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Abelsche Gleichungen
in algebraischen Zahlkôrpern
(Erste Mitteilung)

Von Rud. Ffeteb, Zurich

Einleitung
Im folgenden gebe ich eine neue Darstellung des Beweises eines grund-

legenden Satzes der Klassenkôrpertheorie : Ist K ein zum algebraischen
Zahlkôrper k Abelscher Kôrper vom Primzahlrelativgrad l, so existieren
in K nur Z^^"1 Geschlechter, falls ZA(f) die Klassenzahl des Strahles
der Normenreste (mod. f) in k ist, und f ein geeignetes Idéal von k
ist. Der Begriff des Geschlechtes, wie er von mir fur den Bereich der
quadratisch-imaginâren Zahlkôrper eingefûhrt wurde1), und wie er nach-
her von Takagi allgemein verwendet wurde2), scheint mir von besonderer
Einfachheit zu sein; benutzt er doch keine Symbole, und stutzt er sich
doch nur auf allgemeine zahlentheoretische Begriffe. Inhaltlich kann man
sogar das Wort Geschlecht weglassen und nur von der Gruppe verschie-
dener Idealklassen von k sprechen, die Relativnormen von Klassen von K
sind. Der folgende Beweis benutzt statt des Symboles des Normenrestes,
das eigentlich zu andern Fragen gehôrt, den Begriff des Systems der
(relativen) Grundkomplexe, der dem Begriff des Systems der (relativen)
Orundeinheiten entspricht und tief im Wesen der Frage verankert ist.
Setzt man die Existenz der beiden Système voraus (ihre Beweise sind

ganz analog), so ist der zu beweisende Satz tiber die Geschlechter fast
selbstverstàndlich. Ùbertrâgt man ihn etwa auf einen absolut Abelschen

Kôrper vom Primzahlgrade l, so werden die Grundkomplexe zu
Idealklassen, und die Théorie ist analog und noch einfacher als im klassischen
Fall 1 2 des quadratischen Kôrpers3). Der Beweis, dafi die Z*^"1-
Geschlechter wirklich existieren, wird am einfachsten mit ,,transzenden-
ten" Mitteln4) gefuhrt. Ich sehe nicht ein, warum dièse Méthode gegen-
ûber einer ,,arithmetischen" Méthode weniger dem Wesen der Zahlen-
theorie entsprechen soll. SchlieBlich benutzt auch die Berechnung der
Klassenzahl oder die Aufstellung der Einheiten transzendente Mittel.

1) Rud. Fueter, Abelsche Gleichungen in quadratisch-imaginâren
Zahlkôrpern. Math. Ann. Bd. LXXV (1913), p. 231 u. fî.

2) T. Takagi, Ûber eine Théorie des relativ Abelschen Zahlkôrpers. Journ.
of the Coll. of se. Tokyo Imp. University, Vol. XLI, art. 9 (1920).

8) Siehe etwa D. Hilbert, Die Théorie der algebraischen Zahlkôrper. Ber. D.
Math. Ver. IV. Bd. (1897), p. 286 u. ff.

4) Hilbert, a. a. O. p. 314.
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In weitern Mitteilungen hofîe ich, die Folgerungen aus dem hier bewie-
senen Satze zu ziehen. Die erneute Beschâftigung mit der Frage der
Théorie der Klassenkôrper verdanke ich der anregenden Durcharbeit
dièses Gebietes, wie sie Herr Speiser veranlaBt hat, und wozu ihm die
Stiftung fur wissenschaftliche Forschung an der Universitât Zurich Mittel
zur Verfugung gestellt hat. Ieh spreche aueh meinerseits der genannten
Stiftung hierfur herzlichen Dank aus.

1. Der Strahl der Relativnormen
Es sei K ein zyklischer Kôrper tiber k vom Grade l, l eine ungerade

Primzahl5). Wir setzen voraus, k enthalte die lie Einheitswurzel nicht6).
Die Relativdiskriminante von K zu k sei f~1. f ist dann die Zte Potenz
eines Ideals $ von K : f $l. Die Gruppe von Kjk sei durch S gegeben,
wo also S1 1 die Einheitssubstitution ist. Jede ganze Zahl Q von K
geniigt dann einer Kongruenz :

Q SQ (mod. g)

3f enthâlt aile zu l teilerfremden Primideale in erster Potenz, dagegen die
in l enthaltenen Primideale, falls solche auftreten, in (l + #)ter Potenz,
wo v ^ 1 ist. Es sollen in $ u von einander verschiedene Primideale Qh

aufgehen. Wir setzen:

g n n\+Vh, vhi>o

und vh ist dann und nur dann 0, wenn Qh zu l teilerfremd ist. 2l ist
ein Primideal von k. Wir setzen &l lhl also wird :

f n ii+»*

Wir bilden mit dem Fuhrer f den Strahl i(f) der Normenreste
(mod.f) in k. Ist oc eine Strahlzahl von &(f), so mu8 es eine Zahl A in K
geben, so dafi

ot N(A) (mod.f)

wird. Wir wollen von jetzt an Zahlen von K oder k, deren Zâhler und
Nenner zu $f teilerfremd gemacht werden kônnen, erlaubte Zahlen nennen.
(x und A sind dann solche erlaubten Zahlen.

6) Der Fall 1 — 2 wird ebenso behandelt, nur mufi der engere Àquivalenzbegrifî ein-
gefuhrt werden.

