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Die erweiterten Steinerschen
Formeln fur ebene und sphârische Bereiche

Von H. Hadwiger, Bern

Die klassischen, nach J. Steiner1) benannten Formeln fur Flàcheninhalt
und Umfang àuBerer und innerer Parallelbereiche ebener konvexer
Bereiche gelten innerhalb passender Grenzen auch fur Parallelbereiche
nicht konvexer Bereiche, falls dièse gewissen gestaltlichen Voraussetzun-
gen genugen2). Das einlâBliche Studium der Frage nach der erweiterten
Gultigkeit der Steinerschen Formeln zeigt, daB der Begriff der gewôhn-
lichen Konvexitât nicht sehr geeignet ist, bei der Bildung der âuBeren
und inneren Parallelmengen eine ausschlaggebende Rolle zu spielen. DaB
bei der Beriicksichtigung nur konvexer Bereiche eine auffallende Ein-
seitigkeit herrscht, wird durch die Tatsache erhellt, daB die Steinerschen
Formeln fur die auBeren Parallelbereiche unbeschrânkt gelten, wahrend
ihre Brauchbarkeit fur die inneren Parallelbereiche an Einschrànkungen
gebunden ist, die wesentlich von der Gestalt der Bereiche abhângen.

Es stellt sich bald heraus, daB die Abklârung der erwâhnten gestaltlichen

Bedingungen sehr eng verwandt ist mit der Lôsung der Frage nach
der erweiterten Gultigkeit der Steinerschen Formeln fur bedeutend all-
gemeinere Mengen. Welche Voraussetzung hat nun bei einer solchen
Erweiterung an die Stelle der Konvexitât zu treten?

Hier bietet sich die Gelegenheit, die Unterkonvexitât und die Vber-
konvexitât einzufiihren, und es soll das hauptsâchlichste Ziel dieser Ab-
handlung sein, die Bedeutung dieser Begriffe im Rahmen des erôrterten
Fragenkreises darzulegen. Mit ihrer Hilfe gelingt es, die Gliltigkeitsfrage
der Steinerschen Formeln fur auBere und innere Parallelmengen von
Mengen sehr allgemeiner Gestalt (beliebig mehrfach zusammenhàngend
und aus verschiedenen Teilen bestehend) in einheitlicher Weise abzu-
klâren.

Die Begriffe Parallelkurve und Parallelbereich treten in der geome-
trischen Literatur in verschiedenen Formen auf. Je nach den Voraus-
setzungen ûber das Ausgangsgebilde ist die eine oder die andere Définition
môglich. Bei Bereichen mit regulâren Randkurven kônnen beispielsweise

1) J. Steiner, Ûber parallèle Flâchen, Monatsbericht der Akademie der Wissen-
schaften zu Berlin, 1840, 114—118 Werke 2, 1882, 171—176. Es handelt sich hierbei
um die entsprechenden Formeln der ràumlichen Géométrie.

*) Leicht ûberblickbar und instruktiv sind die Verhâltnisse etwa bei einem (nicht not-
wendig konzentrischen) Kreisring.
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die ,,differentialgeometrischen Parallelkurven" erklàrt werden; bei kon-
vexen Bereichen ist es vorteilhaft, die mit Hilfe der Stutzfunktion
definierten inneren und âuBeren Parallelbereiche im Sinne von T. Kaluza
einzufûhren. G. Bol hat in verschiedenen Abhandlungen die hohe metho-
dische Bedeutung dieser Parallelbildungen nachgewiesen3).

Indem wir auf eine klassische Cantor-Minkowskische Konstruktion4)
zuriickgreifen, gewinnen wir eine Définition der âuBeren und inneren
Parallelmenge, die sich von jeder Voraussetzung liber die Urmenge frei
hait, und so grundsâtzlich auf jede beliebige Punktmenge angewendet
werden kann.

Es ist fur die von uns einzuschlagende Méthode kennzeichnend, daû
sich die Lôsung des entwickelten Problems fur die zweidimensionale
Sphâre (Kugeloberflâche) in begrifflicher Beziehung treffender verwirk-
lichen lâBt, als dies fur die Ebene der Fall ist. MaBgebend hierfur sind
die nàmlichen Grande, die eine Bernsteinsche Lôsung5) des isoperimetri-
schen Problems auf der Kugeloberflâche ermôglichten, welche in der
Ebene ihr Analogon nicht finden kann.

