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Funktionentheorie einer Klasse von
hyperbolischen und ultrahyperbolischen
Differentialgleichungen zweiter Ordnung

Von WALTER NEF, Ziirich

Einleitung

Bekanntlich hat man mit der Aufstellung aller analytischen Funktionen
einer komplexen Variabeln z zugleich alle reellen Integrale der Potential-
gleichung in 2 Variabeln

02u o2 u

gefunden. Das hat seinen Grund darin, daf fiir den Operator

d . 0
A=z tigy>
der die Regularitét definiert,
AA =4
ist.
In diesem Sinne kann man die Theorie der analytischen Funktionen als
Funktionentheorie der Differentialgleichung A« = 0 bezeichnen: Um
némlich Integrale dieser Differentialgleichung zu finden, stelle man den
reellen Operator 4 in der Algebra der komplexen Zahlen als Norm des
Operators 4 dar und nenne diejenigen Funktionen w analytisch, fiir die
Aw = 0 ist. Jede analytische Funktion liefert dann offenbar ein (kom-
plexes) Integral der Potentialgleichung und man kann auBerdem zeigen,
dal man in den Komponenten der analytischen Funktionen auch alle
reellen Potentialfunktionen erhilt.

Diese Uberlegung 18t sich auf allgemeinere Differentialgleichungen
anwenden. Das wurde zuerst von Herrn Rud. Fueter durch seine Theorie
der reguldren Funktionen einer Quaternionenvariabeln gemacht!). Eine
Funktion w in der Algebra der Quaternionen heillt rechts- bzw. links-
regulér, wenn

0 . 0 . 0 . 0
wQ =0 bzw. Qw=20, Q=-5—w—0+7/1axl+izax2+iz“a‘a;;

1) Dieser Standpunkt wird vor allem eingenommen in der Arbeit: Rud. Fueter, Die
Funktionentheorie der Differentialgleichungen A4 =0 und Adu=20
mit 4 reellen Variabeln, Comm. Math. Helv., vol. 7, S, 307.
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ist. Da QQ = 4 ist, liefert jede regulire Quaternionenfunktion vier (nicht
unabhéngige) Potentialfunktionen. Ferner kann bewiesen werden, daB
man in den Komponenten der reguliren Funktionen alle Potential-
funktionen erhédlt. Da nun die Theorie der reguliren Quaternionen-
funktionen sich mit funktionentheoretischen Mitteln ausbauen li3t, er-
hilt man auf diesem Wege, abgesehen vom rein funktionentheoretischen
Interesse der Theorie, interessante Einblicke in die Theorie der Potential-
gleichung in 4 Variabeln. So erhélt man z. B. die Poissonsche Integral-
darstellung?), und die Theorie der Singularititen der reguliren Quater-
nionenfunktionen?) gibt einen vollstindigen Uberblick iiber die Singula-
ritdten der Potentialfunktionen.

In meiner Arbeit iiber den Fatouschen Satz in » Variabeln?) habe ich die
Funktionentheorie der Potentialfunktionen von beliebig vielen Variabeln
entwickelt und nebenbei gezeigt, wie man auch hier das Poissonsche
Integral erhalten kann. Auch hier kann man noch wesentlich weiter vor-
dringen. Insbesondere lifit auch die Theorie der Singularitdten sich
vollstindig entwickeln, wie ich noch zu zeigen beabsichtige.

In sehr eleganter Weise hat Herr Fueter die Funktionentheorie der
Diracschen Differentialgleichungen entwickelt®) und damit zum ersten-
mal ein hyperbolisches System von Differentialgleichungen vom funk-
tionentheoretischen Standpunkt aus betrachtet. Die Methode, die ich
hier auf die hyperbolischen und ultrahyperbolischen Differentialglei-
chungen vom Typus

o%u

e By = 0 (0;z = const.)
ik axi a.’L‘k

anwende, ist eine Kopie der Fueterschen Methode.

In neuerer Zeit ist von verschiedenen Verfassern versucht worden, so-
wohl di¢ Theorie der analytischen Funktionen direkt zu verallgemeinern,
als auch Differentialgleichungen mit Hilfe funktionentheoretischer Me-

~ 2) Rud. Fueter, Zur Theorie der reguliaren Funktionen einer Quater-
nionenvariabeln, Monatshefte f. Math. u. Phys., Bd. 43, S. 69.

3) Rud. Fueter, Die Singularitdten der eindeutigen reguliaren Funktionen
einer Quaternionenvariabeln I, Comm. Math, Helv., vol. 9, S. 320.

Walter Nef, Uber die singularen Gebilde der reguliaren Funktionen einer
Quaternionenvariabeln, Comm. Math. Helv., vol. 15, S, 144,

Walter Nef, Die unwesentlichen Singularitdten der reguliaren Funktionen
einer Quaternionenvariabeln, Comm. Math, Helv., vol. 16, S, 284,

4) Walter Nef, Uber eine Verallgemeinerung des Satzes von Fatou fiir
Potentialfunktionen, Comm. Math, Helv., vol. 16, S. 215,

5) Rud. Fueter, Die Funktionentheorie der Diracschen Differential-
gleichungen, Comm. Math. Helv., vol. 16, S. 19.
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thoden zu behandeln®). Keine der mir bekannt gewordenen Arbeiten

fiihrt aber zu so abgeschlossenen Ergebnissen, wie man sie mit den Fueter-
schen Methoden erhilt.

