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Funktionentheorie einer Klasse von
hyperbolischen und ultrahyperbolischen
Differentialgleichungen zweiter Ordnung

Von Walter Nef, Zurich

Einleitung
Bekanntlich hat man mit der Aufstellung aller analytischen Punktionen

einer komplexen Variabeln z zugleich aile reellen Intégrale der Potential-
gleichung in 2 Variabeln

d2u d*u
0

ax2 oy

gefunden. Das hat seinen Grand darin, daB fur den Operator

A -£- + %-=-,ex oy

der die Regularitàt definiert,

iî= A

ist.
In diesem Sinne kann man die Théorie der analytischen Funktionen als
Funktionentheorie der Differentialgleichung Au — 0 bezeichnen: Um
nâmlich Intégrale dieser Differentialgleichung zu finden, stelle man den
reellen Operator A in der Algebra der komplexen Zahlen als Norm des

Operators A dar und nenne diejenigen Funktionen w analytisch, fur die
Aw 0 ist. Jede analytische Funktion liefert dann offenbar ein (kom-
plexes) Intégral der Potentialgleichung und man kann auBerdem zeigen,
daB man in den Komponenten der analytischen Funktionen auch aile
reellen Potentialfunktionen erhâlt.

Dièse Ûberlegung làBt sich auf allgemeinere Differentialgleichungen
anwenden. Das wurde zuerst von Herrn Rud. Fueter durch seine Théorie
der regularen Funktionen einer Quaternionenvariabeln gemacht1). Eine
Funktion w in der Algebra der Quaternionen heiBt rechts- bzw. links-
regulâr, wenn

wQ 0 bzw. Qw 0, Q ^ + H-^ + t1A + ,-1^

x) Dieser Standpunkt wird vor allem eingenommen in der Arbeit: Rud. Fueter, Die
Funktionentheorie der Differentialgleichungen Ju 0 und JJu=O
mit 4 reellen Variabeln, Comm. Math. Helv., vol. 7, S. 307.
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ist. Da QQ A ist, liefert jede regulâre Quaternionenfunktion vier (nicht
unabhângige) Potentialfunktionen. Ferner kann bewiesen werden, daB

man in den Komponenten der regulâren Funktionen aile
Potentialfunktionen erhàlt. Da nun die Théorie der regulâren Quaternionen-
funktionen sich mit funktionentheoretischen Mitteln ausbauen laBt, er-
hâlt man auf diesem Wege, abgesehen vom rein funktionentheoretischen
Interesse der Théorie, intéressante Einblicke in die Théorie der Potential-
gleichung in 4 Variabeln. So erhàlt man z. B. die Poissonsche Integral-
darstellung2), und die Théorie der Singularitâten der regulâren Quater-
nionenfunktionen3) gibt einen vollstàndigen Ùberblick ûber die Singularitâten

der Potentialfunktionen.
In meiner Arbeit liber den Fatouschen Satz in n Variabeln4) habe ich die

Funktionentheorie der Potentialfunktionen von beliebig vielen Variabeln
entwickelt und nebenbei gezeigt, wie man auch hier das Poissonsche

Intégral erhalten kann. Auch hier kann man noch wesentlich weiter vor-
dringen. Insbesondere lâBt auch die Théorie der Singularitâten sich
vollstândig entwickeln, wie ich noch zu zeigen beabsichtige.

In sehr eleganter Weise hat Herr Fueter die Funktionentheorie der
Diracschen Differentialgleichungen entwickelt5) und damit zum ersten-
mal ein hyperbolisches System von Differentialgleichungen vom
funktionentheoretischen Standpunkt aus betrachtet. Die Méthode, die ich
hier auf die hyperbolischen und ultrahyperbolischen Differentialgleichungen

vom Typus

2 dxk

ânwende, ist eine Kopie der Fueterschen Méthode.
In neuerer Zeit ist von verschiedenen Verfassern versucht worden, so-

wohl dié Théorie der analytischen Funktionen direkt zu verallgemeinern,
als auch Differentialgleichungen mit Hilfe funktionentheoretischer Me-

2) Rud. Fueter, Zur Théorie der regulâren Funktionen einer Quater-
nionenvariabeln, Monatshefte f. Math. u. Phys., Bd. 43, S. 69.

8) Mud. Fueter, Die Singularitâten d«r eindeutigen regulâren Funktionen
einer Quaternionenvariabeln I, Comm. Math. Helv., vol. 9, S. 320.

Walter Nef, Ûber die singulâren Gebilde der regulâren Funktionen einer
Quaternionenvariabeln, Comm. Math. Helv., vol. 15, S. 144.

Walter Nef, Die unwesentlichen Singularitâten der regulâren Funktionen
einer Quaternionenvariabeln, Comm. Math. Helv., vol. 16, S. 284.

4) Walter Nef, Ûber eine Verallgemeinerung des Satzes von Fatou fur
3?(otentialfunktionen, Comm. Math. Helv., vol. 16, S. 215.

6) Rud. Fueter, Die Funktionentheorie der Diracschen Differentialgleichungen,

Comm. Math. Helv., vol. 16, S. 19.
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thoden zu behandeln6). Keine der mir bekannt gewordenen Arbeiten
fûhrt aber zu so abgeschlossenen Ergebnissen, wie man sie mit den Fueter-
schen Methoden erhâlt.