Gewisse methodische Kunstgriflfe, die auf einem auf der Sphare
geltenden Antipodismus oder Dualismus beruhen, sind in der ebenen
Géométrie nicht vorhanden. Die Endlichkeit und Geschlossenheit der
Sphare verleiht vielen Beziehungen eine Vollstàndigkeit, die im ,,Ent-
artungsfall" der Ebene verloren geht.

Wir nehmen aus den soeben genannten Griinden eine geringfugige
Belastung in technischer Beziehung in Kauf und entwickeln das Problem
und seine Lôsung vollstândig fur die Sphare. Es ist selbstverstândlich,
daB damit auch der Fall der Ebene als Grenzfall eingeschlossen ist.

Bezeichnungen
Es ist zweckmâBig, einige fur die gesamte Arbeit gultige Bezeichnungen

zusammenzustellen :

S Sphare (Kugeloberflâche) vom Radius R,
E Ebene,

8) G. Bol, Isoperimetrische Ungleichungen fur Bereiehe auf Flâchen,
Jahresbericht der D. M. V. 51, 1941, 219—257; Einfache Isoperimetriebeweise
fur Kreis und Kugel bzw. Beweis einer Vermutung von H. Minkowski,
Abhandlungen aus dem Mathematischen Seminar der Hansischen Universitât, 15, 1943,
27—36 bzw. 37—56.

*) H. Minkowski, Ûber die Begriffe Lange, Oberflâche und Volumen,
Jahresbericht der D. M. V 9, 1901, 115—121.

•) F. Bernêtein, tTber die isoperimetrische Eigenschaft des Kreises auf
der Kugeloberflâche und in der Ebene, Math. Ann. 60, 117—136.
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A Punktmenge in 8 oder in E ; A abgeschlossene Huile und
A* komplementâre Menge von A,

F und L Flâcheninhalt und Randlânge eines Bereiches A,
n Anzahl der getrennten Teile eines (nicht zusammenhângenden)

Bereiches A,
m Anzahl der Randkontinua eines Bereiches A,
* ein bei einem sich auf eine Menge A beziehenden Symbol ange-

brachter Stem bezeichnet den Ûbergang zu dem sich auf die
komplementâre Menge A* beziehenden Symbol

oc, /?, A, g, a sphârische oder euklidische Distanzen und Kreisradien
in S oder E,

KQ abgeschlossener Kreisbereich vom Radius g. Wenn der Mittel-
punkt M des Kreises in der Bezeichnung hervortreten muB,
schreiben wir KQ(M),

AQ bzw. A_Q âuBere bzw. innere Parallelmenge (im Abstand g) der
Menge A,

F(g) und L(g) bzw. F(— g) und L(— g) Plâcheninhalt und Rand¬

lange des âuBeren bzw. inneren Parallelbereiches von A.

1. Parallelmengen sphârischer Mengen

Jede beliebige Menge A der Sphare S gestattet die nachfolgende

Définition I. Unter der âufieren Parallelmenge AQ einer Menge A ver-
stehen wir die Vereinigungsmenge aller Kreise KQy deren Mittelpunkte in
A liegen. — Unter der inneren Parallelmenge A_Q verstehen wir die Menge
((.4*)fJ)*, d. h. die Komplementârmenge der entsprechenden âufîeren
Parallelmenge der Komplementârmenge.

Da wir voraussetzen, daB die KQ abgeschlossene Kreisbereiche sind,
ist AQ bzw. A_Q abgeschlossen (offen), falls das gleiche fur A zutrifft. —

Fur jede Menge ist offenbar Ao —A. Ist A =0, so soll auch AQ

A_Q 0 sein.

2. Unter- und tJberkonvexitât sphârischer Mengen

Die Définition der erweiterten Konvexitâtsbegriffe die wir einfuhren
wollen, basiert wesentlich auf der Gtiltigkeit eines Satzes topologischer
Natur, den wir vorausschicken mûssen, wenn die Brauchbarkeit der

nachfolgenden Définition erkannt werden soll.
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Satz I. Zu einer abgeschlossenen Menge A der Bphâre vom Radius R
gibt es eine Zahl oc, 0 ^ oc ^ nR, so dafi der Durchschnitt AKQ von A
mit jedem Kreis KQ vom Radius 0 ^ q < oc einfach zusammenhàngend
ist; dagegen trifft dies fur hein q > oc fur aile KQ zu.

