Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 18 (1945-1946)

Artikel: Sur la sommation forte des séries orthogonales.
Autor: Alexits, Georges

DOl: https://doi.org/10.5169/seals-16898

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-16898
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Sur la sommation forte des séries orthogonales

Par GeoraEs ALExITS, Budapest

1. Soit {¢,(x)} un systéme arbitraire de fonctions orthogonales et
normées dans l'intervalle (a, b). Nous désignons pour un x> —1 par

o) (@) = ¥

la n-iéme moyenne de Cesaro d’ordre « de la série orthogonale
Eocn @ () (1)

La sommabilité (C, 1 + «) de la série (1) vers la fonction f(x) se laisse
exprimer, d’aprés un théoréme de M. Hausdorff, par la relation

k% [f(@) — o ()] = 0(n) .

En partant de cette relation, il est bien naturel d’introduire la notion
de la sommation forte: La série (1) est dite fortement sommable
(C, 1+ «) vers la fonction f(x), propriété que nous exprimerons
brévement: (1) est sommable (C,, 1 4+ «), si la relation

é.; f@) — 6@ (@) | = 0(n)

o

subsiste. Il est connu que, si ¥ ¢2 est convergent et la série (1)
k=0
sommable sur un ensemble £, (1) est aussi sommable (C,, 1 + «) sur &

sauf peut-étre un ensemble de mesure nulle. Nous introduisons maintenant
une notion encore plus restrainte que celle de la sommation (C,, 1 4 «):
Nous appellerons la série orthogonale (1) presque partout tres fortement
sommable vers la fonction f (), ou tout simplement presque partout
sommable (C,,, 1+ «), lorsqu’on a pour toute suite partielle {¢!* (x)}
de la suite entiére {o!)(x)} presque partout

g f@) — o2 (@) | = 0(n) ,
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c’est-a-dire que toute suite partielle de la série (1) est presque partout
sommable (C,, 1 4 ). Pour éviter tout malentendu, nous relevons que
Iensemble de mesure nulle sur lequel une suite partielle n’est peut-étre
pas sommable (C,, 1+ «), ne doit pas étre commun & toutes les suites
partielles, au contraire, il peut changer avec les suites partielles dif-
férentes. En ce qui concerne la sommabilité trés forte, nous démontrerons
le théoreme suivant:

Etant donné une suite non-décroissante {1,} de nombres positifs tels que

co

(2)

€t les coefficients c, ayant Uordre de grandeur

1
=0 (er) @

la série orthogonale (1) est pour tout « > — 1 presque partout sommable
(Cyy, 1 + &) sur tout ensemble B sur lequel elle est sommable au moins au
sens de Poisson.

Il est & remarquer qu'un probléme un peu semblable a été posé par
M. ........ quand il a recherché la sommabilité (C, 1) des suites
partielles {s,(x)} des séries de Fourier et a démontré que la suite
{s,:(x)} est presque partout sommable (C, 1), théoréme qui a été
étendu par M. ........ aussi & la suite {s,s(x)}. *)

2. Quant & la démonstration de notre théoreme, il suffit, grace & une
idée heureuse de M. Zygmund?®), de vérifier qu’'on a pour toute suite

partielle
5 [ 1o ol gy "

En effet, cette relation implique, comme on sait, la convergence presque
partout sur £ de la série

Lo — de )

n

*) L’auteur ayant rédigé cet article en captivité n’a pas pu retrouver tous les
noms qu'il et voulu indiquer. (La rédaction).
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d’ou on obtient

3 [ (@) — ol @] = 00

oo
presque partout sur E. Mais, en conséquence de (3), la série X ¢’ est
n=0

convergente et, par hypotheése, la série orthogonale (1) est sommable au
sens de Poisson sur %, elle est donc sur £ presque partout sommable
(C, B) pour tout B positif, c’est-d-dire que |f(x) — oF¥(x)| = 0(1)
pour tout « > — 1. En appliquant donc I'inégalité de Cauchy-Schwarz,
on obtient sur £ presque partout

1f(x)—~o‘°‘> -)!=k§"0 @) —ol @) | + Zla“’“"" —oR @] =

< 0(n) + 2 2 [0+ (x) — 0,9(x) ]? = o (n) .