I. TEIL

t

Elemente der zur Differentialgleichung gehirigen Funktionentheorie

Wir gehen aus von einer linearen homogenen partiellen Differential-
gleichung 2. Ordnung vom hyperbolischen Typus mit konstanten Koeffi-
zienten, in welcher nur Glieder 2. Ordnung vorkommen, also von einer
Differentialgleichung der Gestalt

n n 02 u
V' §, —— =0,
jz=1 o ML ox; 0z,
und wollen fiir sie die folgende Randwertaufgabe l6sen:
Auf einer (n — 1)-dimensionalen Hyperfliche R, die noch nidher zu
bezeichnende Eigenschaften hat, sind die Randwerte der Ableitungen

o ou
ox, ° ~’ o=z,

vorgegeben. Es sind die Bedingungen anzugeben, welche diese Rand-
werte erfiillen miissen, wenn ein Integral der Differentialgleichung exi-
stieren soll, dessen Ableitungen die vorgeschriebenen Randwerte anneh-

men, und falls diese Bedingungen erfiillt sind, ist dieses Integral zu
finden.

Durch eine lineare Transformation der Variabeln z,,..., z, kann die
Differentialgleichung auf die Form
. o02u
, =0
7};:1 K; 3:(:? (1)

gebracht werden, wo

8) Die Behandlung von Differentialgleichungen mit funktionentheoretischen Methoden
ist Gegenstand der folgenden Arbeiten:

Moisil et Theodoresco, Fonctions holomorphes dans 1’espace, Mathematica,
Volumul V, 1931, pag. 141. )

Théodoresco, Le probléme de Cauchy pour une classe de systémes d’équa-
tions aux dérivées partielles. Application aux équations de Dirac. Annali
Pisa, Ser. I, Vol. IV (1935), pag. 51.

Mozisil, Sur un algorithme généralisant la théorie des fonctions mono-
génes, qui peut étre utile pour ’'intégration des équations aux dérivées

partielles d’ordre supérieur, Annalele Academei Romaéane, Ser.III, Tomul XVI,
Mem. 17 (1941).
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K=+ 1fir j=1,...,»
=—1firj=»4+1,...,n.

Dabel ist v eine natiirliche Zahl, von der wir voraussetzen konnen, daf}

n .
§<v<n 1st.

Das folgende, bis und mit Hauptsatz 6, stimmt fast wortlich mit einem
entsprechenden Teil in einer fritheren Arbeit iiber den Fatouschen Satz
iiberein, nimlich mit dem Teil vom Beginn des Abschnittes 2 bis inklusive
Satz 7 7).

Diese Ubereinstimmung ist dadurch begriindet, daB es sich dort um die
Potentialgleichung handelt, also um eine partielle Differentialgleichung
2. Ordnung vom elliptischen Typus, wihrend wir hier den hyperbolischen
Fall betrachten.

A sei eine Cliffordsche Algebra der Ordnung 2" mit den Basiselementen

l,e,...,€,,€10,-45€19...p
wo 1 die Haupteinheit ist und wo die Basisgroflen ¢;(j=1,...,n) den
Relationen
I. 63 =K"1 (7. =l,...,n)
II. e;e, = — e ¢ G, k=1,...,n,7 #k)

geniigen?). Die Zahlen, mit denen wir im folgenden rechnen werden, sind
die Zahlen dieser Algebra im Korper der reellen Zahlen, d. h. die Groen
der Form: "

2= I -l'-jziej Xy 4 -+ €. aliz..n

wo die x beliebige reelle Zahlen sind. Der Zahl z ordnen wir nach der
folgenden Definition den Betrag |z| zu:

j=1
Fiir zwei beliebige Zahlen z, und z, beweist man dann leicht:

a) |2y + 22| < 2| + |z2l.

(2)
b) [z 2] <2y 22| #.

7) 8. 4).
8) Vgl. die Ziircher Dissertation: Paul Bofhard, Die Cliffordschen Zahlen, ihre
Algebra und ihre Zahlentheorie, Ziirich 1940.
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Hierin bedeutet u die Ordnung 2" der Algebra. In erster Linie werden
die GroBen von der Form

n
= X Z;€;
§=1

eine Rolle spielen. Damit ordnen wir den » reellen Variabeln (z,,..., z,)
die eine hyperkomplexe Variable z zu. Ist z von der letzten Form, so
bezeichnen wir mit z die GroSe

b=

I

j=1

Wir werden im folgenden Funktionen zu betrachten haben, die als
Argumente Variable von der Form (2) haben und selber von der Gestalt

w=fz] = _}_jlu,-(xl or o1y Bl &
]=
sind. Die Begriffe der Differenzierbarkeit von w in einem Gebiet nach
einer Variabeln z,(k =1,...,n) und der Ableitungen —aa—g’—(kzl e ey )
k
haben dieselbe Bedeutung wie in der angegebenen Arbeit (S. 218).

Definition. Die FPunktion w = f(z) heifst in einem Gebiete $ regulir,
wenn sie 1n § zweimal stetig nach beliebigen Variabeln x;(j = 1,...,n)
differenzierbar ist, und wenn in § die Beziehung gilt :

ow

e —0. (3)

j=1 0%;

Zerlegt man die Bedingung (3) in ihre Komponenten, so erhélt man die
Regularitiatsbedingung in der folgenden reellen Gestalt:

ou; 0wy
ox;  0x;

=0 . G, k=1,...,m) (4)

c ou,;
K; === {) ;
El ! ox;

Auf dieselbe reelle Bedingung fiithrt die hyperkomplexe Gleichung

En e - (5)

Z;
Diese und (3) sind also dquivalent, ohne formal iibereinzustimmen.
Zwischen den reguliren Funktionen und den Integralen der Differen-
tialgleichung (1) besteht ein naher Zusammenhang, der durch die folgen-
den vier Sitze klargelegt wird :
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Satz 1. Die Funktion u(x,,..., x,) sei in einem Gebiete § ein Integral
der Differentialgleichung (1). Dann ist die Funktion

" du
w = E "““’“ek
k=1 0%y

in 9 reguldir.
Beweis : Wir haben zu zeigen, daB (3) erfiillt ist. In

n o Jw n e % u
]§1 xa ’ j§1 k§1 axk ax:’ w
heben sich wegen ty Ry
ox;0x,  0x; 0x;
und
e; e, = —e,e; fiur j#k

Da aber u ein Integral von (1) ist, ist dies tatsédchlich gleich 0.

