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Uber die Bettischen Gruppen,
die zu einer beliebigen Gruppe gehôren

Von Heinz Hopf, Zurich

Hurewicz hat entdeckt, daB die Bettischen Gruppen eines asphàrischen
Baumes durch dessen Fundamentalgruppe bestimmt sind1). Dabei heiBt
ein Raum — nach angemessener Prâzisierung des Raumbegriffes —
asphârisch, wenn in ihm jedes stetige Bild einer w-dimensionalen Sphâre
mit n > 1 auf einen Punkt zusammengezogen werden kann. Der Beweis
wird dadurch gefuhrt, daB man mit Hilfe stetiger Abbildungen zeigt:
zwei asphârische Ràume, deren Fundamentalgruppen isomorph sind,
haben auch isomorphe Bettische Gruppen; dièse Méthode ist sehr einfach,
gibt aber keinen AufschluB uber die algebraischen Gesetze, durch welche
die Bettischen Gruppen mit der Fundamentalgruppe verkniipft sind.

Die §§ 1 und 2 der vorliegenden Arbeit kônnen als eine algebraische
Analyse des Satzes und Beweises von Hurewicz gelten, welche ein doppel-
tes Résultat hat : erstens werden die Strukturen der Bettischen Gruppen
eines asphàrischen Raumes rein algebraisch aus der Struktur der
Fundamentalgruppe definiert, allerdings ohne daB sich eine praktisch brauchbare
Méthode ergibt, sie wirklich zu bestimmen; zweitens erweist sich der
Satz von Hurewicz als Spezialfall eines Satzes aus der Homologietheorie.

Im § 1 wird jeder abstrakten Gruppe (g und jedem Ring J mit Eins-
element in eindeutiger Weise eine unendliche Folge Abelscher Gruppen
®j j ©j> • • • zugeordnet ; ist J der Ring der ganzen Zahlen, so sagen wir
auch ®n statt ©j. Topologische Begriffe — auch solche aus der rein
kombinatorischen Topologie — kommen dabei nicht vor; jedoch ist der

ganze ProzeB durch die Rolle dieser Gruppen in der Topologie motiviert
und darauf zugeschnitten. Dièse Rolle wird im § 2 behandelt ; dort sind
im Abschnitt 8.2 die Hauptergebnisse der Arbeit formuliert (Sâtze II
und III). Satze und Beweise gehôren in die elementare Homologietheorie
der Komplexe. Ein wertvoiles Hilfsmittel habe ich aus den Arbeiten von
Reidemeister ûbernommen2) : den zu einer Gruppe von Decktransforma-
tionen gehôrigen Gruppenring.

1) W. Hurewicz, Beitràge zur Topologie der Deformationen (IV.)» Proc.
Akad. Amsterdam 39 (1936), 215—224; speziell 221.

*) K. Reidemeister, Homotopiegruppen von Komplexen, Abh. Math. Seminar
Hamburg 10 (1934), 211—215, sowie zahlreiche andere Arbeiten. — Man vgl. auch:
G. de Rham, Sur les complexes avec automorphismes, Comment. Math.
Helvet. 12 (1940), 191—211.
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DaB der Satz von Hurewiez — wenigstens wenn man keine anderen
Ràume betrachtet als Polyeder — in den Sâtzen des § 2 enthalten ist,
wird, unter Benutzurlg anderer Sâtze von Hurewiez, in dem kurzen § 5

gezeigt: In einem asphàrischen Raum mit der Fundamentalgruppe ©
ist ©j die n-te Bettische Gruppe in bezug auf den Koeffizientenbereich J.
Dieser Paragraph ist aus methodischen Griinden an den SehluB der
Arbeit gestellt worden, kann aber in unmittelbarem AnschluB an den
§ 2 gelesen werden.

Im § 4 werden geometrische Anwendungen der Théorie der Gruppen
©j gemacht ; dabei habe ich weniger Wert auf allgemeine Sàtze gelegt
als auf spezielle Beispiele (13.2; 13.3; 13.4; 14.4; 14.5; 15.4; 15.5).
Dem Charakter der ganzen Arbeit entsprechend, bleibe ich auch hier im
Bereieh der diskreten Komplex-Topologie; wahrscheinlich kann man die
Ergebnisse — sie betreffen Automorphismen von Komplexen — auf
topologische Selbstabbildungen allgemeinerer Ràume ùbertragen3).

Die begrifElich einfachste unter den Gruppen ©* ist ©x : sie ist die wohl-
bekannte Faktorgruppe von © nach der Kommutatorgruppe. Fur n > 1

scheint es sehwierig zu sein, auf algebraischem Wege Eigenschaften der
Gruppen ©j aus den Eigenschaften von © abzuleiten ; daB dies mit Hilfe
der geometrischen Bedeutung der Gruppen ©j, die im § 2 festgestellt
wurde, môglich ist, wird im § 3 an einigen Beispielen gezeigt.

Ob andererseits die Théorie der zu © gehôrigen Abelschen Gruppen ©j
— sei es die algebraische oder die geometrische Seite dieser Théorie —
brauchbar fur die gruppentheoretische Untersuchung von © ist, weiB ich
nicht ; immerhin môchte ich auf dièse Môglichkeit hinweisen.

§ 1. Algebraische Einfuhrung der Gruppen @£

1. JP-Moduln (Abelsche Gruppen mit dem Operatorenring P).

1.1. P sei ein Ring; seine Multiplikation braucht nicht kommutativ
zu sein ; er besitze ein Einselement ; wir bezeichnen die Elemente von P
mit kleinen griechischen Buchstaben, das Einselement mit e.

X sei eine Abelsche Gruppe, die wir additiv schreiben und deren
Elemente wir mit kleinen lateinischen Buchstaben bezeichnen ; X besitze P
als Operatorenring oder kurz: X sei ein ,,P-Modul"; das bedeutet: den

Elementenpaaren oc e P, x € X sind in eindeutiger Weise Elemente
ocx € X so zugeordnet, daB die Gesetze

8) Man beachte die in den Fufinoten 21 und 24 zitierten Arbeiten.
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oc(x + y) ocx + ocy

(oc + fi)x ocx + (5x, oc(fix) (oc(i)x ex x
gelten.

1.2. Ist X' Untergruppe von X und ist ocx' eX' fur aile oc e P,
xf € X7, so ist Xr selbst ein P-Modul; wir nennen dann Xr einen ,,P-Teil-
modul" (oder eine ,,zulâssige Untergruppe") von X.

1.3. Eine Abbildung4) h von X in einen P-Modul Y heiBt ein ,,P-
Homomorphismus", wenn

A (a: + y) h(x) + A (y) h (ocx) och(x)

fur aile oc e P, x, y e X gilt; der Kern von A, d. h. die Menge aller
# e X mit &(#) 0, ist ein P-Teilmodul von X; das Bild h(X) ist ein
P-Teilmodul von Y.

1.4. Eine Teilmenge E a X heiBt ein ,,P-Erzeugendensystem",
wenn sich jedes Elément x e X auf wenigstens eine Weise als endliche
Summe x =£ oc% x% mit x% e E darstellen laBt, jeder P-Modul X ent-
halt Erzeugendensysteme : die Menge E X ist ein solehes, da x ex
fur jedes x e X ist. Ein P-Erzeugendensystem E heiBt eine ,,P-Basis",
falls sich jedes x auf nur eine Weise als Summe x Zoctxt mit xx e E
darstellen laBt oder, was dasselbe ist: wenn die Elemente von E lmear
unabhangig sind (in bezug auf den Koeffizientenbereich P) ; wenn X eine
P-Basis besitzt, so nennen wir X einen ,,freien" P-Modul. Ein solcher
ist also nichts anderes als die Gesamtheit der endlichen Linearformen
mit Unbestimmten xte E und Koeffizienten oct e P, wobei die Addition
zweier Linearformen und die Multiplikation einer Linearform mit einem
Koeffizienten in der ublichen Weise erklart sind ; seine Struktur ist durch
P und die Machtigkeit von E vollstandig bestimmt.

1.5. Jeder P-Modul X ist P-homomorphes Bild eines freien P-Moduls
X* (d. h. es existiert ein freier P-Modul X* und ein P-Homomorphismus
h von X* auf den ganzen Modul X).

Beweis : E sei ein P-Erzeugendensystem von X ; man verstehe unter E*
eine mit E gleichmachtige Menge von Symbolen x*, unter h eine einein-
deutige Abbildung von E* auf E und unter X* die Menge aller formai

4) Bei einer Abbildung von X. %n Y kann die Bildmenge ein echter Teil von Y sein;
bei einer Abbildung auf Y ist Y mit der Bildmenge identisch — Der Kern emes Homor-
pfyismus ist das Urbild des Nullelementes (bei multiplikativer Sehreibweise des Ems-
elementes) — Die Identitat oder identische Abbildung einer Menge ist diejenige Abbildung,
durch die jedes Elément sich selbst zugeordnet wird.
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gebildeten endlichen Summen E<xt x* mit at c P, xf c E* ; indem man
in X* auf die ubliche Weise die Addition zweier Linearformen und die
Multiplikation einer Linearform mit einem Elément oc € P erklârt, wird
X* zu einem freien P-Modul; durch h(Uatxf) Uocth(x*) ist eine
Abbildung h von X* auf X gegeben, die ein P-Homomorphismus ist.

1.6. Po sei ein Links-Ideal — mit anderen Worten : ein P-Teilmodul —

von P. Fur jede Untergruppe Z c X verstehen wir unter ZQ die Gruppe,
die aus allen endlichen Summen Zvtzt mit vt e Po, zt cZ besteht; sie
ist P-Teilmodul von X. Insbesondere ist der P-Teilmodul Xo erklàrt;
es ist Zo c Xo fur jede Untergruppe Z c X. Wenn Z selbst P-Teilmodul

von X ist, so ist Zoa Z ; dann ist also Zo c Xo r> Z, und es ist
daher auch die Restklassengruppe (Xo r\ Z)/Zo erklart.

Falls X ein freier P-Modul mit der Basis E und falls das Idéal Po
zweiseitig ist, so ist XQ die Gesamtheit derjenigen endlichen Summen
Haxx% mit xt e E fur welche die <xt e Po sind.

2. Die Gruppen Fn(J9 JP, JP0) Satz I.

2.1. J sei ein P-Modul. Unter einer ,,(J, P)-Folgeu verstehen wir eine
Folge von Gruppen

{J Z-1; X°=)Z0; PdZ1;...; X^dJZ^;...} (1)

mit folgenden Eigenschaften: Die Xn sind freie P-Moduln, die Zn P-Teil-
moduln der Xn; fur jedes n^O existiert ein P-Homomorphismus rn von
Xn auf Zn~x, und dabei ist Zn der Kern von rn 4).

Eine (J, P)-Folge kann unendlich sein oder endlich — im zweiten
Fall bricht sie mit einem Paar XN z> ZN ab, und die rn existieren nur
fur 0 <w <iV.

2.2. Zu gegebenen J und P kann man immer unendliche (J, P)-
Folgen konstruieren : nach 1.5 gibt es einen freien P-Modul X° und
einen P-Homomorphismus r0 von X° auf J ; der Kern Z° von r0 ist nach
1.3 ein P-Teilmodul von X°; ebenso gibt es, wenn X71'1 und sein P-Teilmodul

Zn~x schon konstruiert sind, einen freien P-Modul Xn und einen
P-Homomorphismus rn von Xn auf Zn~x, und der Kern Zn ist wieder ein
P-Modul.

Dieselbe Konstruktion zeigt, da6 man jede endliche (J, P)-Folge zu
einer unendlichen (J, P)-Folge erweitern kann; die endlichen (J, P)-
Folgen sind also nichts anderes als die Abschûitte unendlicher (J, P)-
Folgen.

42



Bei gegebenen J und P gibt es unendlich viele verschiedene unend-
Mche (J, P)-Folgen ; denn immer, wenn Zn~x schon vorliegt, herrscht
Willkùr bei der Wahl von Xn und von rn ; dièse Wahl ist nach 1.5 gleich-
bedeutend mit der Wahl eines P-Erzeugendensystems E in Zn~x.

2.3. In P sei ein Links-Ideal Po ausgezeichnet. Dann sind fur jede
(J,P)-Folge (1) gemàB 1.6 die Gruppen (X^Zn)/Z^ erklârt (n
0, 1,... Wir behaupten :

Satz I. Die Gruppen (X% ^ Zn)/Z% sind ihrer Struktur nach unab-
hangig von der zugrundegelegten (J, P)-Folge (1); sie sind also, wenn der
P-Modul J und das Idéal Pocz P gegeben sind, als abstrakte Gruppen
eindeuiig bestimmt und dûrfen daher mit Fn {J, P, Po) bezeichnet werden

(» 0, 1,...)-
Mit anderen Worten:

Ist neben der Folge (1) noch eine zweite (J, P)-Folge

{J Z~i ; PdZ0;... ; Xn Z)Zn ; ...} (ï)

mit Homomorphismen rn gegeben, so besteht fur jedes n > 0 die Isomorphie

Der Satz bezieht sich sowohl auf unendliche als auch auf endliche

(J, P)-Folgen; da aber, wie wir in 2.2 gesehen haben, jede endliche

(J, P)-Folge Abschnitt einer unendliehen ist, dùrfen wir uns beim Beweis
auf unendliche Folgen beschrânken.

Wir werden den Satz in der zweiten oben angegebenen Form beweisen,
also zwei Folgen (1) und (1) miteinander vergleichen. Dem endgultigen
Beweis stellen wir einige Hilfssàtze voran.

2.4. Hilfssatz: F sei eine Abbildung, welche jeden Modul Xn aus der

Folge (1) P-homomorph in sich, die Gruppe J identisch auf sich abbildet4)
und die Gleichung

Fr(x) rF(x)

fur aile x e Xn, n 0, 1,..., erfullt (wir schreiben kurz r statt rn).
Dann gibt es fur jedes n ^ 0 einen P-Homomorphismus 0 von Xn in
sich, der die Bedingungen

0(x)eZn fur xeXn, (2)

0(z) =F(z) -z fur z*Zn (3)

erfullt.
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Beweis: Fur x e X° setzen wir 0(x) F(x) — x ; dann ist 0 ein
P-Homomorphismus von X° in sich, der (3) erfûllt; ferner ist r&(x)
Fr(x) — r(x), also, da r(x) e J und F die identische Abbildung von
J ist, r&(x) 0, d. h. &(x) eZ° ; es gilt also auch (2).