Cette inégalité est valable pour toute suite partielle {o{)(x)}, ce qui
est justement la définition de la sommabilité (C,,, 1 + «) sur E presque
partout.

Pour démontrer la relation (4), rappelons I'identité suivante.

(v,,——k—{—oc) (v,,—lc«}-l—{—oc)
@ (1+a) _ va v, — . vn \ v, — k ) -
oy, (X) — 0, 7 (x) = k§o .+ 0‘) Ci P (%) kz-‘:) (1'n+ 1+ Cr @i () =
n“‘""k ‘ n—]c }
§(”v_Z“)(vn+1+oc) Z(V v_*,;“)(vn—~k+1+a)
SR g @) — 3, Crp(a)=
k=0 (vn +v1 + “’) (1 + (x) k=0 (vn +v1 + “) (1 + 0‘) KTk
(v,, —k+
- ¥ =k ) ke, (2)
— k k .

Nous n’avons donc qu’a démontrer que, les conditions de notre théoréme
étant satisfaites, on a

124



v, — k + oc>2
il v, — k
k=1 + 14«

)

Il suffit de supposer — 1< & < 0, parce qu'une série étant sommable
presque partout (C,,, 1 + «), elle est, pour tout f> x, évidemment
presque partout sommable (C,,, 1+ ). Mais, si —1<x<0, on a
—k 4+
o< Fh

k®ci < + oo .

oo‘]_
=3

n=1

)< 1, on obtient donc en tenant compte de (3):
"vn-—k—i—zx) vn~k+(x
L ( v, — k _—_1_." . — K Okl+¢x
k=1 (Vn+1+0¢> _nk=(vn+l+<x) (
v” \ /

Vn

1
LS —
n

)

a;nm

Admettons, pour un moment, que la suite ———g est non-décroissante,

alors, on tire de la relation précédente

va (v, — k 4+ &
\ h
v ,::1( va — k ) vt 1
J":O(nzv‘;’) vt 1F oy 20(7&;{) i ita - 9
) )
Mais
v;+a 20(1)
v, + 14+ «
)

et la suite {4,} a été supposée non-décroissante, donc 1, = 4,. Par
suite, nous y obtenons d’aprés (2) et (6):
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Ainsi, nous avons démontré la relation (5) dans le cas ou la suite
‘ kit

| &
non-décroissante {4} ayant les propriétés suivantes:

est non-décroissante. En cas contraire, considérons une suite

© 1 f1ta k 1)1+
M=k, et X ——F<-+ oo et ,g(+) :
i=1 kA Ay

2;c+1
L’existence de telles suites est manifeste. On a alors, d’aprés (3) et
I’hypothése A, < 4,:
(vaz)
C, = me———
an—oc A;

et il résulte par la méme voie comme dans le cas de la non-décroissance
‘ fito )
L A

de I’évaluation

gl zj: (nA,)<+oo.

La relation (5) est donc démontrée pour toute suite partielle {o(,,“;(x)},
ce qui était justement notre but.

3. En étudiant la portée de la sommation forte, il est & remarquer
que, pour les séries numériques, elle ne nous apporte rien de nouveau,
car la sommation (C,,, 1 + «) est tout a fait équivalente a la sommation
(C, «). En effet, une série numérique sommable (C, «x) est évidemment
sommable (C,,, 1 4+ «). Supposons, inversement, qu’'une série numérique
soit sommable (C,,, 1 + «) mais non-sommable (C, x). Il existerait
alors, en désignant par ¢!* la n-itme moyenne (C, «) de la série en

n

question, un nombre s tel que ¥ |s — o} | = 0 (n) pour toute suite
b

partielle {¢(?)}, mais il existerait une suite {s{;’} et un £>0 ainsi
que |s — o) |=¢ pour tout n=n, . Il en résulterait
n

