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Uber eine Klasse von einparametrigen
Differential-Transformationsgruppen

Von GERHARD STOHLER, Basel

Einleitung

In seiner Arbeit ,,Sur une classe de transformations différentielles dans
I'espace & trois dimensions’’!) entwickelt Herr 4. Ostrowsk: die Theorie
einer neuen Art von Differentialtransformationen. Sind y, und y, zwei
unbestimmte Funktionen von z, p;, und p, ihre ersten, z, und z, ihre
zweiten Ableitungen, so haben diese Differentialtransformationen die
Gestalt

& = ‘S(xa Y1 Y25 P1s pz) ’

d 77v=77v(9‘” Yir» Ya> Z’l’pz), ('v:' 1,2),
%En,,=n,,(x, Yi» yz,pl’pzszbzz)a (7’:1,2)-

Hierin fehlen die zweiten Ableitungen z, und z, nicht, wenn man den
Fall der blo8 erweiterten Punkttransformationen ausschlieBt. Das obige
System kann aber dennoch die Eigenschaft der Umkehrbarkeit besitzen.
Diese Tatsache ist der Ausgangspunkt fiir die Theorie dieser ,,trans-
formations réversibles‘‘ oder ,transformations R‘.

Die vorliegende Arbeit beschiftigt sich nun mit einparametrigen
Gruppen von Transformationen der obigen Gestalt. Die Voraussetzung
der identischen Transformation wird uns die Umkehrbarkeit dieser
Gruppen sichern, welchen wir deshalb den Namen ,, R-Gruppen‘‘ geben
diirfen.

Wir entwickeln die Theorie der R-Gruppen von Grund auf aus den
Voraussetzungen, indem wir iiberall versuchen, von der Tatsache vollen
Gebrauch zu machen, daB es sich hier um Gruppen und nicht um Einzel-
transformationen handelt. Da diese Gruppen aber aus (symmetrischen)
R-Transformationen bestehen, ist von vorneherein klar, daB sich die
Ergebnisse und Zusammenhénge, soweit sie nicht gruppentheoretischer
Natur sind, mit denjenigen von Herrn Ostrowsk: iiber symmetrische
R-Transformationen decken miissen.

Dieser Sachverhalt zeigt sich z. B. an folgendem deutlich. Die R-
Einzeltransformationen lassen sich aus gewissen Transformationen in nur

1) A. Ostrowsks (I), (II). (Die eingeklammerten Zahlen beziehen sich jeweils auf das
Literaturverzeichnis am Ende der vorliegenden Arbeit.)
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4 Variabeln herleiten. Fiir die R-Gruppen ist demnach von vorneherein
zu erwarten, dafl sie aus einer gewissen Schar von Transformationen in
nur 4 Variabeln ableitbar sind. Hierzu kommt nun das gruppentheore-
tische Ergebnis: Diese Schar stellt eine Liesche Gruppe in 4 Variabeln dar.

Dieses Ergebnis ist grundlegend. Denn aus dem Differentialgleichungs-
system, dem die Liesche Gruppe genilgt, leiten wir ein solches her, dem die
R-Qruppe gentigen muf, obschon sie keine Liesche Gruppe ist. Thre Glei-
chungszahl stimmt nédmlich mit ihrer Variabelnzahl nicht iiberein.

Wie die Liesche, so ist auch die R-Gruppe durch ihr Differential-
gleichungssystem eindeutig bestimmt. Die Funktionen dieses Systems
sind bei den R-Gruppen indessen nicht beliebig wihlbar. Unsere Haupt-
aufgabe besteht darin, diejenigen Differentialgleichungssysteme hinrei-
chend zu charakterisieren, welche R-Gruppen definieren.

Im I. Teil der vorliegenden Arbeit beweisen wir zunéchst, dafl sich jede
R-Gruppe mit Hilfe einer parameterfreien Funktion r(py, P, &, Y1, ¥2)
aus einer Lieschen Gruppe (,,L-Gruppe’*) in den 4 Variabeln x,y,, y,,r
herleiten 148t (Sdtze I und II). Im Satz III geben wir Differential-
gleichungen fiir die R-Gruppe an, deren Integration im Satz VII zu-
sammengefalit wird, und stellen eine Differentialgleichung fiir die
Funktion r auf.

Aus den Sitzen I—III leiten wir sodann die Aussagen von Herrn
Ostrowsk: iiber die Funktion 7 erneut her: sie ist linear in p, und p, und
laBt sich eindeutig durch eine Pfaffsche Gleichung in z, y,, y,, 7 von
der Form Ady, — Bdy, — Cdx = 0 definieren. Dabei sind drei Fdlle zu
unterscheiden (Satz IV). In jedem Fall ist die Pfaffsche Definitions-
gleichung fiir » bei der zur R-Gruppe gehorigen L-Gruppe invariant
(Satz V).

Im Satz VI charakterisieren wir endlich diejenigen L-Gruppen hin-
reichend, aus denen iiberhaupt R-Gruppen hergeleitet werden konnen:
Die L-Gruppe muf} eine der zuldssigen Definitionsgleichungen filr r in-
variant lassen. Damit ist die Bestimmung aller R-Gruppen auf diejenige
der L-Gruppen zuriickgefiihrt.

Diese Aufgabe losen wir im II. Teil in Anlehnung an eine Arbeit von
Engel'5), wobei die sogenannte charakteristische Funktion eingefiihrt wird.
Sie muf in jedem der drei Fille einer gewissen partiellen Differential-
gleichung geniigen. Mit ihrer Hilfe konnen nun die Differentialgleichungs-
systeme aller L-Gruppen aufgestellt werden (Sitze VIII (I, II, I1I ).

Damit sind auch alle R-Gruppen gefunden. Die Gesamtheit aller
R-Einzeltransformationen und R-Gruppen bildet ein ,,unendliches kon-
tinuierliches Gruppoid*‘.
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Die L-Gruppen lassen sich auffassen als besondere Berithrungstrans-
formationsgruppen des Raumes (,,B-Gruppen’’), nimlich als solche, welche
dasjenige ,,Fldchenelementfeld‘‘ invariant lassen, das durch die Pfaffsche
Gleichung Ady, — Bdy, — Cdxz = 0 definiert wird (Satze IX (I, II,
1IT)). Dieser Zusammenhang wird im III. Teil der Arbeit betrachtet,
dessen Hauptergebnis die Sédtze X (I, II, III) darstellen: Jede R-Gruppe
kann aus beliebig vielen B-Gruppen hergeleitet werden, deren charakteri-
stische Funktionen sich explizite angeben lassen.

Im Verlauf der Arbeit wird die Theorie fortgesetzt mit den drei Bei-
spielen des 1. Teiles illustriert.

Herrn Professor Ostrowski, der mir selber die Anregung zu dieser
Arbeit gegeben hat, bin ich zu groBem Dank verpflichtet.

I. TEIL
R-Gruppen und Liesche Gruppen

§ 1. Die Voraussetzungen
Wir betrachten y; und y, als unbestimmte Funktionen von z und
bezeichnen ihre ersten Ableitungen mit p, und p,, ihre zweiten Ablei-
tungen mit z, und 2,. Fiir die transformierten GroBen wihlen wir die
entsprechenden griechischen Buchstaben #,,7n,; &; @, 7y; £y, &,
Unsere einparametrige Transformationenschar hat die folgende Gestalt :

Ezg(x’yl’yz”pl’pz;a):
m=h@, Y, Y2, P, P2, @) , (1.1)
Ne=ho(x, Yy, Ys, D1, P2, @) «

Dazu kommen die Gleichungen fiir die ersten Ableitungen:

/

% 8 T L L L

’

T dE g4 pg, .9, +g, +29,

TTy

Wir setzen dafiir
=015 Y15 Y25 P1s> Pas 215 %2, @) 1.2)

n2=j2(x, Yis> Y25 P15 P2s %1, z2»a') .

Uber das System (1.1) machen wir drei Voraussetzungen:

(A) Es gibt einen Parameterwert a = a,, fir den g =2, h; = y,,
h, = y, wird, d. h. das System (1.1) enthilt die identische Trans-
formation. Damit wird fiir ¢ = @, auch j, = p, und j, = p,.
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(B) Die Funktionen j, und j, in (1.2) sollen nicht beide gleichzeitig von
z, und z, frei sein. -

(C) Die einparametrige Schar (1.1) soll eine Gruppe in bezug auf den
Parameter bilden. Wir bezeichnen sie als ,, RB-Gruppe‘‘ 2).

Wir besprechen nun die Voraussetzung (B). Angenommen, sie sei nicht
erfiillt. Dies kann auf zwei Arten geschehen. Erstens kénnen z;, und z,
darum in j,, 7, fehlen, weil die Funktionen g, 4,, A, die Variabeln p, und
p, itberhaupt nicht enthalten, die Koeffizienten von z, und z, also iden-
tisch verschwinden. Deuten wir z, ¥,, y, als Cartesische Raumkoordi-
naten, so hingen in diesem Falle die transformierten Punktkoordinaten
&, 11, My DUT VON T, Yy, Ys, @ b, und (1.1), (1.2) stellt blo§ eine Liesche
Gruppe von ,,erweiterten Punkttransformationen'‘ dar3).

Zweitens aber konnen z, und 2, aus j,,4, herausfallen, ohne daB
g, hy, by frei von p, und p, sind. Dann lauten die Formeln fir =, n,

B b
T, = V,p1 = V[pg ’ (’V = 172) ’
gpl gpz

worin fiir @ % a, nicht beide Quotienten unbestimmt sind. Diese Formeln
besagen, dafl die drei Funktionaldeterminanten

a(g, M) (g, hy) 0(hy, hy)
0(py, Pa) ~ 0Py, P2) T O(py, Do)

identisch verschwinden. Die Funktionen g, &, %k, lassen sich daher
durch =z, y,, ¥;, @ und eine einzige Funktion p(p,, p., &, Y1, ¥s, @)
ausdriicken. Wir deuten dies durch einen Stern an. Das gleiche gilt
wegen .
hVP ¢
JT,,:-—';ET, ('V=1,2),

9

auch fir j,,j,. Fir jeden Parameterwert a lassen sich demnach die
5 GroBen &, 7,,7,, 7wy, w, durch die 4 Groflen z, y,, y,, p darstellen.
Da nach der Voraussetzung (A) unsere Gruppe fiir @ =a, die identische
Transformation enthilt, gilt dasselbe auch fiir die 5 Grofen z, y,, ¥,,

?) Was die Natur der Funktionen g, k,, h, anbetrifft, so beniitzen wir im folgenden
die einmalige stetige Differentiierbarkeit nach =z, ¥, ¥;, p1» P3; @, und die zweimalige
fiir gemischte Ableitungen nach einer Variabeln und dem Parameter a; wir setzen also
um a, gewisse Wertebereiche von =z, y,, ¥,, Py, P;; @ voraus, in denen unsere Funk-
tionen diese Eigenschaften aufweisen.

8) Zur Einfiithrung dieses Begriffes vergleiche etwa Lie-Engel (II), pp. 2—3.
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Py, P, Welche im Widerspruch dazu als Ausgangsvariabeln beliebig
wiihlbar sind. '

Die Variabeln 2, und z, kénnen daher nur bei erweiterten Punkttrans-
formationen fehlen, und der Verzicht auf die Voraussetzung (B) wiirde
das Zulassen Liescher Gruppen von erweiterten Punkttransformationen be-
deuten. Indem wir (B) einfithren, schliefen wir diesen bekannten Fall aus.

In der zitierten Arbeit von Herrn Ostrowsk: schlielt die Voraussetzung
(B) ebenfalls erweiterte Punkttransformationen aus?). Wir haben dennoch
darauf eingehen miissen, weil wir die Voraussetzung der Umkehrbarkeit
von (1.1), auf die sich dort der SchluB stiitzt, nicht aufgenommen haben.
An ihre Stelle tritt hier die Tatsache, daB3 es sich um eine Schar von
Transformationen handelt, welche nach der Voraussetzung (A) die
tdentische Transformation enthilt.