I. T E I L

Elemente der zur Diflerentialgleichung gehôrigen Funktionentheorie

Wir gehen aus von einer linearen homogenen partiellen Differential-
gleichung 2. Ordnung vom hyperbolischen Typus mit konstanten Koeffi-
zienten, in welcher nur Glieder 2. Ordnung vorkommen, also von einer
Differentialgleichung der Gestalt

n n Q2U
a~~ u '2* lé °}k T

;=! fc=l OXj 0Xk

und wollen fur sie die folgende Randwertaufgabe lôsen :

Auf einer (n — l)-dimensionalen Hyperflàche E, die noch nàher zu
bezeiehnende Eigenschaften hat, sind die Randwerte der Ableitungen

du du

dxx
* " ' ' dxn

vorgegeben. Es sind die Bedingungen anzugeben, welche dièse Randwerte

erfullen mûssen, wenn ein Intégral der Differentialgleichung exi-
stieren soll, dessen Ableitungen die vorgeschriebenen Randwerte anneh-

men, und falls dièse Bedingungen erfullt sind, ist dièses Intégral zu
finden.

Durch eine lineare Transformation der Variabeln x1,..., xn kann die
Differentialgleichung auf die Form

gebracht werden, wo

6) Die Behandlung von Difîerentialgleichungen mit funktionentheoretischen Methoden
ist Gegenstand der folgenden Arbeiten:

Moisit et Theodoresco, Fonctions holomorphes dans l'espace, Mathematica,
Volumul V, 1931, pag. 141.

Théodoresco, Le problème de Cauchy pour une classe de systèmes d'équations

aux dérivées partielles. Application aux équations de Dirac. Annali
Pisa, Ser. II, Vol. IV (1935), pag. 51.

Moisit, Sur un algorithme généralisant la théorie des fonctions
monogènes, qui peut être utile pour l'intégration des équations aux dérivées
partielles d'ordre supérieur, Annalele Academei Romane, Ser. III, Tomul XVI,
Mem. 17 (1941).
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k,= + 1 fur 7= l,...,v
— 1 fur j v + 1,. .9n

Dabei ist v eine naturliche Zahl, von der wir voraussetzen kônnen, daB

- ^ v < n ist.

Das folgende, bis und mit Hauptsatz 6, stimmt fast wôrtlich mit einem

entsprechenden Teil in einer frûheren Arbeit iiber den Fatouschen Satz

uberein, nâmlich mit dem Teil vom Beginn des Abschnittes 2 bis inklusive
Satz 7 7).

Dièse Ûbereinstimmung ist dadureh begriindet, daB es sieh dort um die

Potentialgleichung handelt, also um eine partielle Differentialgleichung
2. Ordnung vom elliptischen Typus, wàhrend wir hier den hyperbolischen
Fall betrachten.

31 sei eine Cliffordsche Algebra der Ordnung 2n mit den Basiselementen

1, et,..., en, e12,..., e12• • • n >

wo 1 die Haupteinheit ist und wo die BasisgrôBen e3 (j 1,..., n) den

Relationen
I. e) ks- 1 (j l,...,w)

IL e0ek=~eke3 (j,k 1,.. .9n,j ^ k)

geniïgen8). Die Zahlen, mit denen wir im folgenden rechnen werden, sind
die Zahlen dieser Algebra im Kôrper der reellen Zahlen, d. h. die GrôBen
der Form : n

Z X^ + J£ e3 Xd + • • • + Ci2 n %VL n

wo die x beliebige réelle Zahlen sind. Der Zahl z ordnen wir nach der
folgenden Définition den Betrag \z\ zu:

Ftir zwei beliebige Zahlen zx und z2 beweist man dann leicht :

a) |«i + «i| <l«il +

8) Vgl. die Zurcher Dissertation: Paul Bofihard, Die Cliffordschen Zahlen, ihre
Algebra und ihre Zahlentheorie, Zurich 1940.
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Hierin bedeutet fi die Ordnung 2n der Algebra. In erster Linie werden
die GrôBen von der Form n

z

eine Rolle spielen. Damit ordnen wir den n reellen Variabeln (xl9..., xn)
die eine hyperkomplexe Variable z zu. Ist z von der letzten Form, so
bezeichnen wir mit z die GrôBe

_ n

z v KjX} e3

Wir werden im folgenden Funktionen zu betrachten haben, die als

Argumente Variable von der Form (2) haben und selber von der Gestalt

n

w f(z) 2£ u0 (xx,..., xn) e3

sind. Die Begriffe der Differenzierbarkeit von w in einem Gebiet nach

einer Variabeln xk(k 1,.. n) und der Ableitungen ~—(k 1,..., n)
oxk

haben dieselbe Bedeutung wie in der angegebenen Arbeit (S. 218).