0 sei fur Xn~1 erklârt ; wir erklâren es fur Xn :

In den freien P-Moduln Xn~x und Xn sind P-Basen ausgezeichnet ;

ihre Elemente bezeichnen wir mit x"~~x bzw. x" ; dann gibt es Elemente

xu e P, so da8

ist (wobei die Summen auf der rechten Seite endlich sind).
Da 0{x]-1)eZn-1 ist, gibt es Elemente y" € Xn mit r (y?) & (x?-1) ;

fur jedes a:*""1 verstehen wir unter y* ein fest gewâhltes derartiges
Elément. Dann setzen wir fur jedes x 2Joct x™ * Xn :

&{x) F{x)-x~-ZociTijy'; (4)

DaB 0 ein P-Homomorphismus von Xn in sich ist, ist klar. Ferner ist

r0(x) Fr(x) - r(x) - Zoc^^ix^1)
Fr(x) — r(x) —0r(x)

also, da r(x)€Zn~1 ist, r0(x) 0, d. h. 0(^)€Zn; es gilt also (2).
SehlieBlich sei 2= Uoc{x^ eZn; dann ist r(s) O, also Uociri^x^~"1 O9

also Ea^^ 0 fur jedes 7 ; mithin folgt aus (4), daB (3) gilt.
t

2.5. Hilfssatz : F erfulle dieselben Voraussetzungen wie soeben ; dann
bildet F fur jedes n > 0 die Gruppe (X£ r> Zn)/Zl identisch auf sich
ab; das heiBt : F bildet jede der Restklassen, in welche X% r> Zn modulo
Zq zerfâllt, in sich ab.

Beweis: 0 hat die im Hilfssatz 2.4 formulierte Bedeutung. Es sei

x € Xq rsZn\ da x c Xq ist, ist x — Zvt X" mit v{ c Po, x" € Xn, also

0(x) Zvi 0(x%), also, da 0(xni)eZn ist, 0(x)cZ%; da ^eZn ist,
ist 0(x) #(a:) — x ; es ist also F(x) — xeZ%, d. h. jF(#) x
mod.ZJ.

2.6. Hilfssatz: Zu den gegebenen (J, P)-Folgen (1) und (T) gibt es

Abbildungen /, welche jeden Modul Xn P-homomorph in den Modul Xn,
den Modul J identisch auf sich abbilden4) und die Gleichung

rf(x) fr(x) (5)
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fur aile x € Xn, n 0, 1,..., erfullen (wir schreiben r und r statt rn
und fn).

Beweis: Es sei zunachst {xot} eine P-Basis von X°. Fur jedes x°% ist
r(x°t)€J; es gibt also Elemente y^eX0 mit r(y°%) r(a%); jedem z°
ordnen wir ein bestimmtes derartiges y\ zu und setzen f(x°t) y\ sowie
allgemein f(x) Zaly°l fur jedes x Uoct x\ e X°. Dann ist / ein
P-Homomorphismus von X° in X°, und es ist

rf(x) Zocjfâ) Zafr(a*) r{x)

also r/(a;) fr(x), wenn wir auf der rechten Seite dieser Gleichung
unter / die identische Abbildung von J verstehen.

/ sei fur Xn~x erklart ; wir erklaren es fur Xn :

{x^} sei eine P-Basis von Xn, da r(x") eZ71-1 ist, ist rr(x") 0,
also rfr(x^) frr(x?) 0 d. h. /r(#") cZ'1-1 ; es gibt also Elemente
y" € Xn mit r(yj*) fr(x") ; jedem xj1 ordnen wir ein bestimmtes
derartiges y" zu und setzen f(x") y", sowie allgemein f(x) 2Joctynt

fur jedes x Z*^t o:^ c Xn. Dann ist / ein P-Homomorphismus von Xn
in X71, und es ist

rf(x) 2V$T) ZaJrW) fr{x) •

2.7. Beweis des Satzes I, Die Folgen (1) und (1) sind gegeben. / sei
eine Abbildung, wie sie nach Hilfssatz 2.6 existiert. Ist zeZn, so ist
r(z) 0, also nach (5) auch rf(z) 0, d. h. f(z) €Zn; es ist also

f(Zn)c:En. Da / ein P-Homomorphismus ist, ist ferner /(IJ)cïon,
also auch /(XJ ^Zn)c XJ ^ Zn; sehlieBlich folgt aus den Tatsachen,
dafi f(Zn)czZn und dafi / P-Homomorphismus ist, noch f(Z%)cZ$.
Aus ail diesem ergibt sich : durch / wird die Restklassengruppe Fn
(ZJ rs Zn)/Zl homomorph in die Restklassengruppe Tn (ZJ ^ En)/ZS
abgebildet. _Ebenso gibt es eine Abbildung / welche die Xn P-homomorph in die

Xn, den Modul J identisch auf sich abbildet, die Gleichung

rf(x) Jr(x) (5)

erfullt und welche infolgedessen Tn homomorph in Fn abbildet.
Die zusammengesetzte Abbildung F(x) =ff(x) bildet jeden Modul

Xn P-homomorph in sich, den Modul J identisch auf sich ab und erfullt,
wie aus (5) und (5) folgt, die Gleichung Fr(x) rF(x) ; nach dem Hilfssatz

2.5 bildet dann F die Gruppe Fn (X%^Zn)/Z% identisch auf
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sich ab. Ebenso ergibt sich, daB F // die Gruppe Fn identisch auf
sich abbildet. Es sind also / und / solche homomorphe Abbildungen von
Fn in Fn bzw. von Fn in F71, daB // und // dieIdentitâten von Fn bzw.
Fn sind ; dann aber ist / ein Isomorphismus von Fn auf Fn (und / seine

Umkehrung). Damit ist der Satz I bewiesen.

3. Die Gruppen @£

Wir werden von den Gruppen Fn(J, P, PQ), die auf Grund des
Satzes I fur beliebige J, P, PQ existieren, nur fur denjenigen Fall
spezieller J, P, PQ Gebrauch machen, den wir jetzt betrachten:

3.1. © sei eine beliebige Gruppe, die nieht Abelsch zu sein braucht
und die wir multiplikativ schreiben ; J sei ein beliebiger Ring mit Eins-
element. Dann sei P der Gruppenring von © mit Koeffizienten aus J ;

er ist in bekannter Weise folgendermaBen definiert : seine Elemente sind
formai gebildete Summen oc ZttAt, wobei die At € ©, die tt e J
und hôchstens endlich viele tt ^ 0 sind; die Addition in P ist dadureh
erklârt, daB man die Summen oc als Linearformen in Unbestimmten A{
mit Koeffizienten tt behandelt, wobei die Addition der tt die in J gegebene

ist; die Multiplikation ist durch

(21 ttA%) • {E *,' A,) Z (h t1,) (AtA,)

erklârt, wobei t%t\ das Produkt in J und AtA} Ak das Produkt in ©
ist; dabei sind die Koeffizienten von Gliedern, die dasselbe Ak enthalten,
zu addieren. Man bestâtigt leicht, daB durch dièse Addition und Multiplikation

in der Tat ein Ring entsteht.
(Bemerkung : Man kann denselben Ring P auch derart definieren, daB

man seine Elemente nicht als Linearformen oc ZttAt9 sondern als
Funktionen oc(AJ tt auffaBt; die Définition lautet dann so: Die
Elemente von P sind diejenigen Funktionen mit Argumenten in © und
Werten in J, die fur hôchstens endlich viele ic® nicht den Wert 0

haben; Summe a oc + p und Produkt n ocp zweier Elemente
oc, P e P werden dadureh erklârt, daB man fur aile A € © setzt:

a (A) oc(A) + p(A) n(A) Z*(X) 0(T)

wobei liber aile Paare X, Y c © mit XY A zu summieren ist.)
Der Ring P hat ein Einselement, nâmlich eE, wobei e das Einselement

von J und E das Einselement von © ist.
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3.2. Aus den Vorschriften fur die Addition und Multiplikation ergibt
sich: wenn man fur oc St^ e P unter S (oc) das Elément Zt{ eJ
versteht, so gelten die Regeln

S (a + fi) 8(oc) + 8(0), 8(*fi) 8(<x) • 8(0). (6)

3.3. Fur jedes Paar oceP, xeJ setzen wir ocx 8 (oc) • x ; man
bestàtigt unter Benutzung von (6), dafi hierdurch J — genauer: die
additive Gruppe des Ringes J — ein P-Modul wird.

3.4. Aus (6) folgt ferner: diejenigen oceP, fur welche S (oc) 0

ist, bilden ein (zweiseitiges) Idéal in P ; dièses Idéal nennen wir Po

3.5. Bei gegebener Gruppe © und gegebenem Ring J ist damit fest-
gesetzt, was unter P und Po zu verstehen und in welcher Weise J als
P-Modul aufzufassen ist; wir setzen jetzt

rn(J,P, P0) ©5+x, n 0, 1,... ;

es ist also jeder Oruppe © und jedem Ring J (mit Einselement) in eindeu-

tiger Weise eine unendliche Folge Abelscher Gruppen

zugeordnet. Das sind die ,,Bettischen Gruppen*\ die zu © gehôren (mit
J als Koeffizientenbereich).

Wenn J der Ring der ganzen Zahlen ist, so werden wir statt ©j kurz
©w schreiben.

4. Nâhere Untersuchung der Gruppen ©^
Fiir die Gruppeii ©j, und besonders fur die Gruppe S1, werden wir

jetzt noch Charakterisierungen angeben, die begrifflich einfacher und

praktisch brauchbarer sind als die Définition, die in der vorstehenden
Définition der Gruppen ©^ enthalten ist.

4.1. © und J seien wie in Nr. 3 gegeben. Der Gruppenring P ist ein
freier P-Modul: das Einselement von P bildet eine P-Basis; wir setzen

X° P und definieren durch r (oc) 8 (oc) eine Abbildung r von X° in J ;

aus 3.2 folgt, da8 r ein P-Homomorphismus von X° in J ist ; r ist sogar
ein P-Homomorphismus auf die ganze Gruppe J, da r(tA) t fur
jedes t e J gilt, wobei A ein beliebiges Elément von © ist. Der Kern4)

von r ist das Idéal Po, das in 3.4 definiert ist ; gemâB den Bezeichnungen
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aus 2.1 ist also Z° Po ; auch der in 2.3 erklârte Modul X% ist gleich
Po (da Po Rechts-Ideal ist); es ist also auch X* * Z° Po. Der Modul
Zq (cf. 1.6) besteht aus den endlichen Summen von Produkten oc/3 mit
a c Po, /? c Z° ; da Z° Po ist, ist also Z% das im Sinne der Idealtheorie
gebildete Produkt des Ideals Po mit sich selbst, das wir sinngemâB mit
Pi bezeichnen. Da nach Définition ©* (Zj ^ Z°)/Z°o ist, haben wir
somit folgendes gefunden:

Fur beliebige © und J ist

^ (7)

dabei ist P der Gruppenring von © mi£ Koeffizienten aus J, Po das

in P, das aws denjenigen oc e P besteht, fur welche die Koeffizientensumme
S (oc) 0 is£, und Pq das Quadrat des Ideals Po

4.2. Wenn wir immer beliebige Elemente von © mit At, das Eins-
element von © mit E, beliebige Elemente von J mit t% oder ttJ bezeichnen,
so lassen sich die Idéale Po und Pi folgendermaBen beschreiben:

Ein Elément oc € P ist dann und nur dann in Po, wenn es sich in der
Form oc Ett(At — E) schreiben lâfit; oc ist dann und nur dann in
Po, wenn es sich in der Form a ZttJ(At — E) (A} — E) schreiben
lâBt.

Beweis: Da immer A% — E e Po ist, so ist klar, daB die Elemente von
den angegebenen Pormen in Po bzw. in P% liegen. Umgekehrt: es sei

erstens oc EttAt c Po ; dann ist Utt 0, also oc oc — (Ett) E
Ett(At — E); (dabei kann man in der letzten Summe das Glied mit
At — E weglassen, wodurch die Gleichung £tt 0 im allgemeinen
zerstôrt wird). Es sei zweitens oc e Pi ; dann ist oc Summe von Produkten

oc'oc/f, wobei oc' cP0, oc" cP0, nach dem eben Bewiesenen also
ocf Et[(At — E), oc" Et'l(Aj - E) ist; hieraus folgt, daB oc sich in
der angegebenen Form schreiben laBt.

4.3. Fur das Rechnen modulo Pi sind die nachstehenden Regeln prak-
tisch : Fur beliebige A, B c © ist

(A -E){B~- Jf) (AB -E)-(A~E)-(B-E), (8)
also

AB - E (A — E) + (J5 - E) mod. Pg ; (8')

hieraus folgt ftir B A"1 :

* A-1 —E= — {A—E) mod. Pi (8")

48



Aus (8') und (8/;) ergibt sich weiter

IIA^ - E 27 t[(At - E) mod. P* (9)

wobei auf der linken Seite die Exponenten tt beliebige ganze Zahlen
sind, wahrend auf der rechten Seite die Koeffizienten t[ die Elemente
von J sind, die durch | fj-malige Addition des Einselementes e von J
oder des Elementes — e entstehen, je naeh dem Vorzeichen von tt

4.4. Wir setzen jetzt voraus: J ist der Ring der ganzen Zahlen.
Ist oc ZttAt € Po, so ist Ztt — 0, also oc Stx(A% — E), und

aus (9) folgt:

oc 77i4(* ~ £ mod. Pi fier jedes oc £ttAt€P0 (10)

Unter (£ verstehen wir die Kommutatorgruppe von ©. Fur jedes
A € © sei A1 die Restklasse von © mod. (£, welche ^4 enthalt; die Ar
sind die Elemente der Gruppe ©/£.

Jedem oc ZtlAl € Po ordnen wir die Klasse /(a) (7L4J*)' zu;
dièse Abbildung / ist offenbar ein Homomorphismus der additiven Gruppe
von Po in die Gruppe ©/G ; sie ist sogar eine Abbildung von Po auf die

ganze Gruppe ©/G, da A ~ E eP0 und f(A — E) Af fur jedes
A e © ist. Wir behaupten weiter: Der Kern von /, d. h. die Menge der
oc mit f(oc) E' &, ist PJ

Beweis : Es sei erstens a € Pi ; nach 4.2 ist dann oc lineare Verbindung (mit
ganzzahligen Koeffizienten) von Elementen der Form (A — E) (B — E);
auf Grund der Identitât (8) und der Gleichungen

f(AB~E) (ABE~1Y A'B', f{A-E)=-Ar, f(B-E) B'

ergibt sich, daB f((A - E) (B - E)) =E', also auch f{oc) Er ist.
Es sei zweitens oc EttAt e Po und f(oc) Ef; die letzte Voraus-

setzung besagt, daB 77^* *(£, also iL4£* /7(*7,F, UjxVjx) mit ge-
wissen [7,, V3 € © ist; nach (10) ist daher

a n(U3 V3 U;1 F"1) - E mod. P^ ; (11)

wendet man andererseits (10) statt auf oc auf das Elément

0 Z<JJ, + V,-Uj- F,)

an, so sieht man, daB die rechte Seite der Kongruenz (11) kongruent 0

ist ; es ist also oc 0 mod. Pi, d. h. oc € Pi.
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Damit ist gezeigt: / ist ein Homomorphismus der additiven Gruppe
von Po auf die Gruppe (5/G, und der Kern von / ist Pi. Es besteht also
die Isomorphie

(12)

4.5. Mit den Formeln (7) und (12) ist der folgende Satz bewiesen:

Fïïr jede Gruppe (5 ist
(13)

dabei ist (£ die Kommutatorgruppe von ©

S1 ist also die ,,Abelsch gemachte Gruppe ©".

