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Abelsche Gleichungen

in algebraischen Zahlkérpern
(Erste Mitteilung)

Von Rup. FUueTER, Ziirich

Einleitung

Im folgenden gebe ich eine neue Darstellung des Beweises eines grund-
legenden Satzes der Klassenkoérpertheorie: Ist K ein zum algebraischen
Zahlkorper k£ Abelscher Korper vom Primzahlrelativgrad 7, so existieren
in K nur MP~1 QGeschlechter, falls *? die Klassenzahl des Strahles
der Normenreste (mod. f) in k ist, und f ein geeignetes Ideal von £k
ist. Der Begriff des Geschlechtes, wie er von mir fiir den Bereich der
quadratisch-imagindren Zahlkorper eingefithrt wurde!), und wie er nach-
her von Takag: allgemein verwendet wurde?), scheint mir von besonderer
Einfachheit zu sein; benutzt er doch keine Symbole, und stiitzt er sich
doch nur auf allgemeine zahlentheoretische Begriffe. Inhaltlich kann man
sogar das Wort Geschlecht weglassen und nur von der Gruppe verschie-
dener Idealklassen von k sprechen, die Relativnormen von Klassen von K
sind. Der folgende Beweis benutzt statt des Symboles des Normenrestes,
das eigentlich zu andern Fragen gehort, den Begriff des Systems der
(relativen) Grundkomplexe, der dem Begriff des Systems der (relativen)
Grundeinheiten entspricht und tief im Wesen der Frage verankert ist.
Setzt man die Existenz der beiden Systeme voraus (ihre Beweise sind
ganz analog), so ist der zu beweisende Satz iiber die Geschlechter fast
selbstverstiandlich. Ubertrigt man ihn etwa auf einen absolut Abelschen
Korper vom Primzahlgrade I, so werden die Grundkomplexe zu Ideal-
klassen, und die Theorie ist analog und noch einfacher als im klassischen
Fall 1 =2 des quadratischen Korpers®). Der Beweis, daB8 die *P~1-
Geschlechter wirklich existieren, wird am einfachsten mit ,,transzenden-
ten‘‘ Mitteln?) gefiihrt. Ich sehe nicht ein, warum diese Methode gegen-
iiber einer ,,arithmetischen‘‘ Methode weniger dem Wesen der Zahlen-
theorie entsprechen soll. SchlieBllich benutzt auch die Berechnung der
Klassenzahl oder die Aufstellung der Einheiten transzendente Mittel.

1) Rud. Fueter, Abelsche Gleichungen in quadratisch-imaginaren Zahl-
korpern. Math. Ann, Bd. LXXYV (1913), p. 231 u. ff.

2) T. Takagi, Uber eine Theorie des relativ Abelschen Zahlkérpers. Journ.
of the Coll. of sc. Tokyo Imp. University, Vol. XLI, art. 9 (1920).

3) Siehe etwa D. Hilbert, Die Theorie der algebraischen Zahlkdrper. Ber. D.
Math. Ver. IV. Bd. (1897), p. 286 u. ff.

4) Hilbert, a. a. O. p. 314.
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In weitern Mitteilungen hoffe ich, die Folgerungen aus dem hier bewie-
senen Satze zu ziehen. Die erneute Beschiftigung mit der Frage der
Theorie der Klassenkorper verdanke ich der anregenden Durcharbeit
dieses Gebietes, wie sie Herr Speiser veranlafit hat, und wozu ihm die
Stiftung fur wissenschaftliche Forschung an der Universitit Ziirich Mittel
zur Verfiigung gestellt hat. Ich spreche auch meinerseits der genannten
Stiftung hierfiir herzlichen Dank aus.

1. Der Strahl der Relativhormen

Es sei K ein zyklischer Korper iiber £ vom Grade I, I eine ungerade
Primzahl®). Wir setzen voraus, £ enthalte die lte Einheitswurzel nicht®).
Die Relativdiskriminante von K zu k sei f-1. { ist dann die lte Potenz
eines Ideals § von K : { = §'. Die Gruppe von K |k sei durch S gegeben,
wo also 8! =1 die Einheitssubstitution ist. Jede ganze Zahl 2 von K
geniigt dann einer Kongruenz:

2 =802 (mod. §F) .

& enthilt alle zu [ teilerfremden Primideale in erster Potenz, dagegen die
in I enthaltenen Primideale, falls solche auftreten, in (1 v)ter Potenz,
wo v =1 ist. Es sollen in § » von einander verschiedene Primideale £,
aufgehen. Wir setzen:
u
F=I, v,=20,

h=1
und v, ist dann und nur dann = 0, wenn £, zu ! teilerfremd ist. & ist
ein Primideal von k. Wir setzen 2! = [, ; also wird:

f=1IT1%n
h=1
Wir bilden mit dem Fiihrer f den Strahl £(f) der Normenreste
(mod.f) in k. Ist « eine Strahlzahl von k(f), so muB} es eine Zahl 4 in K

geben, so daf}
x = N(4) (mod. f)

wird. Wir wollen von jetzt an Zahlen von K oder k, deren Zihler und
Nenner zu § teilerfremd gemacht werden konnen, erlaubte Zahlen nennen.
o« und A sind dann solche erlaubten Zahlen.

5) Der Fall | = 2 wird ebenso behandelt, nur mu8 der engere Aquivalenzbegriff ein-
gefithrt werden.

8) Diese Annahme geschieht nur, um Fallunterschiede zu vermeiden. Tritt die I. Ein-
heitswurzel auf, so ist der Satz iiber die Grundeinheiten etwas anders. Siehe Takags,
a.a. 0. p. 39.
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1. Satz: Die Faktorgruppe der Gruppe aller Kongruenzklassen (mod. f)
wm k zur Gruppe der in k(f) liegenden Kongruenzklassen ist vom Typus :

@,1,...,0), w mal 1.

