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Sur les polydromies
des fonctions biharmoniques

Par R. Soupan, Genéve

Le présent travail nous a été suggéré par M. le Professeur Rolin Wavre
& qui nous tenons & adresser ici nos plus vifs remerciements pour son
aide et ses précieux conseils.

Il s’agit de la généralisation aux fonctions polyharmoniques des
résultats qu’il a publiés?) sur les polydromies des fonctions harmoniques.

Bien que les résultats qui vont suivre soient établis dans l’espace &
trois dimensions et pour les fonctions biharmoniques, ils se généralisent
sans difficulté aux fonctions polyharmoniques d’ordre p, dans l’espace
euclidien & » dimensions.

§ 1. Fonetion biharmonique

Soit D un domaine de frontiére ¥ analytique. Soit P un point situé
hors de D + F et M un point de D + F. Soit ¢ (M) holomorphe dans
D + F et f,, f1, 9, 91, quatre fonctions holomorphes de M placé sur F'.

Soit enfin o de
vl(MsP)=”é+“0+ﬁMP+yMP2
MP

la fonction biharmonique élémentaire (x, &4, f,y sont des constantes

arbitraires) vérifiant la relation:

A4,v, =A44v, =0 pour M # P.

2p
A'U - — 6 =9 >
1= gp T

Il s’ensuit:

v, étant la fonction harmonique élémentaire.
Envisageons la fonction U (P) définie comme suit:

1 U= [ew) vl(M,Pwr+i§f§f¢<M)vi<M,P>——m(M)%v,-(M,P) do .
D F

1) Mathematische Zeitschrift 1933, Band 37, Heft 5: Sur les polydromies de

certains potentiels newtoniens prolongés.
Prace matematyczno-fizyczne. Warszawa 1935: Sur les polydromies des poten-
tiels newtoniens prolongés, dans 1’espace réel & n dimensions. '
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On vérifie facilement que v, et v, se développent en séries uniformément
convergentes des puissances croissantes des coordonnées de P. Il s’en-
suit que U est holomorphe hors de D + F, et il vient:

A,U(P) =

U est done biharmonique hors de D 4+ F. C’est un potentiel généralisé
engendré par des densités (spatiale, de simple couche, de double couche)
0, f1, 91 eb fo, 9o, attirant le point potentié P selon deux fonctions de
la distance: respectivement v, et v,.

L’équation I garde son sens si P est dans D.

Pour généraliser nos résultats aux fonctions polyharmoniques d’ordre
p, on choisira arbitrairement pour » un polynéme des puissances de
la distance (allant de — 1 & 2p — 2). Ce polyndéme est ici réduit a
quatre termes.

§ 2. Formule fondamentale

A partir de l'identité de Green relative aux laplaciens, on forme
facilement la formule de Gutzmer:

: d d
1 f(UAzV——VAzU)dr:: -—Ebf(d,-U%AI__,- y_ A,-V%.Al_,-U)da .
D F

Soit maintenant B (M) continue ainsi que ses dérivées des quatre
premiers ordres dans D + F. Soit P un point sur lequel nous centrons
une petite sphére 2’ si ce point est dans D. Appliquons la formule II
au domaine D — 2 en posant:

U=v,(M,P), V= B(M).

Il vient, puisque A,v, = 0 dans D — 2 et en faisant tendre X' vers 0:

111

0 pour P hors de D +F.
vl,dAI_B AB—-—v)do-—/ P
dn dn "y N— 8nf-B — 4non-AB

pourPdans D .

1=0

1
flezBdr +
D

§ 3. Application du théoréme de Cauchy-Kowalewska

Il existe une fonction B holomorphe dans un domaine D, dont les
points sont voisins de P, telle que:
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1 A4, B=p  au voisinage de P (dans D) .
d

3 4B =g, | au voisinage de P, sur une

4 a B =/, surface S passant par P .
dn

5 B =g,

0, fis for 91, 9o, étant holomorphes.

Posons 4B = A ; les conditions 1, 2, 3, garantissent l’existence
de A holomorphe dans D voisin de P, donc de B, & une fonction har-
monique pres:

B=B,+® avec6: A®dP=0 au voisinage de P. B,

est déterminée par:

—1 4
BO__--—M./"sz .
A
Les conditions 4, 5, s’écrivent:
d d
7 E?bdi:f“*%B” et : 8 b =g,— B, .

@ obéissant aux trois relations 6, 7, 8, son existence est garantie et
par suite celle de B vérifiant les cinq relations initiales.

§ 4. Prolongement analytique

Pour étudier U au voisinage d’'un point P de F, centrons une petite
sphére X sur P. Soit ¢ la portion de F intérieure 4 2'; ¢’ la portion de
intérieure & F et d le domaine de frontiére ¢ 4 o’.

Soit » la fonction biharmonique engendrée
par les masses situées dans 2'et A la fonc-
tion biharmonique engendrée par les masses
situées hors de 2. Alors:

U=4+u.

A est holomorphe & lintérieur de 2’ done
n’engendre pas de polydromie dans ce do-
maine. Il suffit done d’étudier le prolonge-
ment au travers de ¢ de la fonction:
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d
1 u—“JledT'FE (fivi_gi%vi) do .

Soit B la solution du probléme généralisé de Cauchy-Kowalewska
telle que:

A4, B= —8mf-p dans D’ voisin de P.
d
d—nAB=——87tﬂ'f1
2 dAB————Snﬂ-gl dans D’ et sur o .
o B=—28xaB-f,
B= —8nf-g,

On choisit 2'intérieure & D’. B est par conséquent holomorphe dans .
Substituons 2 dans 1. Il vient:

3 u= ,3 0,4y Bt — ﬂr{vl,B}da-}—S ﬁf{vl,B}da

o400’

apres avoir posé:

1
{vl,B}—-—-Z(vi—{l——A-B——A-B—d—vi) .