Satz 2. Die Funktion n
w= Y u;e;
=1

sei i etnem Gebiele § reguldr. Dann existiert in § ein Integral U der
Differentialgleichung (1), dessen erste Ableitungen

oUu .
oz, U (G=1,...,n)
sind. .

Beweis : Auf Grund der Regularitidtsbedingungen (4) existiert in §) eine
Funktion U (#,,..., x,), deren Ableitungen

oU .
= U, g=1,...,mn)

sind. Die linke Seite der Differentialgleichung (1), fiir die Funktion U an-
geschrieben, d. h. der Ausdruck

i ax?

7

n o2U
K
=1

88



ist dann gleich

Dieser letzte Ausdruck ist aber gleich 0 nach der Regularitdtsbedingung
(4). Alsoist U in § ein Integral von (1).

Satz 3. Die Funktion
W= >u,e

j=1

sev in einem Gebiete § regulir. Dann sind alle Funktionen u;(x,,. .
9 Integrale der Differentialgleichung (1) (j = 1,...,n).

. Zy) TN

Beweis : Es sei

"w
ga—

Dies differenzieren wir nach x,;, multiplizieren rechtsseitig mit e, und
summieren iiber 5:

n n azw
e,e; =0
]'gl ]El axkax, e
d. h.
n 0% w
w== () .
k§1 “ ox}

Da zwischen den e; keine Beziehung besteht, ist infolgedessen

62u

ox:

Satz 4. 9 sei ein zylinderformiges Gebiet, dessen Seitenlinien der x,-Achse
parallel und dessen Grund- und Deckhyperebenen zu derselben senkrecht sind.

Die reelle Funktion u,(x,,...,x,) set in § ein Integral der Differential-
gleichung (1). Dann existieren wn § (n — 1) westere Funktionen,
Ug(Lyse v oy Zy)ye vy Up(Zy,. .., X,), vOn Solcher Art, daf

w= > UuU;e
i=1
m §) requldr ist.

Beweis: ¢ (z,,...,%,) sei ein beliebiges Integral der Differential-
gleichung in (n — 1) Variabeln:
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0

2y ou,
0x?

2

n
DI’
j=2

axl T1=0a

wo z, = a eine das Gebiet § schneidende Hyperebene ist. Wir setzen

ist. Also ist

Kj 2 = 0 .
j=1 ~ 0x
Um (4b) zu beweisen, berechnen wir fiir j, k = 2,...,n die Ausdriicke
du;, P [ Pu o

oz,  Ox,ox; ) Ox,odx; Ox;
a

Ferner wird
du;  du,

ox, 0z

Also sind die Regularitdtsbedingungen (4) erfiillt.

Satz b. Satz 4 ¢ilt auch fir jedes einfach zusammenhingende Gebriet §,
das sich in abzihlbar viele zylinderformige Gebiete von der in Satz 4 be-
schriebenen Art zerlegen lift.

Beweis : Dieser wird durch einfache Abdnderungen aus dem Beweis zu
Satz 6 der oben angegebenen Arbeit®) (S. 222) erhalten.

Hauptsatz 6. Die Funktionen w und v sollen in einem Gebret H und auf
setnem Rand R reguldr sein. R sei eime geschlossene orientierbare Hyper-
flache mit stetigem Normalenfeld. Dann ist
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f wdZ v=20,
R
wenn wir mat dZ die Grofe

dZ =dr X &;e;

j=1

bezeichnen, wo dr das (n — 1)-dimensionale Hyperflichenelement auf R
bedeutet und wo die £,j = 1,...,n) die Komponenten der (iuferen oder
inneren) Normalen auf R sind.

Bewers: Nach dem Satz von Gaufl ist:

fdev:: Efwf,-e,.vdrz
R "'k

0 " ow ov
921 faxj we;v) 7§1f[.8xj &Yt we 8x-]
H H

I

nach der Regularitatsbedingung (3) und der dazu dquivalenten (5).

II. TEIL

Die Integralgleichung fiir eine regulire Funktion, deren Werte auf einer
Hyperfliche gegeben sind

Die Funktion

2k e(8 — ) (€ —2)

QC—2) =—7 =T ; (6)
3wy (&5 —x)*|® X k(& —)?|®

j=1 i=1

ist fiir jeden Wert von z als Funktion der Variabeln { regulir fiir alle
Werte von { mit Ausnahme derjenigen, fiir welche

g: ki (& —x;)2 =0 (7)

j=1

ist. Die Punkte ¢ in R,, fiir die (7) erfiillt ist, bilden einen (n — 1)-
dimensionalen Hyperkegel K, dessen Spitze der Punkt { = z ist. K heilit
der zum Punkte z gehorige charakteristische Kegel der Differential-
gleichung (1).
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Ist ¢ irgendein Punkt in R, so bedeutet die Grofe

v v
r? =3 r(§ — ;) = X (§ —x)*
7=1 j=1

das Quadrat des Abstandes des Punktes { von der (n — »)-dimensionalen
Hyperebene

(& —x)=(&— @)= = (§ —x)=0.
Ebenso ist
8% = . ‘% KJ'(EI ——567-)2 = :v-r (§j—xj)2
Jj=v+1 Jj=v+1

das Quadrat des Abstandes des Punktes ¢ von der »-dimensionalen
Hyperebene

(5v+1 — xv+1) = (§v+2 - xp+2) == (5,; _— xn) =0.