Wir kommen nun zur geforderten Gruppeneigenschaft. Ist

x: g(‘sa 7713 7725 71:19 7527 b) b}
‘Dv::hv(f, 7]1: 772’ nl) 71:23 b) ) (1’:1,2),

eine weitere Transformation der Schar (1.1), so soll vermége (1.1),
(1.2) gelten:

f:g(.f, N1s Nas Ty g, b):—‘g (x’ Y15 Y2, P15 P2> c)’

(1.3)
Do=h, (&, N1, M2y 7, T, O)=h(T, Y1, Y2, Prs D2> O, (=1,2).
Hierin soll der ,,Produktparameter‘‘ ¢ nur von a, b abhéngen,
c=¢la,b). (1.4)

Aus den Gleichungen (1.3) folgen die weiteren

s13;:_':7.;:(4&: N1> N> Txs gy £15 L2s b) = j,(x, Y1, Y3, P1> Pa> %15 22, €), (1.5)
(»=1,2).

Die Ableitungsgleichungen weisen also ebenfalls die Invarianzeigenschaft
auf.

§ 2. Die Funktion » und die L-Gruppe

Wir untersuchen jetzt die Gestalt der Gruppengleichungen niher.
(1.3) lehrt, daB die Funktionen g, k,, k, linker Hand die Eigenschaft
haben, von z, und 2z, unabhingig zu sein, wenn man darin die griechi-

4) A. Ostrowski (I), pp. 164—165.
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schen Variabeln vermoge (1.1), (1.2) durch die lateinischen ausdriickt.
Als Folge von (1.3) haben wir demnach das System (2.1), worin g, k,, h,
die Funktionen ¢, A,, k, in den griechischen Variabeln bedeuten,

0dg 94, | 99 07, —0 dg 95, , 09 97, |

om, 0z, ¥ o, 0m, 02, '’ Om, 0z, ' 07, 02 =0, 01

672—«” ajl ahv a?z — 0 ahu a?l ah’v 672 — 0 —1.92 ( . )
dm, 92 T om, 02, 0 dm, 9z, Tom s, O =12

(2.1) besteht vermoge (1.1), (1.2) und kann aufgefalt werden als linear
: : 97, 97, 97, 0j,

homogenes System in den Ableitungen 52;’5?1 oder 52;’ ~a—é2— . Nach

O

der Voraussetzung (B) verschwinden nicht alle vier Ableitungen - 9

identisch. Daher verschwinden die beiden Funktionaldeterminanten von
g und %, bzw. &, in bezug auf n,, 7,
(7, h)

m_d(g My Moy Ty, Ty, 0) =0, (r=1,2). (2.2

Sie verschwinden sogar identisch. Verschwinden ndmlich 4,, 4, nur
vermoge (1.1), (1.2), so wiirde dies beim Parameterwert a = a, die
unzuldssigen Relationen

Av(x: Yi) Y2, P15 P2> b) =0, (r=1,2),

nach sich ziehen.

Aus dem identischen Verschwinden der Funktionaldeterminanten
(2.2) folgt, daB die Funktionen g, k,, h, sich durch &,#;,%,, b und
eine Funktion

Q(b) = r(nl) T 5; 7}1’ 7]2) b)

ausdriicken lassen, wo g (b) wegen (2.1) der Differentialgleichung

9 9, , 0o 0jp _
om, 0z, ' Om, 02, 0 (2.3)

vermoge (1.1), (1.2) geniigt. In den lateinischen Variabeln lautet die
entsprechende Funktion

'r(a) — r(pl’ p2: x, yl) y?.: a) .
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Bei den Einzeltransformationen der Arbeit von Herrn Ostrowsk: ent-
halten r und ¢ naturgemifB keinen Parameter®). Wir behaupten nun,
daB3 r auch hier parameterfrei gewihlt werden kann, obgleich unsere
Transformationen von einem Parameter abhidngen.

Satz 1. Die Funktionen g, hy, kb, der R-Gruppe (1.1) lassen sich durch
X, Yy, Yo, @ und eine parameterfreie Funktion r = r(py, Ps, T, Y1, Ys)
ausdricken,

& = g*(x’ Y1, Y2: T, Q)

N (2.4)
nvzhv(x» Y1, Y2, T, 8) , (V:1:2)'
Zum Beweise kehren wir wieder zu den griechischen Variabeln zuriick.
Es steht uns frei, in g, 2, k, an Stelle von p(b) irgend eine Funktion
von ¢ einzufiihren,

o* =f(e,b; &, m,m,) .

Wenn wir p* so wahlen konnen, dafl es frei von b wird, ist unsere Be-
hauptung bewiesen. Die Bedingung dafiir ist

oo\ of | 9f _
(55)55_,.55_0. (2.5)

Wir diirfen g—g == 0 annehmen, da sonst nichts zu beweisen wiire.

g—g geniigt mit o der Differentialgleichung (2.3), kann also die Variabeln

7, , 7, nur vermoge o selbst enthalten, wenn es iiberhaupt von ihnen ab-
hingt. Die Differentialgleichung (2.5) laBt sich daher immer durch eine
Funktion f(p, b; &, n,, 1,) integrieren, welche o wirklich enthilt, von
b aber nicht abhéngt, wenn man darin die Variable ¢ durch die Funktion
o (b) ersetzt. Damit ist der Satz I bewiesen.

Wir kehren zum Gleichungssystem (2.1) zuriick. Es la3t sich auch auf-

fassen als linear homogen in -é—ay% , 587% oder g% , gzv (v =1, 2).
Daher mufl 1 2 ! 2

2y, 1) _

(2, 2a)

sein. Diese Aussage enthilt aber nichts Neues, denn j,, j, enthalten z,, 2,
nur vermoge

8) A. Ostrowsk: (I), pp. 167—170. (Bei den R-Einzeltransformationen sind £ und g im
allgemeinen verschiedene Funktionen ihrer Variabeln.)
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a_ o
de — 1ap1+z28fp2 ’

und sind damit in z,, 2, abhéngig. Wir haben nun die Gleichungen (1.2)
in der Form

. dr
:75,,2_7:‘(33, Y, Y2, P15 Do Ti;’a) , (»=12) . (2.6)

Mit Hilfe unserer Funktion r» = r(p,, s, %, ¥,, ¥,) des Satzes I und
der entsprechenden Funktion ¢ = r(n,, =,, &, 7,, 1,) schreibt sich das
System (1.3) in der Form:

ng*(§a771’?72, Q’b):g*(x’yla yz,r,c) ’ e

(2.7)
‘Dv:h:‘(f’ 771’ 772’ Q’ b) == h:‘(x) yl: y‘z’ r, C) ’ (’): 1’2) (

Betrachten wir z. B. die erste Gleichung aus (2.7) nidher: Driicken wir
darin linker Hand die griechischen Variabeln &, %, n,, ¢ = r(n,, n,,
&, 1, 1) mit Hilfe der Formeln (2.4) und (2.6) durch lateinische
Variabeln und @ aus, und setzen wir rechter Hand fiir ¢ die Funktion
@(a, b) aus (1.4) ein, so erhalten wir eine Identitdt in x, y,, y,,7,a;b.
Da nun &, 7,, 5, linker Hand nur von =z, y,, ¥,, 7, @ abhiéngen, folgt,
dafl auch p, in den lateinischen Variabeln ausgedriickt, p, und p, nur
vermoge r enthilt, und von z,, 2, iiberhaupt frei ist:

sz*(x’ Y1, yz’r’a’)'e) (2'8)
Entsprechend wird dann
R=7r(Pr, B2, X, D1, Ds) = £*(&, 015 125 0, 0) = k* (2, yy, 5,7, ¢).

Die Gleichung (2.8) besitzt demnach die Invarianzeigenschaft gegeniiber
unserer Gruppe. Damit haben wir den wichtigen Satz 11 gewonnen.

Satz II. Die Gleichungen (2.4) und (2.8)

Ezg*(x, Yy, Yo r’a’)> %
ﬁv:hf(x: Yi>» Y2, 7, @), (v=12), (2.9)
st*(x? Y1, Yo, T, @), s

¢) Die Gleichung (2.8) gilt — natiirlich parameterfrei — auch fiir die allgemeineren
R-Einzeltransformationen; A. Ostrowsk: (I), p. 170.
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bilden eine eingliedrige Liesche Gruppe in den vier Variabeln x, y,, y,, .
Diese enthilt die tdentische Transformation fir a = a,. Aus thr leitet sich
die R-Gruppe durch Einfihren der Funktion r = r(py, Pa, Z, Y1, Ys) des
Satzes I her, wobes die vierte Gleichung den Wert o = r(m,, 7,, &, 11, 4,)
ergibt. Diese zur R-Gruppe gehorige Liesche Gruppe nennen wir im folgen-
den kurz die L-Gruppe.

Die L-Gruppe ist sicher nach z, y,, y,, r auflosbar, d. h.

3(5’ N> N2 9)
0, 2.10
5@ Yrs Ve ) T (2.10)

denn fiir @ = a, nimmt diese Funktionaldeterminante den Wert 1 an.
Das nach z, y,, y,, r aufgeloste System stellt eine Liesche Gruppe in
den Variabeln &, n,, n,, o dar. Fithren wir hier ¢ = r(n,, 7, &, 71, )
ein, so erhalten wir die Auflosung der R-Gruppe (1.1) nach z, y,, y,.
Sie 18t also umkehrbar, d. h. thre Transformationen sind , transformations
réversibles’‘ im Sinne der Arbeit von Herrn Ostrowski. Dort wird die Ab-
kiirzung ,transformations R‘‘ dafiir verwendet, womit wir unsere
Namenwahl ,, R-Gruppe‘‘ begriinden.

Da r und ¢ die gleichen Funktionen ihrer Variabeln sind, handelt es
sich hier immer um einparametrige Gruppen von symmetrischen R-Trans-
formationen?).

§ 3. Drei Beispiele von R-Gruppen

Wir geben zunéchst drei Beispiele von R-Gruppen. Darin tritt die
identische Transformation fiir @ =a,=1 auf, und der Produktparameter
wird immer ¢ = ab lauten. Das erste Beispiel rechnen wir durch. Bei den
iibrigen fassen wir uns kurz.

Beispiel 1. In den Gleichungen
5==x+-£-:—1ga, M =0aY,, N =0ay,, (a*0),

— P

kénnen wir r = rm setzen. Die Ableitungen lauten damit
2
a a
M= M=y
1+ —lga 14 7 lga

) A. Ostrowsk: (I), p. 178. Alle symmetrischen R-Einzeltransformationrn mit derselben
Funktion r bilden ebenfalls eine Gruppe, welche nach Lie zur Unterscheidung von unserer
»kontinuierlichen‘‘ R-Gruppe als ,,diskontinuierliche‘ R-Gruppe zu bezeichnen wiare.
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Die Invarianzeigenschaft ist fiir die zweite und dritte Gleichung klar,
‘szbnv:a’byv’ v=1,2).

Die Funktion ¢ ="1 wird in lateinischen Variabeln gleich b=,

Ty Pa
und wir haben

X=§&+ 1lgb:.z+ (lga+1gb)—-x+ lgab

Damit ist die R-Gruppeneigenschaft erwiesen. Die zugehorige L-Gruppe
lautet

E=x+rlga, n,=ay, n,=ay, e=r.

Wir verifizieren noch, dafl die Ableitungsgleichungen ebenfalls die
Invarianzeigenschaft aufweisen. Mit Hilfe von

dr
@ dx
ac 1+ -«1 a
wird ndmlich P,
bn, . abp,
b= N ar Ig b ,
1+g—§lgb (1—{—(—%lga) 1+ dx
1 ~|- lg a
B, = acbifv , (v=12) .
Diese Gleichungen haben in der Tat die Ausgangsform.
Beispiel 2.
1 1 l—a
§ = o ¥ 7712‘&‘?/1‘*‘ “r?/2+(p1+p2) lga, ny=y,— (p1+p.)Iga,

(@ 5% 0) .