Auf diesen Sachverhalt, den wir spâter zusammen mit den andern
nachfolgend formulierten Sàtzen beweisen, grlinden wir die

Définition IL Ist oc die der abgeschlossenen Menge A auf Orund von
Satz I zukommende Zahl, so heiflt A unterlconvex vont Grade oc. Ferner
heifit A ilberkonvex vom Grade oc, wenn die abgeschlossene Hûlle 3* der
Komplementârmenge A* unterlconvex vom Grade oc ist.

Formale Grûnde legen es nahe, die leere Menge 0 sowie die gesamte
Sphâre S als unterkonvex und iiberkonvex vom Grade tiR anzunehmen.

Ein erster Sachverhalt, der die enge Anpassung der oben eingefïihrten
Konvexitatsbegriffe an den mit den Parallelbildungen in Zusammenhang
stehenden Fragenkreis andeutet, wird durch den folgenden Satz auf-
gedeckt :

Satz II. Die abgeschlossene Menge A sei unterkonvex vom Grade oc und
es sei 0 ^ q ^ oc ; die àufiere Parallelmenge A

Q
ist dann unterkonvex vom

Grade oc — q.

Es ist klar, da8 jedem Satz dieser Art liber unterkonvexe Mengen ein
entsprechender Satz ûber ûberkonvexe Mengen als Korollar an die
Seite gestellt werden kann. Wegen der einfachen Wechselbeziehung
genugt es durchaus, nur die Unterkonvexitàt eingehender zu studieren.

3. Die erweiterten Steinerschen Formeln fur sphârische Bereiche

Die ausschlaggebende Bedeutung der oben eingefïihrten erweiterten
Konvexitatsbegriffe kann erst in Verbindung mit dem Problem der
erweiterten Gliltigkeit der Steinerschen Formeln in vollem Umfang erkannt
werden. Unterkonvexitàt und Ûberkonvexitât erscheinen hier als charak-
teristische Voraussetzungen fur die Gliltigkeit der Formeln fur erheblich
allgemeinere Mengen. Die gewôhnliche Konvexitât, die in der Sphàrik
ûbrigens in verschiedener Beziehung nicht eine ûberzeugende Rolle
spielt, tritt voUstàndig in den Hintergrund.

Es sei A ein abgeschlossener echter Teilbereich von S. Unter einem
Bereich wollen wir hier die abgeschlossene Huile eines Gebietes verstehen.
A moge aus n getrennten Teilen bestehen; die einzelnen Teile kônnen
mehrfach zusammenhàngend sein. Die Anzahl der streckbaren Rand-
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kontinua sei m. F bezeichne den gesamten Flâcheninhalt und L die
totale Randlânge von A. Die entsprechenden MaBzahlen fur den âuBe-

ren bzw. inneren Parallelbereich AQ bzw. A_Q seien F(q) und L(q) bzw.

Es gilt dann der folgende

Sâtz III. Ist der Bereich A unterkonvex vont Grade oc und ûberkonvex

vont Grade /?, so ist im Intervall — /J 5^ g ^ oc

F(q) =Fcos-^- + LR sin -%- + (4n — 2m) nR2 (l — cos -fr
K M \ M

L(p) 5- sin -~ +£cos-~- -f- (4n — 2m) nR sin-~-

Es ist vorteilhaft die Formeln von Satz III in der folgenden Gestalt
zu schreiben :

F(q) — {In —2m) n R2 [F — (in — 2m) nR2'] cos -£ +J?L sin-|rKM
RL{g) ~ [jF—(47i-2m)7iJR]sin4

Xi 1T

Damit wird offensichtlich, daB sich die Ânderung des Wertepaares

F — (4n — 2m)7iR2, RL

beim Ûbergang zu den Parallelmengen als orthogonale Transformation
deuten lâBt. Hieraus folgern wir, daB der Ausdruck

J (F - (en - 2m) Tri?2)2 + (i?i)2

eine Parallelinvariante ist, d. h. ein Wert, der sich innerhalb des Geltungs-
bereiches der Steinerschen Formeln nicht ândert.

Eine beachtenswerte Eigenschaft der oben gebildeten Invarianten er-
gibt sich, wenn man den dem Bereiche A komplementar entsprechenden
Bereich L4* betrachtet.

Im Hinblick auf die Beziehungen

n* 1 -f m — n
m* m

verifiziert man leicht, daB
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F* - (en* - 2m*) nR2 (en - 2m) nR* - F

so daB sich die Ûbereinstimmung

J* J

der beiden einander komplementàr zugeordneten Invarianten ergibt.