Définition. Die Funktion w f(z) heifit in einem Gebiete § regular,
wenn sie in § zweimal stetig nach beliebigen Variabeln x, (j 1,..., n)
differenzierbar ist, und wenn in § die Beziehung gïlt :

V-^e, 0. (3)

Zerlegt man die Bedingung (3) in ihre Komponenten, so erhàlt man die

Regularitàtsbedingung in der folgenden reellen Gestalt :

S •.£-<£-%-• «¦* ' •' l4)

Auf dieselbe réelle Bedingung fuhrt die hyperkomplexe Gleichung

n dw
He3—~ 0 (5)
,»i dx,

Dièse und (3) sind also âquivalent, ohne formai ûbereinzustimmen.
Zwischen den regularen Funktionen und den Integralen der Differen-

tialgleichung (1) besteht ein naher Zusammenhang, der durch die folgenden

vier Sâtze klargelegt wird :
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Satz 1. Die Funktion u(x1,..., xn) sei in einem Gebiete § ein Intégral
der Differentialgleichung (1). Dann ist die Funktion

^ du
w= 2 — ek

k==1 axk
in § regular.

Beweis : Wir haben zu zeigen, daB (3) erfullt ist. In

heben sich wegen

V — e - V V dU
y-i dxi '

j=1 k=1 dxkdxi

dxi dxk dxk dx5

und
e. ek — ek ej fur j ^ k

aile Terme mit j ^ le weg. Es bleibt also

Da aber ^ ein Intégral von (1) ist, ist dies tatsâchlich gleich 0.

Satz 2. Die Funktion n

w 2 Uj - ej

sei in einem Gebiete § regular. Dann existiert in § eiw Intégral U der

Differentialgleichung (1), dessen erste Ableitungen

L u, (j=l,...,n)

Beweis : Auf Grand der Regularitàtsbedingungen (4) existiert in § eine
Funktion {/(a^,..., ccn), deren Ableitungen

!n)
sind. Die linke Seite der Differentialgleichung (1), fur die Funktion U an-
geschrieben, d. h. der Ausdruck

;=1 0Xj
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ist dann gleich n -

Dieser letzte Ausdruck ist aber gleich 0 nach der Regularitàtsbedingung
(4). Also ist U in § ein Intégral von (1).

Satz 3. DieFunktion

sei in einem Gebiete jr> regular. Dann sind alleFunktionen u3 {xx,..., xn) in
§ Intégrale der Differentialgleichung (1) (j 1,..., n).

Beweis : Es sei „ a

v dw
p - o^ ~*7 k " "

Dies diflferenzieren wir nach x}, multiplizieren rechtsseitig mit ei und
summieren uber j:

n n d2 W
Y. Y. ——— ek e, o
1=1 k=l OXhOX

d.h.

v ^W
o

ifc=l tfa:t

Da zwischen den ea keine Beziehung besteht, ist infolgedessen

Satz 4. § sei ew zylinderfôrmiges Oebiet, dessen Seitenlinien der xt-Achse
parallel und dessen Grund- und Deckhyperebenen zu derselben senkrecht sind.
Die réelle Funktion %(#l5..., xn) sei in § ein Intégral der Differentialgleichung

(1). Dann existieren in § (n ~- 1) weitere Funktionen,
u2(xli..., #n),..., un(xl9..., œn), von solcher Art, daji

in § regular ist.

Beweis : cp (x2,..., %n) sei ein beliebiges Intégral der Differentialgleichung

in (n — 1) Variabeln:
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h "3 dx) dxx ,1.a
'

wo x1 a eine das Gebiet <?> schneidende Hyperebene ist. Wir setzen

dtp f* dux _

a

und behaupten, da8
n

regular ist. Um nâmlich (4a) zu bestâtigen, beachten wir, daB

du d2 w r d2 Uy

dx, dx)

ist. Also ist

0'-2'

Um (4b) zu beweisen, berechnen wir fur j,k — 2,..., n die Ausdrûcke

du,
__

d2 <p f 3!% _ duk-+Ç-.
dxk dxk dx,

' J êa;fc 3o:; 9a;,

Ferner wird

Also sind die Regularitâtsbedingungen (4) erfûllt.

Satz 5. Satz 4 gilt auch fur jedes einfach zusammenhângende Gebiet §,
das sich in abzâhlbar viele zylinderfôrmige Gebiete von der in Satz 4 be-

schriebenen Art zerlegen

Beweis : Dieser wird durch einfache Abânderungen aus dem Beweis zu
Satz 6 der oben angegebenen Arbeit5) (S. 222) erhalten.

Hauptsatz 6. Die Funktionen w und v sollen in einem Gebiet H und auf
seinem Band R regular sein. R sei eine geschlossene orientierbare Hyper-
flàche mit stetigem Normalenfeld. Dann ist
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wenn wir mit dZ die Grôfle

Çw dZ v 0

dZ dr v f, e,

bezcichntn, wo dr das (n — l)-dimensionale Hyperflctchenelement auf R
bedeutet und wo die f,(? 1,.. n) die Komponenten der (âu/ieren oder

inneren) Normalen auf R sind.

Beweis : Nach dem Satz von GauB ist :

I w dZ v ^] I w Ç3e3 v dr

R R

± CJ-(We3v)dh^
?=i J ox9 jH H

nach der Regularitâtsbedingung (3) und der dazu âquivalenten (5).