6) Dièse Annahme geschieht nur, um JFalluntersehiede zu vermeiden. Tritt die l.
Einheitswurzel auf, so ist der Satz ûber die Grundeinheiten etwas anders. Siehe Takagi,
a. a. O. p. 39.
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1. Satz: DieFaktorgruppe der Gruppe aller Kongruenzklassen (mod. f)
in k zur Gruppe der in fc(f) liegenden Kongruenzklassen ist vont Typus :

(1,1,.. .,1), u mal l

Beweis : &h hat in K dieselbe absolute Norm wie lh in k. Daher ist
jede erlaubte Zahl A von K einer Zahl von k (mod. £J kongruent:

A SA oc (mod. flA), N(A) oc1 (mod. 2h)

Ist 1^ zu (l) teilerfremd, also vh 0 so gilt auch :

N(A) =(xl(mod.lh)

ist (mod. lh) der Strahl der l-ten Potenzreste, dessen Gruppe zur
Gruppe aller Kongruenzklassen den Index l hat.

Ist dagegen 1^ in (l) enthalten, also vh ^ 1, so setze man :

A oc + Ah,

wo Ah genau durch Qrh teilbar ist. Man darf r zu l teilerfremd annehmen.
Wâre nâmlich r durch l teilbar, so gâbe es eine Zahl A von k, fur die

Ahj A erlaubt und einer Zahl oc* von k (mod. Qh) kongruent ist ; d. h. :

Ah=**X (mod. S\+r) A oc + oc* X (mod. £;+1)

Ist A eine genau durch Qh teilbare Zahl, so ist genau

A=8A (mod. 2\+Vh) Ar SA'(mod. 2vhh+r) Ar{1~S) 1 (mod.fi;*).

Nun ist Ah jAr eine erlaubte Zahl. Daher wird :

^ =5^-(mod. fi1/8*) Ah SAhA'«-s> SAh(mod. £?+')

Die Différente von Ah9 die die Ableitung der Gleichung von Ah :

Alh-k1AJT1 + A£ 0

ist, ist somit genau durch fi^-1) {vh+r) teilbar:

IA\T1 -(l-l) ^A{-2 + ¦¦¦ + A2_x 0(mod.£„("*+'> «*-«)
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Da r zn l teilerfremd ist, ist jeder Summand dureh eine andere Potenz
von 2h teilbar. Jeder muB wenigstens durch den Modul teilbar sein.
Ist Xn genau durch \xhn teilbar, so muB daher, falls (Z) genau durch \ah

teilbar ist:

al + r(l-l) ^ (Z- 1) (vh + r) oder vh^-^—:

lzn+{l-l-n)r^{l-l)(vh + r), oder lxn^(l-l)vh + r,
n= 1,2,...,Z- 1,

sein. Ist r ^ vh + 1, so ist jedes Xn,n 1, 2,..., Z — 1, durch kvhh+1

teilbar. Da auch die Norm Xx dieser Bedingung genugt, so muB :

N(A) N(oc + Ah) oc1 + a1"1 kx + - • • + lx «'(mod. I^+1)

sein.

Gilt fur zwei erlaubte Zahlen B1 und B2 : B1 JS2(mod. fi^+1), so

folgt somit
N(Bt) N(B2) (mod. I^+1)

Ist umgekehrt dièse Bedingung erfiillt und setzt man A B1f B2,
so ist A erlaubt und N(A) l(mod. I^+1) Wir fragen, wie viele
(mod. fi^A+1) inkongruente solche A es gibt und beweisen zunàchst, daB

A 1 + A*, wo A* wenigstens durch Qvhh teilbar ist. A — oc + Ah ist
eine der oben behandelten Zahlen; Ah erzeugt die Ungleichungen (a),
in denen wenigstens einmal das Gleichheitszeichen gilt. Ist vh durch

al
il

l teilbar, so kann dies nur fur vh 1—- eintreten. Nun muB :

N(A) 1 =a'(mod. IA)

sein. Setzt man a 1 + A, so sei A genau durch I£ teilbar, wo s>0
sein muB. Wir beweisen, daB stets r^vh, ls^vh ist. Wàre r<vh,
also lvh-f-1 >vh(l — 1) + r > ri, so folgt aus (a) :

N(A) 1 (1 + X)1 + A,(mod. IJ*'-»*')

Daher muB (1 + %)1 — 1 genau durch IJ* teilbar sein, was, wie man leicht
sieht, bei den gemachten Annahmen unmôglich ist. Also muB r^vh
sein. Fur r>vh ist nach dem bereits bewiesenen:
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was sofort zu s ^ vh y Is — vh fiihrt. Ist r vh (also

vh zu l teilerfremd), so folgt aus (a) :

N(A) l=(l + X)'(modAl*)

woraus, da s =£ j ist, si ^ vh wird. Die Behauptung ist in allen

Fàllen bewiesen. Nimmt man jetzt die oben definierte Zahl A und
bildet A* Ax~s, so ist N(A*) 1 und 4* 1 + Ah wo 4 penat*
durch £^A teilbar ist. In (a) tritt fur zu l teilerfremdes vh wenigstens
einmal das Gleichheitszeichen auf ; es ist xt — vh xn ^ vh + 1,
n 2,3,...,Z— 1 und :

#(;!?) =1 1 + ^ + A,(mod. l^+1)

Dies gilt auch, wenn vh durch l teilbar ist. Jedes weitere zu A* (mod.
&lh+1) inkongruente A kann ^l-J-^^ gesetzt werden, wo g in k

liegt. Dann ist :

N(A) 1 1 + qK + q1 A, (mod. IJ*+1)

Aus beiden Kongruenzen folgt g 0 oder ^/~1 1 (mod. Ift). Letztere
hat nur die l — 1 inkongruenten Lôsungen 1, 2 Z — 1. Daher gibt
es genau l (mod. fij*+1) inkongruente A, fur die N(A) 1 (mod. I^A+1)

ist. Der Index der Gruppe der Normenreste zur Gruppe aller Kongruenz-
klassen ist l. Daraus folgt der Satz.

