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Die erweiterten Steinerschen
Formeln fiir ebene und sphérische Bereiche

Von H. HApwicER, Bern

Die klassischen, nach J. Steiner!) benannten Formeln fiir Flicheninhalt
und Umfang &duBlerer und innerer Parallelbereiche ebener konvexer
Bereiche gelten innerhalb passender Grenzen auch fiir Parallelbereiche
nicht konvexer Bereiche, falls diese gewissen gestaltlichen Voraussetzun-
gen geniigen?). Das einldflliche Studium der Frage nach der erweiterten
Giiltigkeit der Steinerschen Formeln zeigt, da3 der Begriff der gewohn-
lichen Konvexitit nicht sehr geeignet ist, bei der Bildung der duBeren
und inneren Parallelmengen eine ausschlaggebende Rolle zu spielen. DaB
bei der Beriicksichtigung nur konvexer Bereiche eine auffallende Ein-
seitigkeit herrscht, wird durch die Tatsache erhellt, daB die Steinerschen
Formeln fiir die duBleren Parallelbereiche unbeschriankt gelten, wihrend
ihre Brauchbarkeit fiir die inneren Parallelbereiche an Einschrinkungen
gebunden ist, die wesentlich von der Gestalt der Bereiche abhingen.

Es stellt sich bald heraus, daB die Abklirung der erwidhnten gestalt-
lichen Bedingungen sehr eng verwandt ist mit der Losung der Frage nach
der erweiterten Giiltigkeit der Steinerschen Formeln fiir bedeutend all-
gemeinere Mengen. Welche Voraussetzung hat nun bei einer solchen
Erweiterung an die Stelle der Konvexitdt zu treten?

Hier bietet sich die Gelegenheit, die Unterkonvexitit und die Uber-
konvexitit einzufithren, und es soll das hauptsédchlichste Ziel dieser Ab-
handlung sein, die Bedeutung dieser Begriffe im Rahmen des erdrterten
Fragenkreises darzulegen. Mit ihrer Hilfe gelingt es, die Giiltigkeitsfrage
der Steinerschen Formeln fiir duflere und innere Parallelmengen von
Mengen sehr allgemeiner Gestalt (beliebig mehrfach zusammenhingend
und aus verschiedenen Teilen bestehend) in einheitlicher Weise abzu-
kldren.

Die Begriffe Parallelkurve und Parallelbereich treten in der geome-
trischen Literatur in verschiedenen Formen auf. Je nach den Voraus-
setzungen iiber das Ausgangsgebilde ist die eine oder die andere Definition
moglich. Bei Bereichen mit reguldren Randkurven konnen beispielsweise

1) J. Steiner, Uber parallele Flachen, Monatsbericht der Akademie der Wissen-
schaften zu Berlin, 1840, 114 —118 = Werke 2, 1882, 171—176. Es handelt sich hierbei
um die entsprechenden Formeln der raumlichen Geometrie.

%) Leicht {iberblickbar und instruktiv sind die Verhé#ltnisse etwa bei einem (nicht not-
wendig konzentrischen) Kreisring.
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die ,,differentialgeometrischen Parallelkurven‘‘ erklédrt werden; bei kon-
vexen Bereichen ist es vorteilhaft, die mit Hilfe der Stiitzfunktion
definierten inneren und duBeren Parallelbereiche im Sinne von 7'. Kaluza
einzufiihren. G. Bol hat in verschiedenen Abhandlungen die hohe metho-
dische Bedeutung dieser Parallelbildungen nachgewiesen?).

Indem wir auf eine klassische Cantor-Minkowskische Konstruktion?)
zuriickgreifen, gewinnen wir eine Definition der &dufleren und inneren
Parallelmenge, die sich von jeder Voraussetzung iiber die Urmenge frei
hélt, und so grundsitzlich auf jede beliebige Punktmenge angewendet
werden kann.

Es ist fiir die von uns einzuschlagende Methode kennzeichnend, dall
gich die Losung des entwickelten Problems fiir die zweidimensionale
Sphére (Kugeloberfliche) in begrifflicher Beziehung treffender verwirk-
lichen ldft, als dies fiir die Ebene der Fall ist. MaBgebend hierfiir sind
die ndmlichen Griinde, die eine Bernsteinsche Losung®) des isoperimetri-
schen Problems auf der Kugeloberfliche ermdéglichten, welche in der
Ebene ihr Analogon nicht finden kann.