II. TE I L

Die Integralgleichung fur eine regulâre Funktion, deren Werte auf einer

Hyperflâche gegeben sind

Die Funktion

7 1

2 *,(£,-*,)*
(6)

ist fur jeden Wert von z als Funktion der Variabeln £ regulàr fur aile
Werte von £ mit Ausnahme derjenigen, fur welche

J; *, (f,-*,)a o

ist. Die Punkte £ in i£n, fur die (7) erfullt ist, bilden einen (^ — 1)-
dimensionalen Hyperkegel K, dessen Spitze der Punkt £ z ist. K heifit
der zum Punkte z gehôrige charakteristisehe Kegel der Differential-
gleichung (1).
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Ist f irgendein Punkt in Rn, so bedeutet die GrôBe

das Quadrat des Abstandes des Punktes f von der (r& — î>)-dimensionalen
Hyperebene

(li - *i) (f, - *2) - (£v - *>) o
Ebenso ist

das Quadrat des Abstandes des Punktes £ von der r-dimensionalen
Hyperebene

(^+2 - aW«) • ' ' (fn - *n) 0 •

Die Gleichung des Hyperkegels K kônnen wir dann in den Koordinaten
r und s wie folgt schreiben :

K : r — s (r, s positiv) (8)

Ist v 1 oder v (n — 1) (was bei n 2 und w 3 stets der Fall ist),
so zerfâllt der charakteristisehe Kegel in zwei Teile, die nur die Spitze z

gemeinsam haben. (Im Falle n 2 kann dièse Zerlegung des Kegels in
zwei Teile auf zwei Arten gesehehen). In diesen Fallen bezeiehnen wir
im folgenden als charakteristischen Kegel nicht den ganzen Kegel r s,
sondern nur einen der genannten Halbkegel, wobei wir diesen aber so
auswâhlen, dafi die charakteristischen (Halb-)Kegel zweier verschiedener
Punkte zx und z2 stets durch eine Translation ineinander ûbergefûhrt
werden kônnen.

Nun sei R eine orientierbare (n — l)-dimensionale Hyperflâche in Rn

mit stetigem Normalenfeld und U ein Gebiet in Rn, das zu R in der

folgenden Beziehung steht : Ist z irgendein Punkt aus U, so

1. hat jeder erzeugende Strahl des zu z gehôrigen charakteristischen
Kegels genau einen Schnittpunkt mit R;

2. gehôrt der zwischen der Spitze des charakteristischen Kegels und
dem Schnittpunkt des Strahles mit R gelegene Teil jedes erzeugen-
den Strahles zu XI. (9)

Auf Grund der Forderungen 1. und 2. ist es stets môglich, denjenigen Teil
des charakteristischen Kegels eines zu U gehôrigen Punktes z, der
zwischen z und R liegt, durch ein Stuck von R zu einer geschlossenen
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Hyperflàche zu ergânzen, deren Inneres $ ganz in U liegt und so, daB
entweder fur aile Punkte von §r>5 oder fur aile Punkte von £> r < s

ist. Dièse beiden letzteren Fâlle sind im folgenden vôllig gleichberechtigt
und wir behandeln nur den Fall r > s.

oc sei eine beliebige réelle Konstante, die ^ 1 ist. Mit §(<%) bezeichnen
wir die Gesamtheit der Punkte von §, fur die r > oc s ist. (Es ist dann
£> $(1)). Die Berandung von $>(oc) besteht aus den folgenden Stucken:

a) den Punkten von R, fur die r > ocs ist. Die Menge dieser Punkte auf
R nennen wir R(oc).

b) den Punkten des Kegels r oc s, die in £) liegen. Die Gesamtheit
dieser Punkte nennen wir K(oc) (10).

Nun sei ferner q eine positive Konstante, die so klein ist, daB R auBer-
halb der (n — l)-dimensionalen Hyperkugel mit dem Radius q und dem
Mittelpunkt z liegt. Mit §(<%, q) bezeichnen wir das Teilgebiet von $&(oc),

dessen Punkte auBerhalb dieser Kugel liegen. Die Berandung von
§>(oc, q) besteht dann aus den folgenden drei Teilen:

a) R(oc);
b) denjenigen Punkten von K(oc), deren Abstand von z grôBer als q ist.

Ihre Gesamtheit nennen wir K(oc, q);
c) denjenigen Punkten von § (oc), deren Abstand von z gleieh q ist. Ihre

Gesamtheit nennen wir F(oc, q).

Die Funktion Q(Ç — z) (vgl. (6)) ist fur aile C, die von z verschieden sind,
eine regulâre Funktion (von C). Insbesondere also ist sie regulàr in dem
zum Punkte z (aus <r>) gehôrigen Gebiete §(<%, q). Ist nun w f(Ç)
irgendeine auf R und in U regulâre Funktion, so wenden wir fur die beiden
Funktionen w und Q (C — z) (z in XI) den Hauptsatz 6 an, und zwar
beziiglich des zu z gehôrigen Gebietes § (oc, q) :

f f(t)dZQ(Ç-z)= J + J f(C)dZQ(C-z) (11)
P(a,e) R(<x) K(oc,Q)

Dabei ist dZ wie folgt definiert :

auf F(oc, q) : dZ dr(dr= Hyperflachenelement auf F (oc, q))

n

auf K (oc, q) und R(oc):dZ= X $& dr, wo die ^(j 1,..., n) die

Komponenten der beziiglich §(a, q) âufieren Normalen auf
K(oc, q) bzw. R(oc) sind.