5. Ob âhnliehe Charakterisierungen, wie sie durch (7) und (13) fur die

Gruppen ©J bzw. S1 gegeben werden, auch fur die Gruppen ©j, oder

wenigstens fur die ©w, mit n > 1 môglich sind, weiB ich nicht. Selbst
fur recht einfache Gruppen © scheint es schwierig zu sein, die Struk-
turen der Gruppen ©2, ©3,... wirklich zu ermitteln, wâhrend dièse

Aufgabe fur (g1 durch das Ergebnis von 4.5 als gelôst gelten kann. Auch
Fragen nach allgemeinen Sâtzen iiber Beziehungen zwischen den gruppen-
theoretischen Eigenschaften von © und denen der ©w liegen nahe und
sind unbeantwortet. Einige wenige hierhergehôrige Resultate und Bei-
spiele werden wir spàter (§ 3) behandeln, und zwar auf Grund der geo-
metrischen Bedeutung der Gruppen ©j

§ 2. Die Rolle der Gruppen <B£ in der Homologietheorie

6. Komplexe mit Àutomorphismen2)
6.1. K sei ein Komplex5) — simplizial oder auch ein beliebiger Zellen-

komplex; er kann endlich oder unendlich sein. J sei ein Ring mit Eins-
element; wir benutzen ihn als Koeffizientenbereich fur die Ketten und
Homologien in K ; seine Elemente nennen wir tt.

Fiir jedes n ^ 0 sei Xn die Gruppe der n-dimensionalen Ketten;
auBerdem setzen wir X"1 J. Flir n ^ 1, x e Xn sei r(x) der Rand
von x ; ist x e X°, so ist x £tt x\, wobei die x\ einfach gezâhlte Eck-
punkte von K sind; wir setzen dann r(x) Ett. In jedem Fall, n ^ 0,

6) Wegen der Begriffe aus der Homologietheorie der Komplexe verweise ich auf
Alexandroff-Hopft Topologie I (1935); ich werde dièses Buch als A.-H. zitieren. Im
allgemeinen werde ich die dort benutzte Terminologie verwenden; jedoch werde ich statt
,,algebraischer Komplex" immer ,,Ketteu sagen.
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ist r eine homomorphe Abbildung von Xn in X71'1; der Kern dièses

Homomorphismus4) heiBe Zn, das Bild r(Xn) heiBe H71-1. Dann ist Zn
fur n > 1 die Gruppe der 7i-dimensionalen Zyklen, fûrw 0 die Gruppe
der berandungsfâhigen O-dimensionalen Zyklen6) ; Hn ist fur n > 0 die
Gruppe der w-dimensionalen Rânder. Bekanntlieh ist Hn c Zn fur
n > 0 ; ferner ist 1/-1 X~x J, und wir setzen auch noch Z~x J

Statt r(x) werden wir oft auch x schreiben.
Da J ein Einselement besitzt, sind die orientierten Zellen positiver

Dimension sowie die Eckpunkte — dièse orientieren wir nieht —
selbst Ketten. Nachdem man, fur jedes n > 0, in jeder n-dimensionalen
Zelle eine Orientierung ausgezeichnet hat, bilden die so orientierten
Zellen x" eine Basis von Xn; ebenso bilden die Eckpunkte x0{ eine Basis
von X°. Statt ,,Basis" werden wir zur Vermeidung von MiBverstând-
nissen auch ,,J-Basis" sagen. — Die unorientierten Zellen bezeichnen
wir mit | X* \

6.2. Unter einem ,,Automorphismus" von K verstehen wir eine Opération

A, welche fur jedes n die n-dimensionalen (unorientierten) Zellen
permutiert, und zwar so, daB die Seiten einer Zelle | X* \ immer in die
Seiten der Bildzelle A \ x" \ ubergehen. Wenn K simplizal ist, so ist A
eine eineindeutige simpliziale Abbildung von K auf sich.

A ordnet jeder orientierten Zelle #? eine bestimmte orientierte Zelle
Ax" zu; fur jede Kette x Ett x", n^O, setzen wir Ax EtiAx" ;

dadurch ist fur jedes n ^ 0 ein, ebenfalls mit A bezeichneter Auto-
morphismus der Gruppe Xn erklârt; zur Ergânzung setzen wir noch
At t fur t e J X-1

Fur jede Kette x c Xn, n^O, ist

Ar(x) r(Ax) (1)

oder: Ax {Ax)*. Hieraus folgt, daB die Gruppen Zn und Hn durch A
auf sich abgebildet werden.

6.3. Es sei jetzt eine Gruppe © von Automorphismen Aj des Kom-
plexes K gegeben. Dann ist der Gruppenring P von © mit Koeffizienten
aus J gemâB 3.1 erklârt. Fur jedes oc EtjAj e P und jedes x eXn setzen
wir ocx EtjAjX ; hierdurch wird, wie man leicht bestatigt, Xn ein
P-Modul; ferner folgt mit Hilfe von (1), daB r ein P-Homomorphismus
ist und daB Zn und Hn P-Teilmoduln von Xn sind (n 0, 1,...

Wir teilen fur jedes n ^ 0 die Gesamtheit der Zellen | x" \ in Transi-

6) A.-H., 179.
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tivitâtsbereiehe bezuglieh © ein : | x" | und | x\ | gehôren zu demselben
Bereich, wenn es ein Ai c © gibt, so daB | x* \ A^xH ist. Aus jedem
Transitivitatsbereieh wàhlen wir eine Zelle aus und geben ihr (fur n > 0)
eine bestimmte Orientierung ; die so ausgewâhlten Zellen nennen wir
i£ (n > 0) ; das System der x£ heiBe En. Wenn Aj die Gruppe © und
SjJ das System En durehlaufen, so kommt unter dèn A$~x~1 jede n-dimen-
sionale Zelle von K mindestens einmal vor (in einer gewissen Orientierung)

; jede Kette x e Xn lâBt sich daher auf mindestens eine Weise als

x EtikA$~x1 mit tjk€J, also als x £<xk~xk% mit ockeP datstellen;
das bedeutet : En ist ein P-Erzeugendensystem des P-Moduls Xn (cf. 1.3).

6.4. Der Automorphismus A von K heiBt ,,fixpunktfrei", wenn durch
ihn keine Zelle | x™ | n ^ 0 auf sich abgebildet wird7) ; wir nennen
die Gruppe © ,,fixpunktfrei", wenn jeder von der Identitàt verschiedene
Automorphismus Ai € © fixpunktfrei ist.

Wir setzen voraus : © ist fixpunktfrei. Dann behaupten wir : Das soeben
definierte P-Erzeugendensystem En ist eine P-Basis von Xn (cf. 1.3),
mit anderen Worten : die x% sind linear unabhàngig in bezug auf Koeffi-
zienten aus P. — Beweis: Wenn Afo\ Ahx" ist, so ist A^AjX^ ïf,
also i Ic und, da © fixpunktfrei ist, Alj^A^ die Identitàt, folglich
h j ; wenn also A^ die Gruppe © und ~x\ das System En durehlaufen,
so kommt unter den Ai x% jede n-dimensionale Zelle (in einer gewiissen

Orientierung) nur einmal vor; aus Et^A^I 0, tjk*J, folgt daher

hit ®> un(i dies bedeutet: aus Zakxl 0, <xk c P, folgt <xk 0

Hiermit ist gezeigt : Xn ist ein freier P-Modul (n > 0).

7. Begulâre tîberlagerungen 8)

7.1. Es sei auch weiterhin © eine fixpunktfreie Gruppe von Auto-
mbrphismen Aj des Komplexes K. Wir fassen in bekannter Weise ©
als Gruppe von ,,Decktransformationen" Aj auf, welche einen Komplex
51 erzeugen, der von K ûberlagert wird: eine Zelle von 51 entsteht immer
dadurch, daB man die Zellen eines Transitivitâtsbereiches in K mit-
einander identifiziert (cf* 6.3); die Zellen von 51 entsprechen also ein-

eindeutig den Transitivitâtsbereichen der Zellen von K. Der Komplex K
7) Dièse Bezeichnung ist berechtigt; denn wennjnaan die Zellen als Punktmengen auf-

faÛt, also von dem Komplex K zu dem Polyeder K ûbergeht (cf. A.-H., 128), so besitzt
die durch A bewirkte topologische Selbstabbildung von K dann und infolge des Fjx-
punktsatzes fur Zellen nur dann keinen Fixpunkt, wenn A im obigen Sinne fixpunktfrei
ist.

8) Wegen der Begriffe aus der Ûberlagerungstheorie der Komplexe verweise ich auf
Seifert-Threlfatt, Lehrbueh der Topologie (Leipzig und Berlin 1934), 8. Kapitel. —
Ich zitiere dièses Buch als S.-T.

62



ist eine ,,regulâre Ûberlagerung" des Komplexes 51; umgekehrt: ist 51

ein beliebiger Komplex und K ein, in bekannter Weise (mit Hilfe eines
îtformalteilers 9Î der Fundamèntalgruppe 3f von &) konstruierter, regu-
lârer Ûberlagerungskomplex von 51, so ist K ein Komplex mit einer
Grappe © fixpunktfreier Automorphismen, welche in der soeben besehrie-
benen Weise den Komplex Si erzeugen (dabei ist © 5/5R) •

Jeder Zelle | x™ | von K ist diejenige Zelle von 5t zugeordnet, welche
dem Transitivitâtsbereich entsprieht, dem |a£| angehôrt; dièse Zelle

von Si nennen wir U \ x" \ Dann ist U eine Abbildung von K auf 51

— die ,,Ûberlagerungsabbildung"; sie erfùllt fur aile Zellen \x" | und
aile A

y
e © die Gleichung

a%\ U\xi\ (2)

7.2. Die Gruppe der n-dimensionalen Ketten von Si nennen wir Xn.
Die Abbildung U bewirkt einen Homomorphismus — den wir ebenfalls
mit U bezeichnen — von Xn auf £n. Bilden, wie in 6.4, die Zellen #£
eine P-Basis von Xn, so kommt unter den Zellen x% TJx\ jede n-dimen-
sionale Zelle von 51 (in einer gewissen Orientierung) genau einmal vor;
die x% bilden daher eine J-Basis von Xn.

Ist a; Uockx% irgend eine Kette aus Xn und ock 2!tkjAf, so ist

Ux Z tki VA, xl^Z tk9 Uxl Ztki*l i: S(ak) %nk

Ûk j,k ;,* k

wobei S (oc) die in 3.2 erklârte Bedeutung hat. Hieraus sieht man:
Ux 0 ist gleichbedeutend mit S(ock) 0 fur aile k; der Kern des

Homomorphismus U von Xn auf Xn, d. h. die Gesamtheit derjenigen
x € Xn, fur die Ux 0 ist, îst also der Teilmodul X% von Xn, dessen

Définition in 3.4 und 1.6 enthalten ist.

7.3, Den Rand einer Kette x nennen wir r(x) oder auch i. Es ist

(3)

also Ux= (Ux)', fur jedes x € Xn (dies gilt auch noch fur n 0,
wenn wir den Homomorphismus r von X° auf J ebenso definieren wie in
6.1 den Homomorphismus r von X° und wenn wir Ut t fur aile
t c J setzen).

Die Zyklengruppen $n9 n > 0, sind als die Gruppen derjenigen x € Xn

erklârt, fur die x 0 ist. Aus (3) folgt, daB U(Zn) c 3W ist.
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Wir behaupten, daB die folgende Isomorphie besteht:

3n i U{Zn) ~ {X--^Hn^) jH^1 ; n 1, 2,... ; (4)

dabei ist H% * gemâB den Definitionen in 1.6 und 3.4 der Teilmodul von
X^-1, der aus denjenigen Ketten besteht, die sich als Summen E(xixi
mit a€ € Po, xi € H71-1 schreiben lassen.

Beweis von (4) : Es sei x e X%~* r\ H71-1 ; daB x € H71'1 ist, bedeutet :

x y> y € Xn', daB x € Xq~x ist, bedeutet (cf. 7.2): Ux 0 ; es ist also

Uy=O, nach (3) also (Uy)' 0, d. h. Uy e 3W. Nimmt man statt y
eine andere Kette yx mit ^x a;, so ist ^ y + 2, z € Zn, also £7^
Uy + ?7z, also Uyx= Uy mod. U(Zn). Unter den Restklassen, in
welche die Grappe 3W nach ihrer Untergruppe U(Zn) zerfâllt, ist also

diejenige, die Uy enthâlt, durch x eindeutig bestimmt ; wir nennen dièse
Restklasse g(x). Die so erklàrte eindeutige Abbildung g der Grappe
Xq"1 r> H71'1 in die Gruppe 91 3n/U(Zn) ist offenbar ein Homomor-
phismus ; sie ist sogar eine Abbildung auf die ganze Grappe 9t ; denn zu
jedem 3 € 3n gib^ ©s, da Xn U(Xn) ist, ein y € Xn mit Uy 3, und
es ist 3 g(y).

Wir haben, um (4) zu beweisen, noch zu zeigen: der Kern4) von g ist
Hq"1. Es sei erstens xcHq"1; dann ist x Eoc^i mit S(<xi) §,

yf c Xn ; setzen wir 27atyf y, so ist x y und y € X%, also Uy 0 ;

mithin ist g(x) das Nullelement von 91, d. h.: x gehôrt zu dem Kern
von g. Es sei zweitens x c X""1 r* Hn~x und g(x) das Nullelement von
91 ; dann gibt es ein y mit x y, Uy e U(Zn), also Uy Uz mit
z eZ71 ; dann ist U(y — z) 0, also y — z e X%, also ^ z + Ea^yi
mit $(<%t.) 0, yt- c Xn, und da x ==y E^ifi ist, ist x c H^"1

(Bemerkung: Fur ti 0 ist (4) trivial, da dann beide Seiten 0 sind.)