4. Die erweiterten Steinerschen Formeln îiir ebene Bereiche

Um bei der tïbertragung unserer Resultate auf den wichtigen Fall der
Ebene eine gewisse Vollstândigkeit anzustreben, wiederholen wir die

grundlegenden Definitionen :

Définition 1°. Unter der aufieren Parallelmenge AQ einer beliebigen
ebenen Menge A verstehen wir die Vereinigungsmenge aller Kreise KQ,
deren Mittelpunkte in A liegen. Unter der inneren Parallelmenge A_Q
verstehen wir die Menge ((A*)Q)*, d.h. die Komplementârmenge der ent-
sprechenden duperen Parallelmenge der Komplementârmenge.

Définition II0. Eine abgeschlossene ebene Menge A heifit unterhonvex
vom Grade oc, wenn der Durchschnitt A-KQ von A mit jedem Kreis KQ vom
Radius q < <x einfach zusammenhangend ist ; dagegen treffe dies fur kein

q > oc fur jeden Kreis KQ zu. A heifit ilberkonvex vom Grade oc, wenn die
abgeschlossene Hûlle A* der Komplementârmenge A* unterkonvex vom
Grade oc ist.

Der Zusammenhang der so definierten erweiterten Konvexitât mit der
gewôhnlichen Konvexitât wird durch den nachfolgenden Satz hergestellt,
dessen Beweis wir dem Léser leieht ûberlassen kônnen, da er nur der
Vollstândigkeit wegen erwâhnt und nirgends gebraucht wird:

Satz IV. Eine abgeschlossene ebene Menge A ist dann und nur dann
Jconvex, wenn der Durchschnitt A-KQ von A mit jedem Kreis KQ mit 6e-

Hebigem Radius q einfach zusammenhangend ist.

Dieser Satz legt es nahe, eine konvexe Menge als unterkonvex vom
Grade oo anzusehen ; sinngemâG ist die Définition 11° zu ergânzen.

Es sei nun A ein abgesehlossener beschrânkter Bereich, d. h. die
abgeschlossene Huile eines besehrânkten ebenen Gebietes. A môge aus n
getrennten Teilen bestehen; die einzelnen Teile kônnen mehrfach
zusammenhangend sein. Die Anzahl der streekbaren Randkontinua sei m.
Es bezeichne F den gesamten Flâeheninhalt und L die totale Randlânge
von A. Ûber Flâeheninhalt F(q) und Randlânge L(q) der àuBeren und
inneren Parallelbereiche AQ gilt dann der folgende
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Satz III0. Ist der Bereich A unterkonvez vom Grade oc und ilberkonvex
vom Grade p, so gelten im Intervall — /? <£ q <^ oc die Formeln

F(q) F +Lq + (2ti, — m)nq2,

L(q) L +(4:n — 2m) no

Die Formeln von Satz III0 enthalten die klassischen Formeln von
Jakob Steiner als Spezialfàlle. Ist nàmlich A konvex, so ist notwendiger-
weise n m 1. Fur die âuBeien Parallelbereiche, d. h. fur das Intervall

0^^<oo gelten dann die bekannten Beziehungen

F(q) =F +Lq +kq\
L{q) L +2jzq

Die Formeln von Satz III0 lassen sieh aus denjenigen von Satz III
muhelos durch die gelâufigen Grenzubergânge iJ->oo gewinnen.

Bezeichnet J die weiter oben abgeleitete sphàrische Parallelinvariante,
so lâBt sich dureh Grenzubergang dann eine fur die Ebene brauchbare
Parallelinvariante gewinnen, wenn man den ungeformten ebenfalls
parallelinvarianten Ausdruck

J- (4n- 2m)7tR T<k /o A ,_ FS1= Z/* - (8n - 4m) nF + ^
betrachtet. Fur B-+oo gewinnt man die ebene Parallelinvariante

L2 — (Sn — 4m) nF

die fur n m 1 mit dem bekannten Isoperimetrischen Defizit iden-
tisch ist.

5. Hilfssâtze topologischer Art

Wir beweisen zunachst einige einfache metrisch-topologische Hilfssâtze,
die innerhalb der Théorie der Parallelmengen selbstândiges Interesse
verdienen kônnen. Die Aussagen beziehen sich auf die Sphâre.