Gewisse methodische Kunstgriffe, die auf einem auf der Sphire
geltenden Antipodismus oder Dualismus beruhen, sind in der ebenen
Geometrie nicht vorhanden. Die Endlichkeit und Geschlossenheit der
Sphire verleiht vielen Beziehungen eine Vollstindigkeit, die im ,,Ent-
artungsfall’* der Ebene verloren geht.

Wir nehmen aus den soeben genannten Griinden eine geringfiigige
Belastung in technischer Beziehung in Kauf und entwickeln das Problem
und seine Losung vollstindig fiir die Sphére. Es ist selbstverstiandlich,
daB damit auch der Fall der Ebene als Grenzfall eingeschlossen ist.

Bezeichnungen
Es ist zweckméBig, einige fiir die gesamte Arbeit giiltige Bezeichnungen
zusammenzustellen :

S Sphire (Kugeloberfliche) vom Radius R,
E = Ebene,

3) Q. Bol, Isoperimetrische Ungleichungen fiir Bereiche auf Fliachen,
Jahresbericht der D. M. V. 51, 1941, 219—257; Einfache Isoperimetriebeweise
fir Kreis und Kugel bzw. Beweis einer Vermutung von H. Minkowski,
Abhandlungen aus dem Mathematischen Seminar der Hansischen Universitat, 15, 1943,
27—36 bzw. 37—56.

4) H. Minkowski, Uber die Begriffe Lange, Oberflache und Volumen,
Jahresbericht der D. M. V 9, 1901, 115—121.

8) F. Bernstein, Uber die isoperimetrische Eigenschaft des Kreises auf
der Kugeloberflache und in der Ebene, Math. Ann. 60, 117—136.
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A = Punktmenge in S oder in E; A = abgeschlossene Hiille und
A* = komplementire Menge von A,

F und L = Fldcheninhalt und Randlinge eines Bereiches 4,

n = Anzahl der getrennten Teile eines (nicht zusammenhéngenden)
Bereiches A4,

m = Anzahl der Randkontinua eines Bereiches A4,

* = ein bei einem sich auf eine Menge A4 beziehenden Symbol ange-
brachter Stern bezeichnet den Ubergang zu dem sich auf die
komplementére Menge 4* beziehenden Symbol

«, 8,4, o, c = sphirische oder euklidische Distanzen und Kreisradien

in S oder ¥,

= abgeschlossener Kreisbereich vom Radius p. Wenn der Mittel-

punkt M des Kreises in der Bezeichnung hervortreten muf,
schreiben wir K, (M),

4, bzw. A_, = éullere bzw. innere Parallelmenge (im Abstand g) der
Menge A4,

F(p) und L(p) bzw. F(— p) und L(— p) = Fldcheninhalt und Rand-
linge des duBleren bzw. inneren Parallelbereiches von A4.

K,

1. Parallelmengen sphiirischer Mengen

Jede beliebige Menge 4 der Sphire S gestattet die nachfolgende

Definition 1. Unter der duferen Parallelmenge A, einer Menge A ver-
stehen wir die Vereinigungsmenge aller Kreise K,, deren Mittelpunkte in
A liegen. — Unter der inneren Parallelmenge A_, verstehen wir die Menge
((A*)Ey*, d. h. die Komplementirmenge der entsprechenden duferen Paral-
lelmenge der Komplementirmenge.

Da wir voraussetzen, dal die K, abgeschlossene Kreisbereiche sind,
ist A, bzw. A_, abgeschlossen (offen), falls das gleiche fiir 4 zutrifft. —
Fiir jede Menge ist offenbar 4, =A4. Ist 4 =0, so soll auch 4, =
A4_, =0 sein.

2. Unter- und Uberkonvexitit sphirischer Mengen

Die Definition der erweiterten Konvexitidtsbegriffe die wir einfithren
wollen, basiert wesentlich auf der Giiltigkeit eines Satzes topologischer
Natur, den wir vorausschicken miissen, wenn die Brauchbarkeit der
nachfolgenden Definition erkannt werden soll.

61



Satz I. Zu einer abgeschlossenen Menge A der Sphire vom Radius R
gibt es eine Zahl x, 0 < x < nR, so daf3 der Durchschnitt AK e von A
mit jedem Kreis K, vom Radius 0 < o <« einfach zusammenhingend
wst; dagegen trifft dies fur kein ¢ >« fir alle K, zu.