Beweis: &, hat in K dieselbe absolute Norm wie [, in £. Daher ist
jede erlaubte Zahl A von K einer Zahl von k (mod. £,) kongruent:

A =84 =« (mod. &,), N(4) = & (mod. &,) .
Ist [, zu () teilerfremd, also v, = 0, so gilt auch :
N(4) =&t (mod. [,) .

k(f) ist (mod. 1,) der Strahl der l-ten Potenzreste, dessen Gruppe zur
Gruppe aller Kongruenzklassen den Index [ hat.

Ist dagegen I, in (I) enthalten, also v, = 1, so setze man:

A:“‘*‘Ah,

wo A, genau durch &, teilbar ist. Man darf r zu [ teilerfremd annehmen.
Wire namlich 7 durch I teilbar, so géibe es eine Zahl A von k, fiir die
A, [ A erlaubt und einer Zahl «* von k£ (mod. &,) kongruent ist; d.h.:

A, = a*A(mod. 831", 4 =« + a* A(mod. L3 .
Ist A eine genau durch {, teilbare Zahl, so ist genau
A =84 (mod. £57°), Ar=8A"(mod. LP+") | A" = | (mod. L) .

Nun ist A4, /A" eine erlaubte Zahl. Daher wird:

Ah

T = S‘%—i‘— (mod. £5+°%) | A, =84, A7 = SA4,(mod. L") .

Die Differente von A4,, die die Ableitung der Gleichung von 4, :
AL — A+ — 2, =0
ist, ist somit genau durch Q= ¢4+ tejlbar:
AP — (1 — 1) 3,472+ ..o 4+ A, = 0(mod. 8,F+D (-1
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Da r zu [ teilerfremd ist, ist jeder Summand durch eine andere Potenz
von £, teilbar. Jeder mull wenigstens durch den Modul teilbar sein.

Ist 4, genau durch [} teilbar, so mufl daher, falls (I) genau durch [}
teilbar ist:

lo

1

l (a)

le, + 1 —1—n)r=(0—1) (v, +7), oder la,=(—-1)v,+r,
n=1,2,...,1—1,

ol+rl—1)=(—-1) (v, +7r) oder v,=<

sein. Ist » =0, + 1, so ist jedes 4,,n=1,2,...,1 — 1, durch A}’
teilbar. Da auch die Norm A, dieser Bedingung geniigt, so muf}:

NA) =N+ 4;) = + a1+ -+ 4+ 4 = ol (mod. [}rt1)
sein.
Gilt fiir zwei erlaubte Zahlen B, und B,: B, = B, (mod. 3**1), so
folgt somit
N(B,) = N(B,) (mod. [#+1) .

Ist umgekehrt diese Bedingung erfiillt und setzt man 4 = B,/ B,,
so ist A erlaubt und N(A) = 1(mod.[}**'). Wir fragen, wie viele
(mod. £3*1) inkongruente solche 4 es gibt und beweisen zunichst, daf
A =1+ A% wo A* wenigstens durch L}* teilbar ist. 4 =« + A4, ist
eine der oben behandelten Zahlen; A, erzeugt die Ungleichungen (a),
in denen wenigstens einmal das Gleichheitszeichen gilt. Ist v, durch

eintreten. Nun mul3:

[ teilbar, so kann dies nur fiir v, = lo_l :

N(A) =1 = «'(mod. [,)

sein. Setzt man « =1+ 4, so sei 4 genau durch I} teilbar, wo s>0
sein muBl. Wir beweisen, dal stets r =v,, ls = v, ist. Wire r<uv,,
also lv,+1>v,(l — 1)+ r>rl, so folgt aus (a):

NA) =1 = (1+ A} + A, (mod. [pI-D+r) |

Daher muf3 (1 + 4)! — 1 genau durch [ teilbar sein, was, wie man leicht
sieht, bei den gemachten Annahmen unmoglich ist. Also mull r =v,
sein. Fiir » >wv, ist nach dem bereits bewiesenen:

N(4) = (14 2! (mod. [p*Y)
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o v — lo
I—1° " 1 —1°

v, zu [ teilerfremd), so folgt aus (a):

NA)=1=(1+ 2} (mod. I} ,

was sofort zu s = ls = v, fithrt. Ist r =9, (also

woraus, da s # Z“ZG’T ist, sl =2 v, wird. Die Behauptung ist in allen

Fillen bewiesen. Nimmt man jetzt die oben definierte Zahl A und
bildet A* = A5, so ist N(A*)=1 und A*=1+4 A,, wo A, genau
durch £j* teilbar ist. In (a) tritt fiir zu ! teilerfremdes v, wenigstens
einmal das Gleichheitszeichen auf; es ist z,=v,, z,=v,+1,
n=2,3,...,1—1 und:

N(A*)=1=1+ 4; + 4;(mod. [#*1) .

Dies gilt auch, wenn v, durch [ teilbar ist. Jedes weitere zu A* (mod.
Qirtl) inkongruente A kann =1 p A, gesetzt werden, wo ¢ in k
liegt. Dann ist :

NA) =1=1+4 04y + o 4, (mod. [}p+Y) |

Aus beiden Kongruenzen folgt ¢ =0 oder ¢"!=1 (mod. [,). Letztere
hat nur die I — 1 inkongruenten Lésungen 1, 2,...,71— 1. Daher gibt
es genau ! (mod. £3**1) inkongruente A, fiir die N(4) = 1 (mod. [}**1)
ist. Der Index der Gruppe der Normenreste zur Gruppe aller Kongruenz-
klassen ist I. Daraus folgt der Satz.