7n n
(a) (o)
kE |8 — oy > |s—of) n
. =0 < n->ng . —
lim " = lim -
71> 00 > o0 > 00
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contrairement & 1I’hypothése que la série est sommable (C,, 1 + «).
On voit done, vraiment, que les méthodes de sommation (C, x) et
(C), 1 + x) ont, pour les séries numériques, la méme portée. Quant
aux séries orthogonales, il ne s’agit que d’'une sommabilité (C,,, 1 + «)
presque partout ou les suites partielles différentes peuvent étre non-
sommables sur des ensembles de mesure nulle différents. Mais I’ensemble
de tout ces ensembles d’exception a la puissane du continu, puisque
I’ensemble des suites partielles a cette puissance, on peut donc s’imaginer
méme que l'intervalle d’orthogonalité (@, b) est entiérement couvert par
ces ensembles d’exception. En effet, nous possédons un tel exemple:
M. Menchoff a construit, dans l'intervalle (— 5,5), pour toute suite
croissante de nombres w, = 0 (log n) une série orthogonale du type (1)

- ]

partout divergente, tandis que ¥ c¢2 w2 <+ oco. On constate aisément,
n=1

en suivant la construction de M. Menchoff, que I'ordre de grandeur des
coefficients de ces séries est

er=0(v=1—) -
Vnlogn

On en tire donc, en vertu d’un théoreme de MM. Kaczmarz et Zygmund,
la conséquence que les séries de M. Menchoff sont presque partout
sommables (C, 1 4+ «) pour tout ordre «> — 1 et il est évident que
notre relation (3) concernant l’ordre de grandeur des coefficients est
aussi satisfaite. Par suite, toutes les conditions de notre théoréme sont
remplies, les séries de M. Menchoff fournissent donc chacune un exemple
d’une série orthogonale presque partout sommable (C,,, 1 + «) pour
tout o> — 1 sans qu’elles soient sommables (C, x) pour —1<a =0
en au moins un point de I'intervalle d’orthogonalité. On voit donc que
la sommation (C,,, 1 + «) presque partout des séries orthogonales est
loin d’étre équivalente & la sommation presque partout (C, «). Ainsi,
nous sommes tentés de poser le probléme suivant:

Notre théoréme reste-t-il valable si I'on y remplace la condition (3)

concernant l’ordre de grandeur des coefficients par la condition plus

o

13 2 .
large que la série ¥ c¢? soit convergente?
n=0

4. Quant & la sommation forte presque partout des séries orthogonales,
on peut énoncer le théoréme relatif précité dans le paragraphe 2 sous
une forme un peu plus étendue:
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co 2
Si, pour —1<ax=x0, la série ¥ On converge et la série orthogonale
n=1

%205

est sommable en sens de Poisson sur un ensemble K, elle y est presque

partout sommable (C,, 1 + «).
Pour &« = 0, notre énoncé se réduit au théoréme connu sur la

sommation forte.
11 suffit, comme nous avons vu, de démontrer 1’'inégalité

(n——k—l—oc>2

- R n—k "

ElJn_nE:l%— kgl(n—*—l—!—(x)z k20k<+00.
n

Or, dans ce cas, on peut changer l'ordre de sommation et, vu que

— 2
(n nk—l};oc) =1 pour —1<x= 0, on obtient

o0 =] 1 1
2 (2 R
EIJ”Sglkck[kk+l+“)2+(k+1)"+2+"‘2+ ]
k ) k41
:ik*"-czog‘o( L )=0(1)§i<+oo c.q.f. d
=~ kv=k p3—2a = ke 8

Camp de concentration de Spaichinger (Allemagne), hiver 1944/45.

(Recu le 13 juillet 1945.)
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