Hier setzen wir r = p, + p, und haben weiter

dr dr
7T =P+ (l“a)pz‘f‘%alg“: n2=ap2——£i—£alga .
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Fiir die Funktion ¢ gilt
QEn1+n2:p1+sz7‘.

Die zugehorige L-Gruppe lautet daher

1 1 l—a

5“—‘—;%,771:7; y1+“(i‘“‘yz+rlga’ Ne=y,—rlga, o=r.

Beispiel 3.
P; P;
f=x+ (@a—1)p,, ;y=ay,+a(a— 1)‘2‘2 , Ne=ayy+a(a@—1) 9 (@7£0).
Wir setzen r = p, und haben weiter — ohne Beniitzung von r —
ap; + a(a — 1) p,z,
I+ (@— 1)z

Die zugehorige L-Gruppe lautet

T = y TTg = APy -

r2 r2
o a )

t=at@—1)7, m=aytal@—1), m=ap+a@—1)5 , o=ar.

§ 4. Das Differentialgleichungssystem der R-Gruppe

Mit dem Satze II (§ 2) haben wir den AnschluB3 an die Liesche Gruppen-
theorie gewonnen. Wir machen davon Gebrauch und leiten jetzt ein
System von Differentialgleichungen her, dem die R-Gruppe geniigen
mul.

Nach Lie geniigt ndmlich die L-Gruppe unter der erfiillten Voraus-
setzung (2.10) einem System von vier Differentialgleichungen der Form?)

0¢& 0
"a?:'p(a’) X(E’ N> Nas 0) “;;Z'P(a) YI(E’ M N2> Q)»

(4.1)

0 0
2 —y(@) Ys, m, M, 0), - =v(@ RE, i, m, 0 -

Man erhélt (4.1), indem man die Gleichungen (2.9) der L-Gruppe nach a
differentiiert, und hinterher darin =z, y,, y,, r durch &, »,, n,, o aus-
driickt, was wegen (2.10) moglich ist. Dabei bekommt man in allen
Gleichungen denselben Faktor y(a).

Wir erweitern nun das System (4.1), indem wir dhnliche Differential-
gleichungen fiir n,, 7, aufstellen.

8) Lie-Engel (I), pp. 27—33 und p. 45.
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Es wird

07y 0¢&
dmy, _ 9 (dn,\ _ d(aa) dn,,d(’a‘d) .
aa—"(‘aﬁ)“ & dE dE )

und dies vermoge (4.1) gleich y P, mit

aY, dX
B="2—m g (r=12). (4.2)
Wir erhalten damit die weiteren Differentialgleichungen (4.3),

0m,

d
o :w(a) P1(§, Nis Moy Ty o, dgf)

o, (4.3)

d,
2a :'/’(a)Pz(‘f’ Nis Na2s Ty Ta, dg)

Dem System (4.1), (4.3) geniigt die erweiterte L-Gruppe.

Indem wir nun wn (4.1), (4.3) die Funktion ¢ = r(m,, ®y, &, 11, 9a)
einfithren, was wir durch das Uberstreichen der Funktionsbuchstaben an-
deuten, erhalten wir ein System von finf Differentialgleichungen, welchem
die R-Gruppe geniigt.

Die Gleichung fiir ¢ aus (4.1) wird dann vermoge der iibrigen Glei-
chungen (4.1) und (4.3) identisch erfiillt, weil dasselbe fiir die Ausgangs-
gleichung (2.8) vermoge der R-Gruppe gilt;

do
S =y@EE 0, m, ™)

oder ausgeschrieben,

do
E3

%
91,

X5+ T +T:—§+I—’g—9—+—lsa§é R . (4.4)

Betrachten wir hingegen ¢ als unbestimmte Funktion, so stellt (4.4) eine
Differentialgleichung fiir ¢ dar,

0 0
§+Yl SN 4 "2+P1-37%+P2—9—7§:=R. (4.5)

9) Wir machen hier Gebrauch von der Formela% (do) =d ( %%), worin ¢ (%, ¥;, Ya, 7, @)

die GréBe a nur als Parameter enthalt, und d sich nicht auf den Parameter bezieht.
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Satz III. Die Variabeln &, n,, n,, 7, w, der R-Gruppe geniligen in
bezug auf a einem System von finf Differentialgleichungen der Form

0
—é—é—— w(@) X (&, M1 na, T, )

on, S
"a%=w(a) Yv(f: M 772:711,7152) s ("’=1:2)$ (4'6)

orn, _—
aa = W(a’) B/(E’ 7]13 772’7511 7I2, Cla Cz): ('V=1,2).

(4.6) lettet sich vermoge der Funktion ¢ = r(m,, 7y, &, 11, 1,) aus dem
Differentialgleichungssystem (4.1), (4.3) der zugehorigen L-Gruppe her.
Dabei genitgt die Funktion o der partiellen Differentialgleichung

a§+1’1 + 2 +P1 +Pza =R . (4.5

AuBer dem AnschluB an die Liesche Gruppentheorie haben wir mit
dem Satz II auch den AnschluBl an die zitierte Arbeit von Herrn Ostrowsk:
erreicht. Es ist daher zu erwarten, dafl sein ,,Théoréme I‘“1%) in sinn-
gemiBer Ubertragung auch fiir die R-Gruppen gilt. Das ist in der Tat
der Fall. Die entsprechenden Aussagen stehen in unseren Sitzen IV,
V, VI. Diese Sitze leiten wir indessen nicht auf dem Wege iiber die obige
Arbeit her, sondern direkt aus unseren bisherigen Ergebnissen.

§ 6. Die Definitionsgleichungen fiir »

Um zu Aussagen iiber die Funktion ¢ zu kommen, kniipfen wir an die

Differentialgleichung (4.5) an. In P, und P, steckt je ein Glied mit —= 4

dE
als Faktor. Da ;l : allein ¢,, ¢, enthilt, muB} sein Koeffizient Null sein.
Diese Bedingung liefert eine einfachere Differentialgleichung fiir g,
/ 7y 90 '
(Y, Jth) —I-—( :7t2XQ)-5—=0 " (5.1)
Ty

Hier verschwinden nicht beide Klammern gleichzeitig, sonst wiren
X,Y,,Y, frei von p und stammten damit blol von einer Punkttrans-
formationsgruppe her.

10) 4. Ostrowsks (I), p. 176.
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Sei daher erstens Y,, — 7, X, 5% 0
Mit dem Quotienten

F ! /

=Y, N1, M50, T, W) 5.2
Yz,e —x, X/Q 1 2 1 2 ( )
schreibt sich (5.1) in der Form
dp
d , d . . omy
57—:—1' —9“7;2‘ =0 ’ ) oder — aQA =9 . (5.3)
o,

Nun ist aber y selber Integral von (5.3),

oy | Oy __
o om0
Wir haben namlich
dy —Xgy oy\ o
2 N () e
omy Y, —m X, do on,
o __ + Xy (@) e

Die Summe der beiden Zeilen ist wegen (5.3) identisch Null: y ist mit g
Integral von (5.3). Daher kann y, wenn es iiberhaupt von =, n, ab-
héngt, diese Variabeln nur vermoge p enthalten, und wir haben die beiden
FKille,

FallI: y =y(§, m,m,0) , Fallll: y=c(&, n, 7).

Die Gleichung (5.3) rechter Hand besagt nun, daf fir jeden festen
Punkt (&, %, ,) die Niveaulinien ¢ = const. Geraden in der m,, 7,-
Ebene sind.

Die Gleichungen dieser Geraden liefern die Integrale von (5.3):

im Fall I: 7!1:}/(5,771:7]279)752'*’¢(£;771a772’9) ’

5.4)
im Fall II: .’7!120(5,7]1,772)77;2 +Yj(~f,?71,772’9)' (

11) An dieser Stelle kommen wir auf unserem Wege iiber die ,, Gruppeneigenschaft‘‘ zur
selben Differentialgleichung, wie Herr Ostrowsk: auf dem Wege iiber die ,,Umkehrbarkeit;
(I) p. 168, Formel (5. 5).
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Sei nun zweitens Yy, — 7, X, =0, (y wird oo): Dann lautet unsere

Differentialgleichung einfach ;,,Q = 0. o muB Funktion von &, #,, 7,, 7,
1
allein sein, und wir haben ein Integral der Form:

im Fall IIl: #n, = (&, 0y, 1, 0) - (5.4)
Wir haben damat fiir jeden Fall die allgemeine Form der Definitionsgleichung

fur o gefunden.

Ist die R-Gruppe vorgegeben, so konnen wir sofort entscheiden, welcher
Fall vorliegt. Fiir den Quotienten (5.2),
Y, — n, X!

1¢ 4

Y = 7 2

bestehen noch die von g freien Darstellungen

/ / 3/ Y/
y = 5}'___ I71771 "“nlxﬂl . Ylﬂ’z*—nIXﬂ'z‘ (5 5)
=V = F ¥ v ¥/ ’ .
;Yz/-ir1 — Ty X’rrl Y2,772 — Ty Xﬂ,

wobei sicher nicht beide Quotienten unbestimmt werden. Je nachdem
nun y die Variabeln =,, 7, enthilt, oder davon frei ist, oder unendlich
wird, haben wir den Fall I oder II oder III vor uns.

Es steht uns frei, an Stelle von g eine parameterfreie Funktion o* von o
einzufiihren. Davon machen wir Gebrauch, um unsere obigen Definitions-
gleichungen fiir p auf eine moglichst einfache Form zu bringen. Im Falle I

setzen wir o* = y (£, 7,1, 7, @), womit D(&, 7y, 1,5, @) = f(e*, &, 11, 1)
wird. o* definiert sich also aus

c=m, — o*n, — f(0*, &, 11, ) = 0. (5.6)

Im Falle II setzen wir o* = ¥ (&, #,, 95, 0) und haben die Definitions-
gleichung

c=m —c(&, m, M)y, —@*=0. (5.6)

Im Falle III setzen wir p* = y(&, 9., 7., o) und haben damit die
Definitionsgleichung

c=my, —p*=0. (5.6)

Die Sterne konnen wir hinterher weglassen, denn wir kénnen und wollen
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von nun an unsere Funktion o = r(n,, ny, &, 51, n,) in jedem Falle so
wdhlen, dafi sie durch die entsprechende Gleichung o = 0 definiert ist.
Die Funktion p ist damit auch eindeutig definiert. Denn im Falle I haben
wir o =y, im Falle IT ¢ =z, — yzn,, im Falle III o = x,. Dabei
ist y aus (5.5) durch die vorgegebene R-Gruppe vollig bestimmt.

Die Definitionsgleichungen ¢ = 0 lassen sich auch als Pfaffsche Qlei-
chungen in den vier Variabeln &, #,, 1,, o schreiben. Indem wir ¢ = 0
mit d& multiplizieren, erhalten wir

im Fall I: do=dn, — odn,—f(0,&, 1, 1,)dé =0,
im Fall II: do=dn, —c(&, ny, 1) dyy, — 0dE=0, ) (5.7)
im Fall Ill: do = drn, — 0d& = 0. )

Satz IV. Die Funktion r(p,, p., ©, ¥:, ¥,), mit Hilfe welcher sich eine
R-Gruppe aus der zugehirigen L-Gruppe herleiten lift, ist in jedem Fall
durch eine der drei folgenden Gleichungen definierbar :

19 SEpIHrpz_f(ryx:yl)yﬁ:O’ l
II, 8§ = Py '“G(xayl’y2)p2_'7’ == 0, (56)
III, = Py —7r = 0. g

Diese Gleichungen konnen auch durch die Pfaffschen Gleichungen ersetzt
werden :

I, ds=dy, —rdy, —f(r, 2, y1, y2)dc =0, 2
I, ds=dy, —c(z,y,,y,)dy, —rde =0, (5.7)
III, ds dy, —rdx =20. g

Il

Die Definitionsgleichungen ds = 0 des obigen Satzes sind tnvariante
Gleichungen der L-Gruppe. Dies sieht man am schnellsten so ein: Driicken
wir do vermoge der L-Gruppe in lateinischen Variabeln aus, so nimmt es
die Gestalt

do = Adxz + Bdy, + Cdy, + Ddr = ds*

an, wo A, B, (', D Funktionen von z, y,, ¥,,r, @ sind. Da ds* gleich-
zeitig mit dem ebenfalls in dz, dy,, dy,, dr linear homogenen ds ver-
schwindet, miissen die beiden Formen abhingig sein, d. h. es ist

ds* = ula, x,y,, Y, r)ds, us=0.
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Daher besteht vermége der L-Gruppe eine Relation der Form
do'::u(chx: ylsymr)d&'. (5.8)

(5.8) besagt, daB do = 0 (oder ds = 0) eine invariante Gleichung der
L-Gruppe ist. Daraus folgt sofort

dx dr
G:M—d;ESZM*s, M*(a,x,yl,yz,pl,pz,jx—)géo , (5.9)

d. h. die urspriinglichen Definitionsgleichungen ¢ = 0 (oder s = 0) sind
invariante Gleichungen der erweiterten L-Gruppe.