Die Gleichung des Hyperkegels K konnen wir dann in den Koordinaten
r und s wie folgt schreiben: .

K:r=s (r,s positiv) . (8)

Ist v =1 oder » = (n — 1) (was bei n = 2 und » = 3 stets der Fall ist),
so zerfallt der charakteristische Kegel in zwei Teile, die nur die Spitze z
gemeinsam haben. (Im Falle n = 2 kann diese Zerlegung des Kegels in
zwei Teile auf zwei Arten geschehen). In diesen Fillen bezeichnen wir
im folgenden als charakteristischen Kegel nicht den ganzen Kegel » = s,
sondern nur einen der genannten Halbkegel, wobei wir diesen aber so
auswihlen, daf3 die charakteristischen (Halb-)Kegel zweier verschiedener
Punkte 2z, und z, stets durch eine Translation ineinander iibergefiihrt
werden konnen.

Nun sei R eine orientierbare (n — 1)-dimensionale Hyperfliche in R,
mit stetigem Normalenfeld und i ein Gebiet in R,, das zu R in der
folgenden Beziehung steht: Ist z irgendein Punkt aus U, so

1. hat jeder erzeugende Strahl des zu z gehorigen charakteristischen
Kegels genau einen Schnittpunkt mit R;

2. gehort der zwischen der Spitze des charakteristischen Kegels und
dem Schnittpunkt des Strahles mit R gelegene Teil jedes erzeugen-
den Strahles zu 1. (9)

Auf Grund der Forderungen 1. und 2. ist es stets moglich, denjenigen Teil
des charakteristischen Kegels eines zu U gehorigen Punktes z, der
zwischen z und R liegt, durch ein Stiick von R zu einer geschlossenen
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Hyperfliche zu erginzen, deren Inneres §) ganz in U liegt und so, daB
entweder fiir alle Punkte von § » > s oder fiir alle Punkte von § r < s
ist. Diese beiden letzteren Fille sind im folgenden vollig gleichberechtigt
und wir behandeln nur den Fall r > s.

« sel eine beliebige reelle Konstante, die > 1 ist. Mit §(x) bezeichnen
wir die Gesamtheit der Punkte von §, fiir die r > «s ist. (Es ist dann
9 = $H(1)). Die Berandung von § (x) besteht aus den folgenden Stiicken:

a) den Punkten von R, fiir die » > «s ist. Die Menge dieser Punkte auf
R nennen wir R (x).

b) den Punkten des Kegels r = «s, die in § liegen. Die Gesamtheit
dieser Punkte nennen wir K (x) (10).

Nun sei ferner ¢ eine positive Konstante, die so klein ist, da R auller-
halb der (» — 1)-dimensionalen Hyperkugel mit dem Radius ¢ und dem
Mittelpunkt z liegt. Mit $ («, o) bezeichnen wir das Teilgebiet von $(x),
dessen Punkte aufBlerhalb dieser Kugel liegen. Die Berandung von
9 (x, o) besteht dann aus den folgenden drei Teilen:

a) R(«x);

b) denjenigen Punkten von K (x), deren Abstand von z grofler als g ist.
Thre Gesamtheit nennen wir K (x, g);

c¢) denjenigen Punkten von §) («x), deren Abstand von z gleich p ist. Thre
Gesamtheit nennen wir I'(x, g).

Die Funktion @ ({ — 2) (vgl. (6)) ist fiir alle £, die von 2z verschieden sind,
eine reguldre Funktion (von (). Insbesondere also ist sie reguldr in dem
zum Punkte z (aus §)) gehorigen Gebiete £ (x, o). Ist nun w = f({)
irgendeine auf R und in U regulédre Funktion, so wenden wir fiir die beiden
Funktionen w und @ (¢ — 2) (z in U) den Hauptsatz 6 an, und zwar
beziiglich des zu z gehoérigen Gebietes § («, p):

f0dzQe—== [ + [ f©ydzee—2 .  qay

I'(&,e) R(a) E(x,@)

Dabei ist dZ wie folgt definiert:

auf I'(x, 9): dZ = ¢ — zdr(drz Hyperflichenelement auf I'(«, o))
¢

auf K(x, o) und R(x):dZ = X &,e;dr, wo die §,(j=1,...,n) die (12)
=1
Komponenten der beziiglich $(x, o) duferen Normalen auf

K (x, o) bzw. R(«) sind.
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An Stelle der linken Seite von (11) kénnen wir schreiben :

e [ acQe—a+ [ [[O—i@]dzeC—2 .

I'(a,e) I'(a,0)

Da nun (11) fiir jeden positiven Wert von p gilt, folgt:

5= ZOE—2]" _ _
/@) = lim [p(af@d QA —2)] mf Q[f H8)]14ZQ(t —2) +R(£ +
(13)

+ [ 10 dz Qi —=)]

K(x, @)

Um den Grenziibergang ¢ —0 auszufiihren, berechnen wir den Ausdruck

@ (x) = lim dZ Q¢ —2) .

o->0 r ,e)

Zu diesem Zwecke fiihren wir vorerst in R, neue Koordinaten ein:

78, Py, s gy Ay s Ay, fallsn>2, v<n—1
738, Fyyenny@pogs falls n>2, v=n—1
und 7, s, falls n = 2

und zwar durch die folgenden Gleichungen:

£, —x, =rcosd cosd,... cosd,_,cos D, ,
£y — x, =rcosd cosdy...cosd_,sin ¥, ,
£, —x; =rcosd cosdy...sind,_,

£, 1 — x,_;=17cos P sin I,

g, —az, =rsind,

falls n>2, v<n—1.