Auf diesen Sachverhalt, den wir spiter zusammen mit den andern
nachfolgend formulierten Sdtzen beweisen, griinden wir die

Definition II. Ist « die der abgeschlossenen Menge A auf Grund von
Satz I zukommende Zahl, so heifit A unterkonvexr vom Grade . Ferner
heifit A sberkonvex vom Grade x, wenn die abgeschlossene Hiille A* der
Komplementlirmenge A* unterkonvex vom Grade « tst.

Formale Griinde legen es nahe, die leere Menge 0 sowie die gesamte
Sphére S als unterkonvex und iiberkonvex vom Grade mR anzunehmen.

Ein erster Sachverhalt, der die enge Anpassung der oben eingefiihrten
Konvexititsbegriffe an den mit den Parallelbildungen in Zusammenhang
stehenden Fragenkreis andeutet, wird durch den folgenden Satz auf-
gedeckt:

Satz I1. Dre abgeschlossene Menge A sev unterkonvex vom Grade x und
essei 0 < p <, die duflere Parallelmenge A o 1St dann unterkonvex vom
Grade « — p.

Es ist klar, daB jedem Satz dieser Art iiber unterkonvexe Mengen ein
entsprechender Satz iiber iiberkonvexe Mengen als Korollar an die
Seite gestellt werden kann. Wegen der einfachen Wechselbeziehung
geniigt es durchaus, nur die Unterkonvexitit eingehender zu studieren.

3. Die erweiterten Steinerschen Formeln fiir sphiirische Bereiche

Die ausschlaggebende Bedeutung der oben eingefiihrten erweiterten
Konvexititsbegriffe kann erst in Verbindung mit dem Problem der er-
weiterten Giiltigkeit der Steinerschen Formeln in vollem Umfang erkannt
werden. Unterkonvexitit und Uberkonvexitit erscheinen hier als charak-
teristische Voraussetzungen fiir die Giiltigkeit der Formeln fiir erheblich
allgemeinere Mengen. Die gewohnliche Konvexitdt, die in der Sphérik
iibrigens in verschiedener Beziehung nicht eine iiberzeugende Rolle
spielt, tritt vollstindig in den Hintergrund.

Es sei 4 ein abgeschlossener echter Teilbereich von §. Unter einem
Bereich wollen wir hier die abgeschlossene Hiille eines Gebietes verstehen.
A moge aus n getrennten Teilen bestehen; die einzelnen Teile kénnen
mehrfach zusammenhidngend sein. Die Anzahl der streckbaren Rand-
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kontinua sei m. F bezeichne den gesamten Flicheninhalt und L die
totale Randlinge von 4. Die entsprechenden Mafzahlen fiir den duBe-
ren bzw. inneren Parallelbereich 4, bzw. A_, seien F(p) und L(p) bzw.
F(— o) und L(— o).

Es gilt dann der folgende

Satz II1. Ist der Bereich A unterkonvex vom Grade x und #iberkonvex
vom Grade B, so ist im Intervall — f < p S «

F (o) =Fcos—% + LR sin —%— + (4n — 2m) = R? (1 —cos—l%—) .

_F . 0 .0
L(g)_———~—R~sm—g+Lcos—E+(4n——2m)nRsm-R-— .

Es ist vorteilhaft die Formeln von Satz III in der folgenden Gestalt
zu schreiben:

F(p) — (4n —2m)mn R? = [F — (4n — 2m) n R?] cos-gB + RL sin-}%-

RL(p) = — [F—(4n—2m) nR?*]sin —% + RL cos~% .

Damit wird offensichtlich, daB sich die Anderung des Wertepaares
F — (4n — 2m) nR?, RL

beim Ubergang zu den Parallelmengen als orthogonale Transformation
deuten 14B8t. Hieraus folgern wir, daf3 der Ausdruck

J=(F — (4n — 2m) aR?)® + (RL)®

eine Parallelinvariante ist, d. h. ein Wert, der sich innerhalb des Geltungs-
bereiches der Steinerschen Formeln nicht dndert.

Eine beachtenswerte Eigenschaft der oben gebildeten Invarianten er-
gibt sich, wenn man den dem Bereiche 4 komplementér entsprechenden
Bereich 4 * betrachtet.

Im Hinblick auf die Beziehungen

F*=47ZR2-—-F,

L* =L,
n*=14m-—n,
m* = m

verifiziert man leicht, daf
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F* — (4n* — 2m*) aR% = (4n — 2m) nR® — F
so daB sich die Ubereinstimmung
J* =J

der beiden einander komplementéir zugeordneten Invarianten ergibt.