1. Hilfssatz. Ist G ein nicht kreisfôrmiges einfach zusammenhàngendes
Gebiet, so gibt es zu einem beliebigen s > 0 im âufleren Parallelgebiet G8

stets einen Kreis KQ, so dafi der Durehschnitt G*KQ nicht zusammen-
hàngend ist,

5 Commentarii Mathematici Helvetici "^



Beweis. Es gibt zunâchst sieher einen Ko e G so, daB G*Ka wenig-
stens drei Punkte enthàlt. Es kann angenommen werden, daB dièse drei
Punkte auf einem Bogen des Kreisrandes von Ka liegen, der ganz zu
(?* gehôrt, da andernfalls der Hilfssatz bewiesen ist. Da G nach Voraus-
setzung nicht kreisfôrmig ist, besitzt dieser Bogen zwei Endpunkte P
und Q, P ^ Q. Es bezeichne M die Bogenmitte und N den zu M dia-
metralen Gegenpunkt auf dem Kreisrand von Ka. N liât von G* einen

positiven Abstand, da sonst der Hilfssatz wieder bewiesen wâre. Ofïen-
bar lâBt sich nun ein ganz in Ge liegender Kreis KQ finden, dessen Rand
dureh P und Q hindurchlàuft und die Gerade MN in den Punkten M!
und Nr so schneidet, daB der Durehmesser MrNf ganz in G liegt. Der
Durchschnitt G*KQ kann nicht zusammenhàngend sein.

2. Hilfssatz. Wenn das Komplementârgebiet A* der âujieren Parallel-
menge A\ einer abgeschlossenen Menge A ein Kreisgebiet G vom Radius g

aufweisty so enthàlt das Gebiet A* ein Jconzentrisches Kreisgebiet G0 vom
Radius q + A.

Beweis. Ein Randpunkt P des Kreisgebietes G gehôrt zu i^; das

Innere des Kreises K\(P) gehôrt sieher zu -4*. Andererseits muB auf
dem Rand von Kx(P) mindestens ein Punkt P° von A liegen. P° kann
nur der Beruhrungspunkt des Kx(P) mit der âuBern Enveloppe aller
Kx(P) sein, wo P auf dem Kreisrand von G variiert. Aile P° liefern den
Rand des mit G konzentrischen Kreisgebietes G0 vom Radius q + A das

zu A* gehôrt.

3. Hilfssatz. Hat die abgeschlossene Menge A mit jedem Kreis KQ vom
festen Radius q einen einfach zusammenhàngenden Durchschnitt AKQi so

hat sie auch mit jedem Kreis Ka, a < g, einen einfach zusammenhàngenden

Durchschnitt A Ka.
Beweis. Wir nehmen das Gegenteil der Behauptung an. Es gibt dann

einen Ka(M), a<g, so daB D =A-Ka nicht einfach zusammenhàngend

ist. Fur den Fall, daB D mehrfach zusammenhàngend ist, oder
einen ganz im Innern von Ka liegenden, mit dem tibrigen Durchschnitt
nicht zusammenhàngenden Teil enthàlt, geniigt es, einen KQ(M) zu be-

trachten, der dann im Widerspruch zur Voraussetzung mit A ebenfalls
keinen einfach zusammenhàngenden Durchschnitt aufweist. Man darf
also folgendes annehmen:

1. D Dx + D2, Dx D% 0 ; D1} D2 abgeschlossen.
2. Es gibt zwei Randpunkte von Ka : Px e D1\ P2 e D2.
3. Der Rand von Ka werde durch die beiden Punkte Px und P2 in die
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beiden Kreisbôgen Gx und C2 zerlegt. Es gibt zwei Punkte Qx e CtD*,
Q2 e C2D* die durch ein ganz in D*Ka verlaufendes Polygon verbunden
werden kônnen.

Wir betrachten nun einen Kreis KQ(N), der die beiden Punkte P1
und P2 im Innern enthâlt. Die Menge aller Mittelpunkte N ist eine
offene zusammenhângende Menge T (Ûberdeckungsgebiet zweier Kreis-
gebiete). Der Durchschnitt AKQ(N) ist nach Voraussetzung einfach
zusammenhàngend. Wenn wir die Punkte P1 und P2 durch einen Haupt-
kreisbogen #, der innerhalb von Ka verlaufen soll, verbinden, so zerfâllt
das Komplementàrgebiet von AKQ(N) + S in zwei getrennte einfach
zusammenhângende Gebiete, wobei die Punkte Qx und Q2 in verschie-
denen Gebieten liegen mùssen. Da auch der zu N antipodische Punkt N°
in einem dieser beiden Gebiete liegen muB (N° kann nicht zu KQ und
nicht zu S gehôren ist nun N° entweder mit Qx oder mit Q2 im gleichen
zusammenhângenden Gebiet. Tx bezeichne die Menge der Mittelpunkte N
im ersten Fall, T2 die analoge Menge im zweiten Fall. Wie man leicht
verifiziert, sind Tx und T2 offen und selbstverstândlich fremd.