E,41 — %, =8C08 A, €08 4,...¢C08 4, , ,c084, , ;
—x

E,pa by2 = 8 COS A, CO8 Ay...CO8 4, , ,8inik, , ,
£,3 — X,.3 = 8SCOS A; CO8 Ay...8In 4, , ,

E,_1— X,_,=8cos A, 8in A,
& —x, =ssin A, |

94



Ist n > 2 aber » = n — 1, so0 bleiben diese Transformationsgleichungen
von der ersten bis zur (n — 1)-ten (v-ten) dieselben und an Stelle der
(» + 1)-ten bis n-ten Gleichung tritt die folgende:

§, —x, = S.
Ist n =2, v=1, so ist

GE—xy =71

£y, —xy, =3
zu setzen.

r und s durchlaufen hier alle positiven Zahlen und haben dieselbe
Bedeutung wie die gleich bezeichneten Gréfien in (8). Den Koordinaten
¢ und 4 miissen wir, um jeden Punkt von R, genau einmal zu erhalten,
folgende Beschriankungen auferlegen :

B x _(J 7

o<!Wloon, BNVl 2

\Ml$< i 2 | Ae + 3 (15)
e=2,...,v—1; 06=2,...,n—v—1)

Die Gleichung der Hyperkugel mit dem Radius ¢ und dem Punkt z als
Mittelpunkt lautet in den neuen Koordinaten:

r2 4 g2 = 92 ,
oder, bei Einfiihrung eines Parameters 7:

r=gp0 cOS 7

<t —) .
s=yp sin 7 (O\t\ )

2

Wollen wir von dieser Kugel nur den Teil I'(x, g) erhalten, iiber den wir
zu integrieren haben, so haben wir t wie folgt zu beschrinken:

1
0 <7< arctg ~ (16)
Man rechnet nun leicht aus, daf3

dr=|dZ| =1r"1s"""1 gcosDy... cOS D, ; COS Ay-..CO8 4,_, 1dD,...dD,_, dA,...d] A

n—y—1

ist. Daraus und aus (12) folgt:

iz — .5; % 1 gn-1 9008 By CO8 B,y €08 Ag-e- €08 Ay, y Ay d, g dT = (17)

= ({ — 2) p"2cos” L7 8in™ V11 cos ¥,... cos J,_, o8 A,...co84,_,_,dd,..-d A, ,d7.
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Ferner wird :

Aus

_i‘ K; e;(&; — ;) :‘: K; €; (& — ;)
=1 j=1

> Kk; e; (& — ;)

hS
Q(t—2) = 1> — o i
Z 1 (&5 —x’)z r2—gt|? 0" |cos 27 |2
~ (18)
(16), (17) und (18) folgt jetzt:
arctg-é-
(0] [ zn’ e (& ﬂxf)] l ,1}‘ K;€; (fj“—xa')] cos¥"lgsint—v-1lq¢
dZ-Q—2)=— | == = - dr .
) | cos 2 7|2
(19)

I'(a,e)

0

wo der Operator @ die Bedeutung hat:

27
O = fdt?l fdﬁz (d’t? __1de fdln y_1 COS Dy -+ cos8 A,_,_;

2

Der in (19) auftretende Ausdruck
[ = Byl — x,-)] [ > ki€ (& — x,-)]
j=1 j=1

wird gleich:
51:1 (&5 — ;) + 2 51’.: g e; e (&5 — ;) (& — @) - (20)
=1 k=v+41

=1 j
Durch Einsetzen der Ausdriicke (14) fiir die Differenzen (&, — z;)
, n) erkennt man leicht, daBl der 2. Summand in (20) keinen

G=1,...
Beitrag an das Integral gibt. Da ferner

S (g —ap =g

]=

ist, so wird:
1
arctg—;
v—1 iNnn—v—1
g(o) =lim | dZ Q(¢ —2) ==0’f o T T e, (21
9*01'(3,9) 5 | cos27|2

96



WO firn>2v<n—1:C=2r2g%,
firn>2,v=n—-1: (C=2"2g7g , (22)
fir n =2, =1 : C=1 ist .

Denn der Operator @, den wir jetzt, da in dem Integral (19) keine der
Variabeln ¢, 2 mehr auftritt, als Faktor auffassen kénnen, hat als solcher
jeweils den angegebenen Wert C.

Wir berechnen jetzt den ersten Summanden auf der rechten Seite
von (13):

s =lim—c [ 1) — 101 dZ @ —2 -

I'(a, @)

Da f(z) als reguldre Funktion zweimal nach beliebigen Variabeln differen-
zierbar ist, sind seine ersten Ableitungen stetig, und es existiert deshalb
eine reelle Konstante ' mit der Eigenschaft, daB in dem Gebiete $ und
auf seinem Rande gilt:

ox;

Daraus folgt, da3
[1@) — f(O] <neF  (|f—2]=0¢)

ist. Also wird (vgl. (2)):

1
18] < wnel [142] 1@ —2)| =
e~>0 ‘P(“)
I'(x,0)
arctgal—
» v—1 mn—v—1
1 ,u“nQFCJ cos’1 7 sin ’ T dr— 0 ,
eo ¢ (%) |cos 272
und infolgedessen
flz) = ff )dZ Q(E —2) + ff ) dZQ(E —7) .
R(a) K(a)

Dies gilt fiir jeden Wert von « > 1, also ist auch

. 1
/) = lim — ff ) 4Z QU —2) + lim—c ff(:) dZ Q¢ —2) —
R(a) K(x) (23)
:J1+J2.
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Wir berechnen zuerst den Ausdruck

. 1 "
= lim WR(Ja)m dZ Q¢ —2) .