(12)
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An Stelle der linken Seite von (11) kônnen wir schreiben:

f(z) f f

Da nun (11) fur jeden positiven Wert von q gilt, folgt:

[ f dZQtf-z)]-^ J [f(z)-f(C)]dZQ(C-z) + J +

+ j f(OdZQ(Ç~z)]
(I3)

Um den Grenzûbergang q -> 0 auszufuln'en, berechnen wir den Ausdruck

<p(oc)=lim j dZQ(Ç-z)

Zu diesem Zwecke fûhren wir vorerst in Rn neue Koordinaten ein :

r, s, #l5..., td>v_l, Al5..., Xn-y-x, falls n> 2, *><?i— 1

und r, s, falls n 2

und zwar durch die folgenden Gleichungen :

|1 — o;t r cos êx cos t92... cos t?v_2 cos &v_1

h ~~ X2 — T COS #1 C0S ^2 • • • C0S &v-2 Sîn ^y-l
|3 — x3 r cos ^x cos #2... sin #y__2

t cos #x sin ^2

r sin ^x

S C0S ^1 C0S ^2- • • COS

s Qos Xx cos A2... cos
s cos Ax cos A2... sin

s cos Aj sin
s sin Ai

COS

sin

falls —l. (14)
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Ist n > 2 aber v n -— 1, so bleiben dièse Transformationsgleichungen
von der ersten bis zur (n— l)-ten (i>-ten) dieselben und an Stelle der
(r + l)-ten bis n-ten Gleichung tritt die folgende:

Ist n 2, v 1, so ist
f i — #1 r
t rv, QS2 t*/2 — "

zu setzen.

r und «$ durchlaufen hier aile positiven Zahlen und haben dieselbe
Bedeutung wie die gleich bezeichneten GrôBen in (8). Den Koordinaten
# und A miissen wir, um jeden Punkt von Rn genau einmal zu erhalten,
folgende Beschrânkungen auferlegen :

* + T <«)
(q 2,...,v — 1; o 2,...,n — v — l)

Die Gleichung der Hyperkugel mit dem Radius q und dem Punkt z als

Mittelpunkt lautet in den neuen Koordinaten :

oder, bei Einfuhrung eines Parameters r :

r q cos r
s g sin x

Wollen wir von dieser Kugel nur den Teil F (oc, q) erhalten, ûber den wir
zu integrieren haben, so haben wir x wie folgt zu beschrânken :

0 < t < arctg — (16)

Man rechnet nun leicht aus, da8

dr=z \dz\= rv~x s71-*'1 q cos #2 •. • cos d>v_1 cos A2.. • cos

ist. Daraus und aus (12) folgt:

dZ rv-isnr-v-i qcog^a... cos ^1 cos A2... cos Xn_v^x d&i.-.dXn_v_1 dx
Q

"^ (C — 2) Qn~2 cosv~1 t sin71"1"1 t cos #2... cos #,,_! cos A2...cosXnrmVmmld&^-.dln^.v^
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Ferner wird :

Q(C-z) 7=1 7=1 7 1

7 1
|r2_52|2 cos2t|2

(18)

Aus (16), (17) und (18) folgt jetzt:

arctg —

[ .Se, (*,-*,)] [ J>, e, (f,-*, v~x t sin"-"-1 r

cos 2 ri2
(19)

wo der Operator © die Bedeutung hat :

7T 7T 77
27T + -- + — 2ir -]

2 2 2

JC* (*(*(*1 J 2 J v V x J n v x

7F 7T 7T
0 0

2 2 2

Der in (19) auftretende Ausdruck

wird gleich :

cos cos ln-v-x

(20)

Durch Einsetzen der Ausdrùcke (14) fiir die Differenzen (|4 — x3)

(j 1,..., n) erkennt man leicht, daB der 2. Summand in (20) keinen
Beitrag an das Intégral gibt. Da ferner

ist, so wird:

çp(oi) lim

7=1
(f, - X,)2

arctg —

l - •CÏT, (21)
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wo fiir n> 2, v < n — 1 : C 2n~2n2

fixrn>2,v n — 1 : G 2n~2n (22)

fur n 2, v 1 : C 1 ist

Denn der Operator (9, den wir jetzt, da in dem Intégral (19) keine der
Variabeln #, A mehr auftritt, als Faktor auffassen kônnen, hat als solcher
jeweils den angegebenen Wert C.