Aus der Definition folgt ohne weiteres:

2. Satz: Die Normen aller Ideale einer Idealklasse von K zu k liegen in
derselben Strahlklasse von k(f).

2. Die ambigen Komplexe

Im folgenden behandeln wir von allen Abelschen Gruppen nur die zur
Primzahl [ gehérenden Untergruppen. Unter Gruppe verstehen wir also
stets nur diese Untergruppe. Ist f eine Idealklasse von k, so gehort sie
zu einer Potenz von [. Die Klassenzahl selbst sei I*. Sind genau e der r
Grundeinheiten von k Nichtnormenreste (mod. f), 0 < e=<r, so ist
der Index der Gruppe aller Einheiten zur Gruppe aller Einheiten, die
Normenreste sind, gleich l¢. Die e genannten Grundeinheiten kénnen
nicht Norm einer Zahl von K sein.

Die Hauptklasse von k ergibt in k(f) I“~° verschiedene Strahlklassen,
und die Klassenzahl von k(f) ist %P, wo h(f) = b + u — e ist.
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Jedes Ideal i von k wird durch zwei Zahlen von k gegeben i = (x, p)
und enthilt alle Zahlen &x + 7o, wo &, 7 alle ganzen Zahlen von k&
durchlaufen. Setzt man statt &, » beliebige ganze Zahlen von K : 5, H,
so erhédlt man das Ideal { in K. Letzteres liegt in einer Klasse von K,
die wir aber stets ebenfalls mit f bezeichnen. f ist also entweder einé
Klasse von k, die nur Ideale von k enthilt, oder eine Klasse von K,
die wenigstens ein Ideal i von k in K enthilt. Enthilt die Klasse & von
K die Ideale A, B,..., so bilden auch alle Ideale S*%, S*B,... eine
Klasse, die man mit S*§& = R5” bezeichnet. Sicherlich muB £ = S¥ sein.

Es sei jetzt | eine feste Klasse von K. Wir bilden die Menge aller
Klassen R, wo f alle verschiedenen Klassen von k£ in K durchliuft.
Diese Menge heifit der Komplex €, der durch K erzeugt wird. Erzeugen
K], und &, die Komplexe ¢, und €,, so heiBt der durch &,K, erzeugte
Komplex das Produkt €,E, der beiden Komplexe. Der durch die Haupt-
klasse von K erzeugte Komplex heilt der Einheitskomplex und wird
mit 1 bezeichnet. Die Komplexe bilden eine endliche Abelsche Gruppe.
Jeder Komplex enthilt so viele Klassen, als es in K verschiedene Klassen
f gibt. Der Komplex, der durch S*K erzeugt wird, wird mit S*€ bezeichnet,
falls € der von K erzeugte Komplex ist. Ist f(S) irgend ein Polynom von
S mit ganzen rationalen Koeffizienten:

f(8) = ng + 7,8 + 1y, 8 4 - -+,
so versteht man unter €"® die f(S)te symbolische Potenz:
(RACH @”“(S(E)"l (Sz G)ng .

Man sieht, daB stets G+t +S'™1 — 1 jgp, da KUSTESTIo gt

Ein Komplex heift ambig, wenn G~ S=1 ist. Esist dann @+5++5"}
=E=1. FErzeugt ] den ambigen Komplex €, so mufl daher
K %=1 sein, wo f in K genommen ist.

Die erste Aufgabe wird sein, die Zahl der ambigen Komplexe zu be-
stimmen. Dazu machen wir folgende Hilfsbetrachtungen. Es sei { eine
von der Hauptklasse in k& verschiedene Klasse, die in K Hauptklasse
werde. Dann ist das Ideal i der Klasse ¥ von k in K Hauptideal = (&),
seine Relativnorm zu k also in £ (und sogar in %(f)) Hauptideal, oder

-1
LS+ +8 = f =1 :

wegen i = Si muB N'~5 eine relative Grundeinheit von K zu k sein.
Umgekehrt gebe es genau ¢ relative Grundeinheiten in K, deren Normen
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zu k eins, und die nicht die (1 — §)te symbolische Potenz einer Einheit
von K sind, dagegen die (1 — S)te symbolische Potenz einer zu f teiler-
fremden ganzen Zahl N. Dann ist () Ideal einer Klasse ¥, die in K
Hauptideal wird. Daher gibt es genau I°¢ Klassen f in k, die in K Haupt-
ideal werden, und deren lte Potenz in k¥ Hauptklasse ist. Thre Gruppe
ist vom Typus (I,7,...,1) (c mall).

1. Hilfssatz: Die I* Klassen von k bilden in K genau 1 verschiedene

Klassen.

Somit enthilt der Einheitskomplex und damit auch jeder Komplex
genau "¢ verschiedene Klassen, und es muBB 0 <c¢<7r + 1 sein.

Es gebe weiter genau d relative Grundeinheiten?), deren Norm zu &
eins ist, die nicht die (1 — S)te symbolische Potenz einer Einheit sind,
und die die (1 — S)te symbolische Potenz einer ganzen Zahl @ von K
sind, die mit § einen nicht in k liegenden Teiler gemein habe. Dann gibt
es [? unabhingige Klassen in &, fiir die 17 = 1 ist, und die lauter
verschiedene Komplexe erzeugen. Dabei ist

1§_c+d§r+ 1.

Damit ist fiir alle Grundeinheiten, deren Norm zu k eins ist, die Mog-
lichkeit erschopft, und es gibt genau r 4+ 1 —c¢ —d unabhingige
Grundeinheiten in %, die Relativhorm einer Einheit von K und somit
Normenreste (mod. f) sind. Daher werden

r—(r+1—c—d)=c+ d— 1 unabhingige Grundeinheiten in k

nicht Norm einer Einheit in K sein.