7.4. Die Gruppen der n-dimensionalen Rânder in 51, also die Gruppen
ï(Xn+1), nennen wir $w. Aus (3) und aus U(Xn+1) Xn+1 folgt:

U(Hn) Ur(Xn+x) xU(Xn+1) r(3En+1) §n

Die Faktorgruppen Zn/Hn J5TO und 3V$W ^w s^n(^ ^ n ^ ^

die Bettischen Gruppen von JK" bzw. 51 (fur n 0 sind sie Untergruppen
der in der iiblichen Weise erklârten Bettischen Gruppen).

Da U(Zn) cQ71 und U(Hn) c§n ist, bewirkt U eine homomorphe
Abbildung von Bn in 23n, die wir ebenfalls Î7 nennen. Die Elemente der
Bildgruppe U(Bn) sind diejenigen Homologieklassen in 51, welche Zyklen
aus U(Zn) enthalten; da aber %n U(Hn) c î7(Zn) ist, gehôrt eine
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solche Homologieklasse vollstàndig zu U(Zn); die Homologieklassen,
welche die Elemente der Gruppe U(Bn) sind, sind also zugleich die Rest-
klassen, in welche die Gruppe U (Zn) mod. §n zerfâllt ; folglich ist
U{Zn)/$tf. Da andererseits 93n 3n/$n ist, ist

» 1, 2,. (5)

Aus (4) und (5) folgt

^^-1, n=i,2,... (6)

8. AzykUsche regulâre tlberlagerungen. Sâtze II, III, IV

Ein Komplex K heiBt ,,azykliseh" in der Dimension n, wenn jeder
n-dimensionale (berandungsfâhige) Zyklus in K berandet, d. h. wenn
Zn Hn ist (fur n 0 bedeutet dies : K ist zusammenhângend).

8.1. Wir betrachten einen Komplex K mit denselben Eigenschaflen
wie in Nr. 7 und setzen tiberdies voraus: K ist azyklisch in den Dimen-
sionen n 0, 1,..., N -~ 1 ; d. h. :

Zn~1 Hn~1 fur n 0,l,...,JV ; (7)

(fur n 0 gilt dies laut unserer Festsetzung in 6.1).
Die Folge der Gruppen

{ J Z"1 ; X° dZ° ; X1 3 Z1; ; X*"1 dZ*-1 ; X^^Z^}

hat folgende Eigenschaften : Die Xn sind freie P-Moduln (cf. 6.4); die
Zn sind P-Teilmoduln der Xn (cf. 6.3); die Rand-Operation r ist ein
P-Homomorphismus (cf. 6.3), der Xn auf H*~\ also nach (7) auf Zn~x

abbildet und Zn als Kern besitzt (und zwar gilt dies auf Grand der in
6.1 getroffenen Festsetzungen auch fur n 0). Somit ist dièse Folge
von Gruppen eine (endliche) ,,(J, P)-Folge" im Sinne von 2.1. Nach
2.3 und 3.5 ist daher

(X^Z^IZZ^®^1 fur n 0,1,...,iVr (g)

8.2. Aus (7) und (8) folgt

(ZJ-^JÏ"-^/^-1^©? ftir n= 1,2,...,#. (9)
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Statt (7) kÔDnen wir auch schreiben:

Bn 0 fur n 1,2,...,N- 1 (7')

Aus (6), (77) und (9) folgt

33n ©j f&r n= 1,2,...,#—1 (10)

und auBerdem folgt aus (6) und (9)

%NI*^1&$. (11)

Mit den Isomorphien (10) und (11) ist unser Hauptziel erreicht. Wir
formulieren dièse Ergebnisse noch einmal ausfûhrlich in den nachstehen-
den beiden Sâtzen :

Satz IL Es seien : J ein Ring mit Einselement ; K ein (endlicher oder

unendlicher) Komplex, der in bezug auf den Koeffizientenbereich J azyk-
lisch in den Dimensionen 0, l,...,N— 1 ist; © eine fixpunktfreie
Automorphismengruppe von K (cf. 6.4) ; R der von © erzeugte, von K uber-

lagerte Komplex (cf. 7.1) ; 33j die n-te Bettische Gruppe von R in bezug auf J.
Dann sind die Gruppen 33j fur n l, 2,..., N — 1 isomorph mit den

Gruppen (&j ; ihre Strukturen sind also durch die Strukturen von © und
J vollstândig bestimmt, unabhangig von K und von der speziellen Darstellung
der Gruppe © durch Automorphismen.

Satz III. Die Voraussetzungen des Satzes II seien erfûllt ; es sei ferner
U die Vberlagerungsabbildung von K auf Si (cf. 7.1) und Bj die n-te

Bettische Gruppe von K.
Dann gilt noch die weitere Isomorphie *!&*}/JJ(Bj) ©J ; also ist auch

die Struktur der Gruppe $5j/U(Bj) durch die Strukturen von © und J
bestimmt.

Ubrigens ist der Satz II ein Korollar des Satzes III.
8.3. Der in der Formel (8) zugelassene Fall n N ist bei der Herlei-

tung der ïormeln (10) und (11), also beim Beweis der Sâtze II und III,
nicht benutzt worden. Wir wollen auch diesen Teil von (8) als Satz formulieren.

Dafur erinnern wir an die Bedeutung der auf der linken Seite von
(8) auftretenden Gruppen: nach 7.2 besteht X%rsZn aus denjenigen
w-dimensionalen Zyklen z von K, fur die Uz 0 ist; Z% ist gemaB 1.6
die Gruppe aller endlichen Summen ^l(xi%i mit zt. eZ71, ^ € Pn, wobei
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Po in 3.4 erklàrt ist; nach 4.2 ist dann und nur dann oc eP0 wenn
oc £tj{Aj- — E) ist, wobei J57 das Einselement von © ist. Somit ergibt
sich:

Satz IV. Unter den Voraussetzungen des Satzes II gilt auch noch die
Isomorphie (X* * ZN) /Z* ^ ©J+1; dabei ist Xf ~ZN die Gruppe der-
jenigen N-dimensionalen Zyklen von K, die durch die Vberlagerungs-
abbildung U auf die Null abgebildet werden, und Z$ die Gruppe aller linearen
Verbindungen (mit Koeffizienten aus J) der Zyklen Az — z, wobei A
eine beliebige Decktransformation aus © und z einen beliebigen N-dimensionalen

Zyklus von K bezeichnet (,,Zyklus(i immer in bezug auf J).
Beim Beweis der Formel (8), also beini Beweis des Satzes IV, sind

iibrigens die Abschnitte 7.3, 7.4 und 8.2 nieht benutzt worden.

9. Spezialfâlle der Sâtze II, III, IV. — Bemerkungen
9.1. Der universelle Ûberlagerungskomplex K eines beliebigen zu-

sammenhàngenden Komplexes R ist eine regulâre Ùberlagerung von 51,

und die zugehôrige Gruppe © der Decktransformationen ist mit der
Fundamentalgruppe von 51 isomorph. Daher sind in den Sâtzen II, III,
IV die folgenden Tatsachen enthalten :

5^ sei ein zusammenhàngender Komplex mit der Fundamentalgruppe © ;
der universelle Ûberlagerungskomplex K sei in bezug auf den Koeffizienten-
ring J azyklisch in den Dimensionen n mit n < N. Dann gelten die Iso-
morphien

welche insbesondere zeigen, dafl die Strukturen dieser Bettischen Gruppen
vollstândig durch die Fundamentalgruppe © und den Koeffizientenring J
bestimmt sind, sowie die Isomorphien

(III) ©J/ U(B») ^ (5$ (IV) (X»~ZN) IZ*£
deren Bedeutung in den Sâtzen III und IV erklàrt ist.9)

9.2. Der universelle Ûberlagerungskomplex K eines Komplexes 51 ist
nicht nur zusammenhângend, sondern auch einfaeh zusammenhàngend,
d. h. jeder gesehlossene Weg ist homotop 0 ; daraus folgt bekanntlich,
dafi K azyklisch nicht nur in der Dimension 0, sondern auch in der Dimension

1 ist, und zwar in bezug auf jeden Koeffizientenbereich ; die
Voraussetzungen der Sâtze II, III, IV sind also erfullt, wenn man N 2 setzt.
Hieraus folgt :

9) Hier kann man, um den am Anfang der Arbeit zitiarten Satz von Hurewicz zu
erhalten, den § 5 ansehliefien.
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Fiir jeden zusammenhangenden Komplex R gélten die Isomorphien

i2) »J^©J, (in2) »î/^(B*)^©5, (iv2)

© die Fundamentalgruppe von R und der den Formeln (///2) und
(IV2) zugrundeliegende Komplex K der universelle Vberlagerungskomplex
von R ist.

Die Formel (II2) zeigt die bekannte Tatsache, dafi die erste Bettische
Gruppe eines Komplexes dureh dessen Fundamentalgruppe bestimmt ist ;

wir kommen darauf sogleich noch zurûck (9.4). Die Formel (III2) zeigt:
die zweite Bettische Gruppe SB} besitzt die durch die Fundamentalgruppe
bestimmte Gruppe ©j als homomorphes Bild ; bei gegebener Fundamentalgruppe

© kann also 33} ,,nicht zu klein" sein; dies hatte ich, fur den

ganzzahligen Koeffizientenbereich, fruher durch eine Relation bewiesen,
die âhnlich wie (III2) lautet, in der aber statt U(B2) und ©2 Gruppen
auftreten, die anders definiert sind10) ; daB die frûhere Formel mit (III2)
ûbereinstimmt, wird noch gezeigt werden (16.7).

9.3. Wenn R zusammenhângend und wenn K ein regulârer Ûberlage-
rungskomplex von R ist, den man in bekannter Weise8) mit Hilfe eines

Normalteilers der Fundamentalgruppe von 51 konstruiert hat, so ist
auch K zusammenhângend, also azyklisch in der Dimension 0; daher
sind die Sàtze II, III, IV anwendbar, wenn man N 1 setzt; der Satz II
wird dann inhaltslos, aber die Satze III und IV liefern noch folgende
Aussagen :

K sei ein (zusammenhangender) regulârer Vberlagerungskomplex des

zusammenhangenden Komplexes R; die zugehorige Gruppe von Decktrans-

formationen sei ©. Dann ist

(III,) ©^/C7(JB})^©}, (IV,) (X

9.4. Wenn man in (II2) und (IHJ fur ©^ die durch 4.1 (7) und 4.5
(13) gegebenen Ausdrùcke einsetzt, so erhâlt man vier Formeln, die
Interesse verdienen. Die einfachste von ihnen lautet:

SB^ffi/G; (12)

in ihr ist S1 die ganzzahlige erste Bettische Gruppe eines beliebigen
(zusammenhangenden) Komplexes, © dessen Fundamentalgruppe und
d die Kommutatorgruppe von ©.

10) H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment.
Math. Helvet. 14 (1942), 257—309.
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Die Relation (12) ist wohlbekannt; der ubliche Beweis11) benutzt die
Formel 4.5 (13) nicht. Nimmt man (12) als bekannt an, so erhàlt man
umgekehrt mit Hilfe der Formel (II2) einen einfachen Beweis der Relation
4.5 (13), allerdings nur unter der Voraussetzung, daB © abzàhlbar12) ist:
In diesem Fall làBt sich © dureh abzàhlbar viele Erzeugende mit abzàhlbar
vielen Relationen charakterisieren ; daher gibt es einen Komplex Si,
dessen Fundamentalgruppe © ist13); fur 51 gilt (12); aus (12) und aus
(II2) — in dem Spezialfall, daB J der Ring der ganzen Zahlen ist — folgt
4.5 (13).

9.5. Zu den vorstehenden Sâtzen machen wir noch folgende Bemer-
kungen. K sei regularer Ûberlagerungskomplex von Si ; die Fundamental-

gruppen F von K und g von 51 deuten wir in bekannter Weise als Gruppen
geschlossener Wege, wobei wir deren Anfangs- und Endpunkt a in K
und a in Si so wâhlen, daB Ua a ist ; dann liegt bekanntlich folgende
Situation vor8) : F wird durch U isomorph auf einen Normalteiler 91 von
3r abgebildet, und die Faktorgruppe 3f/9t ist mit der zu K und Si gehô-
rigen Gruppe © von Decktransformationen isomorph. Es ist also

Dies ist ein Gegenstùck zu der im Satz III ausgesprochenen Isomorphie
und insbesondere zu der Formel (111^ ; die letztere, fur den ganzzahligen
Koeffizientenbereieh, entsteht aus {*), wenn man die Gruppen ^,F, ©
,,Abelsch macht", d. h. durch die Faktorgruppen naeh ihren Kommutator-
gruppen ersetzt.

Man kann die Struktur der Gruppe ©, ohne von Decktransformationen
zu reden, geradezu durch (*) definieren. Dann lassen sich die Sâtze II
und III folgendermaBen aussprechen:

K sei ein regularer Vberlagerungskomplex von Si ; er sei azyklisch fur
n < N ; die Fundamentalgruppen von K und Si seien F bzw. 3- Dann ist

fur 0<n^N
also

filr 0<n<N
Ist K der universelle Ûberlagerungskomplex von 51, so ist F die Null-

gruppe, 2f ® > und man ©rhâlt die Isomorphien 9.1 (II) und 9.1 (III).
«) S.-T., 173.
12) TJnter ,,abzâhlbar" verstehe ich ,,endlich" oder ,,abzâhlbar-unendlich".
13) Einen solchen Komplex kann man nach dem Verfahren konstruieren, das in S.-T.,

180, Aufgabe 3, fur den Fall von endlich vielen Erzeugenden und Relationen angedeutet ist.
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§ 3. Geometrische Herleitung
einiger algebraischer Eigensehaften der Gruppen ©£

10, Bestimmung der ©£!ûr spezielle ©

10.1. © sei eine abzâhlbare freie Gruppe; dann ist ©j 0 fur n > 2

bei beliebigem J.
Beweis : Da © eine freie Gruppe mit endlich oder abzâhlbar unendlich

vielen freien Erzeugenden ist, gibt es einen Streckenkomplex Si mit der
Fundamentalgruppe © ; der universelle Ûberlagerungskomplex K von 51

ist ein Baumkomplex ; er ist azyklisch in allen Dimensionen und in bezug
auf jeden Koeffizientenbereich ; daher gilt 9.1 (II) fur aile n > 0 und
jeden Ring J ; da aber R eindimensional ist, ist 23j 0 fur n > 1.

10.2. © sei die freie Abelsche Gruppe vom Range r (d. h. das direkte
Produkt von r unendlich-zyklischen Gruppen); dann ist ©j die direkte

Summe von(r\ Gruppen, die mit J isomorph sind.

Beweis: © ist die Fundamentalgruppe des r-dimensionalen Torus
Si Tr, d. h. des topologischen Produktes von r Kreislinien ; der
universelle Ûberlagerungskomplex von Tr ist der euklidische Raum Rr ; er
ist azyklisch in allen Dimensionen und fur aile J ; daher gilt 9.1 (II) fur
aile n > 0 und aile J. Die n-te Bettische Zahl von Tr ist rj ; Torsion

ist nieht vorhanden ; daher ist die Bettische Gruppe $5j die direkte Summe

von j mit J isomorphen Gruppen14).

