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Sur les polydromies
des fonctions biharmoniques
Par R. Soudan, Genève

Le présent travail nous a été suggéré par M. le Professeur Rolin Wavre
à qui nous tenons à adresser ici nos plus vifs remerciements pour son
aide et ses précieux conseils.

Il s'agit de la généralisation aux fonctions polyharmoniques des
résultats qu'il a publiés1) sur les polydromies des fonctions harmoniques.

Bien que les résultats qui vont suivre soient établis dans l'espace à
trois dimensions et pour les fonctions biharmoniques, ils se généralisent
sans difficulté aux fonctions polyharmoniques d'ordre p, dans l'espace
euclidien à n dimensions.

§ 1. Fonction biharmonique

Soit D un domaine de frontière F analytique. Soit P un point situé
hors de D + F et M un point de D + F. Soit q (M) holomorphe dans
D -\- F et f0, fl9 gQ, gl9 quatre fonctions holomorphes de M placé sur F.
Soit enfin

v (M P)=^-+«o + PMP + yMP*
lV ' ~MP

la fonction biharmonique élémentaire (oc, oco, /?, y sont des constantes
arbitraires) vérifiant la relation:

A2vx Aâvx 0 pour M ^ P
Il s'ensuit:

28

v0 étant la fonction harmonique élémentaire.
Envisageons la fonction U(P) définie comme suit:

I V(P) fe (M) v1(M,P)dr + Z fi/, (M) vt (M, P) - gt (M) %- v, (M, P)
D F

*) Mathematische Zeitschrift 1933, Band 37, Heft 5: Sur les polydromies de
certains potentiels newtoniens prolongés.

Prace matematyczno-fizyczne. Warszawa 1935: Sur les polydromies des potentiels

newtoniens prolongés, dans l'espace réel à n dimensions.

da
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III

On vérifie facilement que v0 et vx se développent en séries uniformément
convergentes des puissances croissantes des coordonnées de P. Il s'ensuit

que U est holomorphe hors de D -\- F, et il vient :

U est donc biharmonique hors de D -f F. C'est un potentiel généralisé
engendré par des densités (spatiale, de simple couche, de double couche)
Q > /i y 9i e^ /o j 9o » attirant le point potentié P selon deux fonctions de
la distance: respectivement v0 et vt.

L'équation I garde son sens si P est dans D.
Pour généraliser nos résultats aux fonctions polyharmoniques d'ordre

p, on choisira arbitrairement pour v un polynôme des puissances de

la distance (allant de— 1 h, 2p — 2). Ce polynôme est ici réduit à

quatre termes.

§ 2. Formule fondamentale

A partir de l'identité de Green relative aux laplaciens, on forme
facilement la formule de Gutzmer:

II
D

Ç(UA2V-VA2U)dt -E f (a^^A^V- AiV — A^

Soit maintenant B(M) continue ainsi que ses dérivées des quatre
premiers ordres dans D + F. Soit P un point sur lequel nous centrons
une petite sphère £ si ce point est dans D. Appliquons la formule II
au domaine D — £ en posant :

V vx(M ,P), F= B(M).

Il vient, puisque A^vx 0 dans D — £ et en faisant tendre £vers 0:

Cv1A2Bdr+ v f
J i=0 J

d A D nd / 0 pour P hors de D+F.
%dn dn%\ \-87rj5.J5- ïnotAB

pourPdansD

§ 3. Application du théorème de Cauchy-Kowaiewska

II existe une fonction B holomorphe dans un domaine D, dont les

points sont voisins de P, telle que :
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A 2 B g au voisinage de P (dans D)

A
dn4

au voisinage de P, sur une
surface 8 passant par P

dn B-f
holomorphes.

Posons A B A ; les conditions 1,2,3, garantissent l'existence
de A holomorphe dans D voisin de P, donc de jB, à une fonction
harmonique près:

B BQ + 0 avec 6 : A 0 0 au voisinage de P. JS0

est déterminée par:

Les conditions 4, 5, s'écrivent:

L0 fB
0 obéissant aux trois relations 6, 7, 8, son existence est garantie et

par suite celle de B vérifiant les cinq relations initiales.

§ 4. Prolongement analytique

Pour étudier U au voisinage d'un point P de F, centrons une petite
sphère £sur P. Soit a la portion de F intérieure à 27; ar la portion de E
intérieure à F et d le domaine de frontière a + o'.

Soit u la fonction biharmonique engendrée

par les masses situées dans Z et A la fonction

biharmonique engendrée par les masses
situées hors de 27. Alors:

U =A + u.
A est holomorphe à l'intérieur de E donc
n'engendre pas de polydromie dans ce
domaine. Il suffit donc d'étudier le prolongement

au travers de a de la fonction:
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1 u J vlQdx + J£ J (/<v, -g^ vA do

d o

Soit £ la solution du problème généralisé de Cauchy-Kowalewska
telle que:

A2B — 8tz/3'Q dans Dr voisin de P.