Ist jetzt K& eine von der Hauptklasse verschiedene ambige Klasse:
Rl——S = ]

so ist R = KFST+S'—§ Es sei  ein zu § teilerfremdes Ideal
von . Dann ist § 9= (4) Hauptideal in K, also N(4) =¢, wo
¢ eine Einheit von k ist. Hier haben wir zwei Félle zu unterscheiden:

a) Die Einheit ¢ ist Norm einer Einheit £ von K . Dannist N(4E-1)=1,
und es muB AE-! = N5! sein, wo N ganz ist. Also ist:

JW) = 8(J(N)) =1iF*,
7) Siehe Hilbert, a. a. O. p. 272 und 446, u. ff. Takagi, a. a. O. p. 35 und 39.
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wo i in k liegt und §* nur Primideale von § als Faktor enthilt, aber
keinen in k liegenden Teiler besitzt. Die Anzahl der indquivalenten Ideale
ig* ist aber lh—c—d+¢ Denn nach dem 1. Hilfssatz gibt es I*—¢ indquiva-
lente Ideale i in K und alle Primideale £, bilden I* Klassen, von denen
genau [¢ einer der Klassen von k dquivalent sind. Es bleiben somit noch
I»-¢ von den Klassen f unabhingige Klassen der §*. & muf somit einer
dreser [htu—c—d Klassen angehoren.

b) Die Einheit ¢ ist nicht Norm einer Einheit von K. Sie ist wegen
N (A4) = ¢ sicherlich Normenrest (mod. f) in k, liegt also in k£(f). Wir
nehmen an, es gebe e* Grundeinheiten in k, die nicht Norm einer Ein-
heit von K, aber Norm einer (gebrochenen) Zahl von K und somit
Normenreste (mod. f) sind. Sie miissen von den e Grundeinheiten in
k, die es nicht sind, verschieden sein. Es gibt also l¢+¢" unabhiingige
Einheiten in k, die nicht Normen von Einheiten von K sind. Nach

obigem ist daher:
et+e*<c+d—1. (1)

Nach der Definition von e* gibt es im Falle b) genau I¢* Klassen &,
fiir die 875 = 1 ist. Zusammenfassend lautet das Ergebnis:

2. Hilfssatz: Es gibt [h+v—c—d+e* perschiedene Klassen K in K, fir die

RI—S e
ust.
Jetzt konnen wir berechnen, wie viele verschiedene Klassen ! es geben
mulf}, fiir die

fR5=1

ist. Ihre Zahl ergibt zugleich die Zahl der ambigen Komplexe. Ist ndmlich
f* eine weitere Klasse, fiir die R*'75 =1f ist, muB (R* &) =1
sein, und somit }* das Produkt aus K und einer der [h+u—c-d+e* vyer-
schiedenen ambigen Klassen sein. Es gibt daher genau [t+u—c—d+¢* yer-
schiedene Klassen K, fiir die & ° = f ist. Es sei [* die Anzahl der ver-
schiedenen Klassen f in K, die die (1 — S)te symbolische Potenz einer
Klasse & von K sind. Diese  konnen nicht beliebig sein, sondern wegen
Satz 2 und wegen = S mull:

LR R ] l—l
prsteet sl g g

die Hauptstrahlklasse von k(f) sein; d. h. die Ite Potenz aller Ideale
dieser f muB} in der Hauptstrahlklasse von k(f) liegen. Wir sagen dafiir
kurz ¥ muf in der Hauptstrahlklasse von k() liegen. I* ist somit hochstens
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die Zahl der verschiedenen Klassen f in K, deren lte Potenzen in der
Hauptstrahlklasse von k(f) liegen. Um s abzuschéitzen, nehmen wir an,
es sei I*" die Zahl aller Klassen f in k, deren lte Potenzen in der Haupt-
strahlklasse von k(f) liegen. Sie bilden eine Gruppe vom Typus
@,1,...,1) (I s* mal). Unter ihnen befinden sich die I° Klassen von k,
die in K in die Hauptklasse fallen. Daher gibt es héchstens I*"~° ver-
schiedene Klassen f in K, die die (1 — S)te symbolische Potenz einer
Klasse & von K werden kénnen, und es muf3:

sSs*—c. (2)

Die Zahl aller Klassen &, deren (1 — S)te symbolische Potenz eine
Klasse T in K ist, wird deshalb [#+s+u—c—d+e*  Von diesen liegen nach
Hilfssatz 1 je I*—¢ im selben Komplex, der ambig sein muf}, und die Zahl
der ambigen Komplexe ist 1% = [s+ut+¢'~-d, Wegen (1) und (2) ist:
asls*4+u—e—1.

3. Satz: Ist 1® die Anzahl der verschiedenen ambigen Komplexe, so st :
a=8+u+t+e*—d<s*+u—e—1.

Dabei st : I° die Zahl der Klassen von k in K, die die (1 — S)te symbo-
lische Potenz einer Klasse von K sind; I¥° die Zahl der Klassen von k,
deren lte Potenz in die Hauptstrahlklasse von k(f) fallen; w die Zahl der
verschiedenen in § aufgehenden Primideale; e die Zahl der unabhdingigen
Grundeinheiten von k, die micht in k() liegen; e* die Zahl der unab-
hingigen Grundeinheiten in k, die nicht Norm einer Einheit, dagegen
Norm einer gebrochenen Zahl von K sind;

3. Die (relativen) Grundkomplexe

Unter einem Polynom f(S) verstehen wir im folgenden stets eine ganze
rationale Funktion von § mit ganzen rationalen Koeffizienten.