Korollar: Es ist ©j ^ 0 fur n^r und (5j 0 fur n>r (bei

beliebigem J).

10.3. Fur (additiv geschriebene) Abelsche Gruppen $ und positive
ganze Zahlen m benutzen wir folgende Begriffe und Bezeichnungen :

5m ist die Restklassengruppe von ^ nach der Gruppe aller Elemente
mx mit x e 5 ; JS ^ die Gruppe derjenigen x c 5 » fur welche mx 0

ist. Indem wir unter % die additive Gruppe der ganzen Zahlen verstehen,
bezeichnet also %m die zyklische Gruppe der Ordnung m ; gelegentlich
verstehen wir unter %m auch den Restklassennng von % mod. m.

14) Die Zusammenhànge zwischen den Bettischen Gruppen in bezug auf verschiedene
Koeffîzientenbereiche sind dargestellt in A.-H., Kap. V (besonders S. 233); sowie bei

E. Cech, Les groupes de JBetti d'un complexe infini, Fund. Math. 25 (1935),
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Es sei (5 2Im ; dann ist

©r1^™, ®y~mJ fa r=l,2,... (1)
also speziell

(g2r~i~9fw) G)2r=0 fur r=l,2,.... (2)

Beweis : Die Sphàre S2r~1 ist bekanntlich regulârer — fur r > 1 sogar
universeller — Ûberlagerungsraum einer geschlossenen und orientier-
baren Mannigfaltigkeit L2r~x mit © als Decktransformationen-Gruppe
(L2r~1 ist fur r > 1 ein ,,Linsenraum", fur r 1 mit der Kreislinie /S1

homôomorph). S2'*1 ist azyklisch fur w < 2r — 1 ; daher sind die Sâtze

III ujid IV mit N 2r — 1 anwendbar. Bezeichnen wir die (2r — 1)-
dimensionalen ganzzahligen Basiszyklen von S2*'1 und L2r~x mit z

bzw. 3, so ist Uz m$) aus Satz III folgt daher: S2**"1 %m ; und
da U keinen anderen iV^-dimensionalen Zyklus auf die Null abbildet als
den Nullzyklus, folgt aus Satz IV: ©2r 0. Damit ist (2) bewiesen.

Nach 9.1 (II) sind die Gruppen ©j fur 0 < n< 2r — 1 mit den Bet-
tischen Gruppen SBj von L2r~x isomorph. Da durch die Formeln (2) die
Gruppen ©w fur aile n bekannt sind, ist speziell fur die ganzzahligen
Bettischen Gruppen SBn :

5B^^^Iw bei ungeradem n<2r— 1, 58n=O bei gerademn>0. (3)

Aus diesen 33n kann man nach bekannten Regeln die Bettischen Gruppen
S3j von L2r~1, also die ©j, fiir beliebiges J berechnen14). Das Ergebnis
besteht in den Formeln (1).

10.4. Zugleich hat sich die bekannte Tatsache ergeben: Fiir einen
Linsenraum L2r~x mit der Fundamentalgruppe %m sind die ganzzahligen
w-ten Bettischen Gruppen durch die Formeln (3) bestimmt.

10.5. Wir heben — im Hinblick auf eine Anwendung in 13.4 — eine

spezielle Folgerung aus (1) hervor: Wenn mx ^ 1 fur aile x € J ist, so
ist ®J^0 fur aile ungeraden n ; denn dann bilden die Elemente mx
eine echte Untergruppe von J, es ist also Jm ^ 0. (Dagegen sieht man
leicht: wenn es ein a c J mit ma 1 gibt, so ist Jm mJ 0, also
sind aile ©j 0.)

10.6. © sei die direkte Summe15) %m + $IW; dann ist ©2r die direkte
Summe von r Gruppen 3IW, ©2r~1 die direkte Summe von r + 1 Gruppen
%m (r 1, 2,...); ist J %q — also der Bestklassenring mod. q —, so

ist ©j fur jedes n die direkte Summe von n + 1 Gruppen ?I(OT|(Z), wobei

(m, q) der grôfite gemeinsame Teiler von m und q ist.
15 Wir schreiben hier ausnahmsweise auch (5 additiv.
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Beweis : Das topologische Produkt 51 jj^-\ >< £,2r-i zweier Linsen
raume L2*"1, deren Fundamentalgruppe 3Im ist, hat die Fundamental-

gruppe © ; der universelle Ùberlagerungskomplex von R ist das Sphâren-
produkt K S2*-1 x /S21*"1 ; er ist azyklisch fur n< 2r — 1 ; in diesen
Dimensionen stimmen daher nach 9.1 (II) die Bettischen Gruppen 93^

von St mit den ©j iiberein. Die ganzzahligen Bettischen Gruppen 93n des

Produktes 51 sind nach der Formel von Kiinneth16) aus den ganzzahligen
Bettischen Gruppen der Faktoren L2*-1 zu berechnen; die letztgenannten
Gruppen sind nach 10.4 bekannt; die Formel liefert fur die 93n, und
damit fur die ©n, das oben behauptete Résultat. Aus den somit bekannten
23n berechnet man jetzt weiter in bekannter Weise14) die 93j, und damit
die ©j, und zwar bei beliebigem J ; fur J Aq findet man das*oben

behauptete Ergebnis. Dies ailes gilt zunàchst fiir n<2r — 1 ; dar
beliebig ist, gilt es fur aile n. —

10.7. Auf dieselbe Weise — durch topologische Produktbildung — kann
man immer, wenn © eine Abelsche Gruppe mit endlich vielen Erzeugen-
den, also ein direktes Produkt zyklischer Gruppen ist, die Gruppen ©n

bestimmen; dabei hat man das Ergebnis von 10.3 und, falls © unendlich
ist, das Ergebnis von 10.2 zu benutzen. —

Fur einige weitere, spezielle Gruppen © werden die Gruppen ©n in
15.3 ermittelt werden.

11. Endliehe Gruppen
Satz : Wenn © endlich ist, so sind auch aile Gruppen ©n endlich, und

die Ordnung jedes Elementes jeder Gruppe ®n ist Teiler der Ordnung g
von ©.

11.1. Den Beweis beginnen wir mit folgendem Hilfssatz:
K sei ein gr-blâttriger Ùberlagerungskomplex des Komplexes ft ; er sei

azyklisch in der Dimension n. Dann erfullt jeder n-dimensionale Zyklus
3 von 51 die Homologie g% ~ 0.

Beweis des Hilfssatzes: Durch die Ùberlagerungsabbildung U (cf.
Nr. 7) werden auf jede orientierte Zelle xt von 51 genau g orientierte
Zellen xtl,..., x%g von K abgebildet; wir setzen (p{tt) xtl + • • • -f %%g

und allgemein cp(r)) £tt<p(xt) fur jede Kette r) Zt%xt von 51. Es
ist Ucp(xt) gtt fur jede Zelle tt, also auch U<p(x)) gr) fur jede
Kette r). Ferner ist <p(r)) (f(X)))' ; hieraus folgt: wenn 3 Zyklus ist,
so ist auch 97(3) Zyklus. Nun sei 3 ein w-dimensionaler Zyklus in Si ; da
K azyklisch in der Dimension n ist, gibt es eine Kette y in K mit
y(3) ^ ; dann ist ^3 U<P(3) Uy= (UyY, also g$ ~ 0.

") A.-H., 308.
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Zusatz zu dem Hilfssatz: Wenn K endlich ist, so ist die ganzzahlige
n-te Bettische Gruppe 95n von R endlich. Denn wenn K endlich ist, so
ist auch R endlich, und 93n ist daher eine (Abelsche) Gruppe mit endlich
vielen Erzeugenden; andererseits enthâlt 23n nach dem Hilfssatz nur
Elemente endlicher Ordnung; folglich ist 23n endlich.

11.2. Um unseren oben ausgesproehenen Satz zu beweisen, genûgt es,
zu der vorgelegten endlichen Gruppe © und zu jeder positiven Zahl N
einen Komplex K anzugeben, der die folgenden drei Eigenschaften hat :

a) er ist endlich; b) er ist azyklisch in den Dimensionen 0, 1,..., JV —- 1 ;

c) er gestattet eine mit © isomorphe, fixpunktfreie Gruppe von Auto-
morphismen.

Wenn man nâmlich einen solchen Komplex K hat, so gehôrt zu der
unter c) genannten Automorphismengruppe ein von K regulâr iiber-
lagerter Komplex ft ; nach (b) und nach Satz II sind fur n< N die
Bettischen Gruppen 2Jn von $t isomorph mit den ©n ; andererseits folgt
aus (a), (b) und 11.1, daB dièse 93n endlich und daB die Ordnungen ihrer
Elemente Teiler von g sind. Somit haben die ©n mit n< N die behaup-
teten Eigenschaften; da aber N beliebig groB sein kann, gilt dies fur
aile n.

11.3. Um einen Komplex K mit den Eigenschaften (a), (b), (c) zu kon-
struieren, nehmen wir N + 1 Système K%, K\,..., K°N von je g Punk-
ten; die Punkte der Vereinigungsmenge M EK® seien in allgemeiner
Lage — (sie seien etwa die Eckpunkte eines Simplexes der Dimension
(JV + 1)<7 — 1) ; wir greifen diejenigen Teilmengen von M heraus, die
aus jedem System K® hôchstens einen Punkt enthalten; die Punkte
jeder dieser Teilmengen spannen ein Simplex auf ; dièse Simplexe bilden
einen Komplex K, Wir behaupten: iThat die Eigenschaften (a), (b), (c).

DaB K endlich ist, ist klar.
DaB K die Eigenschaft (b) besitzt, kann man folgendermaBen beweisen :

Diejenigen Simplexe von K, deren Eckpunkte in den Systemen
Kl, Kl,..., K°r liegen, bilden einen Komplex Kr; es ist also KN K.
Der Komplex Kr besteht erstens aus den Simplexen von K*"1 und zwei-
tens aus den Simplexen, die von je einem Simplex aus Kr~x und je einem
Punkt aus K® aufgespannt werden; auf Grund dièses Zusammenhanges
zwischen Kr~x und Kr beweist man leicht17) — was ich hier nicht durch-

17) Man kann dieTatsache benutzen, dafî K die ,,Verbindung" (cf. 28)) von Kr-l und
K® ist, und die allgemeine Formel fur die Bettischen Gruppen einerVerbindung anwenden
(1. c.28)); oder man kann die g Eckpunkte von K® nacheinander zu Kr-l hinzufûgen und
jedesmal einen ,,Additionssatz" (A.-H., Kap. VII, § 2) anwenden; aber der obige Fall
st so einfach, dafi sich die Heranziehung dieser allgemeinen Hilfsmittel kaum lohnt.
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fûhre — die folgende Beziehung : wenn K^1 azyklisch in der Dimension
n — \ ist, so ist Kr azyklisch in der Dimension n. Hieraus und aus der
trivialen Tatsache, da8 jeder Komplex jfiTr,r>0, zusammenhàngend,
also azyklisch in der Dimension 0 ist, folgt durch Induktion: Kr ist
azyklisch in den Dimensionen 0, 1,..., r — 1. Fur r N ist das die

Eigenschaft (b) des Komplexes K,
Um (c) zu beweisen, ordne man fur jedes j aus der Reihe 0, 1,..., N

die Punkte von K°7 eineindeutig den Elementen At e © zu und bezeichne
den Punkt, der dem Elément At entsprieht, mit pfl. Dann verstehe man
fur jedes A c © unter TA diejenige Permutation der Eckpunkte von K,
die pf* in pfAi tiberfûhrt — fur aile A% e © und j= 0, 1,..., N. Die
Permutation TA bewirkt offenbar eine eineindeutige simpliziale Abbil-
dung, also einen Automorphismus von K ; dabei geht, wenn A nicht çlie

Identitàt ist, kein Simplex in sich uber — es hat sogar niemals ein Simplex
mit seinem Bild einen Eckpunkt gemein; TA ist also fixpunktfrei. Dièse

TA bilden, wenn A die Gruppe © durchlâuft, einemit © isomorpheGruppe.
Es gilt also (c).

12. Die Gruppe (B2

In âhnlicher Weise, wie wir am SchluB von 9.4 bei Beschrânkung auf
abzàhlbare11) Gruppen © einen Beweis der Formel 4.5(13) fur die

Gruppe ffi1 gefiïhrt haben, wollen wir jetzt eine Formel fur die Gruppe
©2 herleiten.

12.1. Zunachst zwei gruppentheoretische Vorbemerkungen. Erstens:
Jede Gruppe © ist homomorphes Bild freier Gruppen 5 ; man erhàlt
einen solchen Homomorphismus, wenn man die Elemente eines beliebigen
Erzeugendensystems von © — das endlich oder unendlich, z. B. mit ©
identisch sein kann — zugleich als freie Erzeugende einer freien Gruppe
g auffaBt; dann ist ©^ 2f/9t, wobei 5R ein Normalteiler von g ist.
Eine solche Darstellung von © in der Form Qf/SR liegt also insbesondere
immer dann vor, wenn © durch Erzeugende e1, e2,... und Relationen
JBt. (ex, e2 1 gegeben ist ; 9t ist dann der von den Elementen
-K* (ei » e2 » • • • der freien Gruppe g erzeugte Normalteiler. Wenn © abzâhl-
bar ist, so ist auch 5 abzâhlbar.

Zweitens: Ist % irgend eine Gruppe, 5R eine Untergruppe von g,
so verstehen wir unter (£$(9i) die Untergruppe von $, die von allen
Elementen xrx-xr~x mit xcft, ré5R, erzeugt wird. Ist 91 Normalteiler

von 5, soist 6^(9î)c 5R. Die Gruppe (&%(%) ist die Kommutator-
gruppe von gr ; wir nennen sie kurz (£^. Es ist immer (£^(91) c &%
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12.2. Unsere Behauptung lautet:

Es sei © g/SR, wobei g eine abzaMbare freie Gruppe und 91 ein
Normalteiler von ^ ist; dann ist

(4)

Dièse Formel ist unter Umstânden, wenn © in besonders einfacher
Weise durch Erzeugende und Relationen gegeben ist, geeignet, die Struk-
tur von ©2 auf algebraischem Wege wirklich zu bestimmen18). Es ist
ûbrigens anzunehmen, daB sie sich auch fur nicht-abzâhlbare Gruppen ©
beweisen làBt.