Wir berechnen jetzt den ersten Summanden auf der reehten Seite

von (13):

lim-±- Ç[f{z)-nC)]dZQ(C-z)
Q + 0 <P\&) Jr()

Da f(z) als regulâre Funktion zWeimal nach beliebigen Variabeln differen-
zierbar ist, sind seine ersten Ableitungen stetig, und es existiert deshalb
eine réelle Konstante F mit der Eigenschaft, da8 in dem Gebiete § und
auf seinem Rande gilt :

Daraus folgt, daB

\f(z)-f(O\<neF
ist. Also wird (vgl. (2)) :

\Q{C-z)\

arci-g

qFC I -

arctg—

v"1 r sinn-v-1 r 7dx 0

|cos2t|2
und infolgedessen

R(oc) K(oc)

Dies gilt fur jeden Wert von oc> 1, also ist aueh

/(z)==lim_L_ Çf{C)dZQ(C-~z) + lim~^- Cf(Ç)dZQ(Ç-z)
«^1 (p(0C) J a-*l <p(OC) J

R() K()
J p(

R(ol) K(oc)

Q7
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Wir berechnen zuerst den Ausdruck

Jx= lim —Lr- Cf{QdZQ(Z-z)
a-^l-f-O (p \0C) J

R(oc)

Da fur <%-» 1 die GrôBe <p(oc) xiber jede Grenze wâchst, ist

doc

Um die Ableitung des Intégrales zu berechnen, ersetzen wir die Hyperflâche

R vorûbergehend durch eine abgeânderte Hyperflâche i2*, die wir
so aus R erhalten: S sei der Durchschnitt des charakteristischen Kegels
K mit R. P sei ein beliebiger Punkt auf S und habe die Koordinaten

n nr t cos —, s t sin —, #l9..., Xn-v-i -

Die einparametrige Schar von Punkten mit den Koordinaten

r=£coscr, s=t sin g, #1?..., An_v_1? (-— e<o'<—f- e, ebeliebig >0) (24)

bildet einen Kreisbogen, der auf dem Hyperkegel K senkrecht steht und
durch P geht. Die Gesamtheit dieser Kreisbogen (gebildet fur aile Punkte
P auf 8) bildet einen (n — l)-dimensionalen Hyperflâchenstreifen ï7*.
Durch genûgend kleine Wahl von e kônnen wir erreichen, dafi ï7* inner-
halb des Regularitâtsbereiehes von f(z) liegt. Das wollen wir auch tun.
Jetzt ergânzen wir T* zu einer Hyperflâche i£*, die aile Bedingungen er-
fullt, die wir an R gestellt haben (vgl. (9)). (23) gilt dann auch, wenn wir
die darin enthaltenen Intégrale als iiber R* erstreckt auffassen. Das tun
wir jetzt fur den Moment. Wir erhalten also

-i- Çf(Ç)dZ*Q{C-z) + 1hn-}-r f f(Ç)dZ*Q(Ç-z)
<p(OC) J a + l<p{0C) J

T*(ol) [R*(oi)-T*(ol)] {6O)

Dabei haben R*(oc) und T*(oc) eine leicht einzusehende Bedeutung. Das
zweite der Intégrale bleibt fur oc->l endlich, wàhrend <p(oc) xiber jede
Grenze wâchst. Also verschwindet der zweite Summand in (25) und es ist :

J* lim —i— f/(C) dZ*Q(C — z) lim -=-!-.|- f/(f) dZ*Q(Ç-z)1
<x-*i #)J <x+id<p(oc) docj

T*() T*(
)J p() jT*(oc) ^ T*(a)
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Wir beschrânken jetzt oc auf so nahe bei 1 gelegene Werte, da6 der Durch-
schnitt 8(oc) von K{oc) und jR* ganz in î7* liegt. dZ sei die hyperkomplexe
GrôBe, die dem Betrage nach gleich dem (n — 2)-dimensionalen Hyper-
flàchenelement auf 8(oc) ist, und deren zugeordneter Vektor auf B* senk-
reeht steht. Da die den Streifen T* bildenden Kreisbogen senkrecht auf
S (oc) stehen, folgt:

dZ*
n

(dZ* — dr* ]? Çfe3, wo dr* das (n — l)-dimensionale Hyperflâehen-

élément auf B* ist und wo die if(j= 1,..., n) die Komponenten der
Normalen auf B* bedeuten).

Berucksichtigen wir den Ausdruck (18) fur Q(Ç ~ z), so erhalten wir:

r

T*(oc)

Denn um das Teilstiick T* (oc) von î1* zu erhalten, mùssen wir g auf die

Werte -

d Ç

T*(oc)

n

f(t)dZ

^a< arctg —- beschrânken.

1

(«•-1)T(«

Es wird also :

1 r/(o
S (oc)

dZ(Ç-z)

sn-l

Aus der Darstellung (21) der Funktion cp(oc) folgt ferner:

d(p(<x)
__ n ocv~x

Also wird :

n-2

2- r
G j \C — z^-1

m)
S

Hierin bedeutet dZ, um es zu wiederholen, die hyperkomplexe GrôBe,
die dem Betrage nach gleich dem (n — 2)-dimensionalen Hyperflàchen-
element auf S und deren zugeordneter Vektor der Normalen auf T*
parallel ist. Da nun T7* eine Richtung enthâlt (nâmlich den Kreisbogen
(24)), die auf K senkrecht steht, so ist die Normale auf î7* zugleich die-
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jenige Normale der (n — 2)-dimensionalen Hyperflâche 8, die in der
Tangentialhyperebene von K liegt. Also kônnen wir nun d£ auch als die-

jenige GrôBe eharakterisieren, die dem Betrage naeh gleich dem Flàehen-
element auf 8, und deren zugeordneter Vektor der Normalen auf 8, die
in der Tangentialebene des charakteristischen Kegels liegt, parallel ist.
Dièse Définition von dZ enthalt nichts mehr von der abgeânderten
Hyperflâche i?*, sondern kann direkt auf R bezogen wcrden; denn R
und R* haben den Durehschnitt 8 gemeinsam.