Aus der Définition folgt ohne weiteres:

2. Satz: Die Normen aller Idéale einer Idealklasse von K zu k liegen in
derselben Strahlklasse von

2. Die ambigen Eomplexe
Im folgenden behandeln wir von allen Abelschen Gruppen nur die zur

Primzahl l gehôrenden Untergruppen. Unter Gruppe verstehen wir also
stets nur dièse Untergruppe. Ist ï eine Idealklasse von k, so gehôrt sie

zu einer Potenz von Z. Die Klassenzahl selbst sei lh. Sind genau e der r
Grundeinheiten von k Nichtnormenreste (mod. f 0 fg e ^ r, so ist
der Index der Gruppe aller Einheiten zur Gruppe aller Einheiten, die
Normenreste sind, gleich Ie. Die e genannten Grundeinheiten kônnen
nicht Norm einer Zahl von K sein.

Die Hauptklasse von k ergibt in &(f) lu~e verschiedene Strahlklassen,
und die Klassenzahl von &(f) ist lh(^, wo &(f) h + u — e ist.
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Jedes Idéal i von k wird durch zwei Zahlen von k gegeben i (x, g)
und enthàlt aile Zahlen f» + rjQ, wo f, 77 aile ganzen Zahlen von k
durehlaufen. Setzt man statt f, ^ beliebige ganze Zahlen von K : S, H,
so erhâlt man das Idéal i in K. Letzteres liegt in einer Klasse von K,
die wir aber stets ebenfalls mit ï bezeichnen. ï ist also entweder einé
Klasse von k, die nur Idéale von k enthàlt, oder eine Klasse von K,
die wenigstens ein Idéal i von k in K enthàlt. Enthàlt die Klasse Si von
K die Idéale 31, SB,..., so bilden auch aile Idéale 8V<$1, 8V%$,... eine

Klasse, die man mit SvSi $tsv bezeichnet. Sicherlich mufi l Si sein.

Es sei jetzt 51 eine feste Klasse von K. Wir bilden die Menge aller
Klassen 151, wo l aile verschiedenen Klassen von k in K durchlàuft.
Dièse Menge heifitt der Komplex (£, der durch R erzeugt wird. Erzeugen
5liUnd5t2 die Komplexe K1und(I2, so heiBt der durch 5tx5t2 erzeugte
Komplex das Produkt G^ der beiden Komplexe. Der durch die Haupt-
klasse von K erzeugte Komplex heiBt der Einheitskomplex und wird
mit 1 bezeichnet. Die Komplexe bilden eine endliche Abelsche Gruppe.
Jeder Komplex enthàlt so viele Klassen, als es in K verschiedene Klassen
f gibt. Der Komplex, der durch SvSi erzeugt wird, wird mit $v£ bezeichnet,
falls d der von Si erzeugte Komplex ist. Ist f(8) irgend ein Polynom von
S mit ganzen rationalen Koeffizienten :

f(S) no + nx8 + n2S* + •

so versteht man unter (£/(<S) die f(S)te symbolische Potenz:

Man sieht, daB stets &+s+-'+sl~1 i ist, da ft1+s+"-+^-1= f ist.

EinKonvplex heifilt ambig, wenn d1~s= 1 ist. Es ist dann (£1+'S+---+'S' -1

(£' 1. Erzeugt 51 den ambigen Komplex £, so muB daher

$t1~s= f sein, wo ï in if genommen ist.
Die erste Aufgabe wird sein, die Zahl der ambigen Komplexe zu be-

stimmen. Dazu machen wir folgende Hilfsbetrachtungen. Es sei ï eine

von der Hauptklasse in k verschiedene Klasse, die in K Hauptklasse
werde. Dann ist das Idéal i der Klasse von k in K Hauptideal (N),
seine Relativnorm zu k also in k (und sogar in &(f)) Hauptideal, oder

jl+S+ ••• +S1-1 — fl l -

wegen i Si muB Nx~s eine relative Grundeinheit von K zu k sein.

Umgekehrt gebe es genau c relative Grundeinheiten in K, deren Normen
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zu k eins, und die nicht die (1 — S) te symbolische Potenz einer Einheit
von K sind, dagegen die (1 — S) te symbolische Potenz einer zu f teiler-
fremden ganzen Zahl N. Dann ist (N) Idéal einer Klasse ï, die in K
Hauptideal wird. Daher gibt es genau Ie Klassen I in k, die in K Haupt-
ideal werden, und deren Zte Potenz in k Hauptklasse ist. Ihre Gruppe
ist vom Typus (l, l,..., l) (c mal l).

l.Hilfssatz: Die lh Klassen von k bilden in K genau lh~c verschiedene
Klassen.

Somit enthâlt der Einheitskomplex und damit auch jeder Komplex
genau lh~c verschiedene Klassen, und es mu6 0 ^ c ^ r + 1 sein.

Es gebe weiter genau d relative Grundeinheiten7), deren Norm zu k
eins ist, die nicht die (1 — S) te symbolische Potenz einer Einheit sind,
und die die (1 — 8) te symbolische Potenz einer ganzen Zahl 0 von K
sind, die mit $ einen nicht in k liegenden Teiler gemein habe. Dann gibt
es ld unabhângige Klassen in il, fur die it1"^ 1 ist, und die lauter
verschiedene Komplexe erzeugen. Dabei ist

Damit ist fur aile Grundeinheiten, deren Norm zu k eins ist, die Môg-
lichkeit erschôpft, und es gibt genau r -f 1 — c — d unabhângige
Grundeinheiten in k, die Relativnorm einer Einheit von K und somit
Normenreste (mod. f) sind. Daher werden

r — (r+ 1 — c — d) c + d — 1 unabhângige Grundeinheiten in k

nicht Norm einer Einheit in K sein.