12.3. Fur den Beweis von (4) betrachten wir einen Streckenkomplex
51, dessen Fundamentalgruppe g îs^> und konstruieren den zu dem
Normalteiler 91 gehôrigen regulâren Ûberlagerungskomplex K von 51 ; die
Fundamentalgruppe F von K ist isomorph mit 91, und zwar wird der
Isomorphismus folgendermaBen vermittelt: wir deuten F und Qf in
bekannter Weise als Gruppen geschlossener Wege in K bzw. Si ; dann
wird F durch die Ùberlagerungsabbildung U isomorph auf 91 abgebildet.
Die zu K und 51 gehôrige Grappe von Decktransformationen ist ©.8)

Auf Grand der Isomorphie 9.3 (IV^ fur den ganzzahligen Koeffi-
zientenring J ist unsere Behauptung (4) àquivalent mit der folgenden:

^(ZjoZ^/Zj (4')

12.4. Da F durch U isomorph auf 91 abgebildet wird, existiert der
Isomorphismus U'1 von 91 auf F. Jeder geschlossene Weg w e F be-

stimmt einen Zyklus z P(w) «• Z1 ; dabei ist P bekanntlich ein Homo-
morphismus von F auf Z1, dessen Kern4) die Kommutatorgruppe CF

von F ist19). Q PU'1 ist ein Homomorphismus von 91 auf Z1. Die
Behauptung (4') ist in den folgenden beiden Behauptungen ûber die
Abbildung Q enthalten:

a) Das Urbild von X] ~ Z1 ist <£g ~ R

b) Das Urbild von Z\ ist (£^(9t)

Beweis von (a) : Fur ein r € 9t ist dann und nur dann Q (r) € Zj * Z1,
wenn Q(x) cZj ist; dies ist nach 7.2 gleichbedeutend mit: UQ{x) 0,
also mit UPU-^x) 0 ; nun ist aber UPTJ-1 <P der zu P analoge

18) Cf. 1. c.13), Nr. 14; die dort ©* genannte Grappe ist unsere Gruppe (52.

") S.-T., §48.
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Homomorphismus der Wegegruppe Qf auf die Zyklengruppe 31 von R ;

der Kern von S$ ist also (E^; daher ist ï7PC7~1(r) 0 gleichbedeutend
mit : r * (£s, also mit r € &% r* 5R

Beweis von (b) : Wir bemerken zunàchst : der Kern von Q ist die Kom-
mutatorgruppe (£<r von 9t ; denn fur ein t c 91 ist dann und nur dann
Q(x) 0, wenn C7~1(r) zu dem Kern von P, also zu CF, wenn also r
zu U(CF) Ggj gehôrt. — Da Çf^ c (E$($R) ist, gehôrt somit der Kern
von Q zu (Eg(9t) ; infolgedessen ist die Behauptung (b) gleichbedeutend
mit(b'): G(Œg(9t)) Z\

Die Gruppe (£g($R) besteht aus allen Produkten aller Elemente

r0 w x tD"1 r"1 mit vo e g, r € SR ; die Gruppe ZJ besteht aus allen linearen
Verbindungen (mit ganzzahligen Koeffizienten) aller Elemente Az — z

mit A e ©, z eZ1 (cf. 8.3). Ftir den Beweis von (b') geniigt es daher zu
zeigen, daB jeder derartige Weg r0 auf einen Zyklus Az — z und daB

auf jeden Zyklus Az — z ein derartiger Weg r0 abgebildet wird.
Nun besteht zwischen den Wegen aus $ und den Decktransformationen

aus ® folgender Zusammenhang : jedem Weg m € 5 ist eine Transformation

Aw c (5 so zugeordnet, daB fur jeden Weg r c 9î die Beziehung

gilt, und umgekehrt ist jede Transformation A e © in dieser Weise als

Aw gewissen Wegen m c 5 zugeordnet.
Hieraus folgt:

Q(x0) ^(tDrtD^r-1) Qivoxvo-1) - Q(x) Awz - z

wenn wir Q(x) z setzen; und umgekehrt làBt sich so jeder Zyklus
Az — z als Bild Q(x0) darstellen.

§ 4. Geometrische Anwendungen

13. Azyklische Komplexe

Darunter, daB ein ^-dimensionaler Komplex ,,azyklisch" ist, wird im
folgenden immer verstanden: er ist in allen Dimensionen 0, 1,...,JV
azyklisch. Dabei kann ein beliebiger Koeffizientenbereich J zugrunde-
liegen; ist J der Ring der rationalen Zahlen, so sagen wir ,,rational
azyklisch"; dies bedeutet: K ist zusammenhângend, und aile Bettischen
Zahlen (auBer der nullten) sind 0. Wenn es tiberhaupt einen Koeffizientenbereich

gibt, in bezug auf den K azyklisch ist, so ist K bekanntlich14) auch
rational azyklisch. Da wir fixpunktfreie Automorphismen betrachten



wollen, und da nach einem bekannten Fixpunktsatz20) ein endlicher,
rational azyklischer Komplex keinen solchen Automorphismus besitzt,
interessieren uns hier nur unendliche Komplexe.

13.1. K sei N-dimensional und azyklisch in bezug auf J. © sei eine

fixpunktfreie Automorphismengruppe von K. Dann ist ©j 0 fur
n> N

Denn die Bettischen Gruppen 35j des von © erzeugten, von K uber-
lagerten Komplexes 51 erfullen nach Satz II die Isomorphien 33j ©j,
und zwar fur aile n ; da Si iV^-dimensional ist, ist ©j 0 fur n> N.

13.2. In dem Korollar von 10.2 ist enthalten: Wenn © die freie
Abelsche Gruppe vom Range r ist, so ist ©j ^ 0 (bei beliebigem J).
Hieraus und aus 13.1 folgt unmittelbar:

Eine freie Abelsche, fixpunktfreie Automorphismengruppe eines N-dimen-
sionalen, rational azyklischen Komplexes hat hôchstens den Rang N. 21)

13.3. In diesem Satz kann man die Voraussetzung der Fixpunkt-
freiheit durch andere Voraussetzungen ersetzen:

Die freie Abelsche Gruppe © sei Automorphismengruppe des N-dimen-
sionalen, rational azyklischen Komplexes K, und es sei wenigstens eine
der folgenden beiden Voraussetzungen erfûllt : (a) © besitzt einen endlichen
Fundamentalbereich ; (b) jSl ist eine Pseudomannigfaltigkeit. Dann hat ©
hôchstens den Rang N.22)

Dabei verstehen wir unter einem endlichen Fundamentalbereich von
© eine solche endliche Eckpunktmenge M von K, daB es zu jedem Eck-
punkt 6 von K wenigstens einen Punkt a € M und wenigstens ein
Elément Te® mit Ta b gibt.

Beweis: Wâre der Rang von © grôBer als JV, so gâbe es nach 13.2
einen von der Identitàt E verschiedenen Automorphismus A € ©, der
eine Zelle auf sich abbildet; dies ist aber, da © auBer der Identitàt kein
Elément endlicher Ordnung enthâlt, unmôglich auf Grund des folgenden
Hilfssatzes :

20) A.-H., 532—533.
21) Hurewicz, 1. c.1), p. 222, hat den analogen Satz fur diskrete Transformationsgruppen

topologischer Râume unter der Voraussetzung bewiesen, daB dièse Râume nicht nur
rational azyklisch, sondern sogar asphârisch sind.

22 Man kann einen Baumkomplex konstruieren, der eine freie Abelsche Automorphismengruppe

vom Range 2 zulâfit ; daraus sieht man, dafî man nicht beide Voraussetzungen
(a) und (b), und daB man in 13 .2 nicht die Voraussetzung der Fixpunktfreiheit weglassen
darf. Auch die Voraussetzung ,,azyklisch" ist, wie man leicht an Beispielen sieht, unent-
behrlich.
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© sei eine Abelsehe Automorphismengruppe eines (zusammen-
hângenden) Komplexes K ; wenigstens eine der Voraussetzungen (a), (b)
sei erfûllt; das Elément Ae% bilde eine Zelle auf sich ab. Dann hat A
endliche Ordnung.

Beweis des Hilfssatzes: Da A die Eekpunkte der Fixzelle permutiert,
hait eine Potenz Ar einen Eekpunkt p fest. Fur jede naturliche Zahl k
sei Pk die Menge derjenigen Eekpunkte von K, welche mit p durch
Kantenzuge verbindbar sind, die hôchstens k Kanten enthalten. Die
Menge Pk ist endlich; ihre Punkte werden durch Ar permutiert; daher
gibt es eine Potenz As von Ar, die jeden Punkt von Pk festhàlt; s hangt
im allgemeinen von k ab.

Wenn (a) erfullt ist, so wâhle man k so groB, daB Pk den ganzen Funda-
mentalbereich M enthàlt ; zu jedem Eekpunkt b von K gibt es dann einen

aePk und ein Te© mit Ta b; es folgt: A8b AsTa TA8a
Ta b; es ist also A8 E

Wenn (b) erfûllt ist, so wàhlen wir k so, daB Pk aile Eekpunkte einer
Grundzelle — d. h. einer iV^dimensionalen Zelle — x von K enthàlt;
dann hait A8 jeden Eekpunkt von x fest; jede (N — l)-dimensionale
Seite von x liegt auf genau einer von x verschiedenen Grundzelle x';
daher wird jede dieser Zellen xf auf sich abgebildet, und zwar so, daB

jeder Eekpunkt einer gewissen (N — l)-dimensionalen Seite von xr
festbleibt; hieraus folgt, daB jeder Eekpunkt von xf festbleibt. Da man
aber in K je zwei Grundzellen durch eine endliche Folge von Grundzellen
verbinden kann, in welcher jede Zelle mit der folgenden eine (N — 1)-
dimensionale Seite gemein hat, so Iehrt die soeben fur x und x1 angestellte
Betrachtung, daB A8 ûberhaupt jeden Eekpunkt von K festhàlt, daB
also A* — E ist.

13.4. Es seien: J ein Ring mit Einselement; p eine solche Primzahl,
da/i px ^ 1 fur aile x eJ ist ; K ein N-dimensionaler Komplex, der

azyklisch in bezug auf J ist; A ein Automorphismus von K, der die

Ordnung p hat (d. A. es sei Ap E). Dann gibt es eine Zelle, die durch A
auf sich abgebildet wird ; dis topologische Abbildung des durch den Komplex
K bestimmten Polyeders 11 aufgefafit23), besitzt daher A einen Fixpunkt.

Die Voraussetzung ûber J und p ist insbesondere erfullt, wenn J der
Ring der ganzen Zahlen und p beliebig, oder wenn J der Restklassenring
modulo q und p Teiler von q ist.

Beweis: Wâre die aus allen Potenzen Ar bestehende Grappe © fix-
punktfrei, so wâre nach 13.1 ©j 0 fur n> N ; nun ist aber © %P,

*8) Wegen der Beziehung zwischen den Begrifïen ,,Komplex" und ,,Polyeder" vgl.
man A.-H., 128.
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und infolge der Voraussetzung iiber J und p ist nach 10.5 ©j ^ 0 fur
aile ungeraden n. Folglieh gibt es eine Potenz Ar ^ E und eine Zelle x
mit Arx x Da p Primzahl ist, ist A Potenz von Ar; daher ist auch *

Ax x
Der hiermit bewiesene Satz ist der kombinatorische (simpliziale)

Spezialfall eines topologischen Satzes von Eilenberg24).

14. Homologiesphâren und ihre Verallgemeinerung (S-Komplexe)

Eine ,,Homologiesphàre" (in bezug auf J) ist ein endlicher, JV-dime sio-
naler Komplex, der dieselben Bettischen Gruppen besitztwie dieiV-dimen-
sionale Sphàre, d. h. der azyklisch in den Dimensionen 0, 1?..., N — 1

und dessen N-te Bettisehe Gruppe Bf J ist. Neben den Homologiesphâren

werden wir noch Verallgemeinerungen derselben betrachten, die
wir ,,$-Komplexe" nennen wollen: das sind die endliehen, iV-dimensio-
nalen Komplexe, die azyklisch in den Dimensionen 0, 1,..., N — 1 sind,
wâhrend uber die iV-te Bettisehe Gruppe niehts vorausgesetzt wird. Ist
Bj 0, so ist der Komplex endlich und azyklisch und daher fur uns
aus demselben Grunde uninteressant, der am Anfang von Nr. 13 genannt
worden ist.

Ist J der Ring der ganzen Zahlen oder der Restklassenring mod. q,
so sprechen wir von ,,ganzzahligen" $-Komplexen bzw. /S-Komplexen
,,mod. q". Ein endlicher, iV-dimensionaler, zusammenhangender Komplex

K ist dann und nur dann ganzzahliger $-Komplex, wenn fur
n 1,..., N — 1 seine n-ten Bettischen Zahlen und seine n-ten Tor-
sionsgruppen gleich 0 sind; er ist dann und nur dann $-Komplex mod. q,
wenn fur n 1,..., N — 1 seine Bettischen Zahlen 0 und die Ord-

nungen seiner Torsionsgruppen teilerfremd zu q sind14). Hieraus folgt:
Wenn K ganzzahliger /S-Komplex ist, so ist er auch #-Komplex in bezug
auf jeden Koeffizientenbereich J ; wenn K $-Komplex mod. q ist, so ist
er auch #-Komplex mod. qr fur jeden Teiler qr von q.

14.1. K sei ein N-dimensionaler 8-Komplex in bezug auf J, und © sei
eine fixpunktfreie Automorphismengruppe von K, Dann ist (5j homo-

morphes Bild einer Untergruppe von Bj
Beweis : Nach Satz III ist ©J homomorphes Bild von 93$ ; es geniigt

daher zu zeigen, da8 33j mit einer Untergruppe von Bj isomorph ist.
24) S. Eilenberg, On a theorem of P. A. Smith Duke Math. Journal 6 (1940),

428—437. Dort wird auch gezeigt, dafî die Voraussetzung ùber die algebraische Beziehung
zwischen p und J nicht entbehrlieh ist. Wegen der Frage, ob der Satz auch dann gilt,
wennpnieht Primzahl ist, vgl. man P. A. Smith, Fixed-point theorems for perio-
dic transformations, Amer. Journ. Math. 63 (1941), 1—8.
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Da die Komplexe K und R ^T-dimensional sind, stimmen die Bettischen
Gruppen Bf, 93J mit den Zyklengruppen ZN, 3^ ûberein; es genûgt
daher, eine isomorphe Abbildung der Gruppe 3^ in die Grappe ZN anzu-
geben. Die in 11.1 betraehtete Abbildung q> hat dièse Eigenschaft; denn
daB (p(SN) c ZN ist, wurde in 11.1 gezeigt, und daB <p ein Homomor-
phismus ist, ist klar; es bleibt zu beweisen: aus <p(x) 0 folgt x 0.
Beweis dieser Behauptung: Xi mit i 1, 2,... k seien die orientierten
JV-dimensionalen Zellen von 51 ; wie in 11.1 ist <p (x^ xix -f- xi2 + • • •

+ xig, wobei g die Ordnung von (g ist ; dann sind die xi$ mit i 1,..., k
und j 1,..., <7 die sâmtlichen orientierten JV-dimensionalen Zellen von
K; ihre Anzahl ist kg. Flir eineKette x Et^i ist ç?(x) Zti{xil +
• • * + xiff) î ^a dîe ^t/ eine B^sis in der Gruppe XN der Ketten von K
bilden, folgt daher aus <p(x) 0, daB aile tt 0 sind, d. h. daB x 0

ist.