Da fir « - 1 die GroBe ¢(x) iiber jede Grenze wichst, ist

1 d
J=lim e (10 dZ Q-2 -

d“ R(x)

Um die Ableitung des Integrales zu berechnen, ersetzen wir die Hyper-
fliche R voriibergehend durch eine abgeinderte Hyperfliche R*, die wir
so aus R erhalten: § sei der Durchschnitt des charakteristischen Kegels
K mit R. P sei ein beliebiger Punkt auf S und habe die Koordinaten

T . T
r=tcosz, s:tsmz—, 'ﬂlao--?j'n—v—d'

Die einparametrige Schar von Punkten mit den Koordinaten
r=tcosc, s=tsino,d,..., 4,_, 1, (Z —e<LoK g-{— ¢, ebeliebig >0) (24)

bildet einen Kreisbogen, der auf dem Hyperkegel K senkrecht steht und
durch P geht. Die Gesamtheit dieser Kreisbogen (gebildet fiir alle Punkte
P auf 8) bildet einen (n — 1)-dimensionalen Hyperflichenstreifen 7'*.
Durch geniigend kleine Wahl von ¢ konnen wir erreichen, da3 7'* inner-
halb des Regularitédtsbereiches von f(z) liegt. Das wollen wir auch tun.
Jetzt ergéinzen wir T* zu einer Hyperfliche R*, die alle Bedingungen er-
fiillt, die wir an R gestellt haben (vgl. (9)). (23) gilt dann auch, wenn wir
die darin enthaltenen Integrale als iiber B* erstreckt auffassen. Das tun
wir jetzt fiir den Moment. Wir erhalten also

JF =lim

a->1

)fﬂc Z*Q(C*z)+hm—% f #2) dZ* Q(t —7) .

1 9( ’
() > [R* (@) — T* ()] (25)

Dabei haben R*(x) und 7'*(x) eine leicht einzusehende Bedeutung. Das
zweite der Integrale bleibt fiir «—1 endlich, wihrend ¢(x) iiber jede
Grenze wichst. Also verschwindet der zweite Summand in (25) und es ist :

7t = lim —o 10 2% Q —2) = lim o - [10) 42 Qe —2).
* (o) do T*(a)
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Wir beschrinken jetzt « auf so nahe bei 1 gelegene Werte, da8 der Durch-
schnitt §(x) von K(x) und R* ganz in T* liegt. dX sei die hyperkomplexe
GroBe, die dem Betrage nach gleich dem (n — 2)-dimensionalen Hyper-
flichenelement auf §(«) ist, und deren zugeordneter Vektor auf R* senk-
recht steht. Da die den Streifen 7'* bildenden Kreisbogen senkrecht auf

S (x) stehen, folgt:
dZ* = tdedZX .

(dZ* = dr* 3 £fe;, wo dr* das (n — 1)-dimensionale Hyperflichen-

Fuail
element auf R* ist und wo die 5;-" (4 =1,...,n) die Komponenten der
Normalen auf R* bedeuten).

Beriicksichtigen wir den Ausdruck (18) fiir Q@ ({ — 2), so erhalten wir:

arctgi
ff(f:) 4Z* Q¢ —7) =fda[ AL, dz““*"’j] .
8" (ctg®o—1)2
T* (@) L)

4

Denn um das Teilstiick 7* (x) von 7* zu erhalten, miissen wir ¢ auf die

Werte — —e <o KL arctg % beschrinken. Es wird also:
* f(&
f@)dZ*Q( —2) = —
(x* —1) T (o® + 1 U
T* () S ()

Aus der Darstellung (21) der Funktion ¢ (x) folgt ferner:

Also wird:

T e
lC——-zl’”

Hierin bedeutet dX', um es zu wiederholen, die hyperkomplexe Grofe,
die dem Betrage nach gleich dem (» — 2)-dimensionalen Hyperflichen-
element auf S und deren zugeordneter Vektor der Normalen auf 7'*
parallel ist. Da nun 7'* eine Richtung enthélt (ndmlich den Kreisbogen
(24)), die auf K senkrecht steht, so ist die Normale auf 7* zugleich die-
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jenige Normale der (» — 2)-dimensionalen Hyperfliche 8, die in der
Tangentialhyperebene von K liegt. Also kénnen wir nun dX auch als die-
jenige GroBe charakterisieren, die dem Betrage nach gleich dem Flidchen-
element auf S, und deren zugeordneter Vektor der Normalen auf S, die
in der Tangentialebene des charakteristischen Kegels liegt, parallel ist.
Diese Definition von d2' enthélt nichts mehr von der abgednderten
Hyperfliche R*, sondern kann direkt auf R bezogen werden; denn R
und R* haben den Durchschnitt S gemeinsam.