Wir bemerken noch, daBl der Faktor u fir a = @, den Wert 1 an-
nimmt. Insbesondere kann x4 = 1 sein. In allen andern Fillen ist x keine
Konstante. Dasselbe gilt fiir p*.

Satz V. Die L-Gruppe erfillt in jedem Fall des Satzes 1V eine Relation

der Form
do = uds, u=-=0, (5.8)

und drve erweiterte L-Gruppe eine solche der Form
o= u*s, u*=%=0. (5.9)
Die folgenden Aussagen sind gleichwertig:

Jede Definitionsgleichung ds = 0 des Satzes IV ist invariante Gleichung
der entsprechenden L-Gruppe. Ebenso ist jede Definitionsgleichung s = 0
nvariante Gleichung der erweiterten L-Gruppe.

Wir beweisen nun umgekehrt, dafl jede Liesche Gruppe in x, yy, ¥,, 7,
welche eine der Definitionsgleichungen ds = 0 invariant lift, auch wirklich
eine R-Gruppe liefert, und zwar fiir eine beliebige Wahl der Funktion
Hr, @, 41, ¥s) bzw. c(, y1, ¥s).

Fir das aus ds = 0 erhaltene r = r(p,, ps, #, ¥;, ¥») nimmt p ver-
moge der Gruppe den Wert o = r(n,, n,, &, 11, 7,) an. Die Gleichung
o = k*(x, y,, ¥, 7, @) der vorgegebenen Lieschen Gruppe lautet daher
fiir die obige Funktion

e = r(”l’ TCg s E’ N1 772) = k* (.’I?, Y1, Y2 r(ph D2> X, Yy, yz): a) °
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Ist nun % = u(x, y,, ¥,, 7, ) eine der iibrigen drei Gruppengleichungen,
so lehrt die obige Relation, da die Invarianzeigenschaft

u(E’ 771’ 772’ Q’ b) = ?,I/(CU, yl’ yz: r, C)

erhalten bleibt, wenn man fiir p und r die Funktionen r(x,, n,, &, #,, 7,)
und 7(p;, p,, %, Y1, ¥,) einsetzt. Daher entsteht aus der Lieschen Gruppe
eine R-Gruppe.

Damit haben wir nun die L-Gruppe vollstindig charakterisiert: Wir
konnen hinreichende Bedingungen aussprechen.

Satz VI. Damit eine Liesche Gruppe in x,y,, y,, r durch Einsetzen
der Funktion r(py, s, Z, Y1, Ys) etne R-Gruppe liefert, sind zwei Bedin-
gungen notwendig und hinreichend : Erstens muf3 dive Definitionsgleichung
fir r eine der Formen ds = 0 des Satzes IV haben, worin f bzw. ¢ beliebige
Funktionen threr Variabeln sind. Zweitens muf3 die Liesche Gruppe diese
Definitionsgleichung invariant lassen. 12)

Bei der Herleitung der Definitionsgleichungen fiir die Funktion
o = r(n,, m,y, &, 1, ;) haben wir die Differentialgleichung (4.5) nur
teilweise beniitzt, ndmlich daraus (5.1) hergeleitet und integriert. Wir
verifizieren noch, dal auch die Differentialgleichung (4.5) fiir unsere
Funktion ¢ erfillt ist.

Die Liesche Gruppe geniigt einem System (4.1), (4.3) von Differential-
gleichungen und erfiillt nach dem Satze V eine Relation der Form

o = u*s, u*==0.
Differentiieren wir diese nach a und setzen wir hinterher fiir s seinen

Wert -~ ein, so erhalten wir die Differentialgleichung

u*
1 do 1 du*
e e = . 5.10
vy (a) da (u*w cm)Or (5-19)
*
(Darin hingt e dd‘l; = A*, in den griechischen Variabeln ausgedriickt,

nur von &, 7y, 1y, 7y, n2’?i% ab, und kann insbesondere auch identisch

Null sein.) Nun ist aber vermége (4.1), (4.3)
dg
a ’

1 do do do do do oo
i e g X e — - Yy—+ P —+ P,—+ R
y(a) da Xa§+ h a’?l+ 26"72+ la7‘1-‘|_ 23n2+ %

13) Dieser Satz VI stellt nun das Analogon zum Théoréme I a. a. O. dar.
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was laut (5.10) mit ¢ verschwindet. Andererseits haben wir vermoge
o = 0 fir v = ¢&,n,,n,,n,,n, die Formeln

90 _(_90) %
ou do) ou

Somit geht (5.10) vermoge o = 0 iiber in

oo oo do do oo do .
—%(X%+K—5E+K%+P1E+Pz—a—£~—R =0,

was wegen aég:,.—é 0 auf (4.5) hinauslauft.

Wir verfolgen unsere bisherige Theorie an den Beispielen des § 3. In
allen Differentialgleichungssystemen (4.6) tritt hier die Funktion

p(a) = —(—1{ auf. Wir gehen iiberall von der urspriinglichen R-Gruppe aus.
Beispiel 1. Die Funktionen X,7Y,, Y, lauten hier

— n S S
X=;t—:’ Yi=n, Y,=mn,.

Die Formel (5.5) liefert den y-Wert y = 1 | Wir haben den Fall I vor

TTo

uns und setzen daher g = ;:—1 o definiert sich aus der Gleichung
2

7ty — emwy — f(e, &, 11, m2) = 0

fir f =0. (Wir sehen, dal unser fritheres r = Yo gerade , richtig‘

P
gewdhlt war.)

Die Invarianzrelationen (5.9), (5.8) lauten

a
T — @ = ar (P2 — P2 » dny — odny = a(dy, — rdy,) .

Beide Bedingungen des Satzes VI sind fiir unser Beispiel 1 tatsédchlich
erfiillt.

Beispiel 2. Wir haben
X:——f, _Y;=—771—772+(731+752), -Y—z=“"(7‘1+nz)'
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Daraus folgt y = — 1. Wir haben den Fall Il und setzen ¢ = — 1.

Aus der Gleichung
w + 7w —p0 =0

erhalten wir unser fritheres p = n; + m,. Die Invarianzrelation lautet

1
T+ 7wy —e=p+p,—1, oder d’?l““dﬂz""@df:a(d?ll"‘d?/z_rdx)-

Beispiel 3.

7'[2

2
— — n
X =um,, Y1=771+“2‘2‘, Y2:’72+‘§2‘-
Hier wird y unendlich. Wir haben den Fall ITI, ¢ = #,, und es gelten

die Gleichungen

Ty — @ = il p (ps—7), oder dy,— pdé=a(dy,—rdx).
1+(@—1)-

§ 6. Die Integraldarstellung der R-Gruppen

Wir miissen nun ndher auf den Zusammenhang zwischen L-Gruppe
und Differentialgleichungssystem (4.1) eingehen. Das Integralsystem
von (4.1) 1aBt sich immer in der Form schreiben,

(pv(Ea 7]15’729 9)261;7 (’V: 13293)

a 13) (6.1)
(p4(5’ 15 Yoy Q) = Cy4 + j’l/«'(t) dt .

Es definiert selbst die Gruppe noch nicht. Wir miissen ,,Anfangsbedin-
gungen‘‘ kennen, etwa die Gruppentransformation fiir @ = a,. Enthilt
die L-Gruppe die tdentische Transformation, wie wir es voraussetzen,
und ist a, ihr Parameter, so lautet die L-Gruppe in der ,,Integral-
darstellung**:
@, (&, M1, M2, 0) =0, (%, Y15 Y27) , (v =1,2,3)
a (6.2)
PalE, M1y 72, 0) = a2, Y1, Y2, 7) +a§w(t) dt .
]

13) Wir beniitzen zur Integration von (4.1) das Simultansystem

dé_d%_d’hm_‘_i_{’__ E
xX~7, ¥, & V@de,
welches drei unabhangige, von a freie Integrale (S, 7, 72, 9) = ¢y besitzt. Vermoge
dieser Integrale driicken wir z. B. X durch ¢ und ¢, ¢,, ¢; aus. Die Integration der Glei-

; a
<
chung —(—if- = (a) da liefert dann als viertes Integral ¢ (&, %, 7,, 0) — ¢, = pr(t) dt .
o
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Dafl das System (6.2) eine Gruppe darstellt, ist aus seiner Form ersicht-
lich. Denn zusammen mit einem weiteren System derselben Gestalt,

<P,,(%,‘D1,2)2,93)=%(5, N1s N2s @) (v=1,2,3) !
b
@4(%,2}1,%2,9{):(}04(5, N1 Mo Q)+ j’/’(t)dt, ‘

ergibt sich das analoge System

¢V(£’2)172)2?m):¢v(x’ Y1) y2a7'): (V: 1’2:3)
‘Pa(x, S,2.')1’ 2)27 S‘R) = ‘P4(x, yl, 3/2: T) + j"‘/)(t) dt )

c a b
wo ¢ durch die Gleichung f p(t) dt = f p(?) dt + j‘ v(t) dt bestimmt ist.

Unter der Voraussetzung (A) besteht demnach ein umkehrbar eindeutiger
Zusammenhang zwischen der L-Gruppe und dem Differentialgleichungs-
system (4.1), (4.3)'%). Dieser umkehrbar eindeutige Zusammenhang
ibertriagt sich auf die R-Gruppe und ihr Differentialgleichungssystem :

Setzen wir in die Differentialgleichungen (4.1), (4.3) der L-Gruppe die
Funktion ¢ = r{n,, n,, &, 11, ;) der zugehorigen R-Gruppe ein, so
erhalten wir die Differentialgleichungen (4.6) der R-Gruppe (Satz III,
§ 4). Aus dem Integralsystem (6.1) der Differentialgleichungen (4.1)
ergibt sich daher auf dieselbe Weise das Integralsystem der Differential-
gleichungen (4.6):

5,;(6;7]137}237613”2):01)) (V=1,2,3)(

@ [ | 6.3
994(5: M1 N2y Ty, 7152)=G4+ j'(/)(t)dt S ( )
L)

Andererseits erhalten wir, wiederum auf dieselbe Weise, aus der L-Gruppe

(6.2) die R-Gruppe

Ev (E’ N1s N2y 7y, Trp) = ‘;v (x’ Y1s Y25 P1> P2) » ("’ = 1,2, 3)

— — ¢ 6.4
(P¢(£, N1» ’72,”1s752)=¢4(x, Y1, Y2, Pr> p2)+ jW(t)dt ( )
o

Wir sehen nun, daf die R-Gruppe durch das Integralsystem (6.3)
ihrer Differentialgleichungen schon voéllig bestimmt ist. Wir koénnen
daher den Satz VII aussprechen:

14) Diese Tatsache ist grundlegend fiir die Liesche Theorie der ,,infinitesimalen Trans-
formationen'' einer Gruppe. Lte-Engel (I), pp. 45 ff., insbesondere p. 56.
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Satz VII. Jede R-Gruppe ist durch das Differentialgleichungssystem
(4.8), dem sie geniigt, eindeutig defintert. Das Differentialgleichungssystem
(4.6) besitzt ein von §,, £, freies Integralsystem der Form

&u(f,mﬂ?z,ﬂuﬂz):%, (”:1>2’3))

— & 6.3

@a(&, 71, My Ty, o) = €4 + f‘/’(t)dt, ‘ (6.3)
(L7} /

welches nach &, n,, n, auflosbar ist.