4. Die erweiterten Steinerschen Formeln fiir ebene Bereiche

Um bei der Ubertragung unserer Resultate auf den wichtigen Fall der
Ebene eine gewisse Vollstindigkeit anzustreben, wiederholen wir die
grundlegenden Definitionen:

Definition I°. Unter der duperen Parallelmenge A, einer beliebigen
ebenen Menge A wverstehen wir die Vereinigungsmenge aller Kreise K,,
deren Mittelpunkte in A liegen. Unter der inneren Parallelmenge A_, ver-
stehen wir die Menge ((A*),)*, d.h. die Komplementirmenge der ent-
sprechenden duferen Parallelmenge der Komplementirmenge.

Definition IIo. Eine abgeschlossene ebene Menge A heifit unterkonvex
vom Grade o, wenn der Durchschnitt A- K, von A mit jedem Kreis K , vom
Radius ¢ < & einfach zusammenhdingend ist; dagegen treffe dies fiir kein
o > o fir jeden Kreis K, 2u. A heift iberkonvex vom Grade x, wenn die
abgeschlossene Hiulle A* der Komplementirmenge A* wunterkonvex vom
Grade « ist.

Der Zusammenhang der so definierten erweiterten Konvexitdt mit der
gewohnlichen Konvexitédt wird durch den nachfolgenden Satz hergestellt,
dessen Beweis wir dem Leser leicht iiberlassen koénnen, da er nur der
Vollstéindigkeit wegen erwéhnt und nirgends gebraucht wird:

Satz IV. Hine abgeschlossene ebene Menge A ist dann und nur dann
konvex, wenn der Durchschnitt A-K, von A mit jedem Kreis K, mit be-
liebigem Radius g einfach zusammenhingend ist.

Dieser Satz legt es nahe, eine konvexe Menge als unterkonvex vom
Grade co anzusehen; sinngeméfl ist die Definition II° zu ergénzen.

Es sei nun 4 ein abgeschlossener beschrankter Bereich, d. h. die ab-
geschlossene Hiille eines beschrinkten ebenen Gebietes. 4 moge aus »
getrennten Teilen bestehen; die einzelnen Teile kénnen mehrfach zu-
sammenhingend sein. Die Anzahl der streckbaren Randkontinua sei m.
Es bezeichne F' den gesamten Flacheninhalt und L die totale Randlinge
von A. Uber Flicheninhalt F(p) und Randlinge L(p) der d#uBeren und
inneren Parallelbereiche 4, gilt dann der folgende
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Satz IIIe. Ist der Bereich A unterkonvex vom Grade o und iberkonvex
vom Grade B, so gelten im Intervall — f < o < « die Formeln

F(o)=F + Lo 4 (2n — m) mp?,
L(g)=L + (4n — 2m) np .

Die Formeln von Satz III° enthalten die klassischen Formeln von
Jakob Steiner als Spezialfille. Ist nimlich 4 konvex, so ist notwendiger-
weise n = m = 1. Fiir die d4uleren Parallelbereiche, d. h. fiir das Inter-
vall 0 < 0 < co gelten dann die bekannten Beziehungen

F(o) =F + Lg +me?,
Lg) =L 4+ 2=np.

Die Formeln von Satz ITI° lassen sich aus denjenigen von Satz III
miihelos durch die geldufigen Grenziibergéinge R — oo gewinnen.

Bezeichnet J die weiter oben abgeleitete sphérische Parallelinvariante,
so laBt sich durch Grenziibergang dann eine fiir die Ebene brauchbare
Parallelinvariante gewinnen, wenn man den ungeformten ebenfalls
parallelinvarianten Ausdruck

J—(4n —2m)32n®R* F?
7 = b -—(8n-—4m)7zF+-—R~

N
betrachtet. Fir R-—>oo gewinnt man die ebene Parallelinvariante
L? — (8n — 4m) aF ,

die fir n =m =1 mit dem bekannten Isoperimetrischen Defizit iden-
tisch ist.

b. Hilfssédtze topologischer Art

Wir beweisen zunéchst einige einfache metrisch-topologische Hilfssétze,
die innerhalb der Theorie der Parallelmengen selbsténdiges Interesse
verdienen koénnen. Die Aussagen beziehen sich auf die Sphére.