Im Hinblick auf die gegenseitige Lage der Punkte Pl9 P2, Qlt Q2 &uf
dem Rand von Ka kann der Kreis KQ so gelegt werden, daB er Px und P2

im Innern, aber nach Belieben entweder Qx oder Q2 nicht enthâlt. Der
im Komplementàrgebiet K* liegende Punkt Q befindet sich ofifenbar mit
^° im gleichen zusammenhângenden Gebiet der weiter oben betrachteten
Art. Damit ist erwiesen, daB von den beiden eingefuhrten Mengen T± und
T2 keine leer ist.

Nun gilt aber T Tt + T2, d. h. das Gebiet T ist zerlegt in zwei
fremde, offene und nicht leere Teile Tx und T2\ Damit ist erneut ein
Widerspruch erzielt.

4. Hilfssatz. Hat die abgeschlossene Menge A mit jedem Kreis KQ von
festent Radius q einen einfach zusammenhângenden Durchschnitt AKQ,
so ist fur 0 < X < q auch A^K^x s^s einfach zusammenhàngend.

Beweis. Es sei U AKQ{M) und F AXK^X(M). Es sei zu-
nachst F nicht zusammenhàngend, also F Vx -\-V2, VtV2 0. Es
sei PeU und W(P) KX(P)K^X(M). Im Hinblick auf KX(P)€AX
gilt offenbar W(P)eV. Da nun W(P) zusammenhàngend und nicht
leer ist, gilt fur jeden Punkt P entweder W(P)€V1 oder TT(P)cF2.
Gilt das erstere, so soll P c U1 und gilt das letztere, so soll P eU2 sein,
so daB also U U1 -f- U2 ist. Da aber die Teile U± und U2 abge-
schlossen, fremd und nicht leer sind, ergibt sich ein Widerspruch mit der
Voraussetzung, wonach U zusammenhàngend sein soll. Es ist also F zu-
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sammenhàngend. Wir nehmen nun weiter an, daB F mehrfach zusammen-
hângend ist. F* und somit auch Af enthalte ein einfach zusammen-
hângendes Gebiet G€KQ_X. Ist nun G nicht kreisfôrmig, so gibt es nach
dem 1. Hilfssatz ein er, 0 < a < g — X so, dafi der Durchschnitt KqAx
nicht zusammenhângend ist. Nach dem 3. Hilfssatz ist auch A • KQ, stets
einfach zusammenhângend, wo a gf — A gesetzt wird. Nach dem
weiter oben erreiehten ersten Résultat beim Beweis dièses 4. Hilfssatzes
aber muBte AxKa zusammenhângend sein. Widerspruch Es bleibt noch
der Fall iibrig, wo G kreisfôrmig ist. A * enthâlt also ein Kreisgebiet vom
Radius a innerhalb K^x- Nach dem 2. Hilfssatz enthâlt dann .4* ein
konzentrisches Kreisgebiet vom Radius a + À das innerhalb Ko liegt. In
diesem Falle wâre aber AKQ mehrfach zusammenhângend. Widerspruch

6. Hilfssatz. Hat die abgeschlossene Menge A mit jedem Kreis KQ vom
festen Radius g einen einfach zusammenhângenden Durchschnitt AKQ
und ist fur ein A, 0 < A < g, auch der Durchschnitt A^KQ stets einfach
zusammenhângend, so ist auch AKa+x stets einfach zusammenhângend.