Wir berechnen zum Schlufl die R-Gruppen unserer Beispiele aus ihren
Differentialgleichungssystemen (4.6). Dabei werden wir nicht das Simul-

tansystem
. dn, _dny,  da, in_g

£ - - - = d 6.5
Yl 172 .Pl 1)2 1/) (a) a ( )

d§
= =

direkt integrieren, sondern mit Vorteil von unserer Theorie Gebrauch
machen. Wir haben schon aus X, Y;, Y, die Funktion ¢ bestimmt, und
berechnen noch P,, P,. Mit Hilfe der Differentialgleichung (4.5) finden
wir aus ¢ und X, Y,,7Y,, P, P, die Funktion R. Wir integrieren nun
das einfachere System der zugehorigen L-Gruppe,

dé _ dy, _dns _ do _
X"V T TR r@d (69

und setzen im gefundenen Integralsystem die Funktion g ein. So kommen
wir viel rascher und einfacher zum System (6.3), und damit zu den
R-Gruppengleichungen in der Form (6. 4).

Beispiel 1. Aus X = g, Y, = #,, Y, = 7, ergeben sich weiter

P1=”1(1‘—Q,), P2:n2(1~—9’); (9,53’5):

und mit p = ——;—?— und der Differentialgleichung (4.5), R = 0. Das
2

System

e _ dny _dny _do _ da
0 b . 0 a

hat die Integrale

&
0 =20C, _.7_7_1_:62’ §-~ng?]1=63, —é~=c4+lga.

Up)
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Diese Gleichungen stellen fiir p = —;El— schon das gesuchte Integral-

2
system (6.3) dar. Die L-Gruppe lautet in der Form (6.2)

i Y 3 x

=r, —==, {—olgp=2v—rlgy,;; —=-—-+lga;
e o Y, elign g% 0 , + Ig
die R-Gruppe in der entsprechenden Form (6.4),
s Y & S/ ) Ty Py § z
—==, == - =] =z — —=lgy,; —=— +1Iga.
g P2 N2 Y 75287]1 ngyl Ty _?{_1+g

Ty D:
Beispiel 2. Hier kommen zu X = —¢, Y, = —n, —n,+ 0 ,
Y, = — ¢ noch
Po=—(m,—0), Py=um— o

(4.8) liefert mit o = m, + #, die Funktion R = 0. Das System

—¢& —m—mn+e —e¢ 0 a
hat die Integrale
1
e=2¢, m—elgé=c,, 17'1-_:.—'&:03; lg“é‘=04+lga°

Beispiel 3. Hier haben wir
e? ¢?
X=p, Y1=771+? ) Y2:772+'§ s P=m+0'(0—m), Bo=mn,40"(0—7,).
Fiir die Funktion R erhalten wir R = p. Das System

aé _ _ dn dp, _de _da (6.7)

0 e e o a
"71+2 772+2

hat die Integrale
§—e=2¢, —%‘-—-——g————cz, —%———%zca; lgo=1c,+Iga .

Hier sieht das System (6.5) genau so aus, wie das obige System (6.7)
fir o = n, vermehrt um die Gleichung

da dr,

a 7y, + Loy — my)
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die wir also in diesem Falle zur Integration von (6.5) nicht benotigen,
weil ndmlich 7; in den iibrigen Gleichungen nicht vorkommdt.

Wir sehen, daBl die L-Gruppe durch die drei Funktionen X,Y,, 7Y,
und die Funktion g schon vollstindig bestimmt ist. Es erhebt sich daher
die Frage, wie die drei Funktionen X, Y,, Y, beschaffen sein miissen,
damit sie eine L-Gruppe definieren, welche eine unserer Definitions-
gleichungen fiir p invariant laBt. Diese Frage werden wir im zweiten Teil
vollstindig beantworten, und sie im dritten Teil von einer anderen Seite
her nochmals angreifen.

II. TEI L

Direkte Bestimmung aller L-Gruppen

§ 7. Das Engelsche Gleichungssystem

Wir haben im ersten Teil die Bestimmung aller R-Gruppen auf die-
jenige aller L-Gruppen zuriickgefiihrt. Diese sind durch den Satz VI
(§ 5) vollstindig charakterisiert: sie miissen eine unserer Definitions-
gleichungen (5.6), ¢ = 0, invariant lassen. Diese Forderung fiihrt auf

eine Differentialgleichung der Form (5.10),

1 do_ .. (7.1
p@da = ’
oder ausgeschrieben,
90

(Hierin kann A* (E s M1y Ny Ty s Tg, %%) identisch Null sein.)

Gehen wir von einer Pfaffschen Definitionsgleichung (5.7), do = 0,
aus, so kommen wir auf die entsprechende Relation

1 d(do)

V@ da = Ado . (7.2)

Diese besagt in der Lieschen Ausdrucksweise, dal die Pfaffsche Glei-
chung do = 0 bei der ,,infinitesimalen Transformation’’ unserer Gruppe
invariant bleibt. Das Problem, alle solchen infinitesimalen Transforma-
tionen aufzustellen, hat schon Friedrich Engel gelost, und zwar fiir eine
beliebige lineare Pfaffsche Gleichung in » Variabeln®).

18) Fr. Engel (I), insbesondere § 2 pp. 301—302.
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In unserer Ausdrucksweise lautet dieses Problem: Es sind alle Diffe-
rentialgleichungssysteme (4.1), (4.3) aufzustellen, bei welchen die
Gleichung (7.1) besteht.

Nun besitzt aber die infinitesimale Transformation einer Lieschen
Gruppe als ,,Komponenten‘‘ die Funktionen des Differentialgleichungs-
systems dieser Gruppe!®). Die Bestimmung aller infinitesimalen Trans-
formationen, welche die Pfaffsche Gleichung invariant lassen, ist daher
gleichbedeutend mit der Bestimmung aller Differentialgleichungssysteme,
bei denen eine Invarianzrelation der Form (7.1) gilt.

Darauf beruht es, daBl wir die Engelsche Methode auf unsere Problem-
stellung anwenden konnen, ohne deswegen den Begriff der infinitesimalen
Transformation einfithren zu miissen.

Die gestellte Aufgabe losen wir nach Engel mit Vorteil in » Variabeln

&,..., &, wobei wir &,,..., &, als unbestimmte Funktionen von §,

auffassen. Die Ableitungen 3? bezeichnen wir mit z,. Die Liesche
1

Gruppe habe das Differentialgleichungssystem

o0&,
e @ X, (), =1,0e0m)

mit der Erweiterung

o, _ ()(dX__ dX)
- g, ™ dg,

Unsere Definitionsgleichung (5.6) lautet in der allgemeinen Form

6= S0, (Eyyennr &) 7, =0 .

v=1

Diese Ausdriicke fithren wir nun in (7.1) ein,

[ 2 dO’y 7Ty + — E df/Tv = A* 2 Oy Ty - (7.3)
y=1 v=1
Hierin ist
1 da 1 dn dX dX
Bady X — v __ v v____l .
v 2 IRy il L 15

Wir erhalten, indem wir (7.3) noch mit d¢, multiplizieren, und das letzte

L dX, &
Glied links, — 2 31

16) Lie-Engel (I), vergleiche etwa p. 45, Formel (1) mit p. 53, Formel (8). Auf diesem
Zusammenhange beruht die strenge Begrindung der Lieschen Theorie von den infinitesi-
malen Transformationen.
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% v 99 Q
XM aG d&, + ), 0,dX, = (1* -} ‘Clle) Y o, ds, . (T.4)
v=1 pu= 5 é‘1

yv=1

Jetzt addieren wir beidseitig das totale Differential der sogenannten
,,charakteristischen Funktion'* U, 17)

— O'#XMEU, (7.5)
— 3 X, do, — ¥ 0,dX, =dU .
=1 u=1

Dabei hebt sich der Summand 3] ¢,dX,, weg, und mit
p=1

do——zaaﬂdf dU—Egy

erhalten wir die Gleichung

3 (25— o)) e = E (7 +G) o+ 3g,) - 00

v=1 agﬂ y=1

Hier fithren wir noch Abkiirzungen ein:

do, 00y __

=1. (7.7)

(Wir bemerken nebenbei, ohne auf den Beweis einzugehen, dafl dieses
A mit demjenigen in (7.2) iibereinstimmt.)

Die Gleichung (7.6) zerfillt in » lineare inhomogene Gleichungen in
A, X,,...,X,. Zusammen mit der Definitionsgleichung (7.5) fir die
charakteristische Form U haben wir ein System von n 4 1 linearen
inhomogenen Gleichungen in den n 4+ 1 Unbekannten 1, X,,..., X,.
Das System besitzt eine schiefsymmetrische Matrix der Ordnung » + 1
und lautet:

$ox =,
=l (7.8)
2 oU

— o0, A+ ; "=85,, , (=1,...,mn).

17) Die Einfiihrung dieser Funktion ist der springende Punkt in der Methode von
Engel.
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Dieses allgemeine Gleichungssystem l6st Engel mit Hilfe der Theorie
der sogenannten ,,Jacobischen Symbole‘‘ vollstindig auf. Fiir unsere
Spezialfille brauchen wir indessen diese Theorie nicht weiter zu verfolgen.

§ 8. Die Differentialgleichungen fiir die charakteristische Funktion und
fiir die L-Gruppe

Fiir die Auflosung des Systems (7.8) beschrianken wir uns auf unseren
Fall . Wir haben
o= — fle, &, N1, M2) — @7y + 7y,
und setzen
&=2§, &y =1, & =11, §s=0,
X, =X, X,=Y,, X;,=Y,, X,=R,
oo=—f, o6,=—p, ag;,=1, g,=0.

. a——

Fir die Koeffizienten «,, liefert (7.7)

Kig = “‘ﬂ,g ) 0‘13=—f:71 y Oy = _"fi)’
Koy = 0, Koy = — 1,
gy = 0 .
Uberdies gilt Oy = — Oy, Oy, = 0.

Das System (7.8) lautet fiir unseren Fall 1

—fX — oY, 4+ Y, . =-U,"
oU
fa : ”"f:72Y2_f:71Y1—f;R:‘a‘£“a
oU
! . . — R = —,
ed+ 1y X ona (8.1)

oU
A+ X L. =
+ fi o,

oU
f/QX +Y2 . . =-—a—é~.

Da die schiefsymmetrische Determinante von (8.1) die ungerade
Ordnung 5 besitzt, verschwindet sie identisch. Streicht man darin die
zweite Zeile und die zweite Kolonne heraus, so hat die entstehende
Unterdeterminante 4. Ordnung den Wert 1. Die Systemdeterminante ist
demnach vom Range 4, und wir konnen das System der ersten, dritten,
vierten und fiinften Gleichung nach 1, Y,,Y,, B auflosen, wobei X
als Losungsparameter auftritt. Diese Auflosung lautet:
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A= —(U,—1,X), hi={X+o(U,—,X)—TU, 5.9
Yo=U, — fo X, R=— (U, —f,, X)—o (U}, —f,, X). 18 "
Nun bleibt noch die zweite Gleichung in (8.1) zu befriedigen. Setzen
wir darin fir 4,Y,, Y;, R die Ausdriicke (8.2) ein, so fallen alle Glieder
mit X als Faktor heraus, und es bleibt die folgende lLineare partielle
Differentialgleichung 1. Ordnung fiir die charakteristische Funktion U :

aU aU / / aU !
o f,e‘éﬁz“‘f‘(f“‘Qfe) E'N +(f,, +ef)) P frnU=0.%) (8.3)

Geniigt U (&, n,, 1, o) dieser Gleichung, so stellen bei jeder Wahl von
X(&,m,, n,, 0) die aus (8.2) berechneten Funktionen 4,7,,Y,, R
mit X zusammen eine Losung des Systems (8.1) dar.