Ist jetzt Si eine von der Hauptklasse verschiedene ambige Klasse:

Si1'3 1

so ist R1 $ï1+s+ -" + sl-1==z f Eg gei c- ein zu g teilerfremdes Idéal
von R Dann ist 3X~S= (A) Hauptideal in K, also N(A) £, wo
e eine Einheit von k ist. Hier haben wir zwei Fâlle zu unterscheiden :

a) Die Einheit e ist Norm einer Einheit E von K. Dann ist N (AE*1) 1,

und es muB AE~X Ns~x sein, wo N ganz ist. Also ist:

7) Siehe Hilbert, a. a. O. p. 272 und 446, u. ff. Takagi, a. a. O. p. 35 und 39.
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wo t in k liegt und g* nur Primideale von 5 &ls Faktor enthâlt, aber
keinen in k liegenden Teiler besitzt. Die Anzahl der inàquivalenten Idéale
iÇ* ist aber ft-c-d+u^ J)eim nach dem 1. Hilfssatz gibt es lh~c inâquiva-
lente Idéale t in K und aile Primideale Qh bilden lu Klassen, von denen

genau ld einer der Klassen von k âquivalent sind. Es bleiben somit noch
lu-d von den Klassen l unabhàngige Klassen der g*. 51 mufl somit einer
dieser lh+u-c-d Klassen angehôren.

b) Die Einheit e ist nicht Norm einer Einheit von K. Sie ist wegen
N(A) e sicherlich Normenrest (mod. f) in k, liegt also in &(f). Wir
nehmen an, es gebe e* Grundeinheiten in k, die nicht Norm einer Einheit

von K, aber Norm einer (gebrochenen) Zahl von K und somit
Normenreste (mod. f sind. Sie miissen von den e Grundeinheiten in
k, die es nicht sind, verschieden sein. Es gibt also le+e* unabhàngige
Einheiten in k, die nicht Normen von Einheiten von K sind. Nach
obigem ist daher:

e + e*^c + d— 1. (1)

Nach der Définition von e* gibt es im Falle b) genau Ie* Klassen 51,

fur die Rx~s 1 ist. Zusammenfassend lautet das Ergebnis :

2. Hilfssatz: Es gibt ih+u-c-a+e* verschiedene Klassen R in K, fur die

ist.

Jetzt kônnen wir berechnen, wie viele verschiedene Klassen 51 es geben
muB, fur die

ist. Ihre Zahl ergibt zugleich die Zahl der ambigen Komplexe. Ist nàmlich
51* eine weitere Klasse, fur die 5**1"5 ï ist, mu8 (51* ft-1)1"'* 1

sein, und somit ft* das Produkt aus 51 und einer der l^+u-c-d+e* ver_
schiedenen ambigen Klassen sein. Es gibt daher genau l^+u-c-d+e* ver.
schiedene Klassen 51, fur die 511~5 l ist. Es sei ls die Anzahl der ver-
schiedenen Klassen t in K, die die (1 — S)te symbolische Potenz einer
Klasse R von K sind. Dièse I kônnen nicht beliebig sein, sondern wegen
Satz 2 und wegen ï Sî muB:

die Hauptstrahlklasse von &(f) sein; d. h. die Ite Potenz aller Idéale
dieser l mu8 in der Hauptstrahlklasse von fc(f) liegen. Wir sagen dafûr
kurz ll mufi in der Hauptstrahlklasse von ifc(f) liegen. l8 ist somit hôchstens
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die Zahl der verschiedenen Klassen f in K, deren lie Potenzen in der
Hauptstrahlklasse von &(f) liegen. Um s abzusehatzen, nehmen wir an,
es sei l8* die Zahl aller Klassen ï in k, deren lie Potenzen in der
Hauptstrahlklasse von &(f) liegen. Sie bilden eine Gruppe vom Typus
(Z, l,..., l) (l s* mal). Unter ihnen befinden sich die Ie Klassen von k,
die in K in die Hauptklasse fallen. Daher gibt es hôchstens I8*~c ver-
schiedene Klassen î in K, die die (1 — S)te symbolische Potenz einer
Klasse R von K werden kônnen, und es muB :

s* — (2)

Die Zahl aller Klassen $t, deren (1 — S) te symbolische Potenz eine
Klasse ï in K ist, wird deshalb l^+s+u-c-d+e* Von diesen liegen nach
Hilfssatz 1 je lh~c im selben Komplex, der ambig sein mu8, und die Zahl
der ambigen Komplexe ist Z« Z«-h*+«*-*. Wegen (1) und (2) ist:
a^s* -\- u — e — 1.

3. Satz : Ist la die Anzahl der verschiedenen ambigen Komplexe, so ist :

a s ~\- u -{- e* — d ^ s* -f- u — e — 1.

Dabei ist: ls die Zahl der Klassen von k in K, die die (1 — 8)te symbolische

Potenz einer Klasse von K sind; l8* die Zahl der Klassen von k,
deren Ite Potenz in die Hauptstrahlklasse von k{\) fallen; u die Zahl der

verschiedenen in f aufgehenden Primideale ; e die Zahl der unabhângigen
Grundeinheiten von k, die nicht in &(f) liegen; e* die Zahl der
unabhângigen Orundeinheiten in k, die nicht Norm einer Einheit, dagegen

Norm einer gebrochenen Zahl von K sind;

3. Die (relativen) Grundkomplexe

Unter einem Polynom / (S) verstehen wir im folgenden stets eine ganze
rationale Funktion von 8 mit ganzen rationalen Koeffizienten.