14.2. Wir werden den Begriff des ,,Ranges mod. q" einer Abelschen
(additiv geschriebenen) Gruppe SDÎ benutzen ; er ist folgendermafien défi-
niert: Elemente xl9..., xk von 9K heiBen ,,linear unabhângig mod. q",
wenn aus a1x1-\- • • • +akxk= 0, worin die a{ ganze Zahlen sind, folgt,
daB aile ai 0 mod. q siïid; der Rang mod. q ist die Maximalzahl von
Elementen, die mod. q linear unabhângig sind; er heiBe rqi$R)

Man bestàtigt leicht folgende Eigenschaften : Ist SOI' Untergruppe oder
homomorphes Bild von SOI, so ist rq{$lr) ^ ra(50l). Sind el9 c2,..., e8

die Elementarteiler von 501 — ist also 931 direkte Summe 9téiHe#
zyklischer Gruppen 31^^ der Ordnungen ei9 wobei immer e{ Teiler von
e<+1 ist —, so ist rq(3Jl) die Anzahl derjenigen ei, die durch q teilbar sind.

14.3. Die iV^te Bettische Zahl pN eines Komplexes K ist immer mit
Hilfe ganzer — oder, was auf dasselbe hinauskommt, rationaler — Koeffi-
zienten erklârt, unabhângig von dem sonst benutzten Koeffizienten-
bereich. Wenn K iV^-dimensional ist, so gibt es pN ganzzahlige Zyklen
zl9 z%9..., zPN, die eine Basis der ganzzahligen Bettischen Gruppe BN
bilden.

K sei ein JV-dimensionaler >S-Komplex mod. q ; dann ist die Ordnung
der (N — l)-ten Torsionsgruppe teilerfremd zu q; hieraus folgt, daB es

in bezug auf J %q keine iV-dimensionalen Zyklen ,,2. Art" gibt, son-
dern nur Zyklen ,,1. Art*'25); das bedeutet: die obengenannten
ganzzahligen Zyklen zx,..., ZpN bilden auch eine Basis der Gruppe BS
d. h. jeder iV-dimensionale Zyklus mod. q lâBt sich auf genau eine Weise
als ttzt + • • • + tpx Zpn mit t4 c %q darstellen; die Gruppe B^ ist also

Mj A H
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die direkte Summe von pN zyklischen Gruppen der Ordnung q. Folglich
ist ra(J3^) pjr.

Hieraus, aus 14.1 und aus der in 14.2 genannten Regel rq$iïlf) <ra(50l)
ergibt sich folgender Satz:

K sei ein ÀT-dimensionaler $-Komplex mod. q und © eine fixpunkt-
freie Automorphismengruppe von K. Dann ist

Da jeder ganzzahlige $-Komplex zugleich fiir jede Zahl q #-Komplex
mod. q ist, ergibt sich weiter: K sei ein iV-dimensionaler ganzzahliger
#-Komplex und © eine fixpunktfreie Automorphismengruppe von K;
dann gilt (1) fur jede Zahl q.

14.4. Wir machen eine spezielle Anwendung des Satzes aus 14.3:

K sei ein N-dimensionaler 8-Komplex mod. q, dessen N-te Bettische
Zahl pN ^ N ist ; © sei eine fixpunktfreie Automorphismengruppe von
K, die Abelsch ist und die Ordnung q hat. Dann ist © zyklisch.

Beweis: Wir nehmen an, © sei nicht zyklisch. Dann enthâlt © eine
Untergruppe §, die — bei additiver Schreibweise — direkte Summe
zweier zyklischer Gruppen der gleichen Ordnung m ist (dabei kann man
als m jedenfalls den kleinsten Elementarteiler von © wàhlen). Mit ©
ist auch § fixpunktfreie Automorphismengruppe von K ; ferner ist, da
m Teiler von q ist, K auch /S-Komplex mod. m, wie am Anfang von Nr. 14

festgestellt wurde. Nach 14.3 ist daher in Analogie zu (1)

Andererseits ist nach 10.6 die Gruppe §^ direkte Summe von N ~\-\
zyklischen Gruppen der Ordnung q, also

q
(2)

Aus (l7) und (2) ergibt sich ein Widerspruch zu der Voraussetzung

Die in dem hiermit bewiesenen Satz uber K gemachte Voraussetzung
ist insbesondere immer erfullt, wenn K eine Homologiesphâre mod. q ist ;
denn dann ist pN 1 ; (wie in 14.3 gezeigt wurde, ist namlich fur einen
iV-dimensionalen £-Komplex mod. q die Gruppe BS direkte Summe von
pN Gruppen, die mit %q isomorph sind).
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Beispiel: Der N-dimensionale projektive Raum PN mit ungeradem N
gestattet keine anderen fixpunktfreien Abélschen Autormrphismengruppen
ungerader Ordnung als zyklische; denn er ist fur jede ungerade Zahl q
eine Homologiesphâre mod. q. (Die projektiven Râume gerader Dimension

sind rational âzyklisch und gestatten daher ûberhaupt keine
fixpunktfreien Automorphismen). Dagegen gestattet bei ungeradem N der
Raum PN fixpunktfreie zyklische Automorphismengruppen beliebiger
Ordnung. Ferner gestattet z. B. der Raum P3 die nicht-zyklische Vierer-

gruppe — also das direkte Produkt zweier zyklischer Gruppen der
Ordnung 2 — als fixpunktfreie Automorphismengruppe (man deute die
Punkte von P3 als Quaternionen, die nur bis auf réelle Faktoren bestimmt
sind; die Multiplikation mit den vier Quaternionen-Einheiten bewirkt
die Automorphismen dieser Grappe).

14.5. Da ein ganzzahliger #-Komplex zugleich /S-Komplex mod. q fur
jedes q ist, folgt aus 14.4 unmittelbar:

Ein ganzzahliger N-dimensionaler 8-Komplez K, dessen N-te Bettische
Zahl pN ^N ist, gestattet keine anderen fixpunktfreien Abélschen Auto-
morphismengruppen als allenfalls zyklische.2*)

Die Voraussetzung uber K ist insbesondere erfûllt, wenn K eine ganz-
zahlige Homologiesphâre ist. Der Satz gilt also speziell fur die ^-dimen-
sionalen Sphâren K SN ; diesen Spezialfall habe ich bereits frûher
bewiesen27).

15. Homologiesphârische Mannigfaltigkeiten

Wir betrachten iV-dimensionale Mannigfaltigkeiten M, die ganzzahlige
Homologiesphâren sind, und nennen sie ,,homologiesphàrisch"; sie sind
geschlossen und orientierbar ; die wichtigsten unter ihnen sind die Spharen
SN; fur N 3 sind es auBer der Sz die ,,Poincarésehen Râume'4.

Ein Automorphismus A einer Mannigfaltigkeit M hat einen Abbil-

26) Die zyklische Grappe der Ordnung g tritt fur jedes ungerade N als fixpunktfreie
Automorphismengruppe der SN, also eines $-Komplexes mit p& 1, auf, sowie fur jedes
gerade N als fixpunktfreie Automorphismengruppe desjenigen JV-dimensionalen iS-Kom-
plexes mit pN — g — 1, der entsteht, wenn man die Randsphâren von g Vollkugeln identi-
fiziert (g— 1 ist bei geradem N der kleinste môgliche Wert fur pN ; dies folgt daraus, dafî
die Eulersche Charakteristik von K gleich 1+ (—1) Np& ist und durch g teilbar sein mufî).
— Da6 es ûbrigens zu jeder endlichen Grappe © und jedem N einen N-dimensionalen
#-Komplex gibt, der © als fixpunktfreie Automorphismengruppe zulâfit, ist in 11 .2

gezeigt worden (fur die dortigen Beispiele ist pn— (g— l)1^1).
*7) J5T. Hopf, Nachtrag zu der Arbeit ,,Fundamentalgruppe und zweite

Bettische Gruppe", Comment. Math. Helvet. 15 (1943), 27—32, Nr. 5.
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dungsgrad, der ± 1 ist. Wenn A fixpunktfrei und die Dimensionszahl N
gerade ist, so ist nach einem bekannten Fixpunktsatz20) der Grad gleieh
— 1 ; das Produkt zweier Abbildungen vom Grade — 1 hat den Grad

+ 1 ; daher gibt es bei geradem N keine anderen fixpunktfreien Auto-
morphismengruppen als allenfalls die Gruppe der Ordnung 2; diesen
uninteressanten Fall schlieBen wir aus und nehmen also im folgenden
immer an, da6 N ungerade ist; dann hat nach demselben Fixpunktsatz
jeder fixpunktfreie Automorphismus den Grad + 1.

16.1. Wir beginnen mit der Besprechung einiger Eigenschaften der
,,Verbindung" (,,join")28) zweier Komplexe K1,K2: Man denke sich
jBl! K2 in einem hochdimensionalen euklidischen Raum in allgemeiner
Lage zueinander gegeben ; jedes Punktepaar px, p2 der durch die Komplexe

Kx, K2 bestimmten Polyeder23) Kx, K2 spannt eine Strecke px p2

auf; die Menge aller Punkte aller dieser Strecken heiBe F; die Teilmengen
von F, die entstehen, wenn px und p2 je eine Zelle von Kx bzw. K2 dureh-
laufen, sind selbst Zellen; sie bilden einen Zellenkomplex F K1oK2;
dieser Komplex ist die Verbindung von K± und K2.

K1oK2= F hat die folgenden Eigenschaften28) : Sind Nl9 N2 die Di-
mensionszahlen von Kl9 K2, so hat F die Dimension Nx + N2 + 1 • 1^ %i
azyklisch fur n< Nx und K2 azyklisch fiir n < N2, so ist F azyklisch
fur n < N1 -\- N2+ l (in bezug auf ganzzahlige Koeffizienten). Sind
Kl9 K2 Mannigfaltigkeiten, so ist auch F eine Mannigfaltigkeit. Folglich:
Sind Kx, K2 homologiesphârische Mannigfaltigkeiten der Dimensionen
Nx, N2, so ist F eine homologiesphârische Mannigfaltigkeit der Dimension

Nx + N2 + 1

Weiter: Zu jedem Paar von Automorphismen Al9A2 der Komplexe
Kt,K2 gehôrt ein bestimmter Automorphismus [^4l5^42] von ^: man
bilde fur jedes Punktepaar p1eK1, p2eK2 die Strecke pxp2 propor-
tional auf die Strecke q±q2 ab, wobei qx Axpx, q2=A2p2 ist. Es ist
[Al9 A2][Bl9 B2]= [A1Bl9A2B2]. Sind Al9A2 fixpunktfrei, so ist
auch [^j^a] fixpunktfrei. Folglich : wenn dieselbe abstrakte Gruppe ©
als fixpunktfreie Automorphismengruppe sowohl von K1 als auch von
K2 auftritt, so tritt sie auch als fixpunktfreie Automorphismengruppe von
F auf.

Indem wir zwischen Komplexen, die miteinander isomorph sind, nicht

28) S.Lefschetz, Topology (New York 1930), llOff. — H. Freudenthal, Die Betti-
schen Gruppen der Verbindung zweier Polytope, Fund. Math. 29 (1937),
145—150. (Die Bemerkung in der Klammer auf der zweit- und drittletzten Zeile von
S. 146 dieser Arbeit ûber die (— l)-te Bettisehe Gruppe ist irrefûhrend; dièse Gruppe ist
die Nullgruppe (d. h. von der Ordnung 1 — sonst wâre die bewiesene Formel falsch).
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unterscheiden, ist nach dem Vorstehenden fur jeden Komplex K der
Komplex K o K definiert : er ist gleich Kx o K2, wobei Kx und K2 mit
K isomorph sind. Jede fixpunktfreie Automorphismengruppe © von K
tritt somit auch als fixpunktfreie Automorphismengruppe von K o K auf,
sowie von KoKoK Ko(KoK) usw.; ist K i^-dimensional, so
haben K o K, K o K o K,... die Dimensionszahlen 2N + 1, 3^+2,...

Wir werden nur das folgende Korollar aller dieser Tatsachen brauchen :

Wenn die Gruppe © als fixpunktfreie Automorphismengruppe einer N-di-
mensionalen homologiespharischen MannigfaltigJceit M auftritt, so tritt sie
auch als fixpunktfreie Automorphismengruppe homologiesphârischer Man-
nigfaltigkeiten der Dimensionen 2N + 1,..., k(N + 1)— 1,... auf.

Fur den wichtigsten Fall, nâmlich den Fall, in dem M eine Sphâre ist,
vereinfachen sich die vorstehenden Betrachtungen insofern, als man
leicht bestâtigt, daB die Verbindung zweier Sphâren der Dimensionen
N± und N2 der Sphâre der Dimension N1 + N2+ l homôomorph ist.

15.2. © sei fixpunktfreie Automorphismengruppe einer
homologiespharischen Mannigfaltigkeit K M von der ungeraden Dimension N.
Dann erfûllen die Oruppen ©w folgende Bedingungen :

(a) ®"+^+i ^ ©* fur aile n ;

(b) ©*-!-» ^ ©^ fur 1 < n < N — 2 ;

(c) ©*-i 0; (d) (5N^%; (e) (SN+1 0

(g ist die Ordnung von © und %g die zyklische Gruppe der Ordnung g.)

Beweis: Nach 15.1 ist © fur jedes positive k fixpunktfreie
Automorphismengruppe einer homologiespharischen Mannigfaltigkeit Mk der
Dimension k(N + 1) — 1 ; nach Satz II sind daher fur jedes k die
Gruppen S1, ®2,..., ©*(^+1)-2 mit den Bettischen Gruppen eines von
Mk ûberlagerten Komplexes 5tfc isomorph; da Mk eine Mannigfaltigkeit
ist, ist auch Rk eine Mannigfaltigkeit; da, wie am Anfang von Nr. 15

festgestellt wurde, aile Automorphismen aus © den Grad + 1 haben,
ist 5tfc orientierbar; fur die Bettischen Gruppen von Stk, also auch fur die

entsprechenden ©n, gilt daher der Poincarésche Dualitatssatz, und zwar,
da die ©n nach Nr. 11 endlich sind, der Dualitatssatz fur Torsionsgruppen ;

d. h. es ist
©w' S <Sn fur n + n'=:k(N+l)-2. (h')

Dies gilt fur jedes positive k ; es ist also immer ©n' ©n, sobald

74



n + n' — 2 mod. (iNT + 1) ist. Ist nun n beliebig gegeben, so wâhle
man ein n\ das dièse Kongruenz erfûllt; dann ist auch

{n + N + 1) + nf - 2 mod. (N + 1)

und daher auch ©*' ^ ©»+*+*. FolgHch gilt (a).
(b) entsteht aus (b'), indem man k — 1 setzt.