Fir jede Losung X,Y,,7Y,, R, zusammen mit P,, P, und
l*zl—-% (nach Formel (7.7) rechts), besteht nun die Invarianz-

relation (7.1), 1 do — *g .

y(a) da
Denken wir uns darin A* vermoge der durch X,Y,, Y,, R definierten
L-Gruppe in den lateinischen Variabeln ausgedriickt,

d dr
A*(E! 771’ 7729 7!1, n2,8§) :l(a’ x, ?/1, ?/2: ply p2) E';:)y

so haben wir
48—y L, )
da = (7 gh 5] 8
Integrieren wir diese Gleichung von a, bis @, und beachten wir, daB

fﬁr a = a,
c=0(%,Y;, Y, T, D1, P2) =

wird, so erhalten wir lg % = [y(a)l(a) da und daher

a
leda
o= 8e” . (8.4)

18) Diese Auflosung von (8.1) ist unter den formal méglichen die einzige nennerfreie,
also die einzige, welche in keinem Falle versagt.

19) Man kann (8.3) auch direkt aus der Abhéngigkeit der linken Seiten von (8.1) her-
leiten, indem man die Gleichungen beziehungsweise mit den Minoren einer geeigneten
Kolonne der Systemdeterminante multipliziert und addiert.
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Die fir die Invarianz von o = 0 notwendige Relation (7.1) ist dafitr auch
hinreichend.

Damit 148t die Gruppe auch die Pfaffsche Definitionsgleichung
do = 0 invariant. In den folgenden Sitzen fiithren wir do = 0 an, weil
wir vom dritten Teil her auf diese Form der Definitionsgleichungen fiir g
zuriickkommen werden.

Satz VIII (I). Damat die Liesche Gruppe mit dem Differentialgleichungs-
system Q‘l_f _ @71 _ giﬂz _ do _
X Y, Y, R
die Pfaffsche Qleichung
do =dn, — edn, — f(g, &, my, 1p) dE =0

wvariant laft, sind zwei Bedingungen notwendig und hinreichend :
Erstens muf3 die charakteristische Funktion U = fX + oY, — Y, der
Differentialgleichung D, (U, f) = 0 geniigen,

,aU

DI(U,f) —l"(f_gfg) _“"'l_ f;,z'*_gf;l é’é——flu = 0.

—as — o

Zweitens miissen dre Funktionen Y,,Y,, R ber freier Wahl von X
nach den Formeln (8.2) gebildet sein,

V,=U,—fX; h=[X+oUe—fX)—U;
B=— (U~ X) —e,— 1, X

Um die entsprechenden Sitze zum Fall IT und IIT moglichst einfach
herzuleiten, beachten wir, daB die Gleichung des Falles I,

(8.2)

dnl - anZ - f(@a E: LR 772) dé =0

durch Vertauschen der Variabeln & und 7, und fiir den Wert f=
¢(&, 1, n,) tibergeht in die Gleichung des Falles 11,

dn, —c(&, ny, my) dny — @dé =0,

und diese ihrerseits durch Vertauschen der Variabeln #, und #, und fiir
den Wert ¢ = 0 iibergeht in die Gleichung des Falles III,

dn, — odé = 0.
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Damit ergeben sich die fraglichen Sitze ohne weiteres:
Satz VIII (II). Damit die Liesche Gruppe mit dem Differentialglei-

chungssystem
9y dé dny, __dn, dg

X~y "% R _r@w

die Pfaffsche Qleichung
do =dn; — (&, 1y, my) dny — ed§ =0
wnvariant lifit, sind zwei Bedingungen notwendigq und hinreichend :

Erstens muf3 die charakteristische Funktion U = oX + c¢Y, — Y, der
Differentialgleichung D (U, ¢) = 0 geniigen,

oU oU
Dy(U, 0 = 5 405 +(cted) G —c,U=0.

Zwestens mitssen die Funktionen X, Y;, R bei freier Wahl von Y, nach
den Formeln

X=U,; 1=cY,+oU,—U; R=—(U;i—c;Y,)—p(U, —c, 1)

L}
gebildet sein.

Satz VIII (III). Damit die Liesche Gruppe mit dem Differentialgle:-

chungssystem
9oy dé  dy,  dn, dp

X v Y, R
die Pfaffsche Gleichung

= y(a) da

do =dn, — pdé =0

variant lift, sind zwei Bedingungen notwendig und hinreichend :
Erstens muf die charakteristische Funktion U = pX — Y, der Diffe-
rentialgleichung D;(U) = 0 genilgen,

oU
‘DIII(U) —_ a 0

d.h. U muf frei von n, sein.

Zweitens mitissen die Funktionen X, Y,, R bei freier Wahl von Y, nach

den Formeln
X=U,; Y,=oU,—U; R=— Ué— QU:72
gebildet sein.
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Wir betrachten jetzt diese Sitze an einigen Beispielen. Dabei legen wir
gerade diejenigen Pfaffschen Gleichungen zugrunde, die wir am Schlufl
des § 5 bei unseren Beispielen 1 bis 3 gefunden haben.

Beispiel 1. Unsere Pfaffsche Gleichung
dny — gdn, =0

gehort dem Fall I fiir f = 0 an. Nach dem Satz VIII (I) muBl U der

Differentialgleichung
oU

geniigen, d. h. frei von & sein. Jede von einer beliebigen Funktion
U (5, 1, 0) nach den Formeln des Satzes VIII (I) hergeleitete Gruppe

X,Y,,Y,, R ist daher eine L-Gruppe, welche fir r = % in eine R-
2

Gruppe iibergeht. Wir haben damit schon alle R-Gruppen mit r = %

2

aufgestellt.

Setzen wir insbesondere U = g7, — 7,, so haben wir bei der Wahl
X = p die Formeln
Y2:7]2a Y1=771’ R:Oa

also gerade die L-Gruppe unseres Beispiels 1, die wir am Schluf3 des § 6
gefunden haben.

Beispiel 2. Die Pfaffsche Gleichung

dny + dny, — edé =0

gehort zum Fall II fiir ¢ = — 1. Nach dem Satz VIII (II) muBl U der
Differentialgleichung
_oU oU _
DU, —1) = on o= O

geniigen, d. h. U = U (&, n; + 7, 0).

Die Gesamtheit aller L-Gruppen, die aus U (&, 5, + 7,, 0) nach den
Formeln des Satzes VIII (II) gebildet werden, geht fiir r = p, + p,
in die Gesamtheit aller moglichen R-Gruppen mit r = p, + p, iiber.
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Setzen wir insbesondere U = %, + 5, — &p, so erhalten wir bei
der Wahl Y, = — p die Funktionen

X=—-§& Yh=—m—m+e R=0,
also gerade die L-Gruppe des friiheren Beispiels 2.

Beispiel 3.
dn, — odé = 0.

Hier unterliegt U nur der Bedingung, daB3 es frei von #, ist. Wir erhalten
dann immer eine L- Gruppe nach den Formeln des Satzes VIII (III)

e
2
sammen die Funktionen

Setzen wir U = =~ — 7,, so ergeben sich mit ¥, = 5, 4+ =~ 9 zu-

02
X =0, Yz:772+'2"’ R=p

der L-Gruppe unseres friitheren Beispiels 3.

§ 9. Der Zusammenhang mit den Gruppen von ebenen Beriihrungs-
transformationen. Das R-Gruppoid

Zum Satz VIII (III) haben wir noch eine wichtige Bemerkung zu
machen. Die Formeln

X=U], Y,=oU,—U, R=-U/—oU,,

abgeleitet von einer beliebigen Funktion U (&, #,,0), wo ¢ die Be-
deutung p = /1 7, hat, definieren nach Lie eine Gruppe von ebenen

Berihrungstransformationen in den Variabeln &, n,, 7,2°). Jede R-Gruppe
des Falles 111 besteht demnach aus einer Beriihrungstransformationsgruppe
der x, y,-Ebene, vermehrt um eine Gruppengleichung der Form

nm = hl(x’ Y1, Yz, V2> CL) ’ (Belsplel 3) -

Diese Aussage stellt die begriffliche Deutung des Satzes VIII (IIT) dar.
Auch die Umkehrung gilt: Jede Berithrungstransformationsgruppe der
x, y,-Ebene stellt, zusammen mit einer beliebigen Gruppengleichung der
Form %, = h,(x, y1, Y,, P2, @) etne R-Gruppe des Falles 111 dar.

10) Iie-Engel (I1), p. 252.
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Das Analoge gilt im Falle I1 fiir den Wert ¢ = 0 in bezug auf die
z, y;-Ebene, und im Falle I fiir f =0 (Beispiel 1), in bezug auf die
Y, Y1-Ebene.

Nach dem ,,Théoréme I111°°?') der zitierten Arbeit von Herrn Ostrowsk:
existiert immer eine R-Einzeltransformation, welche eine Pfafische
Form des Falles I oder 1I in ds;;; = dy, — rdx des Falles III iiberfiihrt.
Sei nun 7T, eine L-Gruppe des allgemeinen Falles I oder II, welche
dv = 0 invariant 146t, und R die Einzeltransformation, welche dz in ds;;;

iberfithrt. Bilden wir
RT, R1=S8,,

worin R-! die inverse Transformation von R bedeutet, so liBt jede
Transformation dieser Schar §, die Gleichung ds;;; = 0 invariant, denn
sie filhrt die Form ds;;; wieder in die Form ds;;; iiber. Diese Schar S,
18t etne L-Gruppe des Falles 111. Denn mit

Sa:mTam—l’ Sb:meER—l; TaTb:Tc’
ist auch
8.8, = RT, T, R = RT, R — &, .

Uberdies besteht, wegen der umkehrbar eindeutigen Zuordnung
S, =T, , S, =T, , S8, =TT, ,

ein Isomorphismus zwischen der allgemeinen Gruppe 7', und der speziel-
len Gruppe 8, des Falles III.

Jede unserer R-Gruppen, welche die bestimmte Pfaffsche Form do
in sich iiberfiihrt, steckt in der ,,unendlichen kontinuierlichen Gruppe‘
aller symmetrischen R-Transformationen von do. Diese wollen wir kurz
als den ,,Kern von do*‘ bezeichnen. Zu jeder Pfaffschen Form gehort ein
solcher Kern und alle Kerne sind untereinander isomorph?2).

Wir nehmen nun noch die Gesamtheit aller unsymmetrischen R-Trans-
formationen hinzu, welche die Form do in eine andere Form dr iiber-
fithren, also die Kerne von do und dr untereinander verbinden. Der In-
begriff aller symmetrischen und unsymmetrischen R-Transformationen
stellt eine Mannigfaltigkeit dar, die wir als ,,unendliches kontinuierliches
R-Gruppoid‘‘ bezeichnen kénnen 23).

) A. Ostrowsk: (I), p. 182.

22) Zum Begriff der ,,unendlichen kontinuierlichen Gruppe‘ vergleiche Lie-Engel (I),
pp. 3—6; fir die entsprechenden Differentialgleichungen A. Ostrowsk: (I), p. 185, § 5.

) H. Brandt, ,,Uber eine Verallgemeinerung des Gruppenbegriffes*,
Math. Ann. 96 (1927), pp. 360—366.
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Wir haben oben auf den Zusammenhang der R-Gruppen mit den
Gruppen von ebenen Beriihrungstransformationen hingewiesen. Es be-
steht ein weiterer Zusammenhang mit den Gruppen von rdumlichen
Beriihrungstransformationen. Darauf gehen wir nun im dritten Teil ein.