1. Hilfssatz., Ist G' ein micht kreisformiges einfach zusammenhdngendes
Gebiet, so gibt es zu einem beliebigen ¢ > 0 im dupPeren Parallelgebiet G,
stets einen Kreis K,, so daf3 der Durchschnitt G*K o Micht zusammen-
hdngend vst.
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Beweis. Es gibt zunichst sicher einen K, ¢eG so, daB G*K, wenig-
stens drei Punkte enthilt. Es kann angenommen werden, daf3 diese drei
Punkte auf einem Bogen des Kreisrandes von K, liegen, der ganz zu
G* gehort, da andernfalls der Hilfssatz bewiesen ist. Da G' nach Voraus-
setzung nicht kreisformig ist, besitzt dieser Bogen zwei Endpunkte P
und @, P # Q. Es bezeichne M die Bogenmitte und N den zu M dia-
metralen Gegenpunkt auf dem Kreisrand von K,. N hat von G* einen
positiven Abstand, da sonst der Hilfssatz wieder bewiesen wire. Offen-
bar 1aB8¢% sich nun ein ganz in @, liegender Kreis K, finden, dessen Rand
durch P und @ hindurchliuft und die Gerade MN in den Punkten M’
und N’ so schneidet, dal der Durchmesser M'N’ ganz in G liegt. Der
Durchschnitt G* K, kann nicht zusammenhéngend sein.

2. Hilfssatz. Wenn das Komplementirgebiet AY der dupPeren Parallel-
menge A, einer abgeschlossenen Menge A evn Kreisgebiet G vom Radius o
aufweist, so enthdlt das Gebiet A* ein konzentrisches Kreisgebiet G° vom
Radius ¢ + A.

Bewets. Ein Randpunkt P des Kreisgebietes G gehort zu 4,; das
Innere des Kreises K,(P) gehort sicher zu A*. Andererseits mufl auf
dem Rand von K)(P) mindestens ein Punkt P° von 4 liegen. P° kann
nur der Beriihrungspunkt des K,(P) mit der dulern Enveloppe aller
K,(P) sein, wo P auf dem Kreisrand von @ variiert. Alle P° liefern den
Rand des mit G konzentrischen Kreisgebietes G° vom Radius ¢ + 4 das
zu A* gehort.

3. Hilfssatz. Hat die abgeschlossene Menge A mit jedem Krers K, vom
festen Radius o einen einfach 2usammenhingenden Durchschnitt A K,, so
hat sie auch mit jedem Kreis K, ¢ < g, einen einfach zusammenhdngen-
den Durchschnitt AK,.

Beweis. Wir nehmen das Gegenteil der Behauptung an. Es gibt dann
einen K, (M), 0 <p, so daB D =A4-K, nicht einfach zusammen-
hiingend ist. Fiir den Fall, daB D mehrfach zusammenhéingend ist, oder
einen ganz im Innern von K, liegenden, mit dem iibrigen Durchschnitt
nicht zusammenhéngenden Teil enthilt, geniigt es, einen K (M) zu be-
trachten, der dann im Widerspruch zur Voraussetzung mit 4 ebenfalls
keinen einfach zusammenhidngenden Durchschnitt aufweist. Man darf
also folgendes annehmen:

1. D=D,+ D,, D, D,=0; D,, D, abgeschlossen.
2. Es gibt zwei Randpunkte von K,: P, eD,; P, e D,.
3. Der Rand von K, werde durch die beiden Punkte P, und P, in die
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beiden Kreisbogen C, und C, zerlegt. Es gibt zwei Punkte @, e C,D*,
Q, € C,D* die durch ein ganz in D*K, verlaufendes Polygon verbunden
werden konnen.

Wir betrachten nun einen Kreis K,(N), der die beiden Punkte P,
und P, im Innern enthélt. Die Menge aller Mittelpunkte N ist eine
offene zusammenhingende Menge T' (Uberdeckungsgebiet zweier Kreis-
gebiete). Der Durchschnitt A K,(N) ist nach Voraussetzung einfach
zusammenhingend. Wenn wir die Punkte P, und P, durch einen Haupt-
kreisbogen S, der innerhalb von K, verlaufen soll, verbinden, so zerfillt
das Komplementirgebiet von A K ,(N) + S in zwei getrennte einfach
zusammenhingende Gebiete, wobei die Punkte ¢, und @, in verschie-
denen Gebieten liegen miissen. Da auch der zu N antipodische Punkt N¢
in einem dieser beiden Gebiete liegen mufl (N° kann nicht zu K, und
nicht zu 8§ gehéren!), ist nun N° entweder mit ¢, oder mit @, im gleichen
zusammenhéingenden Gebiet. 7', bezeichne die Menge der Mittelpunkte N
im ersten Fall, 7', die analoge Menge im zweiten Fall. Wie man leicht
verifiziert, sind 7', und 7', offen und selbstverstdndlich fremd.