A B

Tn

dans Dr et sur cr

On choisit ^intérieure à Dr. B est par conséquent holomorphe dans U.
Substituons 2 dans 1. Il vient:

3 u

après avoir posé:

o+a'

Le second membre de 3 représente u puisque B est holomorphe dans
d -\- o -\- or. D'autre part u a un sens si il est calculé pour un point
placé dans d. La formule III est donc applicable à 3. Il vient :

IV

en ayant posé :

2?* (M) pour M dans d.

0 pour M hors de d + or + <*'

(mais dans Z),

et B*=

H est holomorphe dans Z; c'est un potentiel biharmonique de masses
situées sur a!.

Soit maintenant M un point situé hors de D + F dans Zet M ' un
point de d. Désignons par uM le potentiel ^ calculé en M, uM, le poten-
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tiel u calculé en Mf et uMM, le même potentiel calculé en M et prolongé
en M '. On a en vertu de IV:

uM HM

et comme H est holomorphe dans E, donc prolongeable en Mr au
travers de a :

D'autre part:

*%' #m' + #£' • Donc: uMM, —uM, — B^,

Ainsi —B* est la fonction de passage de u donc de U au travers de F.
Elle est nulle et par suite U est holomorphe dans toute l'espace si

oc /S 0 c'est-à-dire si % est un polynôme des puissances paires de
la distance.

En partant de if7 et en sortant de D au travers de F, on trouverait
sans difficulté:

^ u>m> m — u>m + bm •

Envisageons par exemple une surface analytique ouverte S chargée
des quatre densités de simple et double couche engendrant un potentiel
biharmoiiique hors de S. Soit F la frontière de 8. Décrivons un circuit
fermé MGMf CM autour de F. D'après ce qui précède:

M CM ' V j£t —

Le second membre est holomorphe hors
de S. Donc:

En revenant au point de départ M après un circuit fermé, le potentiel
se trouve augmenté de la fonction période — J5*.

On établit sans difficulté que la fonction période est nulle pour un
circuit fermé n'entourant pas la frontière de 8. Les seules singularités
du potentiel engendré par 8 sont donc la ligne F et celles de JB, solution
du problème de Cauchy-Kowalewska généralisé.

D'une façon générale, les singularités engendrées par des corps limités

par des portions de surfaces analytiques et chargées de densités holo-
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morphes spatiales ou superficielles seront celles des fonctions de passage
et les lignes de ramification, arêtes ou frontières des surfaces limitant
les masses.

Remarque: Désignons par Ue le potentiel d'un côté de 8 et par U€ le
potentiel de l'autre côté de S pour deux points M, M ' tendant l'un vers
l'autre. L'équation 4 s'écrit :

e - U{ UMM, - E7M, - B

§ 5. Applications

a) II est très facile de former la solution du problème de Cauchy-
Kowalewska pour un plan ou une sphère chargés d'une densité de

simple couche ô engendrant un potentiel biharmonique. Les équations
à résoudre seront:

A 2 B 0 au voisinage de P.

f-AB= - 8np>ôdn r
au voisinage de P et sur le plan

dn
x 0 ou la sphère g R.

d4
Les laplaciens itérés ont pour expression A2 -=-j pour le plan et

A « —^ -7T- p2 -= r- -7T- Q2 -^— pour la sphère. Les solutions sont :* Q2 OQ * OQ Q2 OQ OQ

B= -~pôx* pour le plan et B =^^ r(—-3R2
3 S \q

pour la sphère.

b) Soit B une fonction biharmonique arbitraire et 8 une surface

analytique. Construisons le potentiel:

Ce potentiel admet J3* comme fonction de passage au travers de 8.

c) Soient 8 une surface fermée et G2 (B9 C) la fonction de Green

généralisée de seconde espèce2) pour l'intérieur de 8.
a) Actualités Scientifiques et Industrielles, 331. Miron Nicolesco, Les fonctions

polyharmoniques.
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Cette fonction jouit des propriétés suivantes:

G2(Bt C) 0 sur S, AG2(B, G) G±(B, G) ou la fonction de Green
ordinaire; G2(B, C) est continue dans S, même pour B C.

Posons dans l'identité généralisée de Green:

B est situé dans 8. G est fixe à l'intérieur de 8. A est fixe, hors de S

ou dans 8. On établit facilement:

QnJ \ dn ABdn

\AG pour A hors de 8

\ i^iC—(?2(^ ,C) pour ^L dans /S.

Le premier membre représente un potentiel biharmonique U(A, C).
Soit maintenant 8' une portion de 8. La fonction période pour un
circuit autour de la frontière de Sf sera:

C'est la fonction généralisée de Green de seconde espèce.
On arriverait au même résultat avec la fonction de Green de première

espèce. Il suffit d'envisager le potentiel biharmonique:

~ÂG

dn '

Il n'y a donc pas de grandes difficultés à généraliser aux fonctions
polyharmoniques la plupart des résultats dont M. Wavre a établi la
théorie générale pour les potentiels ordinaires.

(Reçu le 1er mai 1945.)
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