III. TEI L

R-Gruppen und Gruppen von rdumlichen
Beriithrungstransformationen

§ 10. L-Gruppen und B-Gruppen

Wir bezeichnen im folgenden eingliedrige Gruppen von rdumlichen
Beriihrungstransformationen kurz als ,,B-Gruppen‘. Eine B-Gruppe
transformiert jedes Flichenelement

di 0
x,yz,yl,pz-éél, qz‘azz
wieder in ein Fléachenelement
_ oy __ o,
£t S gd s K S,

(Wir identifizieren hier die iibliche Koordinatenbezeichnung y mit y,
und 2z mit y,, fassen also ¥, als unbestimmte Funktion von x und y, auf.)
Jede B-Gruppe erfiillt eine Relation der Form

Ay, — xdy, — ndé = p(dy, — qdy, — pdx); pla, z, ¥, y1, P, 9) £ 0,
d. h. sie 148t die spezielle Pfaffsche Gleichung

dy, — qdy, — pdx = 0 (10.1)
invariant.
Angenommen, eine B-Gruppe lasse iiberdies die partielle Differential-
gleichung

p—-f(q,x,y2,y1)=0

invariant. Fiihren wir in dieser B-Gruppe fiir die Variable p die Funktion
fg, z, y,, y,) und fiir die Variable = die Funktion f(«, &, n,, ;) ein,
80 erhalten wir eine einparametrige Schar in den 4 Variablen x, y,, ¥, ¢.
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Nach einem Satze von Lie ist dieses ,,verkiirzte‘‘ System wiederum eine
eingliedrige Gruppe?¢*). Diese 148t die Pfaffsche Gleichung

dy, — qdy, — f(g, %, ¥, y)dx = 0

invariant, ist also, wenn wir noch ¢ mit unserem friiheren r identifizieren,
nichts anderes, als eine L-Gruppe des Falles I. Berechnen wir hier ¢ aus

Pr— 9P — f(g, %, ¥y, 1) = 0,

und setzen wir es in die verkiirzte B-Gruppe ein, so erhalten wir nach den
fritheren Ausfithrungen eine R-Gruppe in z, ¥,, ¥, 91, P2-
Nehmen wir nun an, eine B-Gruppe lasse die partielle Differential-

gleichung
q— C(x, Ya» yl) =0

invariant. Fithren wir in dieser B-Gruppe fiir die Variable ¢ die Funktion
c(z, ¥, y,) und fir die Variable « die Funktion c(¢, 7,, n,) ein, so
erhalten wir nach dem oben beniitzten Lieschen Satze eine verkiirzte
Gruppe in den 4 Variabeln z, y,, y,, p, welche die Pfaffsche Gleichung

dy, — c(x, Y5, ¥,) Ay, — pdx = 0

invariant 148t. Identifizieren wir hier p mit unserem fritheren r», so
haben wir eine L-Gruppe des Falles II vor uns, welche fiir p = p, —
c(z, ¥s, ¥,) p, die zugehorige R-Gruppe in z, y,, ¥,, p,, P, liefert.

Der Fall III nimmt auch hier eine Sonderstellung ein?®). Die Pfaffsche

Gleichung p P 0
Y, —raxr =

konnen wir nicht aus (10.1) mit Hilfe einer invarianten Gleichung her-
leiten, sondern wir miissen zu diesem Zwecke die Variabeln y,, y, in
der B-Gruppe vertauschen: Wir fassen hier y, als unbestimmte Funktion
von ¢ und y, auf, transformieren also ein Flichenelement mit den
Koordinaten

x’yl’yz’ﬁ—:—‘“a?v"7 ?IE

#) Lie- Engel (I), p. 233. Der direkte Beweis dieses Satzes fiir eine invariante Gleichung
verlauft dhnlich, wie unser Beweis dafiir, daB aus der L-Gruppe vermdége der invarianten
Gleichung » = r(py, Ps, T, ¥1, ¥;) eine R-Gruppe entsteht (§ 5).

%) Dies liegt an der Verwendung der inhomogenen Koordinaten, sowohl frither bei den
R-Gruppen, als jetzt bei den B-Gruppen.
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in ein solches mit den Koordinaten

- 6112

5,7]1,?72,75: ’ ;—:—
o0&

Die invariante Gleichung (10.1) der B-Gruppe lautet nun

dy, — qdy, — pdx = 0 . (10.2)
Angenommen, die B-Gruppe in den Variabeln =z, y,,y,,p,q lasse
nun die partielle Differentialgleichung

0y,

% =0

q=
invariant. ,,Verkiirzen‘ wir diese B-Gruppe mit ¢ == 0, so erhalten wir

— wiederum nach dem schon beniitzten Lieschen Satze -- eine Gruppe
in den 4 Variabeln =z, y,, y,, p, welche die Pfaffsche Gleichung

dy, — pdx = 0

invariant 148t. Identifizieren wir darin p mit unserem friiheren 7, so
haben wir eine L-Gruppe des Falles III vor uns, welche fiir p = p, die
zugehorige R-Gruppe in x, y,, y,, p, liefert.

Wir haben damit einen neuen Weg zur Erzeugung von R-Gruppen
dargelegt und werden mit dem Satze X beweisen, daB man jede R-Gruppe
auf diese Weise erhalten kann.

Auch im allgemeinsten Falle der unsymmetrischen R-Einzeltransforma-
tionen fithrt dieser Weg zur Erzeugung von R-Transformationen zum
Ziel. Es gilt der Satz, daB zu jeder R-Transformation solche ,,erzeugende**
Beriihrungstransformationen existieren, wie dies Herr Ostrowsk:i im
zweiten Teil seiner Arbeit dargelegt hat?s).

Im folgenden beschrinken wir uns — wie im zweiten Teil — zuerst
auf unseren fritheren Fall I und leiten daraus die Ergebnisse in den
Fillen 1T und III durch Variabelnvertauschung her. Unser Ziel ist die
Bestimmung aller B-Gruppen, welche eine partielle Differentialgleichung
der Form p = f(q, %, y,, y,) invariant lassen. Zunichst stellen wir den
formalen und den geometrischen Zusammenhang der B-Gruppen mit
den daraus erzeugten L-Gruppen her.

%) A. Ostrowsks (1I), pp. 41—60.
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Unsere B-Gruppe sei durch das Differentialgleichungssystem (10.3)
definiert,

? \
ai p(a) X* (£, 2y m, 7, K) aa——w( ) P*(&, mps 1,y 7, K),)
3772 Ok

o2 = (@) YF (&, 7, 70, T, 6), 5= (@) QX (&, 7, My, 7, &) . (10.3)

9
"a% = y(@) YT (&, m, m, 70, x)

Darin ergeben sich die Funktionen X*, Y, Y, P* Q* nach Lie aus der
sogenannten charakteristischen Funktion W*(&, n,, ny, 7w, «) mit Hilfe
der Formeln??)

X* — W* l Pt= W —aW},
Yy=wy Q*= — W} — W} . (10.4)
Y¥=aWy + «Wr' —Wx, l
Dabei ist identisch 7X* + « Y} — Y= W*
Die B-Gruppe lasse nun die vorgegebene Gleichung
TEf(K,E, 1]2, 771)—7!20 (10.5)

invariant. Das Einfithren der Funktion f(«, &, #,, n;) fiir die Variable n
deuten wir durch Weglassen des Sterns an. Die Invarianz von v = 0,

(w = f) fiilhrt — #hnlich wie frither im 1. Teil bei der Invarianz von
o =0, (¢ =r) — auf die Differentialgleichung : ):iif P, oder aus-

geschrieben,

Xfe+ Yofy, + Tify, + @fc — P=0. (10.6)
Andererseits gilt, wenn man

W*(f;ﬂzﬂ']u”,") ‘ =W(£>7]2,7]1, K) ’ W:, x EX* l =X

setzt, die Formel

Wy !j=W:¢—".f/uX» fir w =&, n,,m, k

27) Lie-Engel (II), p. 252.
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Damit erhalten wir aus (10.4) fiir Y,, Y,,@Q, P die Formeln:

Y2= W:,c _f;X ) Q= — (W,’h—f:zX)*-K(W:h*‘f;lX) )

/ / / / 4 / - ( 10 ) 7)
Y, =fX+«(W,—f  X)—W, P=—(W;—f.X)—-{W, —f, X).
Setzen wir die Ausdriicke (10.7) in die Gleichung (10.6) ein, so fallen
alle Glieder, die X als Faktor enthalten, weg, und es bleibt die partielle
Differentialgleichung fir W,

4
B e A U= D S i)~ W=0 . (108
Die ersten drei Formeln (10.7) und die Gleichung (10.8) sind aber, wenn
wir hier noch « mit o, W mit U, @ mit R identifizieren, nichts anderes als
die Formeln und die Differentialgleichung D (U, f) = 0 des Satzes VIII
(I) im 2. Teil: Die mit der invarianten Qleichung p = f(q, =, yY,, ¥;)
yoerkirzte' B-Gruppe ist eine L-Gruppe unseres friheren Falles I. Die
charakteristische Funktion W* geht fir =n = f(«x, &, n,, n,) einfach in die
charakterische Funktion U der L-Gruppe dber.
Die Gleichung

p:‘:f(q:x’ y2’yl) (109)

ordnet jedem Punkt (z, y,, ;) oo' Flichenelemente (p, ¢q) zu. Sie defi-
niert im Raume C(z, y,, y,) ein ,,Flachenelementfeld‘ 28). Die In-
varianz der obigen Gleichung bei der B-Gruppe bedeutet, daB3 die B-
Gruppe, angewendet auf die Flichenelemente des Feldes (10.9), diese
einfach untereinander vertauscht. Die B-Gruppe, angewendet auf das
invariante Feld (10.9), geht aber in eine L-Gruppe iiber, welche zur

Gleichung
PL—qps — flg, x, ¥, 1) =0, (10.10)

gehort, oder, in unserer fritheren Schreibweise,

pl-_rp2~/(r,x: y29 yl)zo' (10'11)

Die GroBen r und f(r, z, y,, y;) sind die Komponenten desjenigen
Flachenelementes, welches aus den Linienelementen (p,, p,) der Glei-
chung (10.10) besteht. Der Wert von r liefert umgekehrt zu jedem
Linienelement (p,, p,) die Komponenten eines Flidchenelementes, in
welchem das betreffende Linienelement liegt.

18) A. Ostrowsk: (I), pp. 171—173.
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Die L-Gruppe kann demnach als eine solche B-Gruppe aufgefallt
werden, welche die Linienelemente der R-Gruppe bei der Transformation
mit den Flichenelementen des invarianten Feldes (10.9) ,,beglettet .

Diese geometrische Auffassung ist auch im allgemeinen Falle der
R-Einzeltransformationen méglich. Nur fithrt dort die ,,begleitende*’
Beriihrungstransformation die Flichenelemente des Feldes p =
g, z, y,, y;) in diejenigen eines anderen Feldes = = @ (x, &, n,, 1,)
iiber, wenn es sich nicht um eine symmetrische R-Transformation
handelt 2°).

§ 11. B-Gruppen mit invarianten Feldern

Wir mochten nun alle B-Gruppen aufstellen, welche das Feld (10.9)
invariant lassen. Wir haben schon gesehen, dafl dann ihre charakteristi-
schen Funktionen W* fiir den Wert n = f(«, &, %,, n;) unserer fritheren
Differentialgleichung D,(W, f) = 0 geniigen miissen. Diese Bedingung
18t allein schon hinreichend.

Jede charakteristische Funktion W*, fiir welche

W | =W

m=f

gilt, schreibt sich namlich in der Form

W*=W+4 | X*dn . (11.1)
/

Denn sei z. B. W} eine solche, und W}’ =X}, so gilt jX"‘dn wE—w,
also W+ jX *dn =W} . Unsere Funktionen Y, Yl"‘ ,@* lauten nun

nach den Formeln (10.4)

I

Y¥=W,— . X+ (X dn,
/
VP = Xt k(W= [ X) — Wt o XY dn— [ X*dr,
!

Q" =—W,,— 1, X) — «(W, —f,, X)— [ X}, dn——fo*'dn :
!