Im Hinblick auf die gegenseitige Lage der Punkte P,, P,,Q,, @, auf
dem Rand von K, kann der Kreis K, so gelegt werden, daBl er P, und P,
im Innern, aber nach Belieben entweder @, oder ¢, nicht enthélt. Der
im Komplementédrgebiet K 2‘ liegende Punkt @ befindet sich offenbar mit
N9 im gleichen zusammenhéngenden Gebiet der weiter oben betrachteten
Art. Damit ist erwiesen, dal von den beiden eingefiihrten Mengen 7', und
T, keine leer ist.

Nun gilt aber T' =T, + T,, d.h. das Gebiet T ist zerlegt in zwei
fremde, offene und nicht leere Teile 7', und 7',! Damit ist erneut ein
Widerspruch erzielt.

4. Hilfssatz. Hat die abgeschlossene Menge A mut jedem Kreis K, von
festem Radius o einen einfach zusammenhdngenden Durchschnitt A K,
so ist fir 0 <A< g auch A)K, ) stets einfach zusammenhdngend.

Beweis. Es sei U = AK,(M) und V = 4,K, \(M). Es sei zu-
néchst ¥V nicht zusammenhingend, also V=V, +V,, V;V,=0. Es
sei PeU und W(P) =K)\(P)K, \(M). Im Hinblick auf K)(P)ed,
gilt offenbar W(P)eV. Da nun W(P) zusammenhingend und nicht
leer ist, gilt fiir jeden Punkt P entweder W(P)eV, oder W(P)eV,.
Gilt das erstere, 8o soll Pe U; und gilt das letztere, so soll P ¢ U, sein,
so daB also U = U, + U, ist. Da aber die Teile U, und U, abge-
schlossen, fremd und nicht leer sind, ergibt sich ein Widerspruch mit der
Voraussetzung, wonach U zusammenhingend sein soll. Es ist also V zu-
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sammenhingend. Wir nehmen nun weiter an, da ¥ mehrfach zusammen-
hidngend ist. V* und somit auch A¥ enthalte ein einfach zusammen-
héingendes Gebiet G eK, ). Ist nun G nicht kreisformig, so gibt es nach
dem 1. Hilfssatz ein 0, 0 < 0 < ¢ — 4 so, daBl der Durchschnitt K, 4,
nicht ziasammenhéngend ist. Nach dem 3. Hilfssatz ist auch A4-K, stets
einfach zusammenhingend, wo o = ¢’ — A gesetzt wird. Nach dem
weiter oben erreichten ersten Resultat beim Beweis dieses 4. Hilfssatzes
aber miilte 4)Ko zusammenhingend sein. Widerspruch ! Es bleibt noch
der Fall iibrig, wo G kreisférmig ist. A; enthilt alzo ein Kreisgebiet vom
Radius o innerhalb K, ). Nach dem 2. Hilfssatz enthilt dann A* ein
konzentrisches Kreisgebiet vom Radius ¢ 4 4 das innerhalb K, liegt. In
diesem Falle wire aber 4K, mehrfach zusammenhingend. Widerspruch !

6. Hilfssatz. Hat die abgeschlossene Menge A mit jedem Kreis K, vom
festen Radius p einen einfach zusammenhingenden Durchschnitt A K 0
und st fir esn A, 0 < A<, auch der Durchschnitt A)\K , stets einfach
zusammenhdngend, so ist auch AK, ) stets einfach zusammenhdingend.

