ihnen hat die Lie-F2 nur eine weitere Hiïllflâehe,
und es ist bemerkenswert, daB, wie schon Demoulin 1908 bemerkt hat,
dièse wieder eine Flâche derselben Klasse ist, die auch dieselben Lie-F2
hat wie die erste. Beide Flâchen haben auBerdem dieselben Normalen,
entsprechende Asymptotenlinien und, falls die Hiillflàche nicht entartet,
auch dieselbe Projektivoberflâche.

In allen erwâhnten Klassen, auch in den noch folgenden, sind die
Flâchen enthalten, fur die p q — l~m — 0 Sie sind den uneigent-
lichen Affinsphâren projektiv gleichwertig. Der Kurze der Bezeichnung
halber — und weil sie in der Théorie eine zentrale Stellung einnehmen,
wollen wir sie auch Projektivsphâren nennen. Es ist bekanntlich leicht,
fur sie eine Parameterdarstellung anzugeben.

Die Flâchen, fur die die erste Variation der Projektivoberflâche ver-
schwindet, wollen wir Projektivminimalflachen nennen. Sie werden durch
lt nt2 0 gekennzeichnet, wobei eine dieser Bedingungen wegen (63)
aus der anderen folgt. Es ist bemerkenswert, daB man auch leicht fur das

Verschwinden der ersten Variation notwendige Randbedingungen an-
geben kann ; es genugt, wenn der Rand festbleibt und die Haupttangenten
durch jeden Randpunkt bei der Variation Flâchen beschreiben, die von
der Flâchennormalen berûhrt werden. Naturlich kann man auch die
dualen Bedingungen wâhlen. Zu den Projektivminimalflachen gehôren
offenbar aile Flâchen, bei denen das Demoulinsche Viereck entartet, ins-
besondere die Komplexflâchen und die Flâchen von Demoulin und auch
die Affinsphâren. Letzteres hat schon H. Behnke 1921 bemerkt. Die
Projektivminimalflachen wurden zuerst von G. Thomsen eingehend
untersucht.

SchlieBlich erwâhnen wir noch die isotherm-asymptotischen Flâchen.
Sie hângen mit der Demoulinschen Figur insofern zusammen, daB die

8) In einem wichtigen Sonderfall sind zwei gegenuberliegende Hullflâchen Punkte, die
beiden anderen sind Ebenen durch ihre Verbindungsgeraden. Die Punkte sind Ecken
jedes Demoulinschen Vierecks, die Kanten liegen in den beiden Ebenen.
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Ebenen durch den Flâehenpunkt und die Diagonalen des Vierecks nur bei
ihnen die Krummungslinien beruhren. Einfacher kann man sie aber da-
durch erklàren, daB bei ihnen die Normalenkongruenz zur Flâche kon-
jugiert ist.

§ 16. W- Kongruenzen

Bekanntlich ist wohl die wichtigste ausgezeichnete projektive Eigen-
schaft, die eine Geradenkongruenz besitzen kann, die, daB sich auf ihren
Brennflâchen die Asymptotenlinien entsprechen. Analytisch drùckt sich
das dadurch aus, daB bezogen auf die Asymptotenlinien einer Brenn-
flàche als Parameterlinien, die Pluckerschen Koordinaten der Geraden
einer Laplaceschen Difïerentialgleichung geniigen. Fur unsere Zwecke
ist es besser, aile diejenigen Kongruenzen zu den ÏF-Kongruenzen zu
zâhlen, bei denen die Umgebung zweiter Ordnung jedes Strahles einem
linearen Komplex angehôrt. Dièse Définition kommt, wenn die
Brennflâchen verschieden und nicht entartet sind, auf die vorige hinaus, enthâlt
aber auch wichtige Sonderfâlle, die sonst besonders hervorgehoben wer-
den mûBten, insbesondere die Kongruenzen, die aus den Tangenten einer
Schar von Asymptotenlinien einer Flàche bestehen.