39) 4. Ostrowski (II), pp. 48—49.
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Hierin fallen aber fiir # = f alle Integrale weg und die Formeln nehmen
die Gestalt (10.7) an. W?* definiert eine B-Gruppe, welche wegen
D, (W,f) =0 fir x =f in eine L-Gruppe des Falles I iibergeht. Daher
laBt jede solche B-Gruppe die Gleichung = = f invariant und wir
haben den Satz:

Satz IX (I). Damit die durch W*(&, n,, n,, m, k) definierte B-Gruppe
die Gleichung
T = f(K’ g, Nas 771)

invariant laft, ist die folgende Bedingung motwendig und hinreichend :

Die Funktion
W* | =W(E, nas m15 K)

7=

muf der Differentialgleichung D, (W, f) = 0 des Satzes VIII (1) gentigen,
worin g durch x zu ersetzen ist.

Damit haben wir das im § 10 gestellte Ziel fiir den Fall I erreicht und
kommen nun zu den Féllen II und III.
Die gesuchten B-Gruppen sollen im Fall II Gleichungen der Form

q=c(x, Y, ¥) (11.2)

invariant lassen, also in L-Gruppen iibergehen, welche zur Gleichung

Pr— (X, Yy, Y1) Pp —p =0 (11.3)

gehoren, oder in fritherer Schreibweise

Pr— (%, Yo, Y1) po — 7 =0. (11.4)

Die GroBe r hat in diesem Fall nicht den Wert der ¢-Komponente des
durch (11.3) definierten Flidchenelementes, sondern den Wert der
p-Komponente. Die ¢g-Komponente ist hier mit dem Punkt (z, y,, ¥;)
fest. Das begleitende Flichenelementfeld (11.2) besteht demnach nicht
aus ,,Elementarkegeln‘‘ wie das Feld (10.9), sondern aus ,,axialen
Biischeln‘.

Den entsprechenden Satz IX (II) gewinnen wir — wie im 2. Teil den
Satz VIII (II) — aus dem ersten Satze durch Variabelnvertauschung.
Hier mu8 £ mit #, vertauscht, und f durch ¢(&, 7,, 7,) ersetzt werden.
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Satz IX (II). Damit die durch W* (&, ,, 1y, =, k) definierte B-Gruppe
die Gleichung

K = C(E’ UPY 771)

invariant lift, ist die folgende Bedingung notwendig und hinreichend :
Dre Funktion
w* I = W(, N2s Nis 7)

K=C

mufl der Differentialgleichung D (W,c) = 0 des Satzes VIII (II) ge-
nilgen, worin o durch n zu ersetzen ist.

Im Falle ITI soll die B-Gruppe in den Variabeln z,y,, ¥,, p,q die
Gleichung

=% _ (11.5)

invariant lassen, also in eine L-Gruppe iibergehen, welche zur Gleichung

p,—p =0 (11.8)
gehort, oder in fritherer Schreibweise,
ps—r=20. (11.7)

Die GroBe r hat den Wert der p-Komponente des durch (11.6) definier-
ten Flichenelementes. Die g-Komponente ist immer Null: Die ,,axialen
Biischel“ des Feldes (11.5), welches in diesem Falle die Linienelemente
bei der R-Transformation begleitet, stehen alle senkrecht auf der x, y,-
Ebene.

Den gesuchten Satz I1X (III) gewinnen wir aus dem Satz IX (II) durch
Vertauschen der Variabeln #, und #%,, und fiir den Wert ¢ = 0.

Satz IX (III). Damit die durch W* (&, 9,, 7,, , ) definierte B-Gruppe
die Gleichung

k=0

tnvariant lift, ist die folgende Bedingung notwendig und hinreichend :
Die Funktion
W*__I =W, 5, 12, @)

k=0
muf frei von 7, sein.
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Die Satze IX (I), IX (1I), IX (III) gestatten nun ohne weiteres, alle
charakteristischen Funktionen W* hinzuschreiben, deren B-Gruppen in
eine beliebig vorgegebene L-Gruppe iibergehen, deren B-Gruppen also
etne beliebig vorgegebene R-Gruppe erzeugen. Hierin ist der im § 10 ver-
sprochene Beweis dafiir enthalten, dass man jede R-Gruppe aus B-
Gruppen erzeugen kann.

Die R-Gruppe des Falles I sei durch U, X, f gegeben, also durch ihre
L-Gruppe und die Funktion . Dann schreiben sich W* und X* einer
entsprechenden B-Gruppe in der Form

W*:-—U«}—}X*dn, X*=X+}Sdn,
!/ /

wo S(&, n,, n;, m, k) eine willkiirliche Funktion ihrer Variabeln ist.
Zusammengesetzt ergibt dies

Wt=U+(x—HX+ | (fSdn)dn. (11.8)
I 7
worin alle fraglichen B-Gruppen stecken.

Im Falle Il ist die R-Gruppe durch U, Y,, ¢ gegeben. Wir haben die
entsprechenden Formeln

Wr=U+ { Yide, Y¥=Y,+|Tde,

wo T(&, 5y, my, 7, «) willkiirlich wéhlbar ist. Die gesuchten B-Gruppen
sind durch

W*=U+ (x—0) Y, + | (J Tdw)dn (11.9)
definiert.

Im Falle IIT endlich ist die R-Gruppe durch U, Y, gegeben. Die
Formeln lauten

W*— U+ [¥dx, TP—Y+ [V,

0

bei freier Wahl von V(§, %, n,,n,«). Die B-Gruppen haben die
charakteristischen Funktionen

W*=U+E1’1+f(fw§)d§ : (11.10)
0o 0
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Satz X (I, II, III). Jede R-Gruppe lift sich aus unendlich vielen B-
Gruppen durch ,,Verkiirzung*® erzeugen. Die charakteristischen Funktionen
W* aller dazu tauglichen B-Gruppen stecken in den folgenden Formeln :

Fall I: R-Gruppe U (&,n5,m,,%) 5 X(E,m9,my,K) ; fle, &, n2, 1)
W*:U—}—(n-—-f)X—l—-‘f(‘den)dn;
11
U erfillt D(U,f) =0, 8(&,ny,n,n,«) ist willkiirlich.

Fall II: R-G?‘uppe U(§a772:77l:n); 172(5) 772,771,75); 6(53 772’7]1)'
W =U+4 (k—¢) Y, + [ (JTdx) dx ;
U erfillt Dy (U,¢) =0, T(&,n,,n,m,«) ist willkiirlich.

Fall III: R-Gruppe U(&,ny, @) ; Y,(&,1,ns, 7).
W*=U+4 «¥, + [ (f Vdr)d«;
0o o0
U(,ny, ) und V(&,n,,n,, w, k) sind willkiirlich.

§ 12. Herleitung aller méglichen R-Gruppen aus einer vorgegebenen
B-Gruppe
Wir kommen jetzt zum letzten Problem in diesem Zusammenhange:
Ausgehend von einer vorgegebenen raumlichen B-Gruppe, suchen wir ihre
invarianten Gleichungen der Form p={f(q,x,y,,y,) oder ¢g=c(x,y,,¥,)
auf. Damit finden wir nach den vorangegangenen Sitzen alle moglichen
L-Gruppen, und gleichzeitig alle R-Gruppen, welche sich iiberhaupt aus

der vorgegebenen B-Gruppe herleiten lassen.
Wir nehmen unsere Feldgleichung in der allgemeinen Form

T=t(E, ey M1, W, k) = 0 (12.1)

an. Bezeichnen wir t(x, y,, ¥;, P, ¢q) mit ¢, so soll also vermoge der
B-Gruppe eine Relation der Form

T = ut

bestehen. Dies fiihrt uns auf eine Differentialgleichung fiir v in der Form
1 dr

T@da = A7, oder ausgeschrieben,
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% 0T
' 8771

*aT

0
+Y2 8772 * T

+7¥ +P*Bn+Q - =Ar, (12.2)

35
worin A willkiirlich vorgegeben wird.

Wir nehmen die singulidren Integrale vorweg, indem wir nachpriifen,
ob sich aus dem Nullsetzen der bekannten Koeffizienten X*, Y, Y},
P* @Q* invariante Gleichungen 7 = 0 herleiten lassen, welche min-
destens eine der Variabeln m, « enthalten. (Der einfachste Fall ist etwa
P* = 7, denn 7 = x erfiillt (12.2) vermoége n = 0, ganz abgesehen von
den tibrigen Koeffizienten). Im folgenden kénnen wir daher voraussetzen,
daB die Koeffizienten nicht vermoge der Wertesysteme weiterer invarian-
ter Gleichungen verschwinden.

Es seien nun

c(&, oy My, 7, k), Ca(...),  c3(...),  cg(...) (12.3)
vier unabhingige Integrale der homogenen Gleichung

1 dt

;w% = (12.4)

Weiter sei G irgendein nichtidentisch verschwindender unter den Koeffi-
zienten, und y die entsprechende Variable. Wir setzen

AME, Ny M1y T, ) =AY, C15vresCq), G =G(y,0,...,Cy).
Ein fiinftes Integral, welches 7 enthilt, ergibt sich nun aus

d dr_

e
T = cge® mit (Dz—f—g:dy, G #0.

Da e® nicht verschwindet, reduziert sich die allgemeine Losung auf
TEx(cl,...,C4)=0, (12.5)
worin y eine willkéirliche Funktion von ¢,, ..., ¢, darstellt.

Jede nichtsingulire invariante Gleichung kann demnach aus invarianten
Funktionen gebildet werden. Es geniigt, die homogene Gleichung (12.4) zu
integrieren.
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Wir betrachten diese Ausfithrungen an einem Beispiel. Die Schar

& =zxz+qlga, n=ap,
ny=ay, + palga, K=q . (12.6)

m=ay, +pgalga,

ist eine eingliedrige Gruppe in x, y,, ¥,, p,¢q¢ und liBt die Pfaffsche
Gleichung dy, — qdy, — pdx = 0 invariant, stellt also eine rdumliche

B-Gruppe dar.
Die Funktionen des Gleichungssystems (10.3) lauten

X*=x, Yr=n+n, Y =np+ax, P*=nx, *=0,

mit der charakteristischen Funktion W* = @k + 7,x — 7,. Unter den
Gleichungen
k=0, N+ =20, N+ ak=20, =20

befinden sich die unabhingigen invarianten Gleichungen « = 0 wund
n = 0 als singuldre Lésungen.

Die Integration der homogenen Gleichung (12.4) tihrt auf die folgen-
den Integrale:

k=2¢, §&—klgn=c,, 5“""};:03, — = =cy.
Jede weitere invariante Gleichung steckt daher in der Formel
— N 1 /L ) -
Z(K’ E—«klgm, & K== 3 n) 0.

Die singuldre Losung « = 0 steckt in « = ¢,, die zweite singuldre Losung
n = 0 ist hingegen in der allgemeinen Lésung nicht enthalten.
Diese Losung p = 0 fiihrt auf die L-Gruppe

E=zx+qlga, n=ay, n=ay, «x=4q; (W = nyc — 1)

mit der invarianten Gleichung dy, — qdy, = 0. Wir haben ¢ = P1ja

P2
setzen und finden somit die R-Gruppe unseres fritheren Beispiels 1. 39)

30) Dies ist natiirlich kein Zufall. Bei der Aufstellung der B-Gruppe (12.6) wurde nam-
lich der Satz X (I) mit S = 0 auf die R(L)-Gruppe U= 5,6 —7,; X = k; f =0 des
Beispiels 1 (§ 8) angewendet.
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Verkiirzen wir die B-Gruppe dagegen mit ¢ = 1, so bekommen wir
die L-Gruppe

E=2xz+1ga, m=ay, + palga,

772=a?/2+pa-lga, n=ap; (W=75+772”771)

mit der invarianten Gleichung dy, — dy, — pde = 0. Wir haben

P = p; — P, zu setzen und erhalten so eine R-Gruppe des Falles 1I.
Weitere R-Gruppen des Falles I erhalten wir aus den Integralen

€y, C3, €4; Z. B. durch Nullsetzen:

x

x ——
¢4 =0 p————Z} L P— P — =0, q= p;pzy‘
usw.

Es lassen sich demnach schon von einer B-Gruppe im allgemeinen
unzdhlrg viele R-Gruppen herleiten.
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