3. Hilfssatz : Qeniigt der Komplex € der Bedingung €' =1, wo f(8S)
etn Polynom und f(1) zu 1 teilerfremd tst, so ist auch € = 1.
271
Es sei ¢ die Ite Einheitswurzel e ! und k({) der Korper von £. f({) ist
eine ganze zu [ teilerfremde Zahl von %({). Ist ¢ ihre Norm, so ist ¢ ganz
und nicht durch [ teilbar. Ferner gibt es eine ganze Zahl ¢ () von k({),

fiir die
f(©)g) =q
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ist. Da { der im rationalen irreduzibeln Gleichung S*14-...4+8+41=0
geniigt, so mufl:

[8)gl®) =g +rS)A+8+ -+ + 87
identisch in 8 sein, wo A (S) wieder ein Polynom ist. Somit wird:

C/S9S) —F2 = 1

H

da S+ +8"" _ 1 ist. Nun gehért € zu einer Potenz von I, also
ist € =1.

4. Hilfssatz : Die lte Potenz eines Komplexes ist stets die (1 — S)te symbo-
lische Potenz eines Komplexes.

Man entwickle 1 8 + --- 4+ 81 nach Potenzen von § — 1:

1484 - +81=14f(8) (S —1),

wo f(S) ein Polynom ist. Daher ist fiir jeden Komplex € :
GHE-D S ] , oder @G!= (61(8))1—-8 .

5. Hulfssatz: Ist f(S) etn Polynom und f(1) durch 1 teilbar, so gibt es zu
jedem Komplex € einen Komplex €*, so daf :

[(RACH (S*l-—S .

Esist f(S)=f(1)4+ (1 —8)g(S), wo ¢g(S) ein Polynom und f(1)
durch 1 teilbar ist. Nach Hilfssatz 4 ist ¢V = €15, also:

'S = x5 wo @E* = EC ist.

6. Hilfssatz : Zu jedem von 1 verschiedenen Komplex € gibt es evn und nur
etne natirliche Zahl n + 1, fir die

-9t 1 g9 £
b
ist. €1=9" ist ein von 1 verschiedener ambiger Komplez.

Wir nennen n den Index von €, und C*°" den zu € gehirigen
ambigen Komplex.

117



Beweis: Man bilde alle Komplexe:
Cr-=9 m=0,1,2,...0€ £1).

Da es nur endlich viele Komplexe gibt, muB es ein kleinstes
m =n + 1> 0 geben, fiir das der Komplexe G*~5"" gchon unter den

. o — 1
vorhergehenden auftritt. Es sei etwa G~9"" — g0-9" 4 <y,

Dann muB8:
/S a-9m _

sein, wo f(8)=1— (1 — 8)» ™+ ein Polynom und f(1) =1 ist.
Daher ist nach Hilfssatz 3 auch

Ca-9" — 1

’

was m = 0 bedingt, da n 4 1 die kleinste Zahl vorausgesetzt wurde,
die einen frithern Komplex ergibt. Somit ist

C-9" =1,

und G*9"= E* darf nicht eins sein nach Voraussetzung. Zudem ist
€* ambig wegen C*' V=1,

7. Hilfssatz: Durchliduft f(S) alle moglichen Polynome, und ist € £ 1
ein Komplex, so finden sich unter €S genau 1 verschiedene ambige
Komplexe.

Ist €’ ambig und # 1, so muB:

C/® a-9_ 1

sein. Ist f(1) zul teilerfremd, so muB nach Hilfssatz 3 auch ¢ =1
werden, also € ambig sein. Somit ist C’®)=E'®  und da C'=1
sein muB, gibt es die ! ambigen Komplexe 1, ¢, ¢2,..., €1,

Ist dagegen f(1) durch ! teilbar, und { wieder die lte Einheitswurzel,
so ist entweder f(l) = 0 oder == 0. Im erstern Falle wire identisch:

f8)=g8) 1 +84+..- 4481, C® =1 gegen Annahme.

Im zweiten Falle ist f({) durch eine groBte Potenz von (1 — (), etwa
(1 —¢&)y,»>0, teilbar, so daB f*({) = f({)/(1 — {)* ganz und zu [
teilerfremd ist. Dann besteht wieder eine Identitit
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@) =0 —=8yf*8) +98) A +8+ - + 8,
wo ¢(S) ein Polynom und f*(1)=£ 0 (mod. ) ist. Daher wird:
G/ — /S a=8)Y

Da €'® ambig und #1 sein soll, so muB nach Hilfssatz 3 auch

(1_S>V . .
¢ ambig sein, d. h. Ca- 9"

werden. v = n ist der Index von @, also von f(S) unabhingig. Ist C*

der zu € gehérende ambige Komplex, so ist fiir jeden ambigen Komplex

der Form G’ :
*
(S’(S) . (;;*i 1) :

es gibt daher nur die  ambigen Komplexe 1,E* €*2 ... E*i-1,
Wir nennen im folgenden ein Polynom der Form:
g(S)=do+d,(1—8)+dy(1 —8)2+ -+ +d,(1—8)", 0<d,<l—1,

wo d, eine der Zahlen 0,1,2,...,1 —1 ist, h=0,1,2,...,n, ein
kanonisches Polynom vom Grade n.

8. Hilfssatz: Ist € ein Komplex und f(S) ein gegebemes Polynom, so
gibt es stets exn kanomisches Polynom ¢(S), fir das:

ES — GO

wird, wo der Grad von g(S) der Index von €, und f(1) = g(1) (mod. 1) ist.

Denn zunichst ist, falls { wieder die lte Einheitswurzel ist, f({) = d,
(mod. 1 — {), wo 0 < d,<<l angenommen werden darf. Gilt:

fQ)=de+d,1 —0)+ -+ + d,(1 — &) (mod. (1 — {)r+1),
0osd,<l,h=0,1,...,r,

so ist (f(¢) —dy— -+ —d.(1 —&)) /(1 — &)+ ganz und einer Zahl
d, ., (mod. 1 —¢), 0=d,,, <!, kongruent, d.h. auch

) =do+ -+ +d, (1 — ) + dpyy (1 — 0¥ (mod. (1 — £)+2),
woraus durch vollstdndige Induktion folgt, daf3:
(&) =9+ h(&) A1 — {)**, n der Index von €,
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wird, wo g(S) ein kanonisches Polynom, und A(¢{) ganz ist. Daher muf:
f8)=g(8) +R(S) A =81 +ES)A1+ 8+ --- + 8
identisch in 8 sein. A (S) und £ (S) sind Polynome. Daraus folgt:

EO = e
da ja €~ 9" = 1 ist. AuBerdem ist f(1) = dy = g(1) (mod. I) .