Sehen wir uns die bei unseren Flàchen vorkommenden Kongruenzen
darauf hin an, wann sie PF-Kongruenzen sind. Bei der Normalen-
Kongruenz ist das dann und nur dann der Fall, wenn die Flâche auf
eine Affinsphâre projektiv abwickelbar ist. Bei den Flàchen von Tzitzeica-
Wilczynski lassen sich auch die Brennpunkte leicht angeben, es sind die
Schnittpunkte mit den Diagonalen. Dièse selbst beschreiben ebenfalls
TF~Kongruenzen mit denselben Brennflâchen. Auch die Hûllpunkts-
kongruenzen sind nur bei den Flàchen von Tzitzeica-Wilczynski sàmtlich
TF-Kongruenzen.

In allen diesen Fâllen entsprechen die Asymptotenlinien der
Brennflâchen denen der Flàche selbst.

Behalten wir dièse Bedingung bei und fragen, ob auch die Demoulin-
schen Kongruenzen sàmtlich W-Kongruenzen sein kônnen, so stellt sich
heraus, daB das nur bei den Projektivminimalflâchen der Fall ist (Thom-
sen). Dabei sind allerdings die Flàchen von Tzitzeica-Wilczynski aus-
geschlossen, bei denen dièse Kongruenzen in Regelscharen entarten.

Auch bei den Komplexflâchen sind die nicht entarteten Demoulin-
schen Kongruenzen TF-Systeme, bei ihnen entsprechen aber die
Asymptotenlinien der Brennflâchen nicht denen der Flâche selbst.
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§ 17. Krummungslinien

AuBer den Asymptotenlinien der Brennflâchen kann man auch die
Krûmmungslinien einer Kongruenz betrachten, die bekanntlich stets zu
ihnen konjugiert sind. Ist also eines unserer Strahlensysteme eine W-
Kongruenz und entsprechen die Asymptotenlinien denen der Flâche
selbst, so bilden also die Krummungslinien dieser Kongruenzen stets ein
konjugiertes Netz.

Bemerkenswert ist, daB das in vielen Fâllen auch ausreicht. So werden
die Projektivminimalflàchen dadurch gekennzeichnet, daB die
Krûmmungslinien der Demoulinschen Kongruenzen konjugierte Netze bilden
(Thomsen). Die Hùllpunktskongruenzen bilden allerdings nicht nur bei
den Flâchen von Tzitzeica-Wilczynski sondern auch bei den Projektiv-
Abwicklungen der eigentlichen Affinsphàren konjugierte Netze.

Intéressant ist die Figur der acht Krùmmungsliniennetze der vier
Hûljpunktskongruenzen und ihrer polarreziproken. Fassen wir hier ein-
mal die Asymptotenlinien als Nullinien auf, so haben von diesen acht
Netzen je vier zu Gegenecken gehôrigen dieselben Winkelhalbierenden;
die Richtungen dieser beiden Paare von Winkelhalbierenden sehliefien
einenWinkel von 90° ein.

Bei den isotherm-asymptotischen Flàchen und nur bei ihnen10) fallen
von solchen vier Netzen noch je zwei gleichartige zusammen.

Die Projektivminimalflàchen sind dadurch gekennzeichnet, dafl bei
ihnen je zwei zu derselben Ecke gehôrigen Netze in jedem Punkt durch
Drehung um 90° auseinander hervorgehen.

Es war hier nur môglich, die allerwichtigsten Beziehungen zwischen
den einzelnen Teilen der Demoulinschen Figur hervorzuheben, fur viele
weitere Sâtze sowie fur einige andere Flâchenklassen, die hier nicht er-
wâhnt werden konnten, sei auf eine ausfûhrlichere Darstellung ver-
wiesen.

(Eingegangen den 20. Juli 1945.)

10) Abgesehen von den Flâchen von Demoulin, wo die Hùllpunktskongruenzen mit den
Normalenkongruenzen zusammenfallen.
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