3, Hilfssatz: Oenûgt der Komplex (£ der Bedingung &{S) 1, wo f(8)
ein Polynom und /(l) zu l teilerfremd ist, so ist auch (£ 1

2 ri
Es sei C di© Ite Einheitswurzel e l und k(Ç) der Kôrper von C- /(C) ist

eine ganze zu l teilerfremde Zahl von k(Ç). Ist q ihre Norm, so ist q ganz
und nicht durch l teilbar. Ferner gibt es eine ganze Zahl g(Ç) von k(Ç),
fur die

/(£)?(£) g
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ist. Da f der im rationalen irreduzibeln Gleichung Sl~1+-
geniigt, so mu8 :

f(8) g(S) q + h{8) (1 + 8 + • • • + S'-*)

identisch in $ sein, wo h (8) wieder ein Polynom ist. Somit wird:

da (£1+5+--- + 'Sf ~1= i ist. Nun gehôrt (£ zu einer Potenz von l, also
ist G 1

4. Hilfssatz: Die lit Potenz eines Komplexes ist stets die (1 — 8)te symbo-
lische Potenz eines Komplexes.

Man entwickle 1 + 8 + • • • + 8l~x nach Potenzen von S — 1 :

1 + 8+ +8^ 1 + f(S) (8-1),
wo f(S) ein Polynom ist. Daher ist fur jeden Komplex (£ :

J. Hilfssatz: Ist f(8) ein Polynom und /(l) durck l teilbar, so gibt es zu
jedem Komplex (£ einen Komplex (£*, «so

Es ist f(S) /(l) + (1 — aS) flr(5), wo flr(/8) ein Polynom und /(l)
durch Z teilbar ist. Nach Hilfssatz 4 ist (£/(1) (S;/1~'SJ also:

wo G* - (£; G^5) ist.

Hilfssatz : Zu jedem von 1 verschiedenen Komplex (£ gibt es ein und nur
eine natilrliche Zahl n + 1, fur die

(£(1

1 verschiedener ambiger Komplex.

Wir nennen n den Index von G, tmd (£(1~'s) ^ew 2;^ G gehôrigen
ambigen Komplex.
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Beweis : Man bilde aile Komplexe:

tfi-ap, m==0, 1, 2,...(Œ#1).

Da es nur endlich viele Komplexe gibt, mu8 es ein kleinstes

m n + 1 > 0 geben, fur das der Komplexe (£(1~S)n+1 schon unter den

vorhergehenden auftritt. Es sei etwa (£(1-5)n+1 e(1-5)W m ^ w.
Dann muB:

sein, wo /(/S) 1 — (1 — 8)n~m+1 ein Polynom und /(l) 1 ist.
Daher ist nach Hilfssatz 3 auch

was m 0 bedingt, da n + 1 die kleinste Zahl vorausgesetzt wurde,
die einen frûhern Komplex ergibt. Somit ist

und (£(1~'S)n== S* darf nicht eins sein nach Voraussetzung. Zudem ist
/¦* çt\

(£* ambig wegen (£* 1

7. Hilfssatz: Durchlàuft f(8) aile môglichen Polynôme, und ist (£ ^ 1

ein Komplex, so finden sich unter (£/(5) genau l verschiedene ambige
Komplexe.

Ist (£/(<S) ambig und ^1, so muB :

sein. Ist /(l) zu Z teilerfremd, so muB nach Hilfssatz 3 auch ($}~s 1

werden, also (£ ambig sein. Somit ist f$LHS) (£/(1), und da & 1

sein mufi, gibt es die l ambigen Komplexe 1, (£, (£?,..., CE;*"1.

Ist dagegen /(l) durch Z teilbar, und £ wieder die Zte Einheitswurzel,
so ist entweder /(£) 0 oder ^ 0. Im erstern Falle ware identisch:

f(8)=g(8) (1 + S H f- 81"1) <£HS) 1 gegen Annahme.

Im zweiten Falle ist /(£) durch eine grôBtePotenz von (1 — £), etwa
(1 — £)", v> 0, teilbar, so dafi /*(£) /(£)/(l — £)v ganz und zu l
teilerfremd ist. Dann besteht wieder eine Identitât
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f(S) (1 - 8)"f*(8) + g(S) (1 + 8 + ¦ • • + 5"),
wo g (8) ein Polynom und /*(1) ^ 0 (mod. l) ist. Daher wird:

Da (£/((S) ambig und ^ 1 sein soll, so muB nach Hilfssatz 3 auch
d{1~S)V ambig sein, d. h. ça-^+i^ L

werden. v n ist der Index von (S, also von f(8) unabhângig. Ist Œ*

der zu G gehôrende ambige Komplex, so ist fur jeden ambigen Komplex
der Form G/(5) :

es gibt daher nur die l ambigen Komplexe 1, (£*, (£*2, •

Wir nennen im folgenden ein Polynom der Form :

wo dh eine der Zahlen 0, 1, 2,..., l ~ 1 ist, A 0, 1, 2,. n, ein
kanonisches Polynom vont Grade n.

8. Hilfssatz: Ist (£ ein Komplex und f(8) ein gegebenes Polynom, so

gibt es stets ein kanonisches Polynom g (S), fur das :

wird, wo der Orad von g(S) der Index von (£, und /(l) g(l) (mod. l) ist.