Beweis, Es sei U A\Ka{M) und F ^4JTa+^(ifeT). Zunâchst
nehmen wir an, daB F nicht zusammenhângend sei, also F Vx + F2,

VXV2 0. Es sei Pc U und W(P) =AKX(P)- Im Hinblick auf die
Voraussetzung, wonach AKQ stets einfach zusammenhângend ist, muB
auch W(P) nach dem 3. Hilfssatz einfach zusammenhângend sein. An-
dererseits gilt W(P) e Ka+X, also W(P) € F. Fur jeden Punkt P gilt
entweder W(P) e Vx oder W(P) c F2. Gilt das erstere, so soll Pe Ux

und gilt das letztere, so soll P cU2 sein, so daB also U= U1 + U2 ist.
Da nun aber die Teile Ux und U2 abgeschlossen, fremd und nicht leer
sind, ergibt sich so ein Widerspruch mit der Voraussetzung, wonach U
zusammenhângend sein soll. Es ist also F zusammenhângend. Wir
nehmen jetzt weiter an, daB F mehrfach zusammenhângend sei. F* und
somit auch A* enthâlt ein einfach zusammenhângendes Gebiet GeKa+x.
Ist nun G nicht kreisfôrmig, so gibt es nach dem 1. Hilfssatz ein co,

0<ct><<7, so daB AK^+x nicht zusammenhângend ist. Nach dem
3. Hilfssatz ist mit AxKa auch immer A^K^ einfach zusammenhângend.
Nach dem weiter oben erreicjiten ersten Résultat beim Beweis dièses

5. Hilfssatzes ist aber AKW+X zusammenhângend. Widerspruch Be-
trachten wir noch den Fall, wo G kreisfôrmig ist. ^4* enthâlt ein
Kreisgebiet in KQ+X dessen Radius im Hinblick auf die Voraussetzung ûber A
grôBer als g sein muB. Also enthâlt A* ein Kreisgebiet in Ko dessen

Radius grôBer als g — À, also positiv ist. AxKa ist nioht einfach
zusammenhângend. Widerspruch



6. Hilfssatz integralgeometrischen Ursprungs

Es ist eine bekannte Tatsache, daB sich viele Formeln der klassischen
Géométrie als einfache Folgerungen viel allgemeinerer Beziehungen der
neuzeitlichen, hauptsâchlich von W. Blaschke und seinen Schûlern ge-
schaffenen Integralgeometrie ergeben. Als Beispiel hierfur kann die
Formel von J. Steiner fur ebene konvexe Bereiche genannt werden, die
sich als Spezialfall einer Formel von L. A. Santalô darstellen lâBt6).

Auch die von uns erstrebten Erweiterungen haben ihrem formel-
màBigen Gehalte nach bei der hier vorgesehenen Entwicklung einen
integralgeometrischen Ursprung. Die entscheidende Schliisselbeziehung,
die in den nachfolgenden 6. Hilfssatz eingebaut ist, wird direkt aus der
Hauptformel der sphârischen Integralgeometrie abgeleitet.

6. Hilfssatz. A sei ein abgeschlossener Bereich der Sphâre 8 vont Radius
R. Es bezeichne n die Zahl der getrennten Teile und m die Zahl der streck-
baren Randkontinua von A. Ferner soll F den Flâcheninhalt und L die

Randlânge von A, und endlich F(q) den Flâcheninhalt des âu/ieren Parallel-
breiches AQ bezeichnen. Wenn der Durchschnitt AKQ von A mit jedem
sphârischen Kreis KQ vont Radius q stets aus einfach zusammenhângenden
Teilen besteht, so gilt die Ungleichung

F(q) ^ LR sin -jr- + F cos -|- + {4n — 2m) nR2 |l — cos -jÀ

Das Oleichheitszeichen gilt dann und nur dann, wenn der Durchschnitt
A KQ fast immer einfach zusammenhangend ist.

Beweis. Setzt man abkûrzend

N (4n — 2m)n

so gilt fur zwei Bereiche Ao und Ax die Hauptformel der sphârischen
Integralgeometrie7)

Hierbei bezeichnet Ao die sphàrische kinematische Dichte des auf der
Sphâre 8 beweglichen Bereiches Ao. Ferner sei

N (en —

•) W. Bla8chke, Vorlesungen ûber Integralgeometrie I, Berlin und Leipzig
1936, Seite 30, Formel 180.

7) W. Blaschke, Vorlesungen ûber Integralgeometrie. II, Berlin und Leipzig
1937, Seite 82, Formel 131.
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die sich auf den Durchschnitt A0A1 beziehende Zahl gleicher Bedeutung.
Die Intégration hat sich ûber aile Ao zu erstrecken, welche A1 treffen.
Setzen wir nun Ax A und Ao KQ, so gelten die Beziehungen

Ft F, LX L, JV1== (4tn —

Fo 2nR2(l — cos-|-| Lo 2jrjRsin-^-, N0 2n.