(c) gilt, weil (5N~X die (^ — l)-te Torsionsgruppe der geschlossenen
orientierbaren iV-dimensionalen Mannigfaltigkeit Rt ist.

(e) folgt aus (c) und aus (b') mit k 2

Die Gûltigkeit von (d) ergibt sichaus dem SatzIII, da die geschlossene
orientierbare Mannigfaltigkeit K Mx eine gr-blàttrige Ûberlagerung
der geschlossenen orientierbaren Mannigfaltigkeit 5tx ist.

15.3. Der hiermit bewiesene Satz zeigt: Man kennt aile Gruppen ©n,
N — 1

falls man die Gruppen ©n mit n < —-— kennt ; denn wenn man die

letzteren kennt, so kennt man nach (b) die ©n mit n ^.N — 2, nach
(c), (d), (e) also die ©w mit n < N + 1, und nach (a) aile ©n.

Fur den Spezialfall N 3 ergibt sich : (5n 0 fur aile geraden n ;
©" ~ ©i fur n 4m + 1 ; ©w 3Iff fur n 4m — 1

Man kennt diejeiugen endlichen Gruppen ©, welche als fixpunktfreie
Drehungsgruppen der Sphâre S3 — also als Fundamentalgruppen der
3-dimensionalen sphârischen Raumformen — auftreten29) ; sie sind zu-
gleich fixpunktfreie Automorphismengruppen geeigneter Zellenzerle-

gungen der S3. Um fur eine dieser Gruppen © aile zugehorigen Gruppen
©n zu bestimmen, hat man nach dem obigen Résultat auBer der Ordnung
g nur die Grappe ©\ also die Abelsche gemachte Grappe ©, zu ermitteln ;

dies ist von Threlfall und Seifert durchgefuhrt worden29).
Beispiele30) : Ist © die Quaternionengruppe, so ist g 8, ©x= ?l2 + ?l2 ;

ist © die binâre Tetraedergruppe, so ist g 24, S1^^; ist © die
binare Ikosaedergruppe, so ist g 120, ©x 0

15.4. Als Gegenstûck zu dem Ergebnis von 15.1 wird jetzt gezeigt
werden, dafi eine nicht-zyklische Grappe ©, welche fixpunktfreie Auto-

*•) W. Threlfall und H. Seifert, Topo logische Untersuchung der Diskontinui-
tâtsbereiche endlicher Bewegungsgruppen des dreidimensionalen
sphârischen Baumes, Math. Annalen 104 (1930), 1—70; ibidem 107 (1932), 543—586. —
Ferner: H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Annalen 95

(1925), 313—339, §2.
10) Threlfall'Seifert, 1. c"), 1. Teil, 60—66.
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morphismengruppe einer JV-dimensionalen homologiesphârischen Mannig-
faltigkeit ist, fur unendlich viele, durch N bestimmte Dimensionszahlen
nicht in der analogen Rolle auftreten kann. Genauer:

Die abstrakte Oruppe © trete zugleich dis fixpunktfreie Automorphismen-
gruppe zweier homologiesphârischer Mannigfaltigkeiten der Dimensionen

Nt 2rt — 1 und N2 2r2 — 1 auf ; rx und r2 seien teilerfremd. Dann
ist © zyklisch.

Beweis : Es gibt zwei solche positive Zahlen m1,m2, da8 m1rl — m2r2= 1

ist; dièse Relation ist gleiehbedeutend mit

1 + m2(N2 + 1) N± + (m1 - 1) (Nx + 1)

Nennen wir die durch jede der beiden Seiten dieser Gleichung ausge-
driickte Zahl n, so folgt aus dem Ausdruck auf der linken Seite und aus
(a), da8 ©w^ ©x ist; aus dem Ausdruck auf der rechten Seite, aus (a)
und aus (d) folgt ©n ^ %g ; es ist also (51 %g Hieraus folgt zunâchst,
da6 ffi1 dieselbe Ordnung g hat wie © ; da ©x — ©/(£ ist, folgt daraus
weiter, daB (£ nur aus dem Einselement besteht, da8 also ffi1 ^ © ist.
Es ist also auch %g ^ ©

15.6. Wir wollen in dem vorstehenden Satz die zusâtzliehen Annahmen
machen, daB die Mannigfaltigkeiten Sphâren und die Automorphismen
Drehungen sind; dann entsteht ein Satz, der in die Darstellungstheorie
der endlichen Gruppen gehôrt.

Eine réelle DarsteUung D einer endlichen Gruppe © heiBe ,,fixpunkt-
frei**, wenn fur jedes Elément von ©, auBer fur das Einselement, aile

Eigenwerte der darstellenden Matrix # + 1 sind.
Aus der Fixpunktfreiheit einer Darstellung folgt, daB sie eine treue

Darstellung ist. — Abgesehen von dem Fall, daB © die Gruppe der
Ordnung 2 ist, treten in jeder reellen treuen Darstellung einer Gruppe ©
Matrizen mit positiver Déterminante auf (neben der Einheitsmatrix) ;

eine Matrix ungeraden Grades mit positiver Déterminante hat immer
einen positiven Eigenwert, also, wenn die Matrix in einer Darstellung
einer endlichen Gruppe vorkommt und daher nur Eigenwerte vom Betrage
1 besitzt, den Eigenwert + 1 ; daher interessieren uns nur Darstellungen
geraden Grades.

Unser Satz lautet nun:
Die endliche, nicht-zyklische Gruppe © besitze eine réelle fixpunktfreie

Darstellung vom Grade 2rx. Dann besitzt sie filr keine Zahl r2, die zu rx

teilerfremd ist, eine réelle fixpunktfreie Darstellung vom Grade 2r2. (DaB ©
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dagegen fur jedes r2, das durch rx teilbar ist, réelle fixpunktfreie (redu-
zible) Darstellungen besitzt, ist trivial.)

Um diesen Satz auf den Satz 15.4 zurûckzufûhren, hat man nur folgen-
des zu bedenken: 1. Jede réelle Darstellung ist einer orthogonalen Dar-
steliung àhnlich, kann also als Drehungsgruppe einer Sphàre gedeutet
werden. — 2. Jede endliche Drehungsgruppe der Sphâre 8n Ià8t, wie
man leicht sieht, eine geeignet konstruierte Zellenzerlegung K von 8n
invariant, und kann daher als Automorphismengruppe von K aufgefaBt
werden. — 3. Die oben definierte Fixpunktfreiheit der Darstellung î)
ist gleichbedeutend mit der, in unserem fruheren Sinne verstandenen
Fixpunktfreiheit der soeben genannten Automorphismengruppe.

Einen Beweis des Satzes mit den iiblichen Methoden der Darstellungs-
theorie kenne ich nicht. *)

Beispiel: Die (in 15.3 erwàhnten) Gruppen, die als fixpunktfreie Dre-
hungsgruppen der Sz auftreten, gestatten, sofern sie nicht zyklisch sind,
keine fixpunktfreien reellen Darstellungen der Grade 4 m + 2 (wohl
aber fixpunktfreie réelle Darstellungen aller Grade 4m).

§ 5. Beziehungen zur Homotopietheorie

16.1. Ein Raum R heiBt ,,asphàrisch" in der Dimension n, wenn jede
stetige Abbildung der Sphàre Sn in den Raum R homotop 0 ist, d. h.
stetig in eine Abbildung auf einen einzigen Punkt von R ûbergefûhrt
werden kann. Wir werden einen Komplex 51 oder K asphàrisch nennen,
wenn das zugehôrige Polyeder23) 5t oder K in diesem Sinne asphàrisch ist.

Ein Satz von Hurewicz31) — richtiger: ein fast trivialer Spezialfall
dièses Satzes — besagt : Wenn n > 1 und wenn Si asphàrisch in der
Dimension n ist, so ist auch jeder Ùberlagerungskomplex K von Si asphàrisch

in dieser Dimension. Ein zweiter Satz von Hurewicz lautet32):
Wenn der Komplex K asphàrisch in den Dimensionen 1, 2,..., JV —- 1

ist, so ist er in diesen Dimensionen auch azyklisch (in bezug auf ganz-
zahlige, also in bezug auf beliebige Koeffizienten).

Da nun der universelle Ûberlagerungskomplex K eines Komplexes 51

immer einfach zusammenhângend, d. h. asphàrisch in der Dimension 1

ist, so folgt aus den beiden Sàtzen: Wenn 51 asphàrisch in den Dimensionen

2,..., N — 1 ist, so ist der universelle Ûberlagerungskomplex K
azyklisch in den Dimensionen 1,2,...,JV—1.

31) W. Hurewicz, Beitrâge zur Topologie der Deformationen (I.), Proc.
Akad. Amsterdam 38 (1935), 112—119, Satz IV.

82) Titel wie 1. c.81), (II.), ibidem 521—528, Satz II.
*) Nachtrâglicher Zusatz: Herr G. Vincent, Lausanne, hat mir inzwisehen einen

solchen Beweis mitgeteilt.
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16.2. Hiermit ist festgestellt, daB die Komplexe Si, die asphârisch in
den Dimensionen 2,..., N — 1 sind, zu denjenigen Komplexen gehôren,
welche die Voraussetzungen des in 9.1 behandelten Spezialfalles unseres
Satzes II erfullen. Mithin gilt folgender Satz, der gegenûber den Sâtzen
des § 2 den Vorteil hat, daB in ihm nur von 51 selbst, aber von keinem
IJberlagerungskomplex die Rede ist:

Der Komplex Si habe die Fundamentalgruppe © und sei asphârisch in
den Dimensionen n mit 1 < n < N. Dann sind fur 1 ^ n < N seine
Bettischen Gruppen 93j isomorph mit den Gruppen ©"

16.3. Korollar: Ist Si asphârisch fur aile n mit 1 < n<N, so sind
die Bettischen Gruppen dieser Dimensionszahlen (sowie nattuflich die
erste) durch die Fundamentalgruppe bestimmt.

Das ist im wesentlichen — bei Beschrânkung auf Komplexe, die aber
auch unendlich sein diirfen — der am Anfang der Arbeit zitierte Satz,
den Hurewicz entdeckt und durch ein einfaches Abbildungsverfahren
bewiesen hat.

16.4. Wir wollen jetzt auch den Satz III in âhnlicher Weise mit den
Begriffen der Homotopietheorie in Verbindung bringen.

Eine stetige Abbildung der Sphâre 8n in das Polyeder 5^ bestimmt
einen stetigen Zyklus33) in 5Ï, und dieser gehôrt einer gewissen (ganz-
zahligen) Homologieklasse an ; diejenigen Homologieklassen, welche solche

stetigen Sphârenbilder enthalten, bilden, wie man leicht sieht34), eine

Untergruppe der Bettischen Grappe 35%; dièse Untergruppe heiBe Sw.

K sei ein Ûberlagerungskomplex von Si. Die zu Qn analoge
Untergruppe der Bettischen Gruppe Bn von K heiBe £n. Durch die tJber-
lagerungsabbildung U wird Zn offenbar in Qn abgebildet. Wenn n > 2

ist, wird aber 2Jn sogar auf die ganze Gruppe Qn abgebildet ; denn ist /
eine stetige Abbildung der Sphâre Sn in ^, so folgt aus dem Umstand,
daB Sn einfach zusammenhângend ist, mit Hilfe einer Monodromie-
Betrachtung leicht: es gibt eine solche stetige Abbildung g von Sn in
X, daB Ug f ist. Folglich ist U(En) Sn(fûr n > 2) 35).

16.6. 5^ habe die Fundamentalgruppe © und sei asphârisch in den Dimen-
sionen n mit 1 < n < N ; dann ist 95N/(5N ©^.

8a) A.-H., 332ff.
•*) Cf. 1. c.27), Nr. 1.

85) Fur n 1 gilt dies nicht; denn es ist S1 JB1, S1 331, also S1/^^1) durch
die Formel (Illi) in 9.3 gegeben.
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Beweis: Nach 16.1 ist der universelle tJberlagerungskomplex K von Si

azyklisch in den Dimensionen 1, 2,..., j^ — 1 ; folglich ist 9.1 (III)
anwendbar; wir haben daher nur zu zeigen, da8 QN U(BN), und
nach 16.4 nur, da8 BN ZN ist. Dies aber ist richtig auf Grand des

folgenden Satzes von Hurewicz36): Wenn K asphârisch in den Dimensionen

1, 2,..., JV — 1 ist, so ist jeder JV-dimensionale (ganzzahlige)
Zyklus von K einem Sphârenbild (im Sinne von 16.4) homolog.

16.6. Korollar : Ist Si asphârisch,,fur aile n mit 1 < n < N, so ist die
Gruppe *&N/QN durch die Fundamentalgruppe © bestimmt.

DaB man dièses Korollar sehr einfach mit derselben Méthode von
Hurewicz beweisen kann wie das Korollar 16.3, habe ich frûher gezeigt37).
DaB die Gruppen, die ich dabei ©n genannt habe, mit unseren ©w ûber-
einstimmen, haben wir soeben bewiesen.

16.7. Setzt man N 2, so wird die Voraussetzung des Satzes 16.5
nichtssagend ; fur jeden (zusammenhàngenden) Komplex Si ist also

932/®2= ©2, und daher auf Grand von 12.2

wenn die FundamentaJgruppe © als homomorphes Bild 5/91 einer freien
Gruppe 5 dargestellt ist.

Dièse Isomorphie habe ich frûher mit einer anderen Méthode bewiesen
und ihre geometrische Bedeutung ausfùhrlich untersucht13); (die Gruppe
©2 hieB damais ©*).

16.8. Âhnlich wie die Sâtze 9.1 (II) und 9.1 (III) hat auch der Satz
9.1 (IV) Beziehungen zur Homotopietheorie — allerdings etwas weniger
einfache : es spielen dabei die Automorphismen eine Rolle, die durch die
Fundamentalgruppe in den Homotopiegruppen induziert werden38). Dies
will ich in einer weiteren Arbeit behandeln.

(Eingegangen den 11. April 1944.)

86) 1. c.82), p. 526 unten, Behauptung 2).
87) 1. c.27), Nr. 4.

88) S. Eilenberg, On the relation between the fundamental group of a
space and the higher homotopy groups, Fund. Math. 32 (1939), 167—175.
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