Im folgenden werden wir den Ausdruck J, in (23) berechnen und dabei
sehen, daf} dieser Ausdruck unabhingig davon ist, ob wir die Hyper-
fliche R oder R* verwenden; er ist namlich mit dem Durchschnitt S
der betreffenden Hyperfliche mit dem charakteristischen Kegel bestimmt.
Also ist auch J; = J;* und wir haben:

22 f(&) dX (E —2)
S [meea "

Wir gehen jetzt zur Berechnung von

1
Jy, = li ¢) dZ = I f dZ —
a+1IJ.IiO (P( f Q(C a—:ﬁod()?(“) d f(c Q Z)
iiber. Nach (21) ist
do(x) a1
de ¢ n

Um _il% f f(&) dZ Q({— z) zu bestimmen, berechnen wir zuerst das hyper-
K(x)
komplexe Fldchenelement dZ auf K(x). Die Gleichung von K («) heiB3t:

=S = (&%) - +(6,—2,) P~ (E— Ty py)P— - =P (€ —2,)* -0 .
(vgl. (10))

Daraus und aus der Definition (12) von dZ folgt:

dZ = do (‘El"xl) €y + e +(5v"‘xv) ev"“z(fv-{-l_xv-f-l) €yt1—* ° ""0‘2( n—xn) €y .

do 2 2\ (F —»
= v (1= €= + 1+ T)
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wo do das (n — 1)-dimensionale Hyperflichenelement auf K («) ist. Fiir
die Funktion @ ({ — z) erhalten wir fiir den Fall, daB { auf K («) liegt:

QE —2) = (C—z)n _ (£ —2) i
(—s)?  sh(ar—1)7
Also wird
[10azee—a
K(a)
1 etz A+ e) Cme) |
2(a2 — 1) T .
R(a)
1 et G Udeh) (P s
2l — 1) SV T ol
K(x)

n

1 . 423 S oo (f—a) Em)Foa s
== - 1(£) do == =
n—2
2 (a2 — 1)—2_ j s" Vre + ats?
K(a)
! R L
= = f(¢) do
(a2 —1) 2 s"Vr - ats?
E(x)

Fiir die Ausfithrung des Grenziiberganges kann dieser Ausdruck durch
den folgenden ersetzt werden:

1 ?}_; ) }:+1 e; e (&5 — ;) (& — )
f(Z) do /===
n—2
V2(ax2—1) % sl
K1)

Differenzieren wir diesen Ausdruck nach « und setzen wir die Ableitung
n (27) ein, so erhalten wir:

n— 2 ;..«1 ké-ue ex (& — ;) (& — xx)
2 == 2 V O f(C) 8"+1 = .
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n—2 n

(n—2)27 I = X el —m) )
= [ do 1ty 2=
¢ K

T
27 (C—2) €5 — ¢z

Aus (23), (26) und (28) folgt:

Hauptsatz 7. Ist W ein Gebiet in R, und R eine orientierbare (n — 1)-
dimensionale Hyperfliche mit stetigem Normalenfeld, das zu W in der folgen-
den Beziehung steht : Ist z irgendein Punkt aus U, so

1. hat jeder erzeugende Strahl des zu z gehorigen charakteristischen Kegels
genau einen Schnittpunkt mit R ;

2. liegt der zwischen der Spitze des charakteristischen Kegels und dem
Schnittpunkt des Strahles mit R gelegeme Teil jedes erzeugenden
Strahles in U ;

18t ferner f(z) etne in W und auf R regulire Funktion, so ist fiir jeden Punkt z

wm W

2% f(¢) 4 (L—2)
f(Z): C 1szln_1z
S(2)
1_!:_5
(n—2)2 2 (¢ —2) E=2) —|¢ — 2|2 (
0 K(f)alo 1(&) T . (29)

Daber ist:

K(2) das zwischen z und R gelegene Stiick des zu z gehdrigen charak-
teristischen Kegels,

do das (n — 1)-dimensionale Hyperflichenelement auf K(z),
S(z) der Durchschnitt von K(z) und R,

n
dX =do X n;e; ; hier bedeutet do das (n — 2)-dimensionale Hyper-

j=1
flichenelement auf S und 7; sind die Komponenten der von z weg-
weisenden Hinheitsnormalen auf S, die in K liegt.

Die Konstante C wird durch (22) definiert.
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ITI. TEIL

Zuriickfiihrung der Randwertaufgabe auf eine lineare Integralgleichung

Wir kehren zu der am Anfang gestellten Randwertaufgabe zuriick :
Es seien die stetigen Randwerte

ou ou

'5&:::1/)17"" ’a—x',r::wn

eines Integrals # der Differentialgleichung (1):

B () =+ 1 fir j=1,...,»
17 0 =—1 fir j=v4+1,...,n)

=

K.

-,
I

auf einer (n — 1)-dimensionalen Hyperfliche R vorgeschrieben. Von R
setzen wir voraus, dafl es mit einem Gebiet i zusammen die Bedingungen
1. und 2. von Hauptsatz 7 erfillt. Wir wollen die Bedingungen angeben,
welche die Randwerte erfiilllen miissen, wenn das Problem eine Lésung
haben soll, und, wenn diese Bedingungen erfiillt sind, eine lineare In-
tegralgleichung angeben, mit deren Losung u auf eine einfache Weise
zusammenhéngt.
Auf R definieren wir die Funktion

n
p=2€yp .
7=1

Setzen wir dann fiir jeden Punkt z aus 2 :

22 f(¢
Z)—" C__zl,n__l D

S(z)

so ist nach Hauptsatz 7 und Satz 1, wenn das Problem losbar ist, auch
die Integralgleichung
n—4
n—2)2°2 (£ —2) (F—2) — | — 2|2
f(z) = J(z) — ( O) fdo f(©) c __zl,,ﬂ‘ | (30)

K(z)

durch eine Funktion f(z) von der Form

10) = Sefy@,e .o, 2

j=1
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losbar, und das gesuchte Integral « ist durch die folgenden Gleichungen
bestimmt : ou

ox;

7

== P (i v e vy ) G=1,...,n) .