Im folgenden werden wir den Ausdruck J2 in (23) berechnen und dabei
sehen, dafi dieser Ausdruck unabhângig davon ist, ob wir die Hyperflâche

R oder i2* verwenden ; er ist nâmlich mit dem Durehschnitt 8
der betreffenden Hyperflâche mit dem charakteristischen Kegel bestimmt.
Also ist auch Jt J* und wir haben :

2 2 Ç /(£) dl
C

s

Wir gehen jetzt zur Berechnung von

J2= lim
*

)/(C) dZQ(Ç — z) lim j4~T'T" \f(OdZQ(C—z)

ûber. Nach (21) ist:

doc

Um -r— j f(Ç)dZ Q{Ç—z) zubestimmen, berechnen wir zuerst dashyper-
E(ot)

komplexe Flâchenelement dZ auf K(oc). Die Gleichung von K(oc) heiBt:

(vgl. (10))

Daraus und aus der Définition (12) von dZ folgt :

dZ do (^l^l)ei H

do
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wo do das (n — l)-dimensionale Hyperflàchenelement auf K (oc) ist. Fur
die Funktion Q(Ç — z) erhalten wir fur den Fall, dafi £ auf K(oc) liegt:

Also wird

j'f(Ç)dZQ(Ç-z)

2(<x2 -1)2

n

2 {oc2— 1)T

f(C) do

K(oc)

v n
1 Ç SE e,efc (!,-*,)(&-*»)

/(C) do ;=1 *->+1
n-2

\ 2 J
K(oc)

Fur die Ausfuhrung des Grenziiberganges kann dieser Ausdruck durch
den folgenden ersetzt werden :

i i
V/2((%2 —1) 2

Differenzieren wir diesen Ausdruck nach oc und setzen wir die Ableitung
in (27) ein, so erhalten wir:

v n

2>/2O^
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v n
» —2)2 « r S, S Wf, - *,) (ftt - *„)

G J^'V*/ |f__z|n+l
K

' Z\ __ \ F —- Z 2

0

Aus (23), (26) und (28) folgt:

Hauptsatz 7. Ist XI eiw- Gebiet in Rn und R eine orientierbare (n — 1)-
dimensionale Hyperfldche mit stetigem Normalenfeld, das zu Xt in der folgen-
den Beziehung steht: Ist z irgendein Punkt aus Xt, so

1. hat jeder erzeugende Strahl des zu z gehôrigen charakteristischen Kegels

genau einen Schnittpunkt mit R ;

2. liegt der zwischen der Spitze des charakteristischen Kegels und dem

Schnittpunkt des Strahles mit R gelegene Teïl jedes erzeugenden
Strahles in Xt ;

ist ferner f (z) eine in Xt und auf R regulâre Funktion, so ist fur jeden Punkt z

in Xt:

n-4

-/(n-2)2 - ^ (Ç-g) (Ç —g)

Dabei ist:

K(z) das zwischen z und R gelegene Stiick des zu z gehôrigen
charakteristischen Kegels,

do das (n — \ydimensionale Hyperflâchenelement auf K(z),

S(z) der Durchschnitt von K(z) und R,
n

dZ da ]£, Y\jej ; hier bedeutet do das (n — 2)-dimensionale Hyper-

flachenelement auf 8 und tjj sind die Komponenten der von z weg-
weisenden Einheitsnormalen auf S, die in K liegt.

Die Konstante G wird durch (22) definiert.
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III. TE IL
Zuriickliihrung der Randwertaufgabe auî eine lineare Integralgleichung

Wir kehren zu der am Anfang gestellten Randwertaufgabe zuruck :

Es seien die stetigen Randwerte

du du

emes Intégrais u der Differentialgleichung (1):

V * — 0
(K3 + l fur l,.--,v

^1 3

dx) — 1 fur j v+ 1 ,...,n)

auf emer (n — l)-dimensionalen Hyperflache R vorgeschrieben. Von R
setzen wir voraus, da8 es mit emem Gebiet U zusammen die Bedingungen
1. und 2. von Hauptsatz 7 erfullt. Wir wollen die Bedingungen angeben,
welche die Randwerte erfullen mussen, wenn das Problem eine Losung
haben soll, und, wenn dièse Bedingungen erfullt sind, eine lineare
Integralgleichung angeben, mit deren Losung u auf eine einfache Weise
zusammenhangt.