Beweis. Essei U = A)K,(M) und V = AK,  (M). Zunichst neh-
men wir an, dafl V nicht zusammenhingend sei, also V =V, 4+ 1,
ViVo=0. Es sei PeU und W(P) = AK,(P). Im Hinblick auf die
Voraussetzung, wonach AK, stets einfach zusammenhingend ist, muf3
auch W(P) nach dem 3. Hilfssatz einfach zusammenhingend sein. An-
dererseits gilt - W(P) e K,,), also W(P) e V. Fiir jeden Punkt P gilt
entweder W(P) eV, oder W(P) e V,. Gilt das erstere, so soll Pe U,
und gilt das letztere, so soll P ¢ U, sein, so daBl also U= U, + U, ist.
Da nun aber die Teile U; und U, abgeschlossen, fremd und nicht leer
sind, ergibt sich so ein Widerspruch mit der Voraussetzung, wonach U
zusammenhdngend sein soll. Es ist also V zusammenhéngend. Wir
nehmen jetzt weiter an, da V mehrfach zusammenhiingend sei. V* und
somit auch 4* enthilt ein einfach zusammenhéngendes Gebiet GeK, ;.
Ist nun G nicht kreisformig, so gibt es nach dem 1. Hilfssatz ein w,
0<w<o, so daB AK, , nicht zusammenhingend ist. Nach dem
3. Hilfssatz ist mit 4,K, auch immer 4, K, einfach zusammenhéngend.
Nach dem weiter oben erreichten ersten Resultat beim Beweis dieses
5. Hilfssatzes ist aber AK, , zusammenhingend. Widerspruch! Be-
trachten wir noch den Fall, wo G kreisformig ist. A* enthilt ein Kreis-
gebiet in K, , dessen Radius im Hinblick auf die Voraussetzung iiber 4
grofer als ¢ sein muB. Also enthilt A ein Kreisgebiet in K, dessen
Radius groBer als o — A, also positiv ist. A4, K, ist nicht einfach zu-
sammenhidngend. Widerspruch!
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6. Hilfssatz integralgeometrischen Ursprungs

Es ist eine bekannte Tatsache, daB sich viele Formeln der klassischen
Geometrie als einfache Folgerungen viel allgemeinerer Beziehungen der
neuzeitlichen, hauptsédchlich von W. Blaschke und seinen Schiilern ge-
gchaffenen Integralgeometrie ergeben. Als Beispiel hierfiir kann die
Formel von J. Stetner fiir ebene konvexe Bereiche genannt werden, die
sich als Spezialfall einer Formel von L. 4. Santalé darstellen 1aBt¢).

Auch die von uns erstrebten Erweiterungen haben ihrem formel-
méfigen Gehalte nach bei der hier vorgesehenen Entwicklung einen
integralgeometrischen Ursprung. Die entscheidende Schliisselbeziehung,
die in den nachfolgenden 6. Hilfssatz eingebaut ist, wird direkt aus der
Hauptformel der sphirischen Integralgeometrie abgeleitet.

6. Hilfssatz. A sei etn abgeschlossener Bereich der Sphdre S vom Radius
R. Es bezeichne n die Zahl der getrennten Teile und m die Zahl der streck-
baren Randkontinua von A. Ferner soll F den Flicheninhalt und L die
Randlinge von A, und endlich F(g) den Flicheninhalt des duferen Parallel-
breiches A, bezeichnen. Wenn der Durchschnitt A K, von A mit jedem
sphdrischen Kreis K , vom Radius g stets aus einfach zusammenhdngenden
Teilen besteht, so gilt die Unglerchung

F(p) <LRsm-—-—+F CO8 —- —|—(4n——2m)nR2(1——cos—1%—) .

Das Gleichheitszeichen gilt dann und nur dann, wenn der Durchschnitt
A K, fast immer einfach zusammenhdngend ust.
Beweis. Setzt man abkiirzend
= (4n — 2m)x ,

so gilt fiir zwei Bereiche 4, und 4, die Hauptformel der sphirischen
Integralgeometrie ?)

fmio= 87{LyL, + Ny F, + N, Fy — F, F,} .

Hierbei bezeichnet A, die sphiirische kinematische Dichte des auf der
Sphére S beweglichen Bereiches 4,. Ferner sei

= (4n — 2m)x

%) W. Blaschke, Vorlesungen iiber Integralgeometrie I, Berlin und Lenpzlg
1936, Seite 30, Formel 180.

’) W. Blaschke, Vorlesungen iiber Integralgeometrie II, Berlin und Leipzig
1937, Seite 82, Formel 131.
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die sich auf den Durchschnitt 4,4, beziehende Zahl gleicher Bedeutung.
Die Integration hat sich iiber alle 4, zu erstrecken, welche 4, treffen.
Setzen wir nun 4, = 4 und 4, = K, so gelten die Beziehungen

F,=F, Li=L, N,= (4n — 2m)n ;

F,= 2:nR2(1 — cos—%—) y Ly = 2nRsin—%, N,=2=n.

Im Hinblick auf die Voraussetzung iiber 4 wird » =m, und also

N = 2an.
So ergibt sich zunéchst

f%li',, = 2n§LR sin——l% +Fcos—1%— + (4n — 2m) n R? (1 — CcOo8 —%—)g .

