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Ùberdeckung einer Menge
durch Mengen kleineren Durchmessers

Von H. Hadwiger, Bern

K. Borsuk hat die Vermutung ausgesprochen1), daB jede beschrânkte
Menge des n-dimensionalen Euklidisehen Raumes durch n + 1 Mengen
von kleinerem Durchmesser uberdeckt werden kônne2). DaB n Mengen
zu einer tXberdeckung solcher Art nicht immer ausreichen, lehrt bereits
die Menge, die aus den n + 1 Eckpunkten eines n-dimensionalen regularen
Simplex besteht. Auch die w-dimensionale Vollkugel kann nicht durch
n Mengen kleineren Durchmessers uberdeckt werden; nach dem Borsuk-
schen Antipodensatz enthalt ja wenigstens eine der als abgeschlossen
annehmbaren ùberdeckenden Mengen ein antipodisches Punktepaar, so
daB von den n Oberdeckungsmengen wenigstens eine den namlichen
Durchmesser wie die Vollkugel aufweist3).

In dieser Note soll ein einfacher Beweis der oben zitierten Vermutung
mitgeteilt werden. Genauer beweisen wir den folgenden

Satz: Eine Menge A des n-dimensionalen Euklidischen Raumes vont
Durchmesser D(A) — 1 kann stets durch n + 1 Mengen At(i 0,l,...,n)
der Durchmesser D(At) < 1 Uberdeckt werden*).

Beweis : Nach einem bekannten Satz5) ist A Teilmenge eines it-dimen-
sionalen Kôrpers K konstanter Breite D 1. Es genugt also, den Satz
fur einen solchen Korper K zu beweisen. Ist K eine Kugel vom Durch-

2) K. Borsuk, Drei Satze uber die n-dimensionale Eukhdisohe Sphare.
Fundam. Math. XX (1933), 177—190.

¦) Dièse Mitteilung, sowie die Anregung zu dieser Studie uberhaupt, verdanke ich
Herrn H. Hopf (Zurich).

8) K. Borsuk, Ûber die Zerlegung einer Euklidischen n-dimensionalen
Vollkugel in n Mengen. Verhandlungen des Internationalen Mathematiker-Kon-
gresses in Zurich 1932, II. Bd. 192.

*) In einem demnachst m der Math. Zeitschrift erschemenden Aufsatz (Ûber die
Zerstuckung eines Eikorpers) habe ich den Satz fur Eikorper (mit regulârem
Rand) bewiesen. Bezeichnet r den mneren Rollradius der Randflâche, so ergibt sich die
Aussage des Satzes m der verschàrften Form:

B) T.Bonnesen und W, Fenchel, Théorie der konvexen Korper. Ergebnisse der
Mathematik und îhrer Grenzgebiete, 3. Bd., Berlni 1934, S. 130.
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messer D 1, so ist der Satz trivial6). Wir kônnen uns auf eine Nicht-
kugel K beschrânken.

Wir betrachten nun die Umkugelflâche R des Kôrpers K vom Radius r.
Bekanntlich gilt

Die Menge RK der Randpunkte von K, die zu R gehôren, enthâlt
n + 1 Punkte, die nicht in einer abgeschlossenen Hâlfte (Halbkugel-
schale) von R liegen7), so da8 der Mittelpunkt M von R innerer Punkt
des von den erwâhnten n -\- 1 Punkten aufgespannten n-dimensionalen
Simplex 8 ist.

Es sei nun P ein von M verschiedener Punkt von K. Die P mit M
verbindende Gerade hat mit dem Rand von 8 zwei Punkte gemeinsam ;

Po sei nun derjenige von diesen beiden Punkten, der auf der entgegen-
gesetzten Seite von M liegt wie P, so da6 also M innerer Punkt der
Streeke PP0 ist. — Der Rand von 8 ist weiter uberdeckt durch n + 1

abgeschlossene (n — l)-dimensionale Simplexe 8t(i 0, 1,..., n). Da
die Eckpunkte der 8t nach Konstruktion zu K gehôren, gilt fur ihre
Durchmesser

D(S{) ^ 1 (2)

Die Menge A4 (i 0, 1,..., n) enthalte nun M und auBerdem aile von
M verschiedenen Punkte P von K, fur welche Po zum Randsimplex 8{
gehôrt. OfiEenbar ist K durch die n -j- 1 abgeschlossenen Mengen A{
uberdeckt. — Wir wàhlen jetzt zwei von M verschiedene Punkte P und Q

von Ai\ Po und Qo liegen also in 8{. Es bezeichne d PQ, p MP,
q MQ, p0 MP09 q0 MQ0. Es darf

q ^ V ^ r (3)

angenommen werden.

Weiter fûhren wir den Winkel co PMQ P0MQ0 ein, und es

bezeichne œ den grôBten Wert, den co annehmen kann. Offenbar kann
dieser maximale Winkel cô durch die Punkte P und Q nur realisiert

6) Die Kugel vom Durchmesser 1 kann uberdeckt werden durch n + 1 Simplex-
sektoren der Durchmesser

" D I/ r wenn n gerade, D =- 1/ - + - I/ wenn n ungerade ist.
y n -f- 2 f 2 2 y n + 3

7) Das unter 6) zitierte Werk S. 127—128.
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werden, wenn Po und Qo zwei Eckpunkte von St darstellen, die den
Durchmesser von St liefern. In diesem Falle ist p0 q0 r, so dafi
die Beziehung

r 1/2(1 — cos S) D(St) ^ 1 (4)

gilt. Fur die Distanz d gilt allgemein

d ]/ p2 + q2 — 2pq cos co (5)

Ist nun 0 ^ co ^ —, so ist im Hinblick auf (3) und (5) zunachst
o

d ^p ^ r, und wegen (1) also d < 1.

Es sei weiter — < co < n ; dann ist wieder mit Rucksicht auf (3) und
o

(5) zunachst

d^p V 2 (1 — cos co) Wenn nun œ < ô> gilt, so ist also

d <p]/2 (1 — cos 6>) und wegen (3) und (4) also d < 1.

Wenn aber co ô> gilt, so mufi sicher in Verscharfung von (3) p <r
sein. Denn p r wurde bedeuten, daû P zu KR gehôrt; das gleiche
wurde aber auch fur Po (wie oben erwahnt, muB im vorliegenden Fall Po
ein Eckpunkt von 8t sein') gelten, so dafi PPQ 2r ^ 1 sein muBte;
dies konnte nur fur den bei unserm Beweis vorweggenommenen Fall,
wo K eine Kugel vom Durchmesser 1 ist, zutreffen. Es wird somit

d< rl/2 (1 — cos cô) oder wegen (4) wieder d < 1 sein.

In allen moglichen Fallen hat sich also fur zwei von M verschiedene
Punkte von At, d<l ergeben. Da M ein innerer Punkt von K ist,
wird endlich fur jeden Punkt P von A% auch PM < 1 ausfallen. Da
nun At abgeschlossen ist, mu8 somit D(At) < 1 gelten. Damit ist der
Beweis abgeschlossen.

(Eingegangen den 24. Mai 1945.)
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