9. Hilfssatz: Durchliuft f(S) alle Polynome und ist n der Index von ¢,
so stellt €S genau In+1 verschiedene Komplexe dar. Man erhilt alle diese
Komplexe, wenn man fiir f(S) die I*+* moglichen verschiedenen kanonischen
Polynome vom Grade n nimmdt.

Wegen Hilfssatz 8 gibt es sicher nicht mehr als [»+1 Komplexe. Man
hat nur noch zu beweisen, daB aus €919 = §?**®, wo ¢,(S) und g,(3)
kanonisch sind, auch ¢,(S) = g,(S) folgt, oder daB aus G/ =1,
g(8) = 0 folgt. Wére ndmlich ¢g(S) nicht identisch null, so gibe es ein
grofites m,sodafl: g(8) = (1 — 8)™ g*(S), m < n, wird, wo g*(8) wieder
kanonisch und g*(1) = 0 ist. Nach Hilfssatz 3 ist dann €9 =1,
was unmdoglich ist, da m < n und » der Index von ¢ ist. Also muf} ¢(S)
identisch null sein.

Wir fithren jetzt folgende wichtige Definition ein:

Definition: Ist I* die Anzahl der ambigen Komplexe, so heifle ein System
von a Komplexen €, mit den Indices n,,h=1,2,...,a, ein System
von (relativen) Grundkomplexen, wenn :

1. die ambigen Komplexe U, = CL~ 5™ h=1,2,..., a, eine Basis aller
12 ambigen Komplexe bilden, und wenn :

2. jeder der Komplexe : C — ﬁ /s

h=1

dann und nur dann die (1 — S)te symbolische Potenz eines Komplexes
wird, wenn alle Polynome f,(S) der Bedingung geniigen, daf3 f,(1), h =
1,2,...,a, durch 1 teilbar ist.

4. 8atz: In K existiert ein System von a (relativen) Grundkomplexen.

Zum Beweise nehmen wir zuerst an, daBl die Indices aller Komplexe
in K null seien. Dann sind alle Komplexe ambig: €'~ =1, und bilden
wegen @' = 1 eine Abelsche Gruppe vom Typus:

Z17,...,1), a mal [.
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Diese besitzt eine Basis €,,h=1, 2,...,a, die das System von Grund-
komplexen bildet. Zugleich sieht man, daB man jeden Komplex durch
die ¢, eindeutig darstellen kann:

C=010¢, 0=2x,<!.
r=1
Sind nicht alle Indices null, so nehmen wir die [ ambigen Komplexe U
und stellen sie durch eine Basis W,,h =1,2,...,a, dar:

a
U=, O0=sz,<l.
h=1
Fiir jedes dieser W £ 1 bestimmen wir den griften Exponenten =,

so daf3: n
N=G¢C5" n=0,

wird, wo € ein beliebiger Komplex ist. 7 mufl der Index von ¢ sein.
Unter allen U bestimmen wir dasjenige mit einem gréften Index m,.
Wir diirfen es als die BasisgroBe A, wihlen, und es sei:

QI] = Gg_l—s)nl ’ nl g 1 .

Die Untergruppe der ambigen Komplexe, die A, x, =1,2,...,1 —1
nicht mehr enthilt, stellen wir wieder durch die Basis U,, A;,..., A,
dar, betrachten also nur noch die ambigen Komplexe:

h=2

Unter diesen besitze:
1- S)”
%22(2(2 )2, nlgnz,

ein grofites n,. So fahren wir fort, und erhalten a-ambige Komplexe ¢,

mit den Indices n,,h=1,2,...,a, wo
Ny =Ny = =N, ;
es wird:
_ n
QIh:G(I:S)k’ h:1:2:"'5a’:

eine Basis aller ambigen Komplexe bilden. Wegen der Konstruktion der
¢, kann keiner derselben die (1 — S)te symbolische Potenz eines Kom-
plexes sein.
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Die €, bilden ein System von Grundkomplexen. Ist nédmlich:

TS — @-5
h=1
so ersetze man nach Hilfssatz 8 die f(S) durch die kanonischen Poly-

nome: “
s 1-8
hII Cpr=¢g .
=1

Sind alle g,(1) = 0, so miissen nach Hilfssatz 8 auch alle f(1) durch !/
teilbar sein, was zu beweisen war. Wiren dagegen nicht alle g¢,(1) = 0,
so kénnen wir alle diejenigen Faktoren G4, fiir die g,(1) = 0 ist,
nach rechts nehmen und mit ¢ vereinigen. Es bleibt also nur noch:
(gzv(S)(gZp,(S)... _—_-_-@*1-—8, n, 273,‘ = e, P U< e,

wo jetzt alle g¢,(1), g, (1) nicht null sind. Wir erheben beide Seiten in
die (1 — 8)"v te symbolische Potenz, so wird:

Yoo = @9 g 1) 20

wo links ein ambiger Komplex 7 1 steht. Dies ist gegen die Konstruktion
der €,. Denn n, sollte die groBte Zahl sein, so daf3

n
QI:?IfV [ 2 :‘:.G(I—S) v

wird, wiahrend oben ein solches U die (1 — S )"”Hte symbolische Potenz
eines Komplexes wird. Daher miissen alle g,(1) null sein.