Diese Gleichungen sind im Falle der Losbarkeit des Problems integrier-
bar; denn in diesem Falle ist die Funktion f(z) regulidr und die Integrier-
barkeit folgt aus den Regularitdtsbedingungen (4). Eine notwendige
Bedingung fiir die Losbarkeit der Aufgabe ist also die Loésbarkeit der
Integralgleichung (30). Sie ist aber nicht hinreichend. Denn dafiir, daf} die
Randwertbedingung erfiillt ist, ist offenbar notwendig, dafl die Losung
f(z) von (30) auf R mit y iibereinstimmt. Ich behaupte, daB} diese beiden
Bedingungen zusammen hinreichend sind. Sind sie ndmlich erfiillt, so ist
die Losung f(z) von (30) auch eine Losung von (29) und die Behauptung
folgt aus:

Satz 8. Ist eine Funktion f(z) in einem Gebiet W eine Losung der Integral-
gleichung (29):
»—2 A4
2 2J' f(&) dZ(E—=2) +(n—2)-2 —2) ({—2) —|{—2f
2)

lcﬁ__zlnﬂ ?

(¢
f(z) = C ‘C"’Zln_l C fdof@)

S K(2)
0 tst f () tn U reguldr.

Beweis : Unser Beweis zu Hauptsatz 7 148t sich wie folgt zusammen-
fassen:

1. Es ist
22 f(0)dEC—=2)  (n '7[‘ (E—2) T=2) —|t—=2} _
o) 1T PO T
(2) K(z)
i |
= lim | — lim = o Q) dZ QL —2)], .
a1 (%) ‘?*"[P(a o) RE£> K(ij ]5

wo dZ wie in (12) definiert ist. Diese Formel gilt fiir jede, auch nicht
regulidre, Funktion f(z).

2. Ist f(z) regulér, so ist nach Hauptsatz 6

f——J’ [ 10azec—»=o0.
I'(x,e) R(ax K(x,e)

Daraus folgt Hauptsatz 7. Ist nun f(z) irgendeine (nicht notwendig
reguldre) Funktion, so ist nach unserem Beweis zu Hauptsatz 6:
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[ == [1wazec—n= [[Ze]|ec—2a

I'(a,0) R(x) K(x,@) H(x,0)

(denn @ (¢ — z) ist in $H(«, o) reguldr). Geniigt nun f(z) der Integral-
gleichung (29), so folgt:

i ok im [ [ (£20) o om] =

Y

Wir wollen den Grenzwert auf der linken Seite ausrechnen: Ist §(x) das
aus den Punkten bestehende Gebiet, die fiir irgendeinen Wert von p zu
9 (x, o) gehoren, so ist

lim f = f ,

>0 @0 Hiw

also
lim fA ) Q& —2)dh =0,
. ax—>1 5(0‘)
WO Wir
AL ;
©) = X5,

gesetzt haben. In unseren friitheren Koordinaten wird :

dh = p"1cos¥ trsin® ¥ 1rcosd,... cosd,_;cosd,...cosi

n—y—1
dd,...da,, ,drdp .
Ferner wird wie in (18):
(£—2)
QL —7) = :
o" | cos 27 |2

Um das Gebiet H(x) zu erzeugen, mufl v von 0 bis a,rctg(—i- laufen,

#y5. . A,y durchlaufen alle nach (15) zuléssigen Werte und o lduft
von 0 bis zu einem Wert o*, der eine Funktion von 7, ¢,,..., 4,_,_, ist.
Also wird:
f A4() Q¢ —2)
H (@)
arctgé
cos’lrsin" V17 C—=
= [ dr ~ dd, - dAp—y—1 €082, 1 | dod(Q)
|cos 272 m
° ~3
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und folglich
-}-le(m(a—z) dh =
14

)
27 + —Z— e
v—1 —
- __oc———T d’l91 et dln——v—-l co8 An“v" d A(C) g——_)—
(0‘2 L 1)-2— e T =arctg£—
0 - —;5 0
Da ferner
do («) o
do =,
(a2 — 1)2
ist, folgt
_ 1 1 do {§—2)
lim Y| ~—~2) df = —— .

ar1 () f GeE= Oty @7 :

H() : E(2)

Ist also in U die Funktion f(2) eine Losung der Integralgleichung (29), so
gilt fiir jeden Punkt z aus U:

f_flf_[; of e,.]@—z>=o.
" | j=1 Ow; 0
K (2)

Ich ziehe daraus den SchluB}, daB in U gilt
o

.7

n
E =0,

daB also f (z) regulér ist, bin aber nicht imstande, diese letzte Folgerung zu
beweisen. Ein solcher Beweis wiirde besondere Untersuchungen iiber die
hier auftretenden Integralgleichungen verlangen, die von etwas anderem
Typus sind, als die gewohnlich behandelten. Satz 8 ist damit bewiesen
bis auf den letzten Schritt des Beweises, der nicht bewiesen ist. Die letzten
Resultate fassen wir zusammen in

Hauptsatz 9. Um in U das Integral » der Differentialgleichung (1) zu
finden, das auf R die Randbedingungen

— =, (g=1,...,mn)
erfiillt, bilde man in Y[ die Funktion
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n—2

Sy — 2 f p(g) dZ(T—2)

C I C — l n—1 ?
S(z)
WO

ist, und stelle die Integralgleichung

n—4

—2)22 Ny 2 (30
o) = Je) + fdoﬂm(c z)ﬁ——ilnig 22 (30

K (2)

auf. Notwendig und hinreichend fiir die Losbarkeit des Problems sind
die beiden Bedingungen:

a) Die Integralgleichung (30) ist durch eine Funktion von der Form

n

f(2) = X e; f(xy,..., 2,) (f; reell) losbar.
j=1

b) Die Losung f(z) von (30) stimmt auf R mit der Funktion y iiberein.

Die gesuchte Losung % ist dann durch die folgenden Gleichungen
bestimmt :
ou
ox;

7

:_—f,.(xl,...,xn) (j:l,...,n),

welche integrierbar sind.

(Eingegangen den 19. Mai 1944.)
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