Denn zunâchst ist, falls £ wieder die Ite Einheitswurzel ist, /(£) d0

(mod. 1 —- C), wo 0 ^ do< l angenommen werden darf. Gilt :

/(C) d0 + dx(l - C) + • • • + dr(l - :Y (mod. (1 - C)r+1),

0^dh<l, A 0, l,...,r
so ist (/(C) - d0 - - - • - dr{\ - CY) /(! ~ Or+1 ganz und einer Zahl
dr+1 (mod. 1 — C), 0 ^ dr+1 < l, kongruent, d. h. auch

/(C) d0 + •. + cir(l - Cr + dr+1(l - C)r+1 (mod. (1 - f)'+*),

woraus durch vollstândige Induktion folgt, daB:

g(Ç) + h(C) (1 - C)n+1, n der Index von (£
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wird, wo g (S) ein kanonisches Polynom, und h(Ç) ganz ist. Daher muB:

f{8) g(S) + h(8) (1 - 8)*+* + k(8) (1 + S + • + 8*-*)

identisch in 8 sein, h (8) und k(8) sind Polynôme. Daraus folgt:

<£><*>= (£*(«>,

da ja G<1-5>w+1 1 ist. AuBerdem ist /(l) d0 g(l) (mod. Z)

9. Hilfssatz : Durchlauft f(S) aile Polynôme und ist n der Index von (f,
so stellt df{S) genau ln+1 verschiedene Komplexe dar. Man erhâlt aile dièse

Komplexe, wenn man fur f(8) die ln+1 môglichen verschiedenen kanonischen

Polynôme vom Grade n nimmt.

Wegen Hilfssatz 8 gibt es sicher nicht mehr als ln+1 Komplexe. Man
hat nur noch zu beweisen, daB aus &gi{S) (£g*(S\ wo gx(8) und g2(8)
kanonisch sind, auch g^S) ^2(^) folgt, oder daB aus ($?iS) — 1,

g (S) 0 folgt. Wâre nâmlieh g (S) nicht identisch null, so gâbe es ein
grôBtes m, so daB : g(8) 1 — 8)m g* (S), m^n, wird, wo g*(8) wieder

kanonisch und g*(l) # 0 ist. Nach Hilfssatz 3 ist dann (g1-^ l,
was unmôglich ist, da, m^n und n der Index von (£ ist. Also muB g (8)
identisch null sein.

Wir fuhren jetzt folgende wichtige Définition ein :

Définition: Ist la die Anzohl der ambigen Komplexe, so heifie ein System
von a Komplexen dh mit den Indices nh, h 1,2,..., a, ein System
von (relativen) Grundkomplexen, wenn:

1. die ambigen Komplexe 31^ (£(^~ S)nh ,&=l,2,...,a, eine Basis aller
la ambigen Komplexe bilden, und wenn:

2. jeder der Komplexe:

dann und nur dann die (1 — S) te symbolische Potenz eines Komplexes
wird, wenn aile Polynôme fh(S) der Bedingung geniigen, da/î fh(l), h

1, 2,..., a, durai l teilbar ist.

4. Satz: In K existiert ein System von a (relativen) Grundkomplexen.

Zum Beweise nehmen wir zuerst an, daB die Indices aller Komplexe
in if null seien. Dann sind aile Komplexe ambig: C1"5 1, undbilden
wegen G? 1 eine Abelsche Grappe vom Typus:

(l, l,..., l), a mal l
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Dièse besitzt eine Basis {£h9h=l,29.. .9a, die das System vonGrund-
komplexen bildet. Zugleich sieht man, da8 man jeden Komplex durch
die (£h eindeutig darstellen kann:

0 ^ xh

Sind nicht aile Indices null, so nehmen wir die Za ambigen Komplexe 31

und stellen sie durch eine Basis %n,h 1,2,...,a, dar:

Fur jedes dieser 9t ^ 1 bestimmen wir den grôflten Exponenten n,
so daB:

51 (£(1-5)W n ^ 0

wird, wo £ ein beliebiger Komplex ist. n mu8 der Index von (£ sein.
Unter allen ît bestimmen wir dasjenige mit einem grôfïten Index nx.
Wir durfen es als die BasisgrôBe %x wâhlen, und es sei :

Die Untergruppe der ambigen Komplexe, die 9I*1, x1=l,2,...,l —

nicht mehr enthàlt, stellen wir wieder durch die Basis 3I2, 3I3,..., 91

dar, betrachten also nur noch die ambigen Komplexe :

91 h »** 0 ^ xh < l

Unter diesen besitze:

ein grôBtes ti2 So fahren wir fort, und erhalten a-ambige Komplexe
mit den Indices nh, h 1, 2,..., a, wo

es wird:

«„ <££-«"*, A l,2,...,a,
eine Basis aller ambigen Komplexe bilden. Wegen der Konstruktion der
(Zh kann keiner derselben die (1 — S) te symbolische Potenz eines Kom-
plexes sein.
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Die dh bilden ein System von Grundkomplexen. Ist nâmlich :

so ersetze man nach Hilfssatz 8 die f(S) durch die kanonischen
Polynôme :

a

n
Sind aile gh(l) 0, so mûssen nach Hilfssatz 8 auch aile /(l) durch l
teilbar sein, was zu beweisen war. Wàren dagegen nicht aile gh(l) 0>

so kônnen wir aile diejenigen Faktoren GJA(âS), fur die gh(l) 0 ist,
nach rechts nehmen und mit G vereinigen. Es bleibt also nur noch:

wo jetzt aile gv(l), <7^(1) nicht null sind. Wir erheben beide Seiten in
die (1 — S)Hv te symbolische Potenz, so wird:

wo links ein ambiger Komplex ^ 1 steht. Dies ist gegen die Konstruktion
der (£h. Denn nv sollte die grôBte Zahl sein, so da8

wird, wàhrend oben ein solches 91 die (1 — 8)nv te symbolische Potenz
eines Komplexes wird. Daher mussen aile gh(l) null sein.