b. Satz: Ist &, ein System von Grundkomplexen, so lift sich jeder Kom-
plex € in der Form darstellen :
6 — i 6
h=1
Wir setzen von jetzt an stets voraus, dal das System von Grundkomple-
xen 80 abgezdhlt ist, dal n, =n, = --- = n,. Ist nun € ambig, so ist er
gicher durch die ¢, darstellbar. Wire aber € eine Komplex mit einem

Index %=1, der nicht durch die €, darstellbar wire, so ist A =E1~9"
ambig, also durch die ¢, darstellbar. Es sei nun m >0 und < n die

kleinste Zahl, so daB €™ noch durch die €, darstellbar ist:

1— Sy™
Q:( )

h

EZ"(S) , ¢,(8) kanonische Polynome, 0<m <n .
=1
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Dann miissen nach Definition der Grundkomplexe wegen m > 0 alle
gn(1) = 0, also ¢,(S) durch (1 — 8) teilbar sein: ¢,(S) = (1 — 8)g7(8),
wo die g¥(S) wieder kanonisch sind. Somit muB:

ambig, also wieder durch die ¢, darstellbar sein. Es wire also auch

€ =97 durch die €, darstellbar, gegen Annahme. Es mufi daher ©
selbst durch die €, darstellbar sein.

6. Satz: Jeder Komplex € kann auf eine und nur auf eine Weise durch
evrn System von Qrundkomplexen €, in der Form :

C=1 G’,’J“S), g, (8S) kanonische Polynome m,ten Grades,
h=1
dargestellt werden.

Zum Beweis braucht nur nachgewiesen zu werden, dal aus

I €*® =1, 4,(8) kanonische Polynome,

h=1
stets ¢,(S)=0,r=1,2,...,a, folgt. Gilt erstere Beziehung zwischen
den §,, so sind jedenfalls alle ¢,(S) durch (1 — 8S) teilbar, da 1 die
(1 — S)te symbolische Potenz einer ambigen Klasse ist.

Sind nicht alle g,(S) identisch null, so nehmen wir an, da8 alle g,(S) == 0

durch (1 — 8)™, m > 0, teilbar seien, dagegen nicht mehr alle durch
(1 — 8)™*1, d. h. daB in allen g,(S) der Form

do+ dy(1 — ) + -+ + d,(1 — 8

die Koeffizienten dy,=d, = --- =d,-, = 0, dagegen wenigstens ein
d, # 0 ist. Dann ist ¢,(8) = (1 — 8)™g;(8),kh=1,2,...,a, und fiir
wenigstens ein A = k ist gp(1) = 0. Die g;(S) sind kanonische Poly-
nome vom Grade 7, — m oder identisch null. Nun ist

o fr o
h=1
nach Annahme ein ambiger Komplex, also durch die A, = G{~5"% alg

Basis darstellbar:

a
QI — H(E;zh(l_S)nh , 0 é x, <l .
h=1
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Somit ist auch:

qh(S)

]I(i

h=1

1, wo ¢,(8)=(@1- 8)m1g¥S)+ x,(1--8)"

wieder kanonisch ist.

Es seien alle g¢;(S) durch (1 — S)™', nicht aber durch (1 — S)m +
teilbar. Dann ist m’ < m. Denn fiir h =k ist ¢;(S) genau durch
(1 — 8)m1 teilbar, da m < n,; somit ist m’<m — 1. Durch Fort-
setzung dieses Verfahrens kann eine Relation gefunden werden, deren
¢,(8) nicht mehr alle durch (1 — 8) teilbar sind. Dies widerspricht aber
der Definition der Grundklassen. Somit miissen alle ¢,(S) identisch null
sein.

Aus dem bewiesenen Satze folgt, daB es genau I° verschiedene Komplexe
gibt, wo

t/a

C=X(n,+1)

k=1

i

ist. Denn jedes (i”h( ) ergibt ["*! verschiedene Komplexe. Da jeder
Komplex genau l*—¢-Klassen nach Hilfssatz 1 besitzt, so hat H in der

Klassenzahl 1Z von K den Wert: H=h —c + X (n, + 1).

h=1
7. Satz: Ist I* die Klassenzahl von k, 12 die Klassenzahl von K, so ist:

a

H=h—0+2(’"lh+l),

h=1
wo I¢ die Anzahl der Klassen von k ist, die in K Hauptklasse werden, und
die ny, ny,...,n, die Indices eines Systems von a Grundkomplexen in K

sind.

4. Die Klassennormen

Ist K irgend eine Klasse von K und J ein zu § teilerfremdes Ideal von
R, so werden alle Ideale von &, die zu § teilerfremd sind, durch (4)S
gegeben, wo die 4 erlaubte Zahlen von K sind. Die Normen aller dieser
Ideale zu k sind dann durch (n(4)) N (J) gegeben. i = N (J) ist ein festes
Ideal von k. Daher liegen alle Ideale (N (A4))i in einer Strahlklasse s
von k(f) (Satz 2). Wir setzen daher:

= N(R) ,
und nennen die Strahlklasse s die Norm der Klasse . Wegen
N(31) N(J2) = N(Sl 32) s N(-Al) N(Az) = N(AlAz)
geniigt die Norm der Bedingung: N(R,) N(K,) = N(K]; K,).
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Umgekehrt hei3t jede Strahlklasse s von £(f), die unter den Normen
der Klassen & von K auftritt, Klassennorm. Die Aufgabe ist, die Zahl
der Klassennormen zu berechnen. Man sagt, alle Klassen &, deren Norm
dieselbe Klasse s in k(f) ergeben, liegen im selben Geschlechte. Alle Klassen
von K, deren Norm die Hauptstrahlklasse von k() ist, bilden das Hawupt-
geschlecht.