Im Hinblick auf die Voraussetzung ûber A wird n m, und also

F 2rcn
So ergibt sich zunachst

ÇnKQ 2n LR sin-^- + -Pcos-^- + (4rc — 2m)7rJ?2(l — cos -|-)
J MM \ M J

Andererseits ist bei Intégration ûber aile KQ die A treffen

so daB man durch passende Subtraktion

f(n — 1) KQ LRsm-Jï + F cos -j- + (4w — 2m) Tri?2 (l - c°s4r) — F(q)~ f(

erhâlt. Das links stehende Intégral ist offenbar nicht negativ und dann
und nur dann Null, wenn fast immer (d. h. mit Ausnahme einer Lagen-
menge von KQ vom integralgeometrischen MaB Null) n 1 ist. Damit
ist der 6. Hilfssatz bewiesen.

7. Hauptbeweise

Nach diesen Vorbereitungen kônnen wir uns recht kurz fassen :

Beweis von Satz I. Die Radien q 0 ^ g ^ nR, lassen sich in zwei
Klassen a und b einteilen, je nach dem A-KQ fur jeden Kreis KQ vom
festen Radius q einfach zusammenhàngend ist oder nicht. Nach dem
3. Hilfssatz folgt aus Qea ebenfalls g'*a, wenn qf ^ q ist. Die
Elassen a und 6 bestimmen somit eine Dedekindsche Schnittzahl <x,

Ô ^ oc ^ nR. Dièse hat offenbar die in Satz I ausgesprochene Eigen-
achaft. (Im Falle daB b leer ist, setzt man natûrlich a =nR.)

£0



Beweis von Satz II. Naeh Voraussetzung hat A mit KQ fur g < ex

stets einen einfach zusammenhângenden Durchschnitt AKQ. Nach
dem 4. Hilfssatz ist AxKq-\ stets einfach zusammenhângend, also ist
AxKa stets einfach zusammenhângend, falls a<oc — A gewâhlt wird;
das letzte folgt noch in Verbindung mit dem 3. Hilfssatz. — Andererseits

gibt es zu jedem q > oc ein KQ so, daB A KQ nicht einfach zusammen-
hângt. Nach dem 5. Hilfssatz gibt es einiT^ so, daB auch A^K^x nicht
einfach zusammenhângt. Also ist fur jedes g > oc — A A\Ka nicht
stets einfach zusammenhângend. Somit ist Ax unterkonvex vom Grade
oc — A, w. z. b. w.

Beweis von Satz III. Nach dem 6. Hilfssatz gilt fur 0 ^ g < oc

F(q) F cos ^ + LR sin | + (4w-2m) tzR2 (l — cos jÀ

Da nach Satz II Ax fur 0 < A < oc unterkonvex vom Grade oc—X ist,
und da, wie elementar einzusehen, AQ (Ax)^.x ^y fP& na-ch der soeben

gemachten Feststellung

F(q) F{X) cos ^^ + L{X) R sin ^=r^ + (4tia - 2mA) ttjB2 /l - cos^
Nun sind die Funktionen F(X) und i(A) stetig von A abhàngig, so daB im
Intervall 0 <^ X<oc 4wA — 2mx stetig, also wegen der Ganzzahligkeit
konstant sein muB. Man kann in der Formel 4wA — 2m^ en — 2m
setzen und dann nach L{X) auflôsen. So ergibt sich zunâchst :

F(q) - F(X) cos ttZ^ - (en — 2m) tzR2 (l - cos

R

Setzen wir hier fur die Flâcheninhalte F(q) und F(X) die gultigen Formeln
ein, so gewinnt man mit mehrfacher Verwendung der trigonometrischen
Additionstheoreme die Darstellung

L(X) p- sin -p- + L cos-p- + (4ri — 2m) nR sir^- sin -^- + L cos-^- + (4r& — 2m) nR sin-^-

die nach der Herleitung im Intervall 0 ^ A < oc richtig ist.

n



Die Gultigkeit der entsprechenden Formeln fur — ff < q <; 0 folgt
nun leicht auf Grund der Tatsache, daB der dem Bereiche A komplemen-
t&r zugeordnete Bereich 3* unterkonvex vom Grade /? ist, mit Be-

nutzung der Formeln

n* 1 -\-m — n m* m

Die Ausdehnung des Geltungsintervalls auf das abgeschlossene Intervall
— P ^ Q ^ oc ist aus Stetigkeitsgrûnden môglich.

(Eingegangen den 3. Mai 1945.)
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