Andererseits ist bei Integration iiber alle K, die A treffen

fj{e = 2nF(o),

so dal man durch passende Subtraktion

R T .0 o _ 2(1 — cos- 2| —
2n‘f(n I)K,,-LR81nR+FcosR+(4n 2m) nR (1 cosR) F (o)

erhilt. Das links stehende Integral ist offenbar nicht negativ und dann
und nur dann Null, wenn fast immer (d. h. mit Ausnahme einer Lagen-
menge von K, vom integralgeometrischen Ma8 Null) » = 1 ist. Damit
ist der 6. Hilfssatz bewiesen.

7. Hauptbeweise

Nach diesen Vorbereitungen konnen wir uns recht kurz fassen:

Beweis von Satz I. Die Radien p, 0 < o < nR, lassen sich in zwei
Klassen a und b einteilen, je nach dem 4.K o fiir jeden Kreis K, vom
festen Radius ¢ einfach zusammenhingend ist oder nicht. Nach dem
3. Hilfssatz folgt aus g ea ebenfalls g’ea, wenn o’ < o ist. Die
Klassen a und b bestimmen somit eine Dedekindsche Schnittzahl «,
0 <& <nR. Diese hat offenbar die in Satz I ausgesprochene Eigen-
schaft. (Im Falle daB b leer ist, setzt man natiirlich &« =aR.)
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Beweis von Satz II. Nach Voraussetzung hat 4 mit K, fir o<«
stets einen einfach zusammenhiingenden Durchschnitt 4 K,. Nach
dem 4. Hilfssatz ist 4, K, ) stets einfach zusammenhingend, also ist
A, K, stets einfach zusammenhingend, falls ¢ <o — A gewdhlt wird;
das letzte folgt noch in Verbindung mit dem 3. Hilfssatz. — Andererseits
gibt ¢s zu jedem ¢ >« ein K, so, daBl 4 K, nicht einfach zusammen-
hingt. Nach dem 5. Hilfssatz gibt es ein K,_, so, dafl auch 4, K, ) nicht
einfach zusammenhdngt. Also ist fiir jedes ¢ >« — 41 4K, nicht
stets einfach zusammenhingend. Somit ist A, unterkonvex vom Grade
«— A, w.z.b.w.

Beweis von Satz I1I. Nach dem 6. Hilfssatz gilt fiir 0 < p <«

_ o in -2 — 2 (1 — cos 2
F(o) = F cos R+LRsm 7 + (4n — 2m)n R (l cos R) .

Da nach Satz IT A4, fir 0 < A <« unterkonvex vom Grade «—A4 ist,
und da, wie elementar einzusehen, 4, = (4,),-a ist, gilt nach der soeben
gemachten Feststellung

F(o) = F(4) cosQ~Z+L(l)Rsing_l+ (4mr — 2m)) = R? 1-——0089_'1 .
R R R

Nun sind die Funktionen F(4) und L(A) stetig von A abhéngig, so daf3 im
Intervall 0 £ A <o 4m), — 2m, stetig, also wegen der Ganzzahligkeit
konstant sein mufl. Man kann in der Formel 4n) — 2m) =4n — 2m
setzen und dann nach L(A) auflésen. So ergibt sich zunéchst:

— e—4 _ 21 — e—4
F(o) — F(1) cos B (4n —2m) n R (1 €08 = )

L(2) =

o— A

R sin B

Setzen wir hier fiir die Flicheninhalte F(p) und (1) die giiltigen Formeln
ein, so gewinnt man mit mehrfacher Verwendung der trigonometrischen
Additionstheoreme die Darstellung

F ., 2 A . A
L(}»):“‘—R—SIH'RT-{-LCOS—R——F(4n—2m)nRsm—R—,

die nach der Herleitung im Intervall 0 < A < « richtig ist.
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Die Giiltigkeit der entsprechenden Formeln fir — g <p < 0 folgt
nun leicht auf Grund der Tatsache, dal der dem Bereiche 4 komplemen-
tir zugeordnete Bereich A* unterkonvex vom Grade g ist, mit Be-
nutzung der Formeln

F(— g) = 4aR? — F*(g); L(— ¢) = L*(p)

n*=14+m-—n, m*¥=m,.

Die Ausdehnung des Geltungsintervalls auf das abgeschlossene Intervall
— B < o =« ist aus Stetigkeitsgriinden moglich.

(Eingegangen den 3. Mai 1945.)
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