5. Satz: Ist ($,h ein System von Grundkomplexen, so la/St sich jeder Kom-
plex (£ in der Form darstellen :

h=l

Wir setzen von jetzt an stets voraus, daB das System von Grundkomplexen

so abgezâhlt ist, daG nx ^ n2 ^ • • • ^ na. Ist nun £ ambig, so ist er
sicher durch die dh darstellbar. Wâre aber G eine Komplex mit einem

Index n^l, der nicht durch die d£h darstellbar wâre, so ist SU (E(1~~S)H

ambig, also durch die dh darstellbar. Es sei nun m > 0 und ^ n die

kleinste Zahl, so daB (E(1~ S)m noch durch die (£ft darstellbar ist :

gh(8) kanonische Polynôme,
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Dann mussen nach Définition der Grundkomplexe wegen m > 0 aile
gh(l) 0, also gh(S) durch (1 - 8) teilbar sein: gh(S) (1 - 8)gl(8),
wo die £*(#) wieder kanonisch sind. Somit muB:

e(1~S) 77 O
ambig, also wieder durch die &h darstellbar sein. Es wâre also auch
Ç<i-s)m- durcn die (£h darstellbar,
selbst durch die &h darstellbar sein.

g
-s)m- durcn die (£h darstellbar, gegen Annahme. Es mu8 daher (£

6. Satz: Jeder Komplex (£ kann auf eine und nur auf eine Weise durch
ein System von Grundkomplexen (£h in der Form :

a

G iICjA(lS), 9h(8) Jcanonische Polynôme nhten Grades,
h=i

dargestellt werden.

Zum Beweis braucht nur nachgewiesen zu werden, daB aus

aa

II &°hhiS)= 1 gh(S) kanonische Polynôme,

stets gh(8) 0,h 1,2,..., a, folgt. Gilt erstere Beziehung zwischen
den (£ft, so sind jedenfalls aile gh(S) durch (1—8) teilbar, da 1 die
(1 — 8) te symbolische Potenz einer ambigen Klasse ist.

Sind nicht aile gh(S) identisch null, so nehmen wir an, daB aile gh(S) ^h 0

durch (1 — 8)m, m>0, teilbar seien, dagegen nicht mehr aile durch
(1 - £)w+1, d. h. daB in allen gh(8) der Form

die Koeffizienten d0 dx • • • dm-1 — 0, dagegen wenigstens ein
dm^=0 ist. Dann ist gh(8) (1 — S)mg%(8),h= 1, 2,..., a, und fur
wenigstens ein h Je ist g*(l) ^ 0. Die g%(S) sind kanonische
Polynôme vom Grade nh — m oder identisch null. Nun ist

nach Annahme ein ambiger Komplex, also durch die tylh (££ ^^als
Basis darstellbar:

a

123



Somit ist auch:

TI e;ft(S)= 1, wo g'h(S) (1 -8r-*gt(8) + xh{l --S)"»

wieder kanonisch ist.
Es seien aile g'h(8) durch (1 — S)m', nicht aber durch (1 — S)m'+1

teilbar. Daim ist m1 <m. Denn fur h k ist gfk(S) genau durch
(1 — /S)™"1 teilbar, da m^nk; somit ist m' ^ m — 1. Durch Fort-
setzung dièses Verfahrens kann eine Relation gefunden werden, deren
gh(S) nicht mehr aile durch (l — S) teilbar sind. Dies widerspricht aber
der Définition der Grundklassen. Somit miissen aile gh(S) identisch null
sein.

Aus dem bewiesenen Satze folgt, daB es genau Ie verschiedene Komplexe
gibt, wo

C Ê(nh+l)

ist. Denn jedes G^ ergibt lnh+1 verschiedene Komplexe. Da jeder
Komplex genau ^~C-Klassen nach Hilfssatz 1 besitzt, so hat H in der

Klassenzahl lH von K deïi Wert : H h — c + ]£(nh+ 1).

7. Satz: Ist lh die Klassenzahl von k, lH die Klassenzahl von K, so ist :

H h - c + 2 (nh + 1)
a=i

wo 1e die Anzahl der Klassen von k ist, die in K Hauptklasse werden, und
die nlf n2,..., na die Indices eines Systems von a Orundkomplexen in K
sind.

4. Die Klassennormen
Ist R irgend eine Klasse von K und 3 ©in zu 5 teilerfremdes Idéal von

&, so werden aile Idéale von R, die zu 5 teilerfremd sind, durch (A)%
gegeben, wo die A erlaubte Zahlen von K sind. Die Normen aller dieser
Idéale zu k sind dann durch (n(A))Nfâ) gegeben. t Nfâ) ist ein festes
Idéal von k. Daher liegen aile Idéale (N(A))i in einer Strahlklasse s

von &(f) (Satz 2). Wir setzen daher:

und nennen die Strahlklasse s die Norm der Klasse St. Wegen

#(3i) #(3i) ^I3i 3«) N(AX) N(A2) N(AXA2)

genugt die Norm der Bedingung: N^) N(&2)
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Umgekehrt heiBt jede Strahlklasse s von &(f), die unter den Normen
der Klassen R von K auftritt, Klassennorm. Die Aufgabe ist, die Zahl
der Klassennormen zu berechnen. Man sagt, aile Klassen Si, deren Norm
dieselbe Klasse s in k (f ergeben, liegen im selben Geschlechte. Aile Klassen
von K, deren Norm die Hauptstrahlklasse von fc(f) ist, bilden das Haupt-
geschlecht.