Nach dem Satze 6 kann jede Klasse & von K, die etwa den Komplex €
erzeugt, in der Form:

] =10 8]*9, g,(8) ein kanonisches Polynom,
r=1

dargestellt werden. Dabei werde €, durch &, erzeugt, h=1,2,...,a
und ¥ ist eine der [*—¢-Klassen von &, die Ideale von k enthalten (Hilfs-
satz 1). Wir nennen die &,,k = 1, 2,..., a ein System von Grundklassen.

Nun wird:

N =NHI NRY*, 0=d, =l —1, h=1,2,...,a.
h=1

Sind alle N(R,),h=1,2,...,a von einander unabhingig, so stellt
das Produkt genau l¢ Klassen von k(f) dar. I* ist daher die groBte Zahl,
die durch dieses Produkt erhalten werden kann. Es fragt sich, wie viele
Klassen s von K (f) die Norm N () darstellen kann. Ist die Klassengruppe
von k vom Typus (I, I",...,1"), hy + hy+ --- + b, = h, und sind
f,v=1,2,...,¢, die entsprechenden Basisklassen, so wissen wir, dal3
diese Klassengruppe als Untergruppe die I*' verschiedenen Klassen ent-
hilt, deren Normen, resp. deren lte Potenzen in die Hauptstrahlklasse
von k(f) fallen. Wegen der Struktur dieser Untergruppe diirfen wir vor-

aussetzen, dafl ihre Basis durch f,fh”*l , v=1,2,..., s* gegeben werde.
In ihr befinden sich auch die l°-Klassen, die in K Hauptklasse werden.
Nun 148t sich jede Norm einer Klasse f so darstellen:

t
N = II ()",
y=1

und wir haben abzuzihlen, wie viele Strahlklassen von £ (f) sich in dieser
Form befinden. In den ersten s* Faktoren braucht x, nur die Zahlen

0,1,..., " zu durchlaufen, bei den weiteren dagegen alle 1" Zahlen,

da erst die I"**'te Potenz von f, in der Hauptstrahlklasse von X({) liegen
wird. Somit stellen alle N () genau I»—*" verschiedene Strahlklassen von

t
k(f) dar, da ja X h, = h ist.

v=1
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Die Gesamtzahl der Klassennormen ist also hochstens [*—"+¢ und
zwar wird diese Maximalzahl dann und nur dann erreicht, wenn die
Klassen N(R,),h=1,2,...,a, unter sich und mit den N (f) unab-
hiingig sind. Setzt man fiir @ den Wert nach Satz 3 ein, so erhilt man
hochstens

[h—s"+s+ute*—d Klagsennormen,

und diese Zahl ist wegen (1), (2), s < s* — ¢ kleiner als:

Jh+u—e—1 — [h(H-1

1. Hauptsatz: Die Zahl der verschiedenen Strahlklassen von k(f), die
Klassennormen in K sind, ist:

g% ¢ *_ h(f)—1
< [h—8"+s+u+e*—d < l () ,

wo das erste Gleichheitszeichen nur eintreten kann, wenn die Normen aller
Grundklassen unter sich und mit den Normen aller Klassen ¥ in K unab-
hingig sind; und wo das zweite Gleichheitszeichen nur eintritt, wenn
s=¢8*—c,e*=c+d—e—1 gilt.

5. Existenz der Geschlechter

In bekannter transzendenter Weise kann man beweisen, dal es wenig-
stens 1" ~1 _Klassen von k(f) geben muB, die Klassennormen sind, da@
also wenigstens I"™~! Geschlechter existieren®). Wegen des I. Haupt-
satzes mufl daher:

ete*=ct+d—1,8s=8*—c

sein. Die erste Gleichung sagt aus, daf} alle Grundeinheiten von %k, die
nicht Norm einer Einheit von K sind, entweder Norm einer gebrochenen
Zahl von K, oder nicht Normenrest (mod.f) sind. Die Zahl der ersten
ist genau e*, die der zweiten e. Somit:

8. Satz: Jede Einheit von k, die Normenrest (mod.f) ist, st Norm
evner Zahl von K.

Die zweite Gleichung sagt aus, daf jede Klasse f in K, deren Norm in
der Hauptstrahlklasse von k(f) liegt, die (1 — §)te symbolische Potenz
einer Klasse ist. I° derselben fallen ja in die Hauptklasse von K.

8) Siehe etwa Hilbert, a. a. O. p. 308 u. ff. und vor allem Takagi, a. a. O. p. 18,
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9. Satz: Jede Klasse £ in K, deren Relativnorm N (¥) in die Haupt-
strahlklasse von k(f) fdllt, ist die (1 — S)te symbolische Potenz einer Klasse
von K.

Weiter folgt aus der Existenz, daB auch das erste Gleichheitszeichen
im I. Hauptsatz gelten muf}. Daher miissen die Klassen von k(f):

N(Rl), N(R2)>""N(Ra)

alle unter sich und mit den N (f) unabhéngig sein. Ist nun

{R=F10 R‘;h(s) , 9, (S) ein kanonisches Polynom,

h=1

eine beliebige Klasse von K, so ist:
a
s = N = NE [T NK])* ™, wo 0<g,(1)<l ist.
h=1

Soll nun s die Hauptstrahlklasse 1 sein, so ist dies wegen der Unabhéngig-
keit nur moglich, wenn in k(f):

N(f): 1, gh(l):O) h=1,2,...,a,

wird. Dann ist aber nach Satz 9 = &*'~%, und alle ¢,(S) durch (1 — 8)
teilbar, also & selbst die (1 — S)te symbolische Potenz einer Klasse.
Alle Klassen K, fiir die s = 1 ist, bilden das Hauptgeschlecht. Daraus
der

2. Hauptsatz: In K existieren genau 1"V ! wverschiedene Geschlechter,
wo 1*D dje Klassenzahl von k(f) ist, und jede Klasse des Hauptgeschlechtes
st die (1 — S)te symbolische Potenz einer Klasse.

(Eingegangen den 26. Juni 1944.)
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