Auf R definieren wir die Funktion
n

Setzen wir dann fur jeden Punkt z aus U :

G
SU)
J \C-Z\n-1 >

so ist nach Hauptsatz 7 und Satz 1, wenn das Problem losbar ist, auch
die Integralgleichung

(30,

durch eine Funktion f(z) von der Form
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lôsbar, und das gesuchte Intégral u ist durch die folgenden Gleichungen
bestimmt : ^

¦g^- U (*i, • • • > xn) (j=l,...,n)
Dièse Gleichungen sind im Falle der Lôsbarkeit des Problems integrier-
bar ; denn in diesem Falle ist die Funktion / (z) regulâr und die Integrier-
barkeit folgt aus den Regularitâtsbedingungen (4). Eine notwendige
Bedingung fur die Lôsbarkeit der Aufgabe ist also die Lôsbarkeit der
Integralgleichung (30). Sie ist aber nicht hinreichend. Denn dafiir, daB die
Randwertbedingung erfûllt ist, ist offenbar notwendig, daB die Lôsung
f(z) von (30) auf R mit %p ubereinstimmt. Ich behaupte, daB dièse beiden
Bedingungen zusammen hinreichend sind. Sind sie nàmlich erfûllt, so ist
die Lôsung f(z) von (30) auch eine Lôsung von (29) und die Behauptung
folgt aus:

Satz 8. Ist eine Funktion f (z) in einem Gebiet U eine Lôsung der
Integralgleichung (29):

n—2 w-4

n "" / v*i \f -in+i

so ist f (z) in U regulâr.
Beweis : Unser Beweis zu Hauptsatz 7 lâBt sich wie folgt zusammen-

fassen :

1. Es ist

Gj
i-Hmf f - f - f f(C)dZQ(C-z)]

i(.a'iB)

wo rfZ wie in (12) definiert ist. Dièse Formel gilt fur jede, auch nicht
regulâre, Funktion / (z).

2. Ist f(z) regulâr, so ist nach Hauptsatz 6:

/ - / - /
Daraus folgt Hauptsatz 7. Ist nun f(z) irgendeine (nicht notwendig
regulâre) Funktion, so ist nach unserem Beweis zu Hauptsatz 6 :
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/ / /
V(ot,Q) R(ol) K(ol,q)

(denn Q(Ç — z) ist in £)(<%, q) regulâr). Geniigt nun f(z) der Integral-
gleichung (29), so folgt:

lim j-i- lim f f (s^
Wir wollen den Grenzwert auf der linken Seite ausrechnen : Ist § (oc) das

aus den Punkten bestehende Gebiet, die fiir irgendeinen Wert von q zu
§(<*>(?) gehôren, so ist

lim f f
also

a->l

wo wir

gesetzt haben. In unseren fruheren Koordinaten wird :

dh g71'1 cos v~1 r sin n~v^x r cos #2. cos &v_1 cos A2... cos A^^
d#x... dXn_v__1dtdq

Ferner wird wie in (18) :

£n|cos2r|2

Um das Gebiet §(a) zu erzeugen, mu8 t von 0 bis arctg - laufen,

&l9..., A^^j durchlaufen aile nach (15) zulâssigen Werte und o làuft
von 0 bis zu einem Wert q*, der eine Funktion von r,^,..., K-v-i ^*
Also wird:

JA{Ç)Q(Z-z)dh
S («)

1 farctg— 2tt + q*

f cos"-1 rsin"-"-1 t CJQ T,. f/ dx I diïv ¦ • I dAn_v_1cosAn_v_1
•^ Icos2t|y J J* J Q

0
' ' 0 -T 0
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und folglich
A. Cà{Ç)Q{Ç-z)dh

27T + — e*

«v-i r r r
(«.-i)tJ J J

Da ferner

t arctg —

ist, folgt

i r
lim J z

Ist also in U die Funktion /(^) eine Lôsung der Integralgleichung (29), so

gilt fur jeden Punkt z aus U*.

Ich ziehe daraus den SchluB, daB in U gilt
n df

daB also / (z) regulàr ist, bin aber nieht imstande, dièse letzte Folgerung zu
beweisen. Ein solcher Beweis wiirde besondere Untersuchungen liber die
hier auftretenden Integralgleichungen verlangen, die von etwas anderem
Typus sind, als die gewôhnlich behandelten. Satz 8 ist damit bewiesen
bis auf den letzten Schritt des Beweises, der nicht bewiesen ist. Die letzten
Resultate fassen wir zusammen in

Hauptsatz 9. Um in XI das Intégral u der Differentialgleichung (1) zu
finden, das auf R die Randbedingungen

du
— V,, 1.. -.,n)

erfullt, bilde man in U die Funktion
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n-2

J(z)

n—'ù

wo

V

ist, und stelle die Integralgleichung

- 2) 2 ^ /* (C-z)(C-z)-|C-z|* (30)
i do/(£)lL

auf. Notwendig und hinreichend fur die Lôsbarkeit des Problems sind
die beiden Bedingungen:

a) Die Integralgleichung (30) ist durch eine Funktion von der Form
n

f(z) - v e, f,(xl9..., xn) (/, reell) lôsbar.

b) Die Lôsung f(z) von (30) stimmt auf R mit der Funktion rp uberein.

Die gesuchte Lôsung u ist dann durch die folgenden Gleichungen
bestimmt :

du
-gj- /,(xx,..., xn) (j 1 n)

welche integrierbar sind.

(Eingegangen den 19. Mai 1944.)

107


	Funktionentheorie einer Klasse von hyperbolischen und ultrahyperbolischen Differentialgleichungen zweiter Ordnung