=\ ‘dn *Tdn

Le second membre de 3 représente u puisque B est holomorphe dans
d 4+ o + o¢’. D’autre part « a un sens si il est calculé pour un point
placé dans d. La formule III est donc applicable & 3. Il vient:

/B*(M) pour M dans d.

IV w(M)=H(M) +
) ) N0 pour M hors de d + o 4 ¢’
(mais dans ),
en ayant posé:

H————E {v,, B}do et B*=B+—BAB

H est holomorphe dans 2'; c’est un potentiel biharmonique de masses

gituées sur ¢’
Soit maintenant M un point situé hors de D 4+ F dans Xet M’ un
point de d. Désignons par u,, le potentiel » calculé en M, u,,. le poten-
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tiel w calculé en M’ et u,,,,. le méme potentiel calculé en M et prolongé
en M’. On a en vertu de IV:

et comme H est holomorphe dans 2, donc prolongeable en M’ au tra-
vers de o

Upypr = MM = M.
D’autre part:

Uy = Hyy + By, . Done: uppy — Uy = — Bpyo .

Ainsi — B* est la fonction de passage de u donc de U au travers de F.

Elle est nulle et par suite U est holomorphe dans toute 1l’espace si
o« =f =0 c’est-a-dire si v; est un polynéme des puissances paires de
la distance.

En partant de M’ et en sortant de D au travers de F, on trouverait
sans difficulté:

4 uM:M——uM =+B.ZTI'
Envisageons par exemple une surface analytique ouverte S chargée
des quatre densités de simple et double couche engendrant un potentiel

biharmonique hors de 8. Soit I" la frontiére de S. Décrivons un circuit
fermé MCM'C’'M autour de I D’aprés ce qui précéde:

*
UMCM’= UMI _BMI .

Le second membre est holomorphe hors
de S. Donc:

* *
UMCM’ C'M= UMr C’M—BM’C’M = UM—'BM .

En revenant au point de départ M aprés un circuit fermé, le potentiel
se trouve augmenté de la fonction période — B*.

On établit sans difficulté que la fonction période est nulle pour un
circuit fermé n’entourant pas la frontiére de S. Les seules singularités
du potentiel engendré par S sont donc la ligne I' et celles de B, solution
du probléme de Cauchy-Kowalewska généralisé.

D’une fagon générale, les singularités engendrées par des corps limités
par des portions de surfaces analytiques et chargées de densités holo-
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morphes spatiales ou superficielles seront celles des fonctions de passage
et les lignes de ramification, arétes ou frontiéres des surfaces limitant
les masses.

Remarque: Désignons par U, le potentiel d’un cété de S et par U, le
potentiel de ’autre c6té de S pour deux points M, M’ tendant 'un vers
Pautre. L’équation 4 s’écrit:

Ue-—-U‘-= U.MM'——UM’::_BL"

§ 6. Applications

a) Il est trés facile de former la solution du probléme de Cauchy-
Kowalewska pour un plan ou une sphére chargés d’une densité de
simple couche § engendrant un potentiel biharmonique. Les équations
a résoudre seront:

4, B =0 au voisinage de P.
d
n AB = — 8xnf-0

AB =0 au voisinage de P et sur le plan
a B—o z = 0 ou la sphére p = R.
dn

B=0
. 04
Les laplaciens itérés ont pour expression 4, = 5,4 pour le plan et

1 0 o 1 0

4,= o 0 % & 7 0? % pour la sphére. Les solutions sont:
3
B = — %75,86.703 pour le plan et B = ;4%@— R(%—SRz—{—BRg—gz)

pour la sphere.

b) Soit B une fonction biharmonique arbitraire et S une surface
analytique. Construisons le potentiel:

U=-g;;;!

Ce potentiel admet B* comme fonction de passage au travers de S.

vy, Bzda .

¢) Soient S une surface fermée et @G, (B, C) la fonction de Green
généralisée de seconde espéce?) pour 'intérieur de S.

3) Actualités Scientifiques et Industrielles, 331. Miron Nicolesco, Les fonctions
polyharmoniques.
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Cette fonction jouit des propriétés suivantes:

G,(B,C) =0 sur 8, 4G,(B, C) = G,(B, C) ou la fonction de Green
ordinaire; G,(B, C) est continue dans S, méme pour B = C.

Posons dans l'identité généralisée de Green:
A=A4B, B =G.(B, ().

B est situé dans §. C est fixe & 'intérieur de S. A est fixe, hors de S
ou dans S§. On établit facilement:
14 pour A4 hors de S,

140 —@,(4,0) pour A dans S.

1

d 2 d _/
o | 4B 6.3, C) + ==~ Gu(B,0) | do =
S

dn

Le premier membre représente un potentiel biharmonique U (4, O).
Soit maintenant S’ une portion de S. La fonction période pour un
circuit autour de la frontiére de S’ sera:

D =Ue"" Ut'—":GZ(A’O)

C’est la fonction généralisée de Green de seconde espeéce.
On arriverait au méme résultat avec la fonction de Green de premiére
espece. Il suffit d’envisager le potentiel biharmonique:

/ZT)

1 l do —
U(4,0)= ngB AG,(B,0) — AGZ(BC)d AB|do — 50— eut.or.

Il n’y a donc pas de grandes difficultés & généraliser aux fonctions
polyharmoniques la plupart des résultats dont M. Wavre a établi la
théorie générale pour les potentiels ordinaires.

(Regu le 1°r mai 1945.)
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