Nach dem Satze 6 kann jede Klasse Si von K, die etwa den Komplex (£

erzeugt, in der Form:

a

Si ï FI Si[h{S), gh(8) ein kanonisches Polynom,

dargestellt werden. Dabei werde dh dureh Sih erzeugt, h — 1, 2,..., a
und I ist eine der lh~c-Klassen von Si, die Idéale von k enthalten (Hilfs-
satz 1). Wir nennen die Sih, k 1,2,..., a ein System vonGrundklassen.

Nun wird:

N(Si) N(î) FI N(Sih)dh 0^dh^l -I A=l,2,...,a.
Sind aile N(Rh),h= 1,2,..., a von einander unabhângig, so stellt
das Produkt genau la Klassen von &(f) dar. la ist daher die grôBte Zahl,
die durch dièses Produkt erhalten werden kann. Es fragt sich, wie viele
Klassen $ von if (f) die Norm N(î) darstellen kann. Ist die Klassengruppe
von k vom Typus (lhl, lh\..., lH) hx + h2 + • • • + ht h, und sind
îv, v 1,2,...,^, die entsprechenden Basisklassen, so wissen wir, dafi
dièse Klassengruppe als Untergruppe die ls* verschiedenen Klassen ent-
hâlt, deren Normen, resp. deren lie Potenzen in die Hauptstrahlklasse
von &(f) fallen. Wegen der Struktur dieser Untergruppe durfen wir vor-
aussetzen, daB ihre Basis durch fj p"1, v 1, 2,..., 5* gegeben werde.

In ihr befinden sich auch die Ie-Klassen, die in K Hauptklasse werden.
Nun lâBt sich jede Norm einer Klasse î so darstellen :

n(î) n (îifv

und wir haben abzuzahlen, wie viele Strahlklassen von &(f) sich in dieser
Form befinden. In den ersten s* Faktoren braucht xv nur die Zahlen

0,l,...,Zy~ zu durchlaufen, bei den weiteren dagegen aile l v Zahlen,

da erst die l y+1te Potenz von iv in der Hauptstrahlklasse von &(f) liegen
wird. Somit stellen aile N(î) genau lh~s* verschiedene Strahlklassen von

t

k(\) dar, da ja £ hv h ist.
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Die Gesamtzahl der Klassennormen ist also hôchstens £&-**+«, und
zwar wird dièse Maximalzahl dann und nur dann erreicht, wenn die
Klassen N(Rh), h 1, 2,..., a, unter sich und mit den N(î) unab-
hângig sind. Setzt man fur a den Wert nach Satz 3 ein, so erhàlt man
hôchstens

lh-s*+*+u-w*-d Klassennormen,

und dièse Zahl ist wegen (1), (2), s ^ s* — c kleiner als:

lh+u-e-1

1. Hauptsatz: Die Zahl der verschiedenen Strahlklassen von &(f), die
Klassennormen in K sind, ist :

wo das erste Oleichheitszeichen nur eintreten kann, wenn die Normen aller
Grundklassen unter sich und mit den Normen aller Klassen î in K unab-
hangig sind; und wo das zweite Gleichheitszeichen nur eintritt, wenn
s s* — c,e* c-f-d — e— 1 gilt.

5. Existenz der Geschlechter

In bekannter transzendenter Weise kann man beweisen, da8 es wenig-
stens Z^f)"1 -Klassen von &(f) geben muB, die Klassennormen sind, daB
also wenigstens V1^"1 Geschlechter existieren8). Wegen des I. Haupt-
satzes muB daher:

sein. Die erste Gleichung sagt aus, daB aile Grundeinheiten von k, die
nieht Norm einer Einheit von K sind, entweder Norm einer gebrochenen
Zahl von K, oder nicht Normenrest (mod. f) sind. Die Zahl der ersten
ist genau e*, die der zweiten e. Somit:

8. Satz: Jede Einheit von k, die Normenrest (mod. f) ist, ist Norm
einer Zahl von K.

Die zweite Gleichung sagt aus, daB jede Klasse I in K, deren Norm in
der Hauptstrahlklasse von &(f) liegt, die (1 — S)te symbolische Potenz
einer Klasse ist. Ie derselben fallen ja in die Hauptklasse von K.

8) Siehe etwa Hilbert, a. a. O. p. 308 u. ff. und vor allem Takagi, a. a. O. p. 18.
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9. Satz: Jede Klasse l in K, deren Relativnorm N(l) in die Haupt-
strahlklasse von &(f) fàllt, ist die (1 — 8) te symbolische Potenz einer Klasse
von K.

Weiter folgt aus der Existenz, daB auch das erste Gleichheitszeichen
im I. Hauptsatz gelten mu8. Daher miissen die Klassen von

aile unter sich und mit den N(î) unabhângig sein. Ist nun

a

R tn Rghh(S), gh{S) ein kanonisches Polynom,
h=l

eine beliebige Klasse von K, so ist:

N(t) H N(Rh)gh(1) wo 0 ^ gh(l) < l ist.

Soll nun s die Hauptstrahlklasse 1 sein, so ist dies wegen der Unabhângig-
keit nur môglich, wenn in k(^):

N(i) 1, flrfc(l) 0, h= 1,2,..., a,

wird. Dann ist aber nach Satz 9 1 51*1"5, und aile gh(S) durch (1 — 8)
teilbar, also 51 selbst die (1 — $)te symbolische Potenz einer Klasse.
Aile Klassen 51, fur die 5=1 ist, bilden das Hauptgeschlecht. Daraus
der

2. Hauptsatz : In K existieren genau lh<^)~1 verschiedene Geschlechter,

wo ZA(f) die Klassenzahl von &(f) ist, und jede Klasse des Hauptgeschlechtes
ist die (1 — S) te symbolische Potenz einer Klasse.

(Eingegangen den 26